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SCHÉMAS EN GROUPES ET

IMMEUBLES DES GROUPES EXCEPTIONNELS

SUR UN CORPS LOCAL.

DEUXIÈME PARTIE : LES GROUPES F4 ET E6

par Wee Teck Gan & Jiu-Kang Yu

Résumé. — Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les
groupes exceptionnels des type F4 ou E6 sur un corps local. Nous décrivons chaque
construction concrètement en termes de réseaux : l’immeuble, les appartements, la
structure simpliciale, les schémas en groupes associés.

Abstract. — We give an explicit Bruhat-Tits theory for the exceptional group
of type F4 or E6 over a local field. We describe every construct concretely in terms
of lattices: the building, the apartments, the simplicial structure, and the associated
group schemes.
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Introduction

In this sequel to our paper [9], we give an explicit description of the Bruhat-
Tits theory [4–8] for a split exceptional group G of type F4 or E6 over a local
field. More precisely, we give a natural and explicit model of the Bruhat-
Tits building B(G) as a topological space, describe its simplicial structure, the
structure of apartments and the associated parahoric group schemes in terms of
this model, and discuss the relations among buildings of different groups. We
refer the reader to the introduction of [9] (where the case G = G2 was handled)
for the goal and the history of this programme.

Many techniques used in this paper have already been developed in [9], or
can at least be implicitly found there. However, since the rank of G2 is very
small, a proof in [9] can occasionally be achieved by staring at the Coxeter
complex which is an apartment of B(G2) (the figure in [9, §9]). Here it is
necessary to develop a more systematic approach. We now outline our general
strategy for studying the building of a simply connected simple group G over
a local field k.

Step 1. Choosing a geometric description of G. — Namely, we realize G
as Aut(V, T ), where V is a vector space over k and T = {ti} is a set of ten-
sors on V. Naturally, we prefer to make dim V small and the description of T
economical.

Step 2. Embedding of buildings. — Let ι : G → GL(V ) be the natural em-
bedding and show that this extends to a strong descent datum ι∗ : B(G) →
B(GL(V )) of the Bruhat-Tits buildings. In general, there may be many choices
for ι∗, but in the cases treated in this paper, the choice of ι∗ is essentially unique.

Step 3. Determination of the image of ι∗. — This can be achieved using the
formalism in [9, §3]. Recall from the fundamental work [6] of Bruhat and
Tits that B(GL(V )) can be identified with the set of norms on V. Hence,
determining the image of ι∗ amounts to describing B(G) as the set of norms
on V satisfying suitable conditions (expressed in terms of the tensors {ti}),
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and this gives the desired model of B(G) as a topological space. We remark
that the key input for the formalism of [9, §3] is usually an arithmetic result.
In [9], this key arithmetic result is the fact that any two maximal orders in
the split octonion algebra are isomorphic. Here, the key input is a theorem of
Racine [16] that any two distinguished orders in the split simple exceptional
Jordan algebra are isomorphic.

Step 4. Making a list of graded lattice chains and their properties. — Recall
from [6] that the norms on V are in natural bijection with graded lattice chains
in V. For a “standard” closed chamber C on B(G) and each vertex v ∈ C,
one can actually write down the norm αv = ι∗(v), and its associated graded
lattice chain (L•, c). The stabilizer in G(k) of the graded lattice chain (L•, c) is
then equal to the stabilizer of the vertex v, and hence is a maximal parahoric
subgroup of G(k). In fact, since G is simply-connected in our case, the stabilizer
of any member of the lattice chain L• must already be the maximal parahoric
subgroup. This suggests that the graded lattice chain (L•, c) (and hence the
vertex v) can be reconstructed from one particular member L(v) of L•, as a
consequence of certain properties that L(v) possesses. Usually, we simply take

L(v) =
{
x ∈ V : αv(x) ≥ 0

}
.

By examining the graded lattice chain for each vertex v on C, we make such a
list Pv of properties that L(v) satisfies. We distinguish two kinds of properties:
(i) the basic numerical invariants of L(v) and its associated graded lattice chain
(L•, c), such as the image of c and the volumes of the members of L• (see
the beginning of §5 for the notion of volume); (ii) other properties, whose
description usually involve the tensors {ti}.

Step 5. Lattice-theoretic description of the vertices. — By Step 4, we have an
injective map

{vertices of B(G) conjugate to v} −→ {lattices in V satisfying property Pv},

x %−→ L(x),

and we would like to show that it is surjective. This is achieved systematically
as follows.

# Given a lattice L ⊂ V satisfying Pv, we reconstruct a graded lattice chain
(L•, c) which corresponds to a norm αL on V.

# Using the description of B(G) in Step 3, we check that αL lies on B(G).
Hence, we can conjugate it to a point in the closed “standard” chamber
C using G(k), and we need to show that αL = v.

# If A is a “standard” apartment of B(G) containing C, we identify the
subset of A consisting of those norms α whose associated lattices L(α)
satisfy part (i) of Pv. This is practicable and very useful since this subset
lies in a lattice Mv in the affine space A. The point αL thus lie on Mv∩C,
which is a finite set.
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# Using part (ii) of Pv, we show that v can be distinguished from other
points in Mv ∩ C.

This gives the desired description of the vertices of B(G) in terms of certain
lattices in V.

Step 6. Determination of the simplicial structure. — We would like to show
that if x and y are vertices, then x is incident to y if and only if there is an
inclusion relation, say L(y) ⊂ L(x). From the explicit list of graded lattice
chains made in Step 4, such an inclusion relation is easily seen to be necessary,
and it remains to show that it is also sufficient. After this is done, we would
have a purely lattice-theoretical description of the simplicial complex B(G).

To prove the expected characterization of incidence relation, we may assume
that x and y lie on the“standard”apartment A. If Nxy is the number of vertices
of type y incident to x, and N ′

xy is the number of vertices z of type y such that
L(z) ⊂ L(x), then it suffices to show that Nxy = N ′

xy. The number Nxy can be
computed using the theory of Coxeter complexes, whereas the number N ′

xy can
be found with the aid of the computer. Indeed, we first identify the bounded
set Bx = {z ∈ A : L(z) ⊂ L(x)}. The points in Bx which satisfy part (i) of Py

lie in the finite set Bx∩My. One can then use the computer to count the points
in Bx ∩ My which satisfy Py, and show that Nxy = N ′

xy.

Step 7. Construction of the Bruhat-Tits schemes. — Let x be a vertex
on B(G). We would like to describe its associated smooth model Gx of G
over A (the ring of integers of k). In many cases, it can be shown that Gx

is simply the schematic closure of G in Aut(L(x)). The proof, following the
paradigm laid out by Bruhat and Tits [5], relies on detailed analysis of the
smoothness of schematic closures of root subgroups. More generally, one can
construct the Bruhat-Tits scheme associated to a bounded convex set in an
apartment by taking a suitable schematic closure.

It is instructive to compare the above programme to the analogous problem
of determining the spherical building of G. In the latter case, we do not have the
key formalism developed in [9, §3] and used in Step 3. Also, the apartments are
simplicial spheres rather than affine spaces, and hence the geometric tricks in
Steps 5 and 6 are not available. Indeed, the remarkable paper [1] of Aschbacher,
which gives a description of the spherical building of F4 or E6 analogous to
the conclusions of Steps 5 and 6, involves very different techniques. Since the
spherical building of G (over the residue field of A) can be obtained as the link of
a hyperspecial vertex in the Bruhat-Tits building, it is natural to ask whether
our results can be used to recover Aschbacher’s description of the spherical
building of a split group of type F4 or E6, at least over a perfect field. We
do not pursue this here, but in this connection, it is worth pointing out that
this paper relies on [1] only in the proof of Proposition 5.3 where we have
used [1, (3.16)].
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1. Cubic Forms and Jordan Algebras

We begin with some generalities on cubic forms and Jordan algebras. Let A
be a (unital, commutative and associative) ring and J a projective A-module of
finite rank. Let N be a cubic form on J , and t its associated symmetric trilinear
form. The cubic form N determines a tensor Q on J × J , characterized by the
requirement that:

# for fixed y, Ly : x %→ Q(x, y) is a linear form;

# for fixed x, Qx : y %→ Q(x, y) is a quadratic form;

# N(x + y) − N(x) − N(y) = Q(x, y) + Q(y, x).

The 3-tuple (N, Q, t) satisfies

# the symmetric bilinear form associated to Qx is t(x,−,−), i.e.

t(x, y, y) = 2 · Q(x, y),

# Q(x, x) = 3 · N(x),

and is called a regular 3-form in [1].

Let e ∈ J be such that N(e) = 1. Then we obtain a symmetric bilinear T
by setting

T (x, y) = Q(x, e)Q(y, e) − t(e, x, y).

If this symmetric bilinear form is non-degenerate, i.e. induces an isomorphism
J → HomA(J, A), then we can define a quadratic map # on J by the formula

T (x#, y) = Q(y, x).

In that case, we set

x × y = (x + y)# − x# − y#.

Following Jacobson [12, §2.4], the pair (N, e) is said to be admissible if:

# T is non-degenerate,

# the quadratic map # satisfies x## = N(x) · x.

Given an admissible pair (N, e), we have the following useful identities:

e# = e,(1)

T (x × y, z) = T (x, y × z) = t(x, y, z),(2)

e × x = T (e, x)e − x.(3)
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Some more complicated identities (cf. [16, p. 99]), which will prove to be useful
later on, are:

x × x# =
{
T (e, x#)T (e, x) − N(x)

}
e − T (e, x#)x − T (e, x)x#,(4)

(x × y)# = T (x#, y)y + T (y#, x)x − x# × y#.(5)

The 5-tuple (J, N, e, #, T ) is called a cubic norm structure; we refer the
reader to [13, §38] for its definition and further properties. We have seen that
an admissible pair (N, e) on J gives rise to a cubic norm structure; the cubic
norm structures thus obtained are those for which T is non-degenerate. Given
any cubic norm structure, we set

(6) yUx = T (x, y)x − x# × y.

Hence Ux is a linear operator on J , and U : x %→ Ux is a quadratic map.
Moreover, the triple (J, U, e) is a quadratic Jordan algebra of degree 3
(see [12, 1.3.4]). This allows us to define the positive-integer powers of x ∈ J :
x2 = eUx, x3 = xUx and so on. If 2 is invertible in A, then the product

x ◦ y =
1

2

[
(x + y)2 − x2 − y2

]

endows J with the structure of an honest Jordan algebra, i.e. a commutative
algebra with unit e satisfying the identity

(x2 ◦ y) ◦ x = x2 ◦ (y ◦ x) for all x, y ∈ J.

Conversely, given an honest Jordan algebra, one obtains a quadratic Jordan
algebra by setting:

yUx = 2x ◦ (x ◦ y) − (x ◦ x) ◦ y,

so that the two notions coincide when 2 is invertible in A.

The characteristic polynomial of x ∈ J is the degree 3 polynomial given by:

px(λ) = N(λ · e − x) = λ3 − Q(x, e)λ2 + Q(e, x)λ− N(x).

The analogue of Cayley-Hamilton theorem holds, i.e. px(x) = 0. Moreover,
there is a notion of the minimal polynomial of x, at least when A is a field.

2. The Exceptional Jordan Algebra

In this section, we describe the principal examples of cubic form and Jordan
algebra used in the paper. Taking A = Z, we let M be the Z-algebra of 3 × 3
matrices, and set J = M⊕3. Let N be the cubic form on J defined by:

N : (a, b, c) %−→ det(a) + det(b) + det(c) − Tr(abc).

As in the previous section, N gives rise to the forms t and Q.
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Now let e = (1, 0, 0) ∈ J . Then one can check that the pair (N, e) is
admissible. Hence, we have the non-degenerate symmetric bilinear form T and
the quadratic map #. These are given explicitly by:

{
T

(
(a1, b1, c1), (a2, b2, c2)

)
= Tr(a1a2) + Tr(b1c2) + Tr(c1b2),

(a, b, c)# = (a# − bc, c# − ab, b# − ca),

where a# is the adjoint matrix of a, etc. The Jordan algebra arising from the
admissible pair (N, e) is called the split simple exceptional Jordan algebra, and
the above construction is a special case of Tits’ first construction of Jordan
algebras. Hence, we shall call (J, N, e) the Tits model.

Another model for (J, N) can be described as follows. Let Λ be the split
octonion algebra over Z [9, §5]. This has an anti-involution x %→ x, and a
quadratic norm form q with associated symmetric bilinear form f . Moreover, we
have an explicit model for Λ, namely the Zorn’s model, which comes equipped
with a basis {e±1, e±2, e±3, e±4}, as discussed in [9, §5]. Let J3 be the set
of 3×3 Hermitian matrices with entries in Λ. More precisely, an element in J3

has the form:

(7) X =

(a z y
z b x
y x c

)

,

with a, b, c ∈ Z and x, y, z ∈ Λ. There is a natural cubic form N on J3 defined
by:

(8) N(X) = abc + Tr(xyz) − aq(x) − bq(y) − cq(z),

and a linear form Tr : X %→ a + b + c.

Taking e ∈ J3 to be the identity matrix I, we obtain an admissible
pair (N, e). The corresponding non-degenerate symmetric bilinear form is

T (X1, X2) = a1a2 + b1b2 + c1c2 + f(x1, x2) + f(y1, y2) + f(z1, z2),

which is related to Tr by T (X, I) = Tr(X), and the quadratic map # is given by:

X# =

( bc − q(x) x · y − cz z · x − by
x · y − cz ca − q(y) y · z − ax
z · x − by y · z − ax ab − q(z)

)

.

The triple (J3, N, e) is isomorphic to that defined using Tits model. An explicit
isomorphism j is given by:

(a z y
z b x
y x c

)

%−→

( a z4 y−4

z−4 b x4

y4 x−4 c

)

⊕

(x1 x2 x3

y1 y2 y3

z1 z2 z3

)

⊕

(x−1 y−1 z−1

x−2 y−2 z−2

x−3 y−3 z−3

)

,

where x =
∑

i xiei and so on. The model (J3, N, e) will be called the Freuden-
thal model.
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We conclude the section by giving a few other examples of admissible pairs,
which will appear later in the paper.

Example 2.1 (Jordan algebra associated to an associative algebra)
Given an associative A-algebra M , one can endow M with the structure of

a quadratic Jordan algebra by setting:

yUx = xyx.

The Jordan algebra thus obtained is denoted M+, and any Jordan sub-algebra
of M+ is said to be special.

Taking M to be the algebra of 3 × 3 matrices with entries in A, one can
check that M+ also arises from the admissible pair (N, 1), where N = det
is the determinant. The pair (N, 1) is admissible since T is simply the trace
bilinear form.

Example 2.2 (Freudenthal’s construction of Jordan algebra)
Let C be a composition algebra over A, such that the trace form f is non-

degenerate. Then the A-module H3(C) of Hermitian matrices with entries in C
consists of elements of the form (7), where the off-diagonal entries lie in C.
The formula (8) furnishes a natural cubic form det on H3(C), and taking e
to be the identity matrix, the pair (det, e) is admissible, and thus gives rise
to a Jordan algebra. Unless C is an octonion algebra, the Jordan algebra so
obtained is special. Of course, if one takes C to be the split octonion algebra
over A, one obtains the Freudenthal model described above.

Example 2.3. — (Jordan algebra associated to a pointed quadratic space)
Let (V, q, v) be a pointed quadratic space over A, i.e. a projective A-module
V equipped with a quadratic form q and an element v ∈ V with q(v) = 1.
Assume that the symmetric bilinear form associated to q is non-degenerate,
and let J = A × V. Then J has a natural cubic form defined by

N : (x, y) %−→ x · q(y).

If we let e = (1, v), then the pair (N, e) is admissible, and the resulting Jordan
algebra is again special.

3. Groups

We continue to work over Z in this section. Let H be the automorphism
group of the cubic form N on J ; it is the Chevalley group over Z which is
simply-connected of type E6, and is a closed sub-scheme of SL(J) (cf. [1], [10]
and [9, Prop. 6.1]). Further, it follows necessarily that H fixes the tensors Q
and t. Let H ′ ⊂ GL(J) be the group of similitudes:

H ′(B) =
{
(h, λ(h)) ∈ GL(M ⊗ B) × Gm(B) : N ◦ h = λ(h) · N

}
,
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for any Z-algebra B. Then we have an exact sequence:

1 → H −→ H ′
λ

−−→ Gm → 1.

Moreover, it follows necessarily that for any h ∈ H ′,

Q ◦ h = λ(h) · Q, and t ◦ h = λ(h) · t.

To describe a maximal split torus T for H , we first describe an embedding

(SL3 × SL3 × SL3)/∆µ3 ↪−→ H.

Let (g1, g2, g3) ∈ SL3
3 act on J by

(x, y, z) %−→ (g2xg−1
3 , g3yg−1

1 , g1zg−1
2 ).

It is clear that the action factors through SL3
3 /∆µ3, and gives the desired

embedding over Z. We then take T to be the image of the product of diagonal
tori

T̃ = T̃ 1 × T̃ 2 × T̃ 3

in SL3
3. Let T ′ be a maximal split torus of H ′ containing T . To be specific,

let T ′ ⊂ H ′ be the split torus generated by T and the 1-dimensional torus
which acts on J3 by:

t :

(a z y
z b x
y x c

)

%−→

( ta tz y
tz tb x
y x t−1c

)

, for t ∈ Gm.

Then we have an exact sequence:

1 → T −→ T ′
λ

−−→ Gm → 1.

This is a split exact sequence, since the 1-dimensional torus defined above
provides a splitting. In particular, we deduce:

Lemma 3.1. — For any commutative Z-algebra A, the map

λ : H ′(A) −→ A×

is surjective.

It is clear that there exists a maximal split torus C of SL(J) such that
C ∩ H = T . Indeed, it suffices to take C to be the maximal split torus de-
termined by the natural basis of J . We thus have a sequence of maps of
Z-modules:

X∗(T̃ ) ↪−→ X∗(T ) ↪−→ X∗(C),

and dually,

(9) X∗(C) −→→ X∗(T ) ↪−→ X∗(T̃ ).

For the purpose of explicit computation, we need to set up some explicit
coordinates for the real vector spaces X∗(T )⊗R and X∗(C)⊗R. For i, j = 1, 2
or 3, let εi[j] be the character of T̃ i which sends an element of T̃ i to its j-th
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diagonal entry. Then for each i, the elements εi[1], εi[2] and εi[3] generate the
lattice X∗(T̃ i), with the relation

εi[1] + εi[2] + εi[3] = 0,

and the elements {εi[j]} span the lattice X∗(T̃ ).

Now the roots of H relative to T can be regarded as elements of X∗(T̃ ),
in view of (9). We index the simple roots as shown in the following extended
Dynkin diagram:

0 2 4

5 6

3 1

Then the simple roots can be chosen such that:

r1 = ε2[1] − ε2[2], r3 = ε2[2] − ε2[3], r6 = ε3[1] − ε3[2],

r5 = ε3[2] − ε3[3], r0 = −ε1[1] + ε1[2], r2 = ε1[2] − ε1[3],

where r0 is the highest root. Since

r0 = r1 + 2r2 + 2r3 + 3r4 + 2r5 + r6,

we can work out what r4 is. Now the simple roots {ri} serve as coordinate
functions on the real vector space X∗(T ) ⊗ R, and we can obviously express
the εj[i]’s as rational linear combinations of the ri’s.

As for the coordinates on X∗(C)⊗R, we shall use the natural ones furnished
by the natural basis of J . More precisely, for i, j, k ∈ {1, 2, 3}, let ejk[i] be the
element of

J = M ⊕ M ⊕ M,

all of whose entries are 0 except for the (j, k)-entry of its i-th component,
which is 1. Let ai

jk : C → Gm be the weight of C corresponding to the weight
vector ejk[i]. Then we have

∑

i,j,k

ai
jk = 0.

Hence, we shall think of a point p of X∗(C) ⊗ R as a 3-tuple of 3 × 3 real
matrices [

(a1
jk(p)), (a2

jk(p)), (a3
jk(p))

]
,

whose entries sum to zero.

From the definition of the map SL3
3 → H, it is easy to determine the pull-

back of ai
jk to T̃ in terms of {εj[i]}. Indeed, we have:

ai
jk %−→ εi+1[j] − εi−1[k],
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where the indices are taken modulo 3. It is thus a simple matter to express the
pull-back of the coordinates ai

jk to X∗(T )⊗R in terms of the coordinates {ri}.
We summarize the preceding discussion with the following lemma:

Lemma 3.2. — In terms of the coordinates {ri} and {ai
jk} introduced above,

the embedding

X∗(T ) ⊗ R ↪−→ X∗(C) ⊗ R

is completely determined by:

(1, 0, 0, 0, 0, 0) !−→

0

@

2
3

2
3

2
3

−
1
3 −

1
3 −

1
3

−
1
3 −

1
3 −

1
3

1

A ⊕

0

@

2
3 −

1
3 −

1
3

2
3 −

1
3 −

1
3

2
3 −

1
3 −

1
3

1

A ⊕

0

@

−
4
3 −

1
3 −

1
3

−
1
3

2
3

2
3

−
1
3

2
3

2
3

1

A

,

(0,

1
2 , 0, 0, 0, 0) !−→

0

@

0 0 0
0 0 0
0 0 0

1

A ⊕

0

@

1
2 −

1
2 0

1
2 −

1
2 0

1
2 −

1
2 0

1

A ⊕

0

@

−
1
2 −

1
2 −

1
2

1
2

1
2

1
2

0 0 0

1

A

,

(0, 0,

1
2 , 0, 0, 0) !−→

0

@

1
6

1
6

1
6

1
6

1
6

1
6

−
1
3 −

1
3 −

1
3

1

A ⊕

0

@

2
3 −

1
3 −

1
3

2
3 −

1
3 −

1
3

2
3 −

1
3 −

1
3

1

A ⊕

0

@

−
5
6 −

5
6 −

1
3

1
6

1
6

2
3

1
6

1
6

2
3

1

A

,

(0, 0, 0,

1
3 , 0, 0) !−→

0

@

0 0 0
0 0 0
0 0 0

1

A ⊕

0

@

2
3 −

1
3 −

1
3

2
3 −

1
3 −

1
3

2
3 −

1
3 −

1
3

1

A ⊕

0

@

−
2
3 −

2
3 −

2
3

1
3

1
3

1
3

1
3

1
3

1
3

1

A

,

(0, 0, 0, 0,

1
2 , 0) !−→

0

@

−
1
6 −

1
6

1
3

−
1
6 −

1
6

1
3

−
1
6 −

1
6

1
3

1

A ⊕

0

@

5
6 −

1
6 −

1
6

5
6 −

1
6 −

1
6

1
3 −

2
3 −

2
3

1

A ⊕

0

@

−
2
3 −

2
3 −

2
3

1
3

1
3

1
3

1
3

1
3

1
3

1

A

,

(0, 0, 0, 0, 0, 1) !−→

0

@

−
2
3

1
3

1
3

−
2
3

1
3

1
3

−
2
3

1
3

1
3

1

A ⊕

0

@

4
3

1
3

1
3

1
3 −

2
3 −

2
3

1
3 −

2
3 −

2
3

1

A ⊕

0

@

−
2
3 −

2
3 −

2
3

1
3

1
3

1
3

1
3

1
3

1
3

1

A

.

Now let G be the subgroup scheme of H which fixes the element e. Then G is
the Chevalley group over Z of type F4. It is also the automorphism group of the
cubic norm structure (J, N, e, #, T ) or the quadratic Jordan algebra structure
on J . In any case, we have closed embeddings

G ↪−→ H ↪−→ SL(J).

The symmetric bilinear form T defines an involution ∗ on H by

T (gx, g∗y) = T (x, y).

This is an outer automorphism of H and the subgroup of H fixed by ∗ is
precisely G [18, pp. 150–151]. Hence, yet another way to describe G is to say
that it is the automorphism group of the pair (N, T ). For ease of reference, we
list the various descriptions of G below:
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Proposition 3.3. — The group G can be described in any one of the following
ways:

# the automorphism group of the pair (N, e), i.e. the subgroup of H which
fixes e;

# the automorphism group of the pair (N, T ), i.e. the subgroup of H which
fixes T , or equivalently, is fixed by the involution ∗ determined by T ;

# the automorphism group of the Jordan algebra structure (U, e).
# the automorphism group of the pair (#, e).

A maximal split torus of G is

S = G ∩ T = G ∩ C.

More concretely, we have an embedding

SL3 × SL3 /∆µ3 ↪−→ SL3
3 /∆µ3 ↪−→ H

given by (g1, g2) %→ (g1, g2, g2). This embedding factors through G, and S is
the image of the product of diagonal tori in SL2

3. Hence, we have an embedding
of real vector spaces

X∗(S) ⊗ R ↪−→ X∗(T ) ⊗ R.

On restricting the simple roots {ri} in X∗(T ) to S, we see that a system of
simple roots {r′i} for G relative to S can be taken to be:

(10) r′1 = r2 S, r′2 = r4 S, r′3 = r3 S = r5 S, r′4 = r1 S = r6 S.

Here the simple roots are indexed according to the following extended Dynkin
diagram (for the sake of comparison, the E6 diagram is shown below the dia-
gram of F4):

0 2 4

0 1 2 3 4

5 6

3 1

′ ′ ′ ′ ′

4. Orders and Radicals

Henceforth, we let k be a field which is complete with respect to a dis-
crete valuation ord, with ring of integers A, uniformizer π and perfect residue
field A/π of characteristic p (possibly zero). Assume that ord(π) = 1. We have
described various algebraic structures and algebraic groups over Z in the pre-
vious sections, and by base extension, we obtain the corresponding structures
and groups over A and k. More precisely, we let

J = J ⊗ A, V = J ⊗ k, H = H ⊗ k, and so on.

Suppose that L ⊂ V is an A-lattice on which N is integral, so that (L, N)
is a cubic space over A.
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Definition 4.1. — The radical R(L, N) of the cubic space (L, N) is:

R(L, N) =
{
x ∈ L : N(x), Q(x, y) and Q(y, x) lie in πÃ for all y ∈ L ⊗A Ã

}

where Ã is the strict henselization of A. Further, we define recursively, for i ≥ 1,

R
i(L, N) = R

(
R

i−1(L, N), π−i+1N
)
,

and call the sequence {Ri(L, N)} the radical series of (L, N).

Definition 4.2. — An order in the quadratic Jordan algebra V is an A-lattice
L ⊂ V such that

# e ∈ L;

# LUx ⊂ L, for all x ∈ L.

In particular, an order L is a Jordan algebra over A. Every element x in
an order L is integral, in the sense that its characteristic polynomial px has
coefficients in A [16, p. 9].

There is a notion of Jacobson radical for Jordan algebras. In the setting of
this paper, it can be defined as follows. First, we recall the notion of ideals in
an arbitrary Jordan algebra L. A submodule B ⊂ L is

# an inner ideal if yUx ∈ B for all x ∈ B and y ∈ L;
# an outer ideal if yUx ∈ B for all x ∈ L and y ∈ B;
# an ideal if it is both an inner ideal and an outer ideal.

Say that L is simple if it has no non-trivial ideals, and is semisimple if it is a
product of simple Jordan algebras.

Definition 4.3. — The radical of a Jordan algebra L is the smallest ideal
R(L) ⊂ L such that L/R(L) is semisimple.

It is a remarkable theorem of Petersson and Racine [14, Thm. 9] that

R(L) = R(L, N).

Definition 4.4. — An order is said to be distinguished if it is a maximal
lattice of integral elements.

For example, the order J ⊂ V is distinguished. Note that a distinguished
order is necessarily a maximal order. Now we have the following crucial result:

Theorem 4.5. — Let L be a lattice in V such that e ∈ L. Then

(i) L is an order if and only if L is closed under the quadratic map #.

(ii) Any two distinguished orders are isomorphic, and thus conjugate under
G(k).

Proof. — (i) is [16, p. 102, Prop. 1], and (ii) is [16, p. 115, Prop. 5].
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It should be noted that there exists maximal orders in V which are not dis-
tinguished. We describe an example below, following Racine [16]. In [9, §11],
we have given an explicit description of the building of the split group Spin8 in
terms of norms on the (reducible) 24-dimensional representation. The build-
ing B(Spin8) can be canonically identified with B(SO8), and a particular cham-
ber of the latter correspond to 4 lattices in the split octonion algebra Λ ⊗ k.
These are labelled by R, M , N and N ′ in [9, §9], with R a maximal or-
der in Λ ⊗ k, M is a self-dual lattice, whereas N and N ′ satisfy πN∗ = N
and πN ′∗ = N ′. Moreover, they satisfy

R ∗ R ⊂ R, M ∗ N ⊂ N ′, N ∗ N ′ ⊂ M, N ′ ∗ M ⊂ N,

where ∗ is the natural symmetric composition on the octonion algebra
(cf. [9, §5]). The distinguished order J3 in V is then given by the lattice

J3 =

(A R
A R

R A

)

,

and an example of a maximal order which is not distinguished is given by the
lattice:

J ′ =

( A N
A M

N ′ A

)

.

Whereas the reduction modulo π of J3 is the split exceptional simple Jordan
algebra over A/π, the Jordan algebra J ′/πJ ′ is not semisimple. The maximal
semisimple quotient J ′/R(J ′) is isomorphic to the Jordan algebra over A/π
associated as in Example 2.3 to the pointed quadratic space of 2× 2 Hermitian
matrices with entries in the octonion algebra Λ⊗A/π. In particular, J ′/R(J ′)
has dimension 11 over A/π. Are these the only two isomorphism classes of
maximal orders in V ?

5. Buildings

In this section, using the formalism developed in [9, §3], we give explicit
models for the buildings B(H) and B(G) of H and G in terms of norms on the
27-dimensional representation V.

The embedding ι : H ↪→ SL(J) of Chevalley groups induces a strong descent
datum [4, p. 203]

ι∗ : B(H) ↪−→ B(SL(V )).

By [6], we regard B(SL(V )) as the set of norms α on V with a fixed volume.
More precisely, each norm α on V determines a norm vol(α) on ∧topV , and
B(SL(V )) can be realized as the set of those α such that vol(α) takes value 0 on
a basis element of the lattice ∧topJ ⊂ ∧topV. In general, if vol(α) takes value
r on a basis element of ∧topJ , we say that α has volume r. Similarly, if L is a
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lattice in V , say that L has volume r if ∧topL = πr ∧top J . Note that with this
notion of volume, if L1 ⊂ L2, then vol(L1) ≥ vol(L2). Moreover, every lattice
L determines a graded period 1 lattice chain and the resulting norm αL has
volume − vol(L).

For each finite extension E of k, let NE ⊂ B(SL(VE)) be the subset of those
norms α which minorize N :





ordN(x) ≥ 3α(x), for all x ∈ VE ,

ordQ(x, y) ≥ α(x) + 2α(y), for all x, y ∈ VE ,

ord t(x, y, z) ≥ α(x) + α(y) + α(z), for all x, y, z ∈ VE .

Then we have:

Theorem 5.1. — The image of ι∗ is the set N = Nk. In other words, the
building of H can be described as the set of norms on V which have volume 0
and minorize the cubic form N .

We now begin the proof of the theorem. Firstly, by checking on a splitting
basis for a norm α, it is not difficult to verify:

Lemma 5.2. — For each E, NE is convex and H(E)-invariant, and the inter-
section of NE with any apartment of B(H) is a rational polytope. Moreover,
the collection {NE} is compatible with base change. In other words, condi-
tions (BC) and (RAT) of [9, Thm. 3.5] hold.

To prove the theorem, it remains to verify the condition (TRANS) in [9],
Theorem 3.5. Let x0 ∈ B(SL(V )) be the rational point corresponding to the
period 1 graded lattice chain determined by J . It is clear that x0 ∈ N , and
by construction, x0 is the image of a hyperspecial point on B(H) under ι∗. To
verify (TRANS), it suffices to show:

Proposition 5.3. — For each E, H(E) acts transitively on NE ∩ SL(VE)x0.

Let x ∈ NE ∩ SL(VE)x0. Then x corresponds to a period 1 lattice chain
determined by a certain lattice L in VE with vol(L) = 0. The assumption that
x ∈ NE simply says that N , Q and t are integer-valued on L. We need to show
that L is conjugate to J ⊗ AE under H(E).

• Special Case: suppose that e ∈ L. — In this case, we claim that L is a
distinguished order of the Jordan algebra V ⊗E. By Theorem 4.5 (i), we need
to show that

# L is a maximal lattice of integral elements;
# L is closed under #.

Since e ∈ L and the triple (N, Q, t) is integer-valued on L, we deduce that
the symmetric bilinear form T is integer-valued on L. Since J ⊗AE is self-dual
with respect to T , and has the same volume as L, we see that L must also be
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174 GAN (W.T.) & YU (J.-K.)

self-dual with respect to T . In particular, L is a maximal lattice on which T
is integral. Since T must be integer-valued on any lattice consisting of integral
elements, L is indeed a maximal lattice of integral elements. On the other
hand, since

T (x, y#) = Q(x, y) ∈ A

for all x, y ∈ L, the self-duality of L relative to T implies that L# ⊂ L. This
establishes the claim.

Hence by Theorem 4.5 (ii), we conclude that if e ∈ L, then L is conjugate to
J ⊗ AE under G(E) ⊂ H(E).

• General Case. — Let c = minx∈L ordN(x) ≥ 0. Then the forms Q and t
take value in πcA as well.

Now we claim in fact that c = 0. Indeed, let x0 ∈ L be such that
ordN(x0) = c. By [1, 3.16 (1)] (we remind the reader that what we denote
by (N, Q, t) is denoted by (T, Q, f) in [1], and a “point” in [1, 3.16 (1)]
means a 1-dimensional vector subspace in V ), there exists h′ ∈ H ′(E) such
that h′(x0) = e. Note that such a h′ satisfies λ(h′) = N(x0)−1. Hence the
lattice h′(L) contains e, and the triple (N, Q, t) is still integer-valued on h′(L).
This implies that T is integer-valued on h′(L), and so

vol(L) ≥ vol
(
h′(L)

)
≥ vol(J ⊗ AE),

since the latter is self-dual. Since L is assumed to have the same volume
as J ⊗ AE , we conclude that equality holds throughout, so that c = 0, and
h′(L) has the same volume as J ⊗AE . By the special case treated above, there
exists g ∈ G(E) such that gh′(L) = J ⊗ AE .

Now the map λ : H ′(AE) → A×
E is surjective, by Lemma 3.1. Since λ(gh′)

lies in A×
E , we can find h′′ ∈ H ′(AE) such that λ(h′′) = λ(gh′)−1. Now the

element h = h′′gh′ satisfies λ(h) = 1 and hence h lies in H(F ). Moreover,

h(L) = h′′gh′(L) = h′′(J ⊗ AE) = J ⊗ AE ,

since by construction, H ′(AE) stabilizes J ⊗AE . This proves the general case,
and hence Proposition 5.3.

Finally, by combining Lemma 5.2, Proposition 5.3 and [9, Thm. 3.5], Theo-
rem 5.1 is proved.

Corollary 5.4. — The building B(H ′) of H ′ is the set of norms α on V such
that α− 1

27 vol(α) minorizes N .

Observe that, H is also the automorphism group of λ · N for any λ ∈ k×.
We can thus also realize the building of H as a set of norms minorizing λ · N .
More precisely, we have:
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Corollary 5.5. — The building of H can be realized as the set B(H)λ of
norms α on V , which minorize λ · N , and such that vol(α) = 9 ord(λ). More-
over, the map B(H) → B(H)λ given by α %→ α + 1

3 ord(λ) is an isomorphism
of buildings.

We come now to the building B(G) of G. There are a number of ways of
describing B(G), corresponding to the different ways of realizing the group G
in Proposition 3.3. As a piece of terminology, we say that a norm α on V is a
norm of Jordan algebra if it satisfies:

# α(yUx) ≥ 2α(x) + α(y) for all x, y ∈ V ;
# α(zUx,y) ≥ α(x) + α(y) + α(z) for all x, y, z ∈ V , where Ux,y = Ux+y −

Ux − Uy;
# α(e) ≥ 0.

We now have the following theorem:

Theorem 5.6. — Let ι′ : G ↪→ GL(V ). Then the image of B(G) under ι′∗ can
be described in any one of the following ways:

(i) the set of α ∈ B(H) such that α(e) ≥ 0.

(ii) the set of self-dual (relative to T ) norms α on V which minorize N .

(iii) the set of self-dual norms of Jordan algebra;

(iv) the set of self-dual norms α on V satisfying:

# α(x#) ≥ 2α(x) for all x ∈ V ;

# α(x × y) ≥ α(x) + α(y) for all x, y ∈ V ;

# α(e) ≥ 0.

The rest of the section is devoted to the proof of the theorem. In each case,
we let NE be the relevant set of norms on VE , and it is then easy to check that
the collection {NE} satisfies conditions (BC) and (RAT) in [9, Thm. 3.5]. The
verification of the condition (TRANS) is similar in the different cases and rests
ultimately on Theorem 4.5 (ii).

(i) In this case, the verification of (TRANS) is precisely the special case in
the proof of Theorem5.1 above.

(ii) This case is slightly more involved. Suppose that L is an A-lattice on
which (N, Q, t) is integer-valued and L is self-dual with respect to T . Since

T (x#, y) = Q(y, x)

we see that L is closed under #. To see that L is a distinguished order, it
remains to verify that e ∈ L. Suppose that λ · e ∈ L, but λ′ · e /∈ L for any λ′

such that ord(λ′) < ord(λ). Then ord(λ) ≥ 0, and we need to show that
equality holds. But by (3), we have:

T (x, e)(λ · e) = (λ · e) × x + λ · x,
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so that T (x, e)(λ · e) lies in L for any x ∈ L. In particular, by the minimality
of ord(λ), we deduce that T (x, e) ∈ A for all x ∈ L. By the self-duality of L,
we conclude that e ∈ L, and thus L is a distinguished order. (TRANS) then
follows by Theorem 4.5 (ii).

The remaining cases (iii) and (iv) are even simpler, and we leave them to
the reader. Theorem 5.6 is proved.

As we mentioned before, the symmetric bilinear form T defines an outer
automorphism of H , with G as the group of fixed points. The induced action
of Z/2Z on B(H) is the map which sends a norm α to its dual α∗ relative to T .
Hence, Theorem 5.6 (ii) implies:

Corollary 5.7. — The building B(G) is the subset of B(H) which is fixed
pointwise by the action of Z/2Z.

When p .= 2, this corollary also follows from a general result in [15].

6. Apartments

We now describe the apartments of B(G) using its realization provided by
Theorem 5.6. For this, we need to know how to specify a maximal split torus
of G in terms of the Jordan algebra structure on V. From the construction in
§3, we see that under the action of the maximal split torus S on V , the triv-
ial character appears with multiplicity 3. Moreover, this 3-dimensional space
of trivial weight has a canonically determined basis {e1, e2, e3} of orthogonal
primitive idempotents. In the Freudenthal model, the ei’s are the elements
diag(1, 0, 0) and so on. Recall that a primitive idempotent of V is a non-zero
element x such that x# = 0 and x2 = x, and a set {e1, e2, e3} of primitive
idempotents of V is orthogonal if ejUei

= 0 and (ei + ej)2 = e2
i + e2

j for all
i .= j (see [12, 5.1]).

Now the algebraic subgroup of G which fixes the set {e1, e2, e3} pointwise
is isomorphic to the split group Spin8. When p .= 2, this is a special case of a
result of Soda [17]. However, the restriction on p is not necessary: the result
follows quickly from the theory of triality (which works over any field) discussed
in [9, Section 11]. The action of Spin8 preserves the three subspaces V Uei,ej

,
for i .= j, which are all 8-dimensional. Moreover, V Uei,ej

is endowed with the
quadratic form

x %−→ N(ek + x) = Q(ek, x),

where {i, j, k} = {1, 2, 3}. Indeed, the action of Spin8 on the subspaces V Uei,ej

gives a realization of the three 8-dimensional representations of Spin8. Further,
the algebraic subgroup of G fixing {e1, e2, e3} setwise is the semi-direct product
Spin8 !S3, and this group permutes the set {V Ue1,e2

, V Ue2,e3
, V Ue3,e1

}, with
its identity component Spin8 acting trivially.
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In any case, the split torus S is also a maximal split torus of Spin8, and its
action on V Uei,ej

has distinct weights. Hence, its weight vectors determine a
decomposition of V Uei,ej

into lines. Further, by choosing a suitable vector from
each of these lines, we obtain a Witt basis of the quadratic space V Uei,ej

. We
call such a decomposition into lines of a quadratic space a Witt decomposition.
Hence, we have seen that a maximal split torus S of G determines a complete
system of orthogonal primitive idempotents, as well as Witt decompositions of
the quadratic spaces V Uei,ej

.

Conversely, given a system η = {η1, η2, η3} of orthogonal primitive idem-
potents, one can find an element of G(k) which conjugates η to the standard
triple {e1, e2, e3}. When p .= 2, this is a special case of [11, Thm. 10, p. 389];
in general, this transitivity can be deduced from the Strong Coordinatization
Theorem [12, 5.4.2]. Hence, the pointwise stabilizer of η is a subgroup Gη of G
isomorphic to Spin8. A Witt decomposition of V Ue1,e2

determines a maximal
split torus of Gη, and hence a maximal split torus of G. Observe that once
we have chosen a Witt decomposition for V Ue1,e2

, we obtain canonical Witt
decompositions of V Ue2,e3

and V Ue3,e1
. In summary, we have shown:

Proposition 6.1. — To give an apartment of B(G), it is necessary and suf-
ficient to give the following data:

# a system of orthogonal primitive idempotents {e1, e2, e3} of V ;

# a Witt decomposition V Ue1,e2
=

⊕
i kei

12.

Given such a data, we obtain canonical Witt decompositions

V Ue2,e3
=

⊕

i

kei
23 and V Ue3,e1

=
⊕

i

kei
31,

and thus a decomposition of V into lines. The subgroup of G which pre-
serves each of these lines is a maximal split torus of G, and its corresponding
apartment is the subset of N consisting of norms which are split by the basis
{e1, e2, e3, ei

12, e
i
23, e

i
31}.

7. Simplicial Structures of B(H)

In this section, we describe the simplicial complex structure of B(H) in terms
of graded lattice chains in V.

By the construction of the strong descent datum ι∗ : B(H) ↪→ B(SL(V )),
we have an embedding of apartments

ι∗ : A(T ) ↪−→ A(C).

Fixing the point x0 ∈ ι∗(A(T )) corresponding to the lattice J as the origin,
we identify A(T ) and A(C) with X∗(T )⊗ R and X∗(C) ⊗ R respectively. The
embedding ι∗ is then identified with the canonical embedding of real vector
spaces induced by the inclusion T ↪→ C, and has been described in Lemma 3.2.
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Using the coordinate functions {ri} introduced in §3, we let CH be the closed
chamber of A(T ) bounded by the hyperplanes

H0 : r0 = 1, Hi : ri = 0, for i = 1, 2, . . . , 6.

Let vi be the vertex of CH lying on Hj for all j .= i. Then the seven vertices
of CH are the origin 0, and the six points whose images under ι∗ are given
in Lemma 3.2.

Now a point p on A(C), with coordinates (ai
jk(p)) such that

∑
i,j,k ai

jk(p) = 0,
determines a norm αp on V , characterized by the requirement that αp is split
by the basis {ei

jk}, and

αp(e
i
jk) = −ai

jk(p).

By Theorem 5.1, the norms determined by points p ∈ A(T ) have volume 0,
and minorize N . As discussed in [9, §2], these norms give rise to graded lat-
tices chains in V. We shall later need to detect those points p ∈ A(T ) whose
corresponding graded lattice chains have period 1, 1

2 or 1
3 . For this, we have

the following useful lemma.

Lemma 7.1. — The set of those points in A(T ) whose associated graded lattice
chain has period 1 is precisely the lattice M of the real vector space A(T ) ∼=
X∗(T ) ⊗ R spanned by the vectors

v1 = (1, 0, 0, 0, 0, 0), 2v2 = (0, 1, 0, 0, 0, 0), 2v3 = (0, 0, 1, 0, 0, 0),

3v4 = (0, 0, 0, 1, 0, 0), 2v5 = (0, 0, 0, 0, 1, 0), v6 = (0, 0, 0, 0, 0, 1).

The set of those norms whose graded lattice chain has period 1 or 1
2 (resp. 1

3 )
is precisely the lattice 1

2M (resp. 1
3M).

The set of points in A(C) satisfying the same condition is obviously a lat-
tice in X∗(C) ⊗ R = A(C). The above lemma is proved by computing the
intersection of this lattice with X∗(T ) ⊗ R. We omit the details.

The following proposition lists the graded lattice chains associated to each
vertex vi, and observes some properties of these lattice chains, some of which
follow from Theorem 5.1.

Proposition 7.2. — (i) The graded lattice chain corresponding to v0 has pe-
riod 1 and is determined by the lattice L0 = J . Moreover, vol(L0) = 0 and N
is integer-valued on L0.

(ii) The graded lattice chain corresponding to v1 has period 1 and is deter-
mined by the lattice

L 1

3

=

(π π π
A A A
A A A

)

⊕

(π A A
π A A
π A A

)

⊕

(π−1 A A
A π π
A π π

)

.
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Moreover, vol(L 1

3

) = 9, π−1N is integer-valued on L 1

3

and

(L 1

3

/πL 1

3

, π−1N) ∼= (J/πJ, N).

(iii) The graded lattice chain corresponding to v6 has period 1, and is deter-
mined by:

L 2

3

=

(A π π
A π π
A π π

)

⊕

(π2 π π
π A A
π A A

)

⊕

(A A A
π π π
π π π

)

.

Moreover, vol(L 2

3

) = 18, π−2N is integer-valued on L 2

3

and

(L 2

3

/πL 2

3

, π−2N) ∼= (J/πJ, N).

(iv) The graded lattice chain corresponding to v2 has period 1
2 and is given by:

L0 =

(A A A
A A A
A A A

)

⊕

(π A A
π A A
π A A

)

⊕

(A A A
π π π
A A A

)

,

L 1

2

=

(π π π
π π π
π π π

)

⊕

(π A π
π A π
π A π

)

⊕

(A A A
π π π
π π π

)

.

Moreover,
vol(L0) = 6 and N is integer-valued on L0;

vol(L 1

2

) = 21, and N takes value in π2A on L 1

2

.

Further, L 1

2

= R(L0, N), and

(L0/L 1

2

, N) ∼=
(
H3(C), det

)
,

with C equal to the algebra of 2 × 2 matrices over A/π (cf. Example 2.3).

(v) The graded lattice chain corresponding to v3 has period 1
2 , and is given

by:

L 1

3

=

(π π π
π π π
A A A

)

⊕

(π A A
π A A
π A A

)

⊕

(A A A
π π π
π π π

)

,

L 5

6

=

(π π π
π π π
π π π

)

⊕

(π2 π π
π2 π π
π2 π π

)

⊕

(A A π
π π π2

π π π2

)

.

Moreover,

vol(L 1

3

) = 15 and π−1N is integer-valued on L 1

3

;

vol(L 5

6

) = 30 and π−1N takes value in π2A on L 5

6

.

Further, R(L 1

3

, π−1N) = L 5

6

and

(L 1

3

/L 5

6

, π−1N) ∼=
(
H3(C), det

)
,

with C equal to the algebra of 2 × 2 matrices over A/π.
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(vi) The graded lattice chain corresponding to v5 has period 1
2 , and is given

by:

L 2

3

=

(π π π
π π π
π π π

)

⊕

(π2 π π
π2 π π
π A A

)

⊕

(A A A
π π π
π π π

)

,

L 7

6

=

(π π π2

π π π2

π π π2

)

⊕

(π2 π π
π2 π π
π2 π π

)

⊕

( π π π
π2 π2 π2

π2 π2 π2

)

.

Moreover,

vol(L 2

3

) = 24 and π−2N is integer-valued on L 2

3

;

vol(L 7

6

) = 39 and π−2N takes value in π2A on L 7

6

.

Further, R(L 2

3

, π−2N) = L 7

6

and

(L 2

3

/L 7

6

, π−2N) ∼= (H3(C), det),

with C equal to the algebra of 2 × 2 matrices over A/π.

(vii) The graded lattice chain corresponding to v4 has period 1
3 and is given

by:

L0 =

(A A A
A A A
A A A

)

⊕

(π A A
π A A
π A A

)

⊕

(A A A
π π π
π π π

)

,

L 1

3

=

(π π π
π π π
π π π

)

⊕

(π A A
π A A
π A A

)

⊕

(A A A
π π π
π π π

)

,

L 2

3

=

(π π π
π π π
π π π

)

⊕

(π2 π π
π2 π π
π2 π π

)

⊕

(A A A
π π π
π π π

)

.

Moreover,

vol(L0) = 9 and N is integer-valued on L0;

vol(L 1

3

) = 18 and π−1N is integer-valued on L 1

3

;

vol(L 2

3

) = 27 and π−2N is integer-valued on L 2

3

.

Indeed, (L0, N) ∼= (L 1

3

, π−1N) ∼= (L 2

3

, π−2N), and

R(L0, N) = L 1

3

, R(L 1

3

, π−1N) = L 2

3

, R(L 2

3

, π−2N) = L1 = πL0.

Further,

(L0/L 1

3

, N) ∼= (M, det),

where M is the algebra of 3 × 3 matrices over A/π (cf. Example 2.1).
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There is an evident Z/3Z-symmetry in the description of the graded lattice
chains given in Proposition 7.2, which is better appreciated in silent contem-
plation than made precise in words. It reflects the Z/3Z-symmetry in the
extended Dynkin diagram of H , and will be exploited in our description of the
vertices of B(H) and their incidence relations. Motivated by this symmetry
and Proposition 7.2, we define the following sets of lattices in V :

(i) Let V0 be the set of lattices L in V such that
# vol(L) = 0;
# N is integer-valued on L.

(ii) Let V1 be the set of lattices L in V such that
# vol(L) = 9;
# π−1N is integer-valued on L.

(iii) Let V6 be the set of lattices L in V such that
# vol(L) = 18;
# π−2N is integer-valued on L.

(iv) Let V2 be the set of lattices L in V such that
# vol(L) = 6;
# N is integer-valued on L;
# dimA/π L/R(L, N) = 15;
# N takes values in π2A on R(L, N).

(v) Let V3 be the set of lattices L in V such that
# vol(L) = 15;
# π−1N is integer-valued on L;
# dimA/π L/R(L, π−1N) = 15;
# π−1N takes values in π2A on R(L, π−1N).

(vi) Let V5 be the set of lattices L in V such that
# vol(L) = 24;
# π−2N is integer-valued on L;
# dimA/π L/R(L, π−2N) = 15;
# π−2N takes values in π2A on R(L, π−2N).

(vii) Let V4 be the set of lattices L in V such that
# vol(L) = 9;
# N is integer-valued on L;
# (L, N) ∼= (R(L, N), π−1N);
# R3(L, N) = πL.
# the induced cubic form on L/R(L, N) is irreducible.

Again, notice the Z/3Z-symmetry in the definitions of the sets Vi. Indeed,
if we let h ∈ H ′(k) be an element such that λ(h) = π, then h maps the set V0

bijectively to V1, and V1 bijectively to V6. The sets V2, V3 and V5 are related
in the same way.
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Theorem 7.3. — There is a natural bijection between Vi and the set of vertices
of type i in B(H).

Proof. — In each case, Proposition 7.2 furnishes an injection from the set of
vertices of type i to the set Vi. Hence it remains to show that this injection is
also a surjection.

Suppose that L lies in V0, V1 or V6. Consider the graded lattice chain of
period 1 determined by L, with grading

c(L) =






0 if L ∈ V0,
1
3 if L ∈ V1,
2
3 if L ∈ V6.

By hypothesis, the corresponding norm α on V has volume 0 and minorizes N .
Thus α lies on B(H), in view of Theorem 5.1. We need to show that α is a
vertex of the appropriate type. To see this, we may assume that α lies in the
chamber CH defined earlier in the section. Now it follows by Lemma 7.1 that
the only norms in CH for which the corresponding graded lattice chain has
period 1 are the 3 vertices v0, v1 and v6. Moreover, these are distinguished by
the fact that

α takes value in






Z if L ∈ V0,
1
3 + Z if L ∈ V1,
2
3 + Z if L ∈ V6.

This proves the result for i = 0, 1 or 6.

Now suppose that L lies in V2, V3 or V5. Consider the graded lattice chain
of period 1

2 :
L ⊃ R ⊃ πL ⊃ · · ·

with grading

c(L) =






0 if L ∈ V2,
1
3 if L ∈ V3,
2
3 if L ∈ V5,

where R is R(L, N) if L ∈ V2, R(L, π−1N) if L ∈ V3, and R(L, π−2N) if L ∈ V5.
By hypothesis, the corresponding norm α has volume 0 and minorizes N , and
hence lies on B(H). Again we may assume that α lies in the chamber CH .
Lemma 7.1 implies that, besides the vertices v2, v3 and v5, the only norms
in CH which give rise to period 1

2 lattice chains are

1

2
(vi + vj) where i, j are distinct elements of {0, 1, 6}.

However, the graded lattice chains corresponding to these norms have successive
quotients of dimensions 11 and 16, unlike those for the three vertices, which
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are 15 and 12. Moreover, since the three vertices can be distinguished by the
value group of the norms, this proves the result for i = 2, 3 and 5.

Finally, we suppose that L ∈ V4 and consider the graded lattice chain of
period 1

3 :

L ⊃ R(L, N) ⊃ R
2(L, N) ⊃ πL ⊃ · · ·

with grading c(L) = 0. By hypothesis, the corresponding norm has volume 0
and minorizes N . Hence we may assume it lies in CH . By Lemma 7.1, we
see that besides v4, the other norms in CH which give rise to lattice chains of
period 1

3 are 1
3 (v0 + v1 + v6) and the points

1

3
(vi + 2vj), where i ∈ {0, 1, 6} and j .= 4, i.

However, by computing the dimensions of the successive quotients of the lat-
tice chains corresponding to these latter points, we see that α is not one of
them; we will omit the details here. The only possibility left, besides v4, is the
point 1

3 (v0 + v1 + v6). On examining its associated graded lattice chain, one
sees that L0 satisfies all the conditions in the definition of an element of V4,
except the last one, i.e. the induced cubic form on L0/L 1

3

is reducible for the

point 1
3 (v0 + v1 + v6). More precisely, the cubic space L0/L 1

3

is isomorphic
to the cubic space associated to the split octonion algebra, as in Example 2.3.
This proves the theorem.

Corollary 7.4. — If L ∈ Vi, then the quotient of L by its radical is isomor-
phic to the cubic space

(J/πJ, N), if i = 0, 1, 6;

(H3(C), det), with C the algebra of 2 × 2 matrices, if i = 2, 3, 5;

(M, det), with M the algebra of 3 × 3 matrices, if i = 4.

Moreover, if V ∗
4 is the set of lattices L satisfying all the conditions in the

definition of V4, except possibly the last one, then H(k) has two orbits on V ∗
4 ,

and these are represented by v4 and 1
3 (v0 + v1 + v6). If L ∈ V ∗

4 " V4, then the
quotient of L by its radical is isomorphic to the cubic space A/π ×C, where C
is the split octonion algebra.

The remainder of the section is devoted to describing the incidence relations
of the vertices of B(H). These are all given by appropriate inclusions. Thanks
to the Z/3Z-symmetry, it will not be necessary to write down all the 21 in-
cidence relations. Instead, as we shall explain later, it suffices to prove the
following theorem.

Theorem 7.5. — Let Li be a lattice in Vi. Then we have:

(i) L0 is incident to L2 if and only if L2 ⊂ L0.

(ii) L0 is incident to L3 if and only if L3 ⊂ L0.
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184 GAN (W.T.) & YU (J.-K.)

(iii) L0 is incident to L4 if and only if L4 ⊂ L0.

(iv) L0 is incident to L5 if and only if R(L5, π−2N) ⊂ πL0.

(v) L0 is incident to L6 if and only if L6 ⊂ L0.

(vi) L2 is incident to L3 if and only if L3 ⊂ L2.

(vii) L2 is incident to L4 if and only if L4 ⊂ L2.

Proof. — In each case, the inclusion condition is easily seen to be necessary,
by Proposition 7.2. The proof of its sufficiency can be reduced to a computer
calculation (using Mathematica). Let us first explain the strategy of the proof.

Suppose we are interested in showing that the incidence of Li and Lj is
determined by Lj ⊂ Li. Without loss of generality, let us assume that Li is the
lattice corresponding to the vertex vi in CH , and Lj corresponds to a vertex
on the apartment A(T ). To prove the theorem, it suffices to show that the
number Nij of vertices on A(T ) which is of type j and incident to vi is equal
to the number N ′

ij of vertices v′ on A(T ) which is of type j and for which the
corresponding lattice L′ is contained in Li.

The number Nij can be computed by well-known theory. Indeed, by [3,
Thm. 5F, p. 24], we have

Nij = #Wi/Wij ,

where Wi (resp. Wij) is the Weyl group whose associated Dynkin diagram is
obtained from the extended Dynkin diagram of H by removing the vertex i
(resp. the vertices i and j). We tabulate the value of Nij below:

(i, j) (0,2) (0,3) (0,4) (0,5) (0,6) (2,3) (2,4)

Nij 72 216 720 216 27 15 20

It remains to calculate N ′
ij . Recall that the norms in A(T ) are precisely

those split by the natural basis {e$
mn} of J introduced in §3. Regarding a point

p ∈ A(T ) as a point in A(C) via the embedding ι∗, the (a$
mn)-coordinates of p

is given by
a$

mn(p) = −αp(e
$
mn),

where αp is the associated norm. Suppose that in the graded lattice chain
associated to Li (resp. Lj), the grading of Li (resp. Lj) is ri (resp. rj). Then
the set of norms α in A(T ) satisfying Lα,rj

⊂ Li is precisely the region Uij

of A(T ) consisting of those points p satisfying the 27 inequalities:

(11) a$
mn(p) >

⌈
ri + a$

mn(vi)
⌉
− rj − 1, for all ), m, n ∈ {1, 2, 3}.

Expressing the restriction of a$
mn to A(T ) as linear combinations of the coordi-

nate functions r1, r2, . . . , r6 on A(T ), we can write the inequalities in (11), and
thus describe the region Uij , using {rk}.

It remains to count the number of vertices of type j contained in Uij . This
is the part where the computer is used, and is carried out as follows:
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# Using linear programming, we find a box B, defined by |rk(p)| < ck for
k = 1, 2, ..., 6, which contains the region Uij .

# Since a vertex of type j has graded lattice chains of period 1, 1
2 or 1

3 , it
follows by Lemma 7.1 that it lies in the lattice M , 1

2M or 1
3M , where M

is the lattice spanned by v1, v6, 2v2, 2v3, 2v5 and 3v4. We enumerate all
the elements of the appropriate lattice which lie in B, calling this finite
set S.

# We enumerate the elements in the finite set S which satisfy all the 27
inequalities in (11), calling this finite set S′.

# For each element in S′, we compute the numerical invariants (the grading
and the volumes of lattices) of its associated graded lattice chain. Using
Theorem 7.3, pick out those elements of S′ which are possibly vertices of
type j, calling the resulting set S′′.

# Now we have Nij ≤ N ′
ij ≤ #S′′. In all but one case, we find out that

Nij = #S′′ and this proves the incidence relation. The exceptional
case is when i = 0, j = 4, and we obtain #S′′ = 990 in that case.
However, it is clear that S′′ contains points in V ∗

4 \ V4, and the num-
ber of such points lying on a closed chamber of A(T ) containing L0 is
#W (E6)/#W (D4) = 270. This shows that N ′

ij ≤ 990−270 = 720 = Nij

and implies the desired conclusion.

On carrying out the above steps, the theorem is proved.

As we mentioned above, Theorem 7.5 is sufficient to give all incidence rela-
tions between the vertices of B(H). To see this, recall that the group H ′(k)
acts on the building B(H) as automorphisms of simplicial complex. The action
is given by the formula

(12) hα(v) = α
(
h−1(v)

)
+

1

3
ord

(
λ(h)

)
with h ∈ H ′(k), α ∈ B(H) and v ∈ V.

On the level of graded lattice chains, if (L•, c) corresponds to α, then the graded
lattice chain corresponding to hα is (h · L•, c′) with

(13) c′(h · L) = c(L) +
1

3
ord

(
λ(h)

)
.

The stabilizer in H ′(k) of the closed chamber CH induces the action of Z/3Z
on the extended Dynkin diagram. The seven pairs of indices in the above
theorem are precisely a set of representatives for the orbits of Z/3Z on the set
of pairs of distinct vertices of the extended Dynkin diagram. Hence, given an
arbitrary pair of indices (i, j), let (i0, j0) be the unique pair of indices in the
theorem which is conjugate to (i, j). Then, given vertices x and y of type i
and j respectively, there exists an element h ∈ H ′(k) which sends x and y
to vertices h(x) and h(y) of type i0 and j0 in the building B(H). Since h
induces an automorphism of simplicial complex, x and y are incident in B(H)
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if and only if hx and hy are incident in B(H). Since Theorem 7.5 already gives
necessary and sufficient conditions for the incidence of hx and hy in terms of
their graded lattice chains, we obtain necessary and sufficient conditions for the
incidence of x and y.

As an illustration, suppose we are interested in the incidence relation between
a norm α of type 0 and a norm β of type 1. Observe that the pair of vertices
(0, 6) in the extended Dynkin diagram can be brought to the pair (1, 0) by
the action of Z/3Z. Hence, there exists h ∈ H ′(k), with λ(h) = π−1, such
that hα and hβ correspond to vertices of type 6 and 0 respectively. Now by
Theorem 7.5(v), we know that hα is incident to hβ if and only if

Lhα, 2
3

⊂ Lhβ,0.

By (13), we deduce that α is incident to β if and only if

Lα,1 = πLα,0 ⊂ Lβ,1
3

.

8. Simplicial Structures of B(G)

In this section, we describe the simplicial structure of B(G). Because of the
various natural descriptions of B(G) given in Theorem 5.6, it is possible to
describe the simplicial structure in various ways. Since we like to think of G
as the automorphism group of the split exceptional Jordan algebra V , we shall
describe the simplicial structure using orders in V. More precisely, we shall
think of B(G) as the set of norms satisfying the conditions in Theorem 5.6 (iv),
and by an order of V , we shall mean a lattice L which contains e, and is stable
under the quadratic map #.

Recall that the strong descent datum ι′∗ : B(G) ↪→ B(GL(V )) factors
through ι∗, so that we have ι′∗ : B(G) ↪→ B(H). This induces an embedding of
apartments:

ι′∗ : A(S) ↪−→ A(T ).

Having chosen the vertex v0 as the origin in A(T ), we identify A(S) and A(T )
with X∗(S)⊗R and X∗(T )⊗R. Further, let CG be the closed chamber bounded
by the hyperplanes

H ′
i : r′i = 0, for i = 1, 2, 3, 4; H ′

0 : r′0 = 2r′1 + 3r′2 + 4r′3 + 2r′4 = 1,

where we recall that {r′1, r
′
2, r

′
3, r

′
4} are coordinate functions on A(S) furnished

by the simple roots. Let v′i be the vertex of CG lying on Hj for all j .= i.
From (10), we see that the embedding ι′∗ is given by:

v′0 %→ v0, v′1 %→ v2, v′2 %→ v4, v′3 %→
1

2
(v3 + v5), v′4 %→

1

2
(v1 + v6).
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SCHÉMAS EN GROUPES ET IMMEUBLES 187

By Theorem 5.6, we know that A(S) is the subset of A(T ) consisting of those
norms which are self-dual with respect to the symmetric bilinear form T . More-
over, such norms are norms of Jordan algebra.

For a lattice L ⊂ V , we write L# for the lattice of V spanned by x# for
all x ∈ L. Similarly, if M is another lattice, L × M will denote the lattice
spanned by x × y for all x ∈ L and y ∈ M . Now the following proposition
enumerates the graded lattice chains associated to the vertices v′i.

Proposition 8.1. — (i) The graded lattice chain associated to v′0 is the same
as that of v0. Moreover, L0 = J is a distinguished order, and is self-dual
relative to the symmetric bilinear form T .

(ii) The graded lattice chain associated to v′1 is the same as that of v2. More-
over, L0 is a order with radical

L 1

2

= πL∗
0,

and L0/L 1

2

is isomorphic to the Jordan algebra H3(C) where C is the algebra

of 2 × 2 matrices over A/π (cf. example 2 of §2). We have L#
1/2 ⊂ πL0.

(iii) The graded lattice chain associated to v′2 is the same as that of v4.
Moreover, L0 is an order with radical

L 1

3

= πL∗
0,

and L 2

3

= L#
1

3

+ πL0. Further, L0/L 1

3

is isomorphic to the Jordan algebra M+

(cf. example 1 of §2), and L−1/3 is self-dual.

(iv) The graded lattice chain associated to v′3 has period 1
4 and is given by

L0 =

(A A π
A A π
A A A

)

⊕

(π A A
π A A
π A A

)

⊕

(A A A
π π π
π π π

)

,

L 1

4

=

(π π π
π π π
A A π

)

⊕

(π A A
π A A
π A A

)

⊕

(A A A
π π π
π π π

)

,

L 2

4

=

(π π π
π π π
π π π

)

⊕

(π2 π π
π2 π π
π A A

)

⊕

(A A A
π π π
π π π

)

,

L 3

4

=

(π π π
π π π
π π π

)

⊕

(π2 π π
π2 π π
π2 π π

)

⊕

(A A π
π π π2

π π π2

)

.

Moreover, L0 is an order with radical

L 1

4

= πL∗
0,
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and L0/L 1

4

is isomorphic to the Jordan algebra associated to the pointed quad-

ratic space (C, det, 1), where C is the algebra of 2 × 2 matrices over A/π.
Further, we have:

L 2

4

= L#
1

4

+ πL0, L 3

4

= L 1

4

× L 2

4

+ πL0,

and the lattices L− 2

4

and L− 1

4

are dual to each other.

(v) The graded lattice chain associated to v′4 has period 1
2 , and is given by

L0 =

(A π π
A A A
A A A

)

⊕

(π A A
π A A
π A A

)

⊕

(π−1 A A
A π π
A π π

)

,

L 1

2

=

(π π π
A π π
A π π

)

⊕

(π2 π π
π A A
π A A

)

⊕

(A A A
π π π
π π π

)

.

We have L#
1/2 ⊂ πL0. Moreover, L0 is isomorphic to the non-distinguished

maximal order described in §4, with radical

L 1

2

= πL∗
0.

We define the following sets of orders in V :

(i) Let V ′
0 be the set of orders which are self-dual relative to T ; equivalently,

V ′
0 is the set of distinguished orders.

(ii) Let V ′
1 be the set of orders L such that

# dimL/πL∗ = 15;
# L∗# ⊂ π−1L.

(iii) Let V ′
2 be the set of orders L such that

# L/πL∗ ∼= M3(A/π), the algebra of 3 × 3 matrices over A/π;
# M = πL∗# + L is self-dual.

(iv) Let V ′
3 be the set of orders L such that

# dimL/πL∗ = 5,
# M∗ = πL∗# + L is dual to M = πM∗ × L∗ + L.

(v) Let V ′
4 be the set of orders L such that

# dimL/πL∗ = 11,
# L∗# ⊂ π−1L.

Theorem 8.2. — There is a natural bijection between V ′
i and the set of ver-

tices of B(G) of type i.

Proof. — By Proposition 8.1, there is a natural inclusion of the set of vertices
of type i into the set Vi. It remains to see that it is also surjective, and the
result for i = 0 follows from Theorem 4.5(ii).
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Given L in V ′
1 or V ′

4 , we form the period 1
2 graded lattice chain

L ⊃ πL∗ ⊃ πL ⊃ · · ·

with grading c(L) = 0. The definitions of these sets guarantee that the as-
sociated norm is a self-dual norm of Jordan algebra, and hence lies on B(G).
Assume without loss of generality that α lies in the chamber CG. But it is easy
to see that the only points in CG whose associated lattice chains have period 1

2
are the two vertices v′1 and v′4. Since we can distinguish these two vertices by
the dimension of L/πL∗, the result for i = 1 or 4 follows.

Now assume that L ∈ V ′
2 . We form the period 1

3 lattice chain:

L∗ ⊃ M ⊃ L ⊃ · · ·

with grading c(L) = 0. The corresponding norm α is evidently self-dual. To
show that α lies on B(G), we need to see that it satisfies the conditions in
Theorem 5.6(iv). We do this systematically as follows:

# L# ⊂ L, since L is an order.
# L∗# ⊂ π−1M , by definition of M .
# L × L∗ ⊂ L∗. Indeed, given x ∈ L and y ∈ L∗, we have

T (x × y, z) = T (y, x × z) ∈ A

for all z ∈ L. Hence, x × y ∈ L∗.

# L∗ × M ⊂ π−1L. Indeed, given x ∈ L∗ and y ∈ M , we have, for any
z ∈ L∗,

T (x × y, πz) = T (y, πx × z) ∈ A,

since πx × z ∈ M . Hence, x × y ∈ π−1L.

# L × M ⊂ M . It suffices to show that if x ∈ L and y ∈ L∗, then x × y#

lies in π−1M . This can be seen using the linearization of (4) and what
we have proven so far.

# M# ⊂ L∗. We first observe that M × M ⊂ L∗; for any x, y ∈ M and
z ∈ L, we have

T (x × y, z) = T (x, y × z) ∈ A

since y × z ∈ M by what we just showed above. It now remains to show
that if x ∈ L∗, then (πx#)# lies in L∗. But

(πx#)# = π2N(x) · x.

Hence we need to show that N(x) ∈ π−2A. This follows from (4); indeed,
one checks that every term in (4) lies in π−2L, so that the coefficient of e
lies in π−2A.
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We conclude thus that α is a norm of Jordan algebra, and hence lies in B(G).
Assume without loss of generality that α lies in CG. Besides v′2, the only other
points in CG whose associated graded lattice chain has period 1

3 are:

1

3
(v′0 + 2v′1) and

1

3
(v′0 + 2v′4).

However their graded lattice chains can be distinguished from those arising from
orders in V ′

2 as follows. For the first point, dimL0/L 1

3

= 15 .= 9, and for the

second point, L0/L 1

3

is isomorphic to the Jordan algebra A/π × C associated
to the pointed quadratic space of the octonion algebra. Hence, we deduce that
α is equal to v′2, as required.

It remains to deal with the case i = 3. Given L ∈ V ′
3 , we form the period 1

4
lattice chain

L∗ ⊃ M∗ ⊃ M ⊃ L ⊃ · · ·

with grading c(L) = 0. Again, the corresponding norm is self-dual relative
to T , and we need to show that α is a norm of Jordan algebra. This is even
more tedious than the case i = 2, and so we shall be brief in the following:

# L# ⊂ L, since L is an order.

# L∗# ⊂ π−1M∗, by definition of M∗.

# L × L∗ ⊂ L∗; this follows easily using (2).

# L × M∗ ⊂ M∗. This follows from the linearization of (4).

# L × M ⊂ M . This follows from the previous item, using (2).

# M × M∗ ⊂ L∗. This follows from the previous item, using (2).

# M ×L∗ ⊂ π−1L. This follows by (2) and the assumption that M is dual
to M∗.

# M∗ × L∗ ⊂ π−1M , by definition of M .

# M∗# ⊂ π−1L. First, we observe that M∗ × M∗ ⊂ π−1L, using (2) and
M∗ ×L∗ ⊂ π−1M . It then remains to check that if x ∈ L∗, then (πx#)#

lies in π−1L. This reduces to showing that N(x) ∈ π−2A, which follows
by an application of (4).

# M# ⊂ M∗. It suffices to show that if x ∈ M∗ and y ∈ L∗, then (x × y)#

lies in π−2M∗. This follows by an application of (5). We leave the details
to the reader.

It follows from the above that we can assume α to be an element of CG. The
other points in CG whose associated lattice chains have period 1

4 are

1

2
(v′0 + v′1),

1

4
(v′0 + 3v′2),

1

2
(v′0 + v′4),

1

2
(v′1 + v′4).

However, the graded lattice chains of these points can be distinguished from
those arising from orders in V ′

3 ; one simply observes that dim L0/L 1

4

= 15, 9, 9, 7
respectively. The theorem is proved completely.
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Corollary 8.3. — If L ∈ V ′
4 , then L is a non-distinguished maximal order

isomorphic to the one described in §4.

Theorem 8.4. — Given a vertex of type i, let Li ∈ V ′
i be the corresponding

order if i ∈ {0, 1, 2, 3}, and let Li be the radical of the corresponding order
in V ′

4 if i = 4. Then Li is incident to Lj if and only if one of them contains
the other.

If Li, i = 0, 1, 2, 3, 4 are the lattices corresponding to vertices of the standard
chamber CG, we have L0 ⊃ L1 ⊃ L2 ⊃ L3 ⊃ L4 from the description in
Proposition 8.1. This proves the“only if”part. The other implication is verified
by a computer-assisted calculation, similar to that in the proof of Theorem 7.5.
We omit the details.

We conclude this section by giving natural constructions of the orders of
the Jordan algebra V which arise in the simplicial description of B(G). These
constructions will be given in terms of the Freudenthal model of V , analogous
to the description of the two maximal orders of V given in Section 4. For this,
we need to recall some results of [9] on orders in the split octonion algebra Λ⊗k.

In [9], we described the building of the automorphism group of Λ⊗k (which
is split of type G2) in terms of orders in Λ ⊗ k. More precisely, there are 3
conjugacy class of orders whose stabilizers are precisely the maximal compact
subgroups of G2(k). The hyperspecial vertices of B(G2) correspond to the
maximal orders R. On the other hand, a vertex of B(G2) whose parahoric
group scheme has maximal reductive quotient SO4 (called a vertex of type 2
in [9]) corresponds to an order R2 with maximal semisimple quotient

R2/R(R2) ∼= M2(A/π),

whereas a vertex whose parahoric group scheme has maximal reductive quo-
tient SL3 (called a vertex of type 3 in [9]) is associated to an order R3 with
maximal semisimple quotient

R3/R(R3) ∼= A/π × A/π.

Let I (resp. J) be the inverse image of the ideal A/π × {0} (resp. {0} × A/π)
under the natural projection map R3 → R3/R(R3). Then I and J are ideals
of R3.

Moreover, we have a natural embedding B(G2) ↪→ B(SO(q)) where we recall
that q is the quadratic norm form on Λ ⊗ k, and the image of a vertex of
type 3 is the barycenter of a 3-simplex in B(SO8). Such a 3-simplex is in turn
associated to three lattices in Λ⊗ k, which we denote by M , N and N ′; these
lattices are precisely the ones arising in the description of the non-distinguished
maximal order of V in Section 4. In particular, M is self-dual, whereas N
and N ′ satisfy πN∗ = N and πN ′∗ = N ′∗. More importantly,

M ∗ N ⊂ N ′, N ∗ N ′ ⊂ M, N ′ ∗ M ⊂ N,

where ∗ is the natural symmetric composition on Λ⊗ k.
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Now we’re going to construct an order L in V whose underlying lattice has
the form

L =

( A Λ3

A Λ1

Λ2 A

)

⊂ V,

where Λi is a lattice in the split octonion algebra Λ⊗ k. By [16, p. 106], such
a lattice is an order in V if and only if the norm form q is integral on each Λi

and Λi ∗ Λi+2 ⊂ Λi+1 for i = 1, 2, 3 and the indices are taken modulo 3. Now
we have:

Proposition 8.5. — (i) If Λ1 = Λ2 = Λ3 = R, then L ∈ V ′
0 , so that L is a

distinguished order of V.

(ii) If Λ1 = Λ2 = Λ3 = R2, then L ∈ V ′
1 .

(iii) If Λ1 = Λ2 = Λ3 = R3, then L ∈ V ′
2 .

(iv) If Λ1 = I, Λ2 = R3 and Λ3 = J , then L ∈ V ′
3 .

(v) If Λ1 = M , Λ2 = N ′ and Λ3 = N , then L ∈ V ′
4 , so that L is a non-

distinguished maximal order.

9. Group Schemes

The results of §7 and 8 furnish a set of lattices and orders whose stabilizers
in H(k) and G(k) are the maximal parahoric subgroups. In this section, we
shall see that the smooth group schemes associated to the parahoric subgroups
can be described in terms of these orders. In the following, put V =

⋃
i Vi

and V ′ =
⋃

i V ′
i .

Theorem 9.1. — Given a lattice L in V, the schematic closure of H in Aut(L)
is the smooth integral model Hx associated to the vertex x corresponding to L.
More generally, let X be a finite set of vertices contained in an apartment
A with convex hull Ω, and let L ⊂ V be the set of orders corresponding to the
elements of X. Then the schematic closure of H in

∏
L∈L Aut(L) is the smooth

integral model HΩ of H associated to Ω.

Let H be the schematic closure of H in
∏

L∈L Aut(L). Then by Theorem 7.3,

for any unramified extension k̃/k with ring of integers Ã, H(Ã) is precisely the

subgroup of H(k̃) which fixes X pointwise. Hence it remains to show that H
is smooth [2, 3.4.1].

Let T be the maximal split torus of H corresponding to A, and {Ub}b∈Φ(H,T )

the root subgroups of H relative to T . By [5, 2.2.5], to prove the smoothness
of H , it suffices to show

(i) The schematic closure T of T in
∏

L∈L Aut(L) is smooth;

(ii) for each b ∈ Φ(H, T ), the schematic closure U b of Ub in
∏

L∈L Aut(L) is
smooth.
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The first assertion being immediate in our case, it remains to verify the
second assertion, which will follow from the following lemma:

Lemma 9.2. — Fix b ∈ Φ(H, T ) and let Hb
∼= SL2 be its associated rank one

subgroup. Then there exists a decomposition

V = ⊕iVi

of V as a representation of Hb, such that:

# each Vi isomorphic to the trivial or the standard representation of Hb;
# L =

⊕
i L ∩ Vi.

Proof. — We assume without loss of generality that T is the maximal split
torus described in §3. In particular, we have:

T ↪−→ (SL3 × SL3 × SL3)/∆µ3 ↪−→ H.

The basis {ei
jk} of V = M⊕3 introduced in §3 is a basis of weight vectors

for T , corresponding to distinct weights. Hence, the normalizer N(T ) of T
in H permutes the set of lines B = {V i

jk} spanned by these basis vectors.

Further, any L ∈ L satisfies L =
⊕

i,j,k L ∩ V i
jk.

Assume first that Ub is a standard root subgroup (relative to the diagonal
torus) of one of the copies of SL3. Then it is clear that a desired decomposition
V =

⊕
Vi exists; more precisely, there is a partition B =

⋃
i Bi such that Vi is

the span of the lines in Bi. The general result now follows from the fact that
the Weyl group N(T )/T acts transitively on the elements of Φ(H, T ).

By virtue of the lemma, it suffices to show that the schematic closure of
Ub in Aut(L ∩ Vi) is smooth for each i and for each L ∈ L. But this follows
from [6, 3.9.2]. Theorem 9.1 is proved completely.

Lemma 9.3. — Let x be a vertex of B(H). The maximal reductive quotient H
of Hx ⊗ A/π is given by:

H ∼=






Aut(J/πJ, N) ∼= E6, if x ∈ V0, V1 or V6;

(SL2 × SL6)/∆µ2, if x ∈ V2, V3 or V5;

(SL3 × SL3 × SL3)/∆µ3, if x ∈ V4.

Proof. — The isogeny class of H is determined by its Dynkin diagram, and
can be read off from the local Dynkin diagram of H by [2, 3.5.1]. To figure out
the isomorphism class, we need to know the root datum (X,Φ, X∨,Φ∨) of H .
Indeed, by Bruhat-Tits theory, if (X,Φ, X∨,Φ∨) is the root datum of H , then
we can identify X with X , X∨ with X∨, and Φ with the set of affine roots
vanishing at x. A system of simple roots of Φ is given by the rule described
in [2, 1.9, 3.5.1].
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In fact, we can derive our conclusion with very little computation. Let H̃

be the simply connected cover of H and C the kernel of H̃ → H. The Cartier
dual C∨ of C is the étale (constant) group isomorphic to X∨/Z〈r∨

j : j .= i〉

if x ∈ Vi. Since H is simply connected, r∨

1 , . . . , r∨

6 is a basis of X∨ = X∨. From
the relation

r∨

0 + r∨

1 + 2r∨

2 + 2r∨

3 + 3r∨

4 + 2r∨

5 + r∨

6 = 0,

we see that C is cyclic of the order equal to the coefficient of r∨

i in the above
relation. Moreover, the above relation also shows that if C is non-trivial and

H̃ decomposes into simple factors
∏

j∈S H̃j , then C does not lie in
∏

j∈T H̃j

for any T # S. This gives the desired result immediately.

Let x be a vertex of B(H), with corresponding lattice L ∈ V , associated
graded lattice chain (Lx,r) and smooth group scheme Hx. Theorem 9.1 implies
that Hx ⊗A/π is a closed subgroup of Aut(L/πL), and thus acts on the vector
space L/πL over A/π, preserving the flag of subspaces determined by Lx,r/πL
for 0 ≤ r ≤ 1. The maximal reductive quotient H of Hx ⊗ A/π, given by the
above lemma, acts on the successive quotients of this flag. By consideration of
weights, we can determine the representations of H thus obtained.

Proposition 9.4. — (i) If x ∈ V0, V1 or V6, then L/πL isomorphic to the
standard representation J/πJ of H ∼= Aut(J/πJ, N).

(ii) If x ∈ V2, V3 or V5, then as representations of H ∼= (SL2 × SL6)/∆µ2,
we have:

L/R(L, N) ∼= 1⊗ ∧2(st∨), R(L, N)/πL ∼= st ⊗ st,

where st is the standard representation of SL2 or SL6. More precisely, ‘st’
for SL6 is the standard representation associated to the fundamental weight
corresponding to r6 when x ∈ V2, to r0 when x ∈ V3, to r1 when x ∈ V5.

(iii) If x ∈ V4, then the successive quotients of the graded lattice chain of x
are isomorphic to the representations

1 ⊗ st(r1) ⊗ st(r5), st(r2) ⊗ 1⊗ st(r6) st(r0) ⊗ st(r3) ⊗ 1

of H ∼= (SL3 × SL3 × SL3)/∆µ3, where st(ri) denotes the standard representa-
tion of SL3 associated to the fundamental weight corresponding to ri.

We also have the analogues of Theorem 9.1 and Proposition 9.4 for the
group G.

Theorem 9.5. — Given any order L in V ′, the schematic closure of G
in Aut(L) is the smooth integral model Gx associated to the vertex correspond-
ing to L. More generally, let X be a finite set of vertices contained in an
apartment A with convex hull Ω, and let L ⊂ V ′ be the set of orders correspond-
ing to the elements of X. Then the schematic closure of G in

∏
L∈L Aut(L) is

the smooth integral model GΩ of G associated to Ω.
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As before, we may assume without loss of generality that A = A(S), where S
is the maximal split torus of G introduced in §3, and it suffices to show that for
each b ∈ Φ(G, S), with corresponding root subgroup Ub, the schematic closure
of Ub in

∏
L∈L Aut(L) is smooth. If b is a long root, then Ub ⊂ G ⊂ H is also

a root subgroup of H , for which we already know the result. Henceforth, we
assume that b is a short root.

Now the basis {ei
jk} of V is certainly a basis of weight vectors for S, and

each weight occurs with multiplicity one, except the trivial character which
occurs with multiplicity 3. As we explain in §6, the trivial weight space has
a canonical basis, consisting of orthogonal primitive idempotents, and these
are the vectors e1

11, e1
22 and e1

33. As a result, the normalizer N(S) of S in G
permutes the set B of lines spanned by the vectors {ei

jk}. It follows from this
that for any given short root b, there is a partition B =

⋃
i Bi such that as a

representation of the rank one subgroup Gb
∼= SL2 attached to b, V = ⊕iVi,

where Vi is spanned by the elements of Bi, and such that L =
⊕

i L∩Vi. More-
over, Vi is either the trivial representation 1, the standard representation st or
the representation st ⊗ st∨, and the latter occurs with multiplicity 1.

As before, it remains to show that the schematic closure of Ub in Aut(L∩Vi)
is smooth for each i and for each L ∈ L. If Vi is the trivial representation or
the standard representation, then we are done by [6, 3.9.2]. Suppose that Vi is
the unique subspace affording the representation st⊗st∨. Using the observation
that N(S) permutes the basis elements {ei

jk} (up to signs), and the explicit
information contained in Proposition 8.1, it is not difficult to see that there
exists a vector space isomorphism

φ : Vi −→ M2(k), the space of 2 × 2 matrices over k,

as well as an isomorphism

ϕ : Ub
∼= U, the group of upper triangular 2 × 2 unipotent matrices,

such that

ϕ(g) · φ(v) = φ(g · v), for g ∈ Ub and v ∈ Vi,

and more importantly,

φ(L ∩ Vi) =
( A A
πn A

)
, with n = 0 or 1.

The desired result now follows by [9, Lemma 10.3] and [6, 3.9.2]. Thus Theo-
rem 9.5 is proved completely.

Finally, we come to the analogue of Proposition 9.4 for G. For a vertex x
with corresponding order L, the maximal reductive quotient of the special fiber
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of Gx is given by:

G =






G ⊗ A/π if x ∈ V ′
0 ,

(SL2 ×Sp6)/∆µ2 if x ∈ V ′
1 ,

(SL3 × SL3)/∆µ3 if x ∈ V ′
2 ,

(SL2 × SL4)/∆µ2 if x ∈ V ′
3 ,

Spin9 if x ∈ V ′
4 ,

and is proved by the same argument as that in Lemma 9.3. By consideration of
weights, we can determine the representation of G on the successive quotients
of the lattice chain associated to x.

Proposition 9.6. — (i) If x ∈ V ′
0 , then L/πL isomorphic to the standard

representation J/πJ of G ∼= Aut(J/πJ, N, e).

(ii) If x ∈ V ′
1 , then as representations of G ∼= (SL2 ×Sp6)/∆µ2, we have:

L/R(L) ∼= 1⊗ ∧2st, R(L)/πL ∼= st ⊗ st,

where st is the standard representation of SL2 or Sp6.

(iii) If x ∈ V ′
2 , then as representations of G ∼= (SL3 × SL3)/∆µ2, we have:

L/R(L) ∼= 1⊗ (st ⊗ st∨), R(L)/L 2

3

∼= st(r′1) ⊗ st(r′4),

L 2

3

/πL ∼= st(r′0) ⊗ st(r′3),

where st(r′i) denotes the standard representation of SL3 associated the the fun-
damental weight corresponding to r′i.

(iv) If x ∈ V ′
3 , then as representations of G ∼= (SL2 × SL4)/∆µ2, we have:

L/R(L) ∼= (1 ⊕ (st ⊗ st)) ⊗ 1, R(L)/L 2

4

∼= st ⊗ st(r′2),

L 2

4

/L 3

4

∼= 1⊗ ∧2st, L 3

4

/πL ∼= st ⊗ st(r′0).

(v) If x ∈ V ′
4 , then as representations of G ∼= Spin9, we have:

L/R(L) ∼= 1⊕ V10, R(L)/πL ∼= the spin representation,

where V10 is the representation obtained by regarding SO9 as the stabilizer of a
vector of norm 1 in the split quadratic space of dimension 10.
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groupes exceptionels sur un corps local. Première partie: le groupe G2,
Bull. Soc. math. France, t. 131 (2003), pp. 307–358.

[10] Gross (B.H.) – Groups over Z, Invent. Math., t. 124 (1996), pp. 263–278.
[11] Jacobson (N.) – Structures and representations of Jordan algebras, AMS

Colloq. Publ., vol. 39, Amer. Math. Soc., 1968.
[12] , Structure theory of Jordan algebras, Univ. Arkansas Lecture Notes

Math. Sci., vol. 5, Wiley, New York, 1981.
[13] Knus (M.-A.), Merkurjev (A.), Rost (M.) & Tignol (J.-P.) – The

book of involutions, AMS Colloq. Publ., vol. 44, Amer. Math. Soc., 1998.
[14] Petersson (H.) & Racine (M.) – Radicals of Jordan algebras of degree

3, in Radical Theory, Coll. Math. Coc. J. Bolyai, vol. 38, 1985, pp. 349–378.
[15] Prasad (G.) & Yu (J.-K.) – On finite group actions on reductive groups

and buildings, Invent. Math., t. 147 (2002), pp. 545–560.
[16] Racine (M.L.) – The arithmetics of quadratic Jordan algebras, Mem.

Amer. Math. Soc., vol. 136, Amer. Math. Soc., 1973.
[17] Soda (D.) – Some groups of type D4 defined by Jordan algebras, J. reine

angew. Math., t. 223 (1966), pp. 150–163.
[18] Springer (T.A.) – Jordan algebras and algebraic groups, Ergeb. Math.,

vol. 75, Springer, 1973.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE


