EQUIDISTRIBUTION TOWARDS
THE GREEN CURRENT

BY VINCENT GUEDJ

Abstract. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping of first algebraic degree $\lambda \geq 2$. If S is a positive closed current of bidegree $(1,1)$ on \mathbb{P}^k with zero Lelong numbers, we show – under a natural dynamical assumption – that the pullbacks $\lambda^{-n}(f^n)^* S$ converge to the Green current T_f. For some families of mappings, we get finer convergence results which allow us to characterize all f^*-invariant currents.

Résultat (Equidistribution vers le courant de Green). — Soit $f : \mathbb{P}^k \to \mathbb{P}^k$ une application rationnelle dominante de premier degré algébrique $\lambda \geq 2$. Lorsque S est un courant positif fermé de bidegré $(1,1)$ sur \mathbb{P}^k dont les nombres de Lelong sont tous nuls, nous montrons, sous une hypothèse dynamique naturelle, que les pull-backs $\lambda^{-n}(f^n)^* S$ convergent vers le courant de Green T_f. Pour certaines familles d’applications, des résultats de convergence raffinés nous permettent de caractériser tous les courants f^*-invariants.

Introduction

Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $\lambda \geq 2$. A celebrated result of Brolin, Lyubich, Freire-Lopez-Mañé asserts that the preimages $\lambda^{-n}(f^n)^* \sigma$ of any probability measure σ on \mathbb{P}^1 converge to an invariant measure μ_f as soon as $\sigma(E_f) = 0$, where E_f is a (possibly empty) finite exceptional set. The purpose of this note is to prove similar results in higher dimension.
Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a rational mapping. It can be written $f = [P_0 : \cdots : P_k]$ in homogeneous coordinates, where the P_j's are homogeneous polynomials of the same degree λ (the first algebraic degree of f) with no common factor $P_0 \wedge \cdots \wedge P_k = 1$. Note that when $k \geq 2$, f is not necessarily holomorphic: it is not well defined on the indeterminacy set $I_f = \bigcap_j P_j^{-1}(0)$ which is an algebraic subset of \mathbb{P}^k of codimension ≥ 2. There are several ways one can try to generalize the one-dimensional result. Given Z an algebraic subset of \mathbb{P}^k of pure codimension p, one can ask whether $f^{-n}(Z)$ (properly normalized) converges to an invariant current of bidegree (p,p). In this note we focus on the case $p = 1$.

Given S a positive closed current of bidegree $(1,1)$ on \mathbb{P}^k, we consider

$$S_n := \lambda^{-n}(f^n)^* S.$$

This is a bounded sequence of positive closed currents of bidegree $(1,1)$ on \mathbb{P}^k. When $S = \omega$ is the Fubini-Study Kähler form, it was proved by Sibony [19] that (ω_n) converges to an invariant Green current T_f. On the other hand Russakovskii and Shiffman have shown [18] that $[H]_n - \omega_n \to 0$ for almost every hyperplane H of \mathbb{P}^k. Our main result interpolates between these two extreme cases.

Theorem 0.1. — Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a dominating rational mapping with $\lambda \geq 2$. Assume there exists an invariant probability measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$. Let S be a positive closed current of bidegree $(1,1)$ and unit mass on \mathbb{P}^k. If $\nu(S,p) = 0$ for all $p \in \mathbb{P}^k$, then

$$\frac{1}{\lambda^n}(f^n)^* S \rightharpoonup T_f \quad \text{in the weak sense of currents.}$$

Here $\nu(S,p)$ denotes the Lelong number of S at point p and $J_{FS}(f)$ denotes the jacobian of f with respect to the Fubini-Study volume form ω. Similar (weaker) results were previously obtained for Hénon mappings [1], [8], birational mappings [6], and holomorphic endomorphisms of \mathbb{P}^k [9], [19], [7].

Although Theorem 0.1 does not imply directly Russakovskii-Shiffman’s result, the proof shows one essentially has to assume $\sup_{p \in \mathbb{P}^k \setminus E} \nu(S_n,p) \to 0$, where E is some (possibly empty) exceptional set (see Theorem 1.4). The key ingredients of the proof are: a pluripotential estimate of the volume of sublevel sets of a quasipshurisubharmonic function [16] and a dynamical estimate on the decreasing of volumes under iteration (Theorem 1.2). Note that all the volumes are computed with respect to the Fubini-Study volume form ω.

We prove the volume estimates and our main result in Section 1. We give refinements of the latter in Section 2 in case f is an holomorphic endomorphism of \mathbb{P}^k (Section 2.1) or a special type of polynomial endomorphism of \mathbb{C}^k (Section 2.2). This allows us to characterize every f^*-invariant current. Such equidistribution results should be understood as strong ergodic properties of
equidistribution towards the green current 361

the Green current T_f. In dimension 1 indeed this implies that T_f is strongly mixing (see Theorem VIII.22 in [2]). For the reader’s convenience we recall in an Appendix compactness criteria for families of qpsh functions. They are the higher dimensional counterparts of Montel’s Theorem.

Acknowledgement. — We thank Ahmed Zeriahi for several useful conversations concerning this article. We also thank the referee for reading the paper carefully and making helpful comments.

1. Equidistribution of pullbacks of currents

Let $f : \mathbb{P}^k \to \mathbb{P}^k$ be a rational mapping with first algebraic degree $\lambda \geq 2$. We always assume f is dominating, i.e. its jacobian does not vanish identically in any coordinate chart. It follows that a generic point has $d_t(f)$ well defined preimages by f. Note that $d_t(f) = \lambda$ when $k = 1$ but these two degrees differ in general when $k \geq 2$.

Let ω denote the Fubini-Study Kähler form on \mathbb{P}^k. The smooth form $f^*\omega$ is well defined in $\mathbb{P}^k \setminus I_f$ and extends trivially through I_f as a positive closed current of bidegree $(1, 1)$ and mass $\|f^*\omega\| = \int_{\mathbb{P}^k} f^*\omega \wedge \omega^{k-1} = \lambda$. So $\lambda^{-1} f^*\omega$ is cohomologous to ω. Since \mathbb{P}^k is Kähler, this can be written

$$\lambda^{-1} f^*\omega = \omega + dd^c G,$$

where $G \in L^1(\mathbb{P}^k)$ (see [11, p. 149]). The function G is “quasiplushisubharmonic” (qpsh): it is locally given as the sum of a psh function (a local potential of $\lambda^{-1} f^*\omega \geq 0$) and a smooth function (a local potential of $-\omega$). In particular it is bounded from above on \mathbb{P}^k: replacing G by $G - C_0$, we can therefore assume $G \leq 0$. Sibony [19] has shown that the decreasing sequence of qpsh functions

$$G_n := \sum_{j=0}^{n-1} \frac{1}{\lambda^j} G \circ f^j$$

converges in $L^1(\mathbb{P}^k)$ to a qpsh function $G_\infty \in L^1(\mathbb{P}^k)$. This shows that $\lambda^{-n}(f^n)^*\omega$ converges in the weak sense of (positive) currents to the so called Green current $T_f \geq 0$ which satisfies $f^* T_f = \lambda T_f$.

A natural question is then to look at the convergence of $S_n := \lambda^{-n}(f^n)^* S$, where S is now any positive closed current of bidegree $(1, 1)$ and unit mass on \mathbb{P}^k. When $S = [H]$ is the current of integration along an hyperplane of \mathbb{P}^k, it was shown by Russakovskii and Shiffman [18] that $[H]_n \to T_f$ for every H outside some pluripolar set $E \subset (\mathbb{P}^k)^*$. In order to prove convergence of S_n for more general currents S, we first need to get control on the decreasing of volumes under iteration.

Bulletin de la société Mathématique de France
1.1. Volume estimates. — Let \(f : \mathbb{P}^k \to \mathbb{P}^k \) be a dominating rational mapping with \(\lambda \geq 2 \). Let \(J_{FS}(f) \) denote its jacobian with respect to the Fubini-Study Kähler volume form. It is defined by

\[
f^* \omega^k = |J_{FS}(f)|^2 \omega^k.
\]

Proposition 1.1. — Fix \(B \) an open subset of \(\mathbb{P}^k \) and \(\delta_0 > 0 \). There exists \(C_0 > 0 \) such that for every open subset \(\Omega \) of \(\mathbb{P}^k \) with \(\text{vol}(\Omega) \geq \delta_0 \),

\[
\text{vol}(f^n(\Omega)) \geq (C_0)^{\lambda^n} \exp \left(\frac{1}{\text{vol}(\Omega)} \int_B \log |J_{FS}(f^n)|^2 \omega^k \right),
\]

for all \(n \in \mathbb{N} \).

Proof. — Fix \(C^k \) an affine chart of \(\mathbb{P}^k \). We have

\[
f = (P_1/P_0, \ldots, P_k/P_0)
\]

in \(C^k \) where the \(P_j \)'s are polynomials of degree \(\leq \lambda = \delta_1(f) \). Since \(\omega = dd^c \log[1 + \|z\|^2] \) in \(C^k \), we get

\[
\omega^k(z) = (1 + \|z\|^2)^{-(k+1)} dV,
\]

where \(dV \) denotes the euclidean volume form in \(C^k \). Therefore

\[
|J_{FS}(f)|^2 = |J_{\text{eucl}}(f)|^2 \left(\frac{1 + \|z\|^2}{1 + \|f(z)\|^2} \right)^{k+1}.
\]

We infer

\[
\log |J_{FS}(f)| = u - v,
\]

where \(u, v \) are qpsh functions such that \(dd^c u, dd^c v \geq -2\lambda k \omega \). Let \(\Omega \) be an open subset of \(\mathbb{P}^k \). We have

\[
\text{vol}(f^n(\Omega)) = \int_{f^n(\Omega)} \omega^k \geq \frac{1}{d_t(f)^n} \int_\Omega |J_{FS}(f^n)|^2 \omega^k,
\]

where the inequality follows from the change of variable formula. The concavity of the logarithm yields

\[
\text{vol}(f^n(\Omega)) \geq \frac{\text{vol}(\Omega)}{d_t(f)^n} \exp \left[\frac{2D_n}{\text{vol}(\Omega)} \int_\Omega \frac{1}{D_n} (u_n - v_n) \omega^k \right],
\]

where

\[
\log |J_{FS}(f^n)| = u_n - v_n
\]

with \(dd^c u_n, dd^c v_n \geq -D_n \omega, D_n \leq 2\lambda^n k \). Observe that we can decompose

\[
\frac{1}{D_n} \log |J_{FS}(f^n)| = \varphi_n - \psi_n + \frac{1}{\text{vol}(B)} \int_B \frac{1}{D_n} \log |J_{FS}(f^n)| \omega^k,
\]
where
\[\varphi_n = D_n^{-1}u_n - \log \|z\| - \frac{1}{\text{vol}(B)} \int_B (D_n^{-1}u_n - \log \|z\|) \omega^k, \]
\[\psi_n = D_n^{-1}v_n - \log \|z\| - \frac{1}{\text{vol}(B)} \int_B (D_n^{-1}v_n - \log \|z\|) \omega^k. \]

The functions \(\varphi_n, \psi_n \) are quasipsh functions on \(\mathbb{P}^k \) (\(\dd^c \varphi_n, \dd^c \psi_n \geq -\omega \)) with \(\int_B \varphi_n = \int_B \psi_n = 0 \). It follows therefore from Proposition 3.2 (Appendix) that they belong to a compact family of qphs functions, so there exists \(C_\Omega \in \mathbb{R} \) such that \(\int_\Omega (\varphi_n - \psi_n) \omega^k \geq C_\Omega \), for all \(n \in \mathbb{N} \). Since \(D_n \leq 2k \lambda^n \), this yields the desired inequality.

It remains to get a lower bound on \(\int_B \log |J_{FS}(f^n)| \omega^k \), where \(B \) is an open subset which we may fix as we like.

Theorem 1.2. — Let \(f : \mathbb{P}^k \to \mathbb{P}^k \) be a dominating rational mapping with \(\lambda \geq 2 \). Assume there exists an invariant probability measure \(\mu \) such that \(\log |J_{FS}(f)| \in L^1(\mu) \). Fix \(\delta_0 > 0 \). Then there exists \(C_0 > 0 \) such that for every open subset \(\Omega \) of \(\mathbb{P}^k \) with \(\text{vol}(\Omega) \geq \delta_0 \),
\[\text{vol}(f^n(\Omega)) \geq C_0 \lambda^n, \quad \forall n \in \mathbb{N}. \]

Proof. — Using Proposition 1.1, it is sufficient to find \(M > 0 \) such that for all \(n \), \(\int_B \log |J_{FS}(f^n)| \omega^k \geq -M \lambda^n \). We take here \(B = \mathbb{P}^k \) (but other normalisations could be useful, see Remark 1.3 below).

We define \(\lambda^{-1} \log |J_{FS}(f)| = \nu - v + C \), where \(u, v \) are qphs functions (\(\dd^c u, \dd^c v \geq -\omega \)) such that \(\sup_{\mathbb{P}^k} u = \sup_{\mathbb{P}^k} v = 0 \) and \(C \in \mathbb{R} \). Thus we get
\[\frac{1}{\lambda^n} \log |J_{FS}(f^n)| = \frac{1}{\lambda^n} \sum_{j=0}^{n-1} \log |J_{FS}(f) \circ f^j| \geq \sum_{j=0}^{n-1} \frac{1}{\lambda^{n-j}} u_j + \frac{n}{\lambda^n} C, \]
where \(u_j := \lambda^{-j} u \circ f^j \). It is therefore sufficient to get a uniform lower bound on \(\int_{\mathbb{P}^k} u_j \omega^k \). This is a consequence of the fact that \((u_j) \) is relatively compact in \(L^1(\mathbb{P}^k) \). Indeed \(\dd^c u_j \geq -\lambda^{-j} (f^j)^* \omega \), so \(u_j + G_j \) is qphs. By Lemma 3.1 (Appendix), the sequence \((u_j + G_j) \) is either relatively compact or uniformly converges to \(-\infty \). Since \(G_j \to G_\infty \in L^1(\mathbb{P}^k) \), the sequence \((u_j) \) is either relatively compact or converges to \(-\infty \). But the latter can not happen since \(u \in L^1(\mu) \) and \(\int u_j \dd \mu = \lambda^{-j} \int u \dd \mu \to 0 \). The desired control on \(\int_{\mathbb{P}^k} \log |J_{FS}(f^n)| \omega^k \) follows.

Remark 1.3. — The assumption on the existence of \(\mu \) is natural in our dynamical context. Observe that it is satisfied if e.g. there exists a non critical periodic point.

Other assumptions could be made to obtain the final lower bound on \(\int_B \log |J_{FS}(f^n)| \omega^k \). If \(f \mid_{\mathbb{C}^k} \) is polynomial, it is enough to assume that...
sup_B |J_{eucl}(f^n)| \geq \alpha^{\lambda^n} for some relatively compact open subset B of \mathbb{C}^k. This holds in particular when f is a polynomial automorphism of \mathbb{C}^k.

1.2. Equidistribution of pullbacks. — A major difficulty in higher dimensional complex dynamics lies in the presence of points of indeterminacy and in the difficulty of analyzing the dynamics near

I_f^\infty := \bigcup_{n \geq 0} I_{f^n}.

Following Fornaess and Sibony [9], a rational mapping f : \mathbb{P}^k \to \mathbb{P}^k is said to be normal if for every p \in \mathbb{P}^k \setminus \overline{I_f}, there exists a neighborhood W of p and V of \overline{I_f} such that \phi^n(W) \cap V = \emptyset for all n \geq 0. Note that the condition is empty if \overline{I_f} = \mathbb{P}^k, so one usually assumes further that \overline{I_f} is “small”, e.g. vol(\overline{I_f}) = 0. Examples of such mappings include holomorphic endomorphisms of \mathbb{P}^k (for which I_f = I_f^\infty = \emptyset) or some polynomial endomorphisms of \mathbb{C}^k with small topological degree (e.g. Hénon mappings in \mathbb{C}^2, see other examples in [12], [13] and Section 2.2 below).

Theorem 1.4. — Let f : \mathbb{P}^k \to \mathbb{P}^k be a dominating rational mapping with \lambda \geq 2. Assume there exists an invariant probability measure \mu on \mathbb{P}^k such that log |J_{FS}(f)| \in L^1(\mu). Let S be a positive closed current of bidgree (1,1) and unit mass on \mathbb{P}^k. If \nu(S, p) = 0 for all p \in \mathbb{P}^k, then

S_n := \frac{1}{\lambda^n} (f^n)^* S \to T_f.

Moreover if f is normal with vol(\overline{I_f}) = 0 then S_n \to T_f if and only if \nu(S_n, p) \to 0 uniformly on compact subsets of \mathbb{P}^k \setminus \overline{I_f}.

Proof. — Write S = \omega + dd^c u, where u \leq 0 is quasiplushisubharmonic on \mathbb{P}^k. Then \lambda^{-n} (f^n)^* (S - \omega) = dd^c u_n, where u_n = \lambda^{-n} u \circ f^n \leq 0. So we need to show that u_n \to 0 in L^1(\mathbb{P}^k).

Observe that dd^c (u_n + G_n) \geq -\omega, so (u_n) is either relatively compact or uniformly converges to \omega (Lemma 3.1). It is therefore sufficient to prove that for all \varepsilon > 0, vol(\Omega^\varepsilon_n) \to 0, where

\Omega^\varepsilon_n := \{ p \in \mathbb{P}^k : \frac{1}{\lambda^n} u \circ f^n (p) < -\varepsilon \}.

Assume on the contrary that vol(\Omega^\varepsilon_n) \geq \delta_0 for some fixed \varepsilon, \delta_0 > 0 and n \to +\infty. Observe that

f^n(\Omega^\varepsilon_n) \subset \{ p \in \mathbb{P}^k : u(p) < -\varepsilon \lambda^{n_i} \}.

If \nu(S, p) = 0 for all p \in \mathbb{P}^k, it follows from Skoda’s integrability Theorem (see Theorem 3.1 in [16]) that for every A > 0, there exists C_A > 0 such that

vol(f^n(\Omega^\varepsilon_{n_i})) \leq C_A \exp(-A \varepsilon \lambda^{n_i}).
On the other hand, since \(\operatorname{vol}(\Omega^i_{\varepsilon_n}) \geq \delta_0 > 0 \), there follows from Theorem 1.2 that there exists \(C_0 > 0 \) such that
\[
\operatorname{vol}(f^n(\Omega^i_{\varepsilon_n})) \geq C_0 \lambda^n_i, \text{ for all } i \in \mathbb{N}.
\]
Taking \(A > -\log C_0 \) yields a contradiction.

Assume now \(f \) is normal. It was proved by Favre [5] that \(\nu(T_f, p) = 0 \) for all \(p \in \mathbb{P}^k \setminus \overline{T_f} \). Therefore it is necessary, for \(S_\alpha \) to converge to \(T_f \), that for every open neighborhood \(V \) of \(\overline{T_f} \), \(\sup_{p \in \mathbb{P}^k \setminus V} \nu(S_\alpha, p) \to 0 \). This is because \((S, p) \mapsto \nu(S, p) \) is upper semi-continuous (u.s.c.). Assume it is the case. Fix \(W \) a relatively compact open subset of \(\mathbb{P}^k \setminus \overline{T_f} \). Since Vol(\(\overline{T_f} \)) = 0, it is sufficient to prove that \(u_\alpha \to 0 \) over such \(W \). Since \(f \) is normal, we can fix \(V \) an open neighborhood of \(\overline{T_f} \) such that \(V \cap f^n(W) = \emptyset \), for all \(n \geq 0 \). We need to prove that \(\operatorname{vol}(W \cap \Omega^i_{\varepsilon_n}) \to 0 \). Now
\[
f^n(W \cap \Omega^i_{\varepsilon_n}) \subset \{ p \in \mathbb{P}^k \setminus V ; u(p) < -\varepsilon \lambda^n \},
\]
so the previous proof applies if \(\sup_{p \in \mathbb{P}^k \setminus V} \nu(S, p) \) is small enough. When \(\sup_{p \in \mathbb{P}^k \setminus V} \nu(S, p) \) is not small enough, we replace \(S \) by \(S_{N_0} \), \(N_0 \gg 1 \).

2. Invariant currents

It is an interesting problem to characterize all positive closed currents \(S \) of bidegree \((1,1)\) on \(\mathbb{P}^k \) such that \(f^* S = \lambda S \). This can be done by using our equidistribution result (Theorem 1.4). We illustrate this on two families of mappings.

2.1. Holomorphic endomorphisms of \(\mathbb{P}^k \).— We assume here \(f : \mathbb{P}^k \to \mathbb{P}^k \) is holomorphic, i.e. \(f = \emptyset \). In this case the construction of the Green current \(T_f \) is due to Hubbard and Papadopol [15]: \(G \) is smooth on \(\mathbb{P}^k \), so \((G_n) \) uniformly converges to \(G_\infty \) which is henceforth continuous (see \((*)\)).

Since the Green current \(T_f \) has continuous potential, all its Lelong numbers are 0. Moreover, it follows from the work of Bedford and Taylor that the measure \(\mu_f := T_f^k \) is well defined. The measure \(\mu_f \) is invariant and every qpsk function is \(\mu_f \) integrable (as follows from the Chern-Levine-Nirenberg inequalities, see the Appendix in [19]). Therefore \(f \) satisfies the assumptions of Theorem 1.4. Given \(S \) a positive closed current of bidegree \((1,1)\) and unit mass on \(\mathbb{P}^k \), Theorem 1.4 reads here
\[
\frac{1}{\lambda^n}(f^n)^* S \to T_f \iff \sup_{p \in \mathbb{P}^k} \nu(\lambda^{-n}(f^n)^* S, p) \to 0.
\]

It remains to understand the behavior of Lelong numbers under iteration. Since \(f \) is proper, one easily gets
\[
\nu((f^n)^* S, p) \leq d(f^n, p) \nu(S, f^n(p)),
\]

BULLETIN DE LA SOCIÉTÉ MATHEMATIQUE DE FRANCE
where \(d(f^n, p) \) denotes the local topological degree of \(f^n \) at \(p \),
\[
d(f^n, p) = \prod_{j=0}^{n-1} d(f, f^j(p)).
\]
So we are done if \(d(f^n, p) = o(\lambda^n) \).

Analyzing the behavior of \(d(f^n, p) \) is quite easy in dimension 1 as shows the following elementary lemma whose proof is left to the reader.

Lemma 2.1. — Let \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) be a rational map of degree \(\lambda \geq 2 \). Set
\[
\mathcal{E}_f := \{ p \in \mathbb{P}^1 : d(f, p) = d(f, f(p)) = d(f, f^2(p)) = \lambda \}.
\]
Then either
- \(\mathcal{E}_f \) is empty, or
- \(\mathcal{E}_f = 1 \) point, \(f \) is conjugate to a polynomial, or else
- \(\mathcal{E}_f = 2 \) points, \(f \) is conjugate to \(z^\lambda \) or \(z^{-\lambda} \).

Combining this with Theorem 1.4 yields the following celebrated result of Brolin [3], Lyubich [17] and Freire-Lopez-Mañé [10]. Note that positive closed currents of bidegree \((1, 1)\) and unit mass are simply probability measures on \(\mathbb{P}^1 \).

Theorem 2.2. — Let \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) be a rational map of degree \(\lambda \geq 2 \). Let \(\sigma \) be a probability measure on \(\mathbb{P}^1 \). Then
\[
\frac{1}{\lambda^n}(f^n)^*\sigma \to T_f \iff \sigma(\mathcal{E}_f) = 0.
\]

When \(k \geq 2 \) the “crude” estimate \(d(f^n, p) \leq d_t(f^n) = \lambda^k \) becomes worse as the dimension grows. Nevertheless, one still has that \(d(f^n, p) = O((\lambda - 1)^n) \) for a “very generic” choice of \(f \) (i.e. for \(f \) outside a countable union of hypersurfaces), so we get the following result of Fornaess and Sibony [9].

Corollary 2.3. — Let \(f : \mathbb{P}^k \to \mathbb{P}^k \) be a “very generic” holomorphic mapping with \(\lambda = d_t(f) \geq 2 \). Then
\[
\lambda^{-n}(f^n)^*S \to T_f
\]
for every positive closed current \(S \) of bidegree \((1, 1)\) and unit mass on \(\mathbb{P}^k \).

In particular \(T_f \) is the only \(f^* \)-invariant current.

It turns out that looking at local topological degrees is not sufficient to settle the problem of convergence to \(T_f \) when \(k \geq 2 \). Our volume estimates (Theorem 1.2) nevertheless allow us to complete the recent work of Favre and Jonsson [7] in dimension 2.

Theorem 2.4. — Let \(f : \mathbb{P}^2 \to \mathbb{P}^2 \) be a holomorphic mapping with \(\lambda \geq 2 \). There exists a (possibly empty) totally invariant algebraic subset \(\mathcal{E}_f \) of \(\mathbb{P}^2 \) such that if \(S \) is a positive closed current of bidegree \((1, 1)\) and unit mass on \(\mathbb{P}^k \), then
\[
\nu(S, \mathcal{E}_f) = 0 \implies \frac{1}{\lambda^n}(f^n)^*S \to T_f.
\]
The set \mathcal{E}_f can be decomposed as $\mathcal{E}_1 \cup \mathcal{E}_2$, where \mathcal{E}_1 is a union of at most three lines and \mathcal{E}_2 is a finite set. The condition $\nu(S, \mathcal{E}_f) = 0$ has to be understood as $\nu(S, p) = 0$ for every point $p \in \mathcal{E}_2$ and almost every point p of \mathcal{E}_1. We refer the reader to [7] for a proof. The only new information we provide are sufficient volume estimates near points of \mathcal{E}_2, without the extra assumption made by Favre and Jonsson that \mathcal{E}_2 consists of “homogeneous points”.

2.2. Some polynomial endomorphisms of \mathbb{C}^k. — Let $f : \mathbb{C}^k \to \mathbb{C}^k$ be a proper polynomial mapping, $f = (P_1, \ldots, P_k)$, where the P_i’s are polynomials with $\lambda = \max(\deg P_i) \geq 2$. We let $d_i(f)$ denote the topological degree of f and shall assume here that $d_i(f) < \lambda$. Given S a positive closed current of bidegree $(1, 1)$ and unit mass on \mathbb{P}^k, we thus get

$$
\sup_{p \in \mathbb{C}^k} \nu(S_n, p) \leq \sup_{p \in \mathbb{C}^k} \frac{d(f^n, p)}{\lambda^n} \sup_{p \in \mathbb{C}^k} \nu(S, f^n(p)) \leq \left(\frac{d_i(f)}{\lambda} \right)^n \to 0,
$$

where $S_n := \lambda^{-n}(f^n)^* S$.

We still denote by f the meromorphic extension of f to $\mathbb{P}^k = \mathbb{C}^k \cup \{t = 0\}$, where $(t = 0)$ denotes the hyperplane at infinity. Since f is polynomial (hence holomorphic) in \mathbb{C}^k, the indeterminacy set I_f is located within $(t = 0)$. Define by induction

$$
X_1 := f((t = 0) \setminus I_f), \quad X_{j+1} := f(X_j \setminus I_f).
$$

This is a decreasing sequence of irreducible analytic subsets of $(t = 0)$. We denote by $X_f := X_\ell$ the limit set, which we assume is non empty (this is equivalent to saying that f is algebraically stable, see [19]).

Theorem 2.5. — Let $f : \mathbb{C}^k \to \mathbb{C}^k$ be an algebraically stable polynomial endomorphism with $d_i(f) < \lambda = \delta_1(f)$. Assume I_f is an f^{-1}-attracting set and there exists an invariant probability measure μ such that $\log |J_{FS}(f)| \in L^1(\mu)$. Let S be a positive closed current of bidegree $(1, 1)$ and unit mass on \mathbb{P}^k. If $\nu(S, p) = 0$ for all $p \in X_f$, then

$$
S_n := \frac{1}{\lambda^n} (f^n)^* S \to T_f.
$$

When $\dim X_f = 0$, T_f is the only f^*-invariant current of unit mass in \mathbb{C}^k.

Proof. — We assume I_f is f^{-1}-attracting in the following sense: there exists an open neighborhood V of I_f in \mathbb{C}^k such that $\bigcap_{j \geq 0} f^{-j}(V) = \emptyset$. This implies that f is a normal mapping. Note also that f is proper in \mathbb{C}^k: if an algebraic curve $C \subset \mathbb{C}^k$ were to be contracted to a point by f, C would intersect $(t = 0)$ within I_f, contradicting that I_f is f^{-1}-attracting. Therefore $\sup_{p \in C^k} \nu(S_n, p) \to 0$ as observed above. If $q \in (t = 0) \setminus I_{f^\ell}$ then

$$
\nu((f^\ell)^* S, q) \leq C_q \nu(S, f^\ell(q)) = 0, \quad \text{since } f^\ell(q) \in X_f = X_\ell.
$$
The latter inequality is due to Favre [4] and Kiselman [16]. Therefore
\[\sup_{p \in \mathbb{P}^k \setminus I_f} \nu(S_n, p) \to 0 \] so \(S_n \to T_f \) by Theorem 1.4.

When \(\dim X_f = 0 \), \(X_f \) is reduced to a point which does not belong to \(I_f \). In this case \(\nu(S, X_f) = 0 \) is also a necessary condition to get \(S_n \to T_f \). Indeed if
\[\nu(S, X_f) = \gamma > 0 \] then for all \(q \in \{ t = 0 \} \setminus I_f \),
\[\nu((f^t)^* S, q) \geq \nu(S, f^t(q)) = \gamma > 0 \] so \((f^t)^* S \geq \gamma [t = 0] \)
hence \(S_n \) does not converge to \(T_f \). In particular if \(S \) is \(f^* \)-invariant and does not charge the hyperplane at infinity then \(\nu(S, X_f) = 0 \) hence \(S = S_n \to T_f \), so \(S = T_f \). Therefore every \(f^* \)-invariant current is a linear combination of \(T_f \)
and \([t = 0]\).

Remark 2.6. — The previous result applies e.g. to mappings
\[f = f_1 \circ \cdots \circ f_s, \quad f_j : (z, w) \in \mathbb{C}^2 \mapsto (P_j(w), Q_j(z) + R_j(w)) \in \mathbb{C}^2, \]
where \(P_j, Q_j, R_j \) are polynomials of degree \(p_j, q_j, \lambda_j \) with \(p_j q_j < \lambda_j \). One gets here
\[d_t(f) = \prod_{j=1}^{s} p_j q_j \quad \text{and} \quad \lambda := \delta_1(f) = \prod_{j=1}^{s} \lambda_j > d_t(f). \]
The set \(I_f = [1 : 0 : 0] \) is \(f^{-1} \)-attracting (see Example 4.1 in [12]) and \(X_f = [0 : 1 : 0] \). An invariant measure \(\mu \) such that \(\log |J_{FS}(f)| \in L^1(\mu) \) is constructed in [12] (Theorem 5.3). Note that when \(p_j = q_j = 1 \) then \(f \) is a complex Hénon mapping. A different proof of Theorem 2.5 was given in this case in the paper [6], where \(f^* \)-invariant currents are characterized for every birational mapping of \(\mathbb{C}^2 \).

We now consider the case of polynomial automorphisms of \(\mathbb{C}^k \). We can prove finer volume estimates on the set of points whose orbit accumulates \(I_f \) so that it is not necessary to assume \(f \) is normal.

Theorem 2.7. — Let \(f : \mathbb{C}^k \to \mathbb{C}^k \) be an algebraically stable polynomial automorphism of \(\mathbb{C}^k \) such that \(X_f \) is an \(f \)-attracting set. Let \(S \) be a positive closed current of bidegree \((1, 1)\) and unit mass on \(\mathbb{P}^k \). If \(\nu(S, p) = 0 \) for all \(p \in X_f \), then
\[S_n := \frac{1}{\lambda^n} (f^n)^* S \longrightarrow T_f. \]
If \(\dim X_f = 0 \) then \(T_f \) is the only \(f^* \)-invariant current of unit mass in \(\mathbb{C}^k \).

Proof. — As observed in Remark 1.3, it is not necessary to assume the existence of an invariant measure \(\mu \) such that \(\log |J_{FS}(f)| \in L^1(\mu) \). We use instead the fact that the euclidean jacobian of \(f \) is constant in \(\mathbb{C}^k \) to derive a lower bound on \(\int_B \log |J_{FS}(f^n)| \omega^k \).
We let $B(X_f)$ denote the basin of attraction of X_f in \mathbb{C}^k and set
\[K_f := \mathbb{C}^k \setminus B(X_f). \]
Since f is proper in \mathbb{C}^k with $d(f) = 1 < \lambda$, we get as before
\[\sup_{p \in \mathbb{P}^k \setminus K_f} \nu(S_n, p) \to 0. \]
Therefore $S_n \to 0$ in $B(X_f)$. Now we must make sure that $S_n \to 0$ on any relatively compact open subset B of K_f (if any). Write
\[S = \omega + \dd^c u, \]
where $u \leq 0$, $u \in L^1(\mathbb{P}^k)$. We need to prove that for all $\varepsilon > 0$,
\[\vol(B \cap \{u_n < -\varepsilon\}) \to 0, \]
where $u_n = \lambda^{-n} u \circ f^n$. Now $f^n(B \cap \{u_n < -\varepsilon\}) \subset \{u < -\varepsilon \lambda^n\}$ has volume $\leq C_1 \exp(-\varepsilon \lambda^n)$ because the Lelong numbers of S_n are bounded from above by 1. On the other hand
\[\vol(f^n(B \cap \{u_n < -\varepsilon\})) = \int_{B \cap \{u_n < -\varepsilon\}} |J_{FS}(f^n)|^2 \omega^k \]
\[= |a|^{2n} \int_{B \cap \{u_n < -\varepsilon\}} \left(1 + \frac{\|z\|^2}{1 + \|f^n(z)\|^2}\right)^{k+1} \omega^k \]
\[\geq C_B^{(\lambda^{-1})^n} \vol(B \cap \{u_n < -\varepsilon\}), \]
where $|a| := |J_{\text{eucl}}(f)| > 0$. The latter inequality follows from the fact that f has slow growth on K_f (see below). This yields $\vol(B \cap \{u_n < -\varepsilon\}) \leq \alpha \varepsilon_n$ where $0 < \alpha \varepsilon < 1$ so that $u_n \to 0$ on K_f.

We finally have to prove that f does not grow too fast on K_f. We can write $f = P + Q$, where P is a homogeneous mapping of degree λ and Q is a polynomial mapping of degree $\leq \lambda - 1$. Identifying $(t = 0)$ with \mathbb{P}^{k-1}, we can assume $P(t = 0) = X_f$. Fix $z_0 \in K_f$ and $z_n = f^n(z_0)$. We can assume z_n accumulates only at $I_f \setminus V$, where V is a small neighborhood of X_f. Define
\[\zeta_n = P(z_n-1), \quad \zeta_n' = Q(z_n-1), \]
so $z_n = \zeta_n + \zeta_n'$. There is a constant $C > 0$ such that
\[|\zeta_n|_+ \leq C |\zeta_n'|_+, \]
where $|p|_+ := \max(\|p\|, 1)$. If not then for a subsequence $|\zeta_n|/|\zeta_n'| \to \infty$, so
\[\frac{z_n}{\|z_n\|} = \frac{\zeta_n + \zeta_n'}{\|z_n\|} = \frac{\zeta_n}{\|\zeta_n\|} + o(1) = \frac{P(z_n-1)}{\|P(z_n-1)\|} + o(1). \]
Hence z_n converges to X_f, contradicting our assumption $z_0 \in K_f$. We infer
\[|\zeta_n'|_+ = |Q(z_n-1)|_+ \leq C_1 |z_n-1|^\lambda - 1 \leq C_2 |\zeta_n'-1|^\lambda - 1, \]
hence $|f^n(p)|_+ \leq C_2 |p|^\lambda - 1$ on K_f. \(\square\)
Remark 2.8. — When f is a “weakly regular” polynomial automorphism (i.e. when $X_f \cap I_f = \emptyset$, see [13]) then a necessary and sufficient condition to get convergence to T_f is that $\sup_{p \in X_f} \nu(S_n, p) \to 0$. This condition can be understood in terms of the local topological degrees of $f_0 := f|_{X_f}$ which is then an holomorphic endomorphism of X_f. Note that X_f may be singular but $X_f \simeq \mathbb{P}^r$ if it is smooth, so we are back to the situation described in Section 2.1!

For a “generic” f, f_0 will have no exceptional set so that $S_n \to T_f$ iff $\nu(S, X_f) = \inf_{p \in X_f} \nu(S, p) = 0$. In this generic situation, T_f is the only f^*-invariant current of unit mass in \mathcal{C}^k and $\lambda^{-n}(f^n)^*[H] \to T_f$ for every hyperplane $H \in (\mathbb{P}^k)^* \setminus \mathcal{E}_f$, where

$$\mathcal{E}_f := \{ H \in (\mathbb{P}^k)^* \setminus X_f \subset H \}$$

is an algebraic subset of $(\mathbb{P}^k)^*$.

3. Appendix

For the reader’s convenience we recall here some compactness criteria for families of quasipositive functions which play a central role in this note. We refer the reader to [20] for a systematic discussion of similar results.

Lemma 3.1. — Let (φ_n) be a sequence of plurisubharmonic functions in some connected open subset Ω of a complex manifold X. If (φ_n) is locally uniformly bounded from above in Ω, then either (φ_n) uniformly converges to $-\infty$, or it is relatively compact for the $L^1_{\text{loc}}(\Omega)$-topology.

We refer the reader to [14] (Theorem 3.2.12) for a proof. There is no plurisubharmonic function on \mathbb{P}^k (except constants). However there are plenty of quasipositive functions: these are functions φ which are locally the sum of a psh and a smooth function, so that their curvature is allowed to be negative but with a smooth control: $\dd c \varphi \geq -\theta$, where θ is a smooth form. Of particular interest for us is the following class

$$\mathcal{L}_\omega := \{ \varphi \in L^1(\mathbb{P}^k); \varphi \text{ is u.s.c. and } \dd c \varphi \geq -\omega \},$$

where ω denotes as usual the Fubini-Study Kähler form on \mathbb{P}^k. Lemma 3.1 easily extends to qpsh functions whose curvature is bounded below by a fixed form, for instance $-\omega$. We make constant use of the following criteria which tell that \mathcal{L}_ω is a compact family once normalized.

Proposition 3.2. — Let B be an open subset of \mathbb{P}^k. Then

$$\mathcal{F}_1 := \{ \varphi \in \mathcal{L}_\omega; \sup_B \varphi = 0 \} \text{ and } \mathcal{F}_2 := \{ \varphi \in \mathcal{L}_\omega; \int_B \varphi \omega^k = 0 \}$$

are compact families of qpsh functions.
Proof. — Fix $B' \subset B$ a small ball. We can assume $B' = B(r)$ is the ball of radius r centered at the origin in some affine chart $\mathbb{C}^k \subset \mathbb{P}^k$.

Let $\varphi \in \mathcal{F}_1$. Then

$$\psi := \varphi + \frac{1}{2} \log[1 + \|z\|^2]$$

is a psh function with logarithmic growth in \mathbb{C}^k (because $\omega = \ddc\left(\frac{1}{2} \log[1 + \|z\|^2]\right)$ in \mathbb{C}^k). Moreover $\sup_{B'} \psi \leq \sup_{B'} \varphi + \frac{1}{2} \log[1 + r^2] \leq \frac{1}{2} \log[1 + r^2]$. Therefore

$$\psi(z) \leq u_r(z) := \max \left(\log \frac{\|z\|}{r}, 0 \right) + \frac{1}{2} \log[1 + r^2] \text{ in } \mathbb{C}^k.$$

Indeed one can check this on any line $L \cong \mathbb{C}$ passing through the origin: the function $u_r|_L$ is harmonic outside the disk $L \cap B(r)$ and dominates $\psi|_L$ on $\partial(L \cap B(r))$ and near infinity. This yields

$$\varphi \leq \max \left(\log \frac{\|z\|}{r}, 0 \right) + \frac{1}{2} \log[1 + r^2] - \frac{1}{2} \log[1 + \|z\|^2] \leq c_r \text{ in } \mathbb{C}^k,$$

hence in \mathbb{P}^k. Therefore functions of \mathcal{F}_1 are uniformly bounded from above on \mathbb{P}^k. So if we fix a sequence (φ_j) of functions in \mathcal{F}_1, we can extract a convergent subsequence by Lemma 3.1. The cluster point is not $-\infty$ because $\sup_{B} \varphi_j = 0$ hence it belongs to \mathcal{F}_1.

The argument is similar for \mathcal{F}_2. We simply need to derive a uniform upper bound on \mathbb{P}^k. So let $\varphi \in \mathcal{F}_2$. Then $\varphi - \sup_{B} \varphi \in \mathcal{F}_1$ which is compact. Therefore there exists C such that

$$\int_B |\varphi - \sup_{B} \varphi| \omega^k \leq C, \text{ for all } \varphi \in \mathcal{F}_2.$$

This yields $\sup_{B} \varphi \leq C \operatorname{vol}(B)$ since $\int_B \varphi \omega^k = 0$. Moreover there exists $C' > 0$ such that $\sup_{B} \psi \leq C'$ for every $\psi \in \mathcal{F}_1$, so

$$\varphi = (\varphi - \sup_{B} \varphi) + \sup_{B} \varphi \leq C' + C \operatorname{vol}(B) \text{ on } \mathbb{P}^k,$$

for every $\varphi \in \mathcal{F}_2$. This implies the compactness of \mathcal{F}_2.

\[\square \]

BIBLIOGRAPHY

BULLETIN DE LA SOCIÉTÉ MATHEMATIQUE DE FRANCE