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DECAY OF CORRELATIONS FOR NONUNIFORMLY

EXPANDING SYSTEMS

by Sébastien Gouëzel

Abstract. — We estimate the speed of decay of correlations for general nonuniformly
expanding dynamical systems, using estimates on the time the system takes to be-
come really expanding. Our method can deal with fast decays, such as exponential or
stretched exponential. We prove in particular that the correlations of the Alves-Viana
map decay in O(e−c

√
n).

Résumé (Décroissance des corrélations d’un système non uniformément dilatant)
On montre comment estimer la vitesse de mélange d’un système dynamique non uni-

formément dilatant, à partir d’estimées sur le temps dont le système a besoin pour être
vraiment dilatant. Cette méthode permet d’obtenir des vitesses rapides, par exemple
exponentielles gauches ou exponentielles. Comme application, on obtient en particulier
le fait que les corrélations des applications d’Alves-Viana décroissent en O(e−c

√
n).

1. Results

1.1. Decay of correlations and asymptotic expansion. — When T :
M → M is a map on a compact space, the asymptotic behavior of Lebesgue-
almost every point of M under the iteration of T is related to the existence
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2 GOUËZEL (S.)

of absolutely continuous (or more generally SRB) invariant probability mea-
sures µ. To understand more precisely the mixing properties of the system, an
essential feature is the speed at which the correlations

Cor(f, g ◦ T n) :=

∫
f · g ◦ T n dµ −

∫
f dµ

∫
gdµ

tend to 0. In a uniformly expanding setting, the decay is exponential, but little
is known when the expansion is non uniform.

Recently, [6] introduced a quantitative way to measure the non-uniform ex-
pansion of a map, and showed that this “measure of non-uniformity” makes it
possible to control the speed of decay of correlations. More precisely, when
the measure of non-uniformity decays polynomially, [6] shows that the decay
of correlations is also polynomial, using hyperbolic times techniques (see [2])
and Young towers (see [14]). As a consequence of this result, the correlations
of the Alves-Viana map (see [12]) decay faster than any polynomial (which
implies for example a central limit theorem). However, all the estimates of [12]
are in O(e−c

√
n), which is stronger. A precise study of the recurrence makes

it in fact possible to show that the correlations also decay in O(e−c
√

n) (see
[8], [9]). However, this direct approach relies strongly on the specificities of the
Alves-Viana map, contrary to the approach of [6], which uses only some general
abstract properties, and can therefore be extended to many other cases. The
goal of this article is to extend the results of [6] (using a substantially different
method) to speeds of e−c

√
n (among others), which implies that the results

of [9] hold in a much wider setting.
Let M be a compact Riemannian manifold (possibly with boundary) and

T : M → M . We assume that there exists a closed subset S ⊂ M , with zero
Lebesgue measure (containing possibly discontinuities or critical points of T ,
and with ∂M ⊂ S), such that T is a C2 local diffeomorphism on M \S, and
is non uniformly expanding: there exists λ > 0 such that, for Lebesgue almost
every x ∈ M ,

(1) lim inf
n→∞

1

n

n−1∑

k=0

log ‖DT (T kx)−1‖−1 ! λ.

We also need non-degeneracy assumptions close to S, similar to the assump-
tions in [5] or [6]: we assume that there exist B > 1 and β > 0 such that, for
any x ∈ M \S and every v ∈ TxM \ {0},

(2)
1

B
dist(x, S)β "

‖DT (x)v‖
‖v‖

" B dist(x, S)−β .

Assume also that, for all x, y ∈ M with dist(x, y) < 1
2 dist(x, S),

(3)
∣∣∣log ‖DT (x)−1‖ − log ‖DT (y)−1‖

∣∣∣ " B
dist(x, y)

dist(x, S)β

tome 134 – 2006 – no 1



DECAY OF CORRELATIONS FOR NONUNIFORMLY EXPANDING SYSTEMS 3

and

(4)
∣∣log | detDT (x)−1| − log | detDT (y)−1|

∣∣ " B
dist(x, y)

dist(x, S)β
,

i.e. log ‖DT−1‖ and log | detDT−1| are locally Lipschitz, with a constant which
is controlled by the distance to the critical set. This implies that the singu-
larities are at most polynomial, and in particular that the critical points are
not flat.

We assume that the critical points come subexponentially close to S in the
following sense. For δ > 0, set distδ(x, S) = dist(x, S) if dist(x, S) < δ, and
distδ(x, S) = 1 otherwise. We assume that, for all ε > 0, there exists δ(ε) > 0
such that, for Lebesgue almost every x ∈ M ,

(5) lim sup
n→∞

1

n

n−1∑

k=0

− log distδ(ε)(T
kx, S) " ε.

We will need to control more precisely the speed of convergence in (1)
and (5). As [6], we consider for this the following function, which measures
the non-uniformity of the system

h1
(ε1,ε2)(x) = inf

{
N ∈ N∗ | ∀n ! N,

1

n

n−1∑

k=0

log ‖DT (T kx)−1‖−1 !
λ

2

and for i = 1, 2,
1

n

n−1∑

k=0

− log distδ(εi)(T
kx, S) " 2εi

}
.

It is important to have two indexes ε1 and ε2 to guarantee the existence of
hyperbolic times (see Lemma 2.2). To simplify the notations, we will write
ε = (ε1, ε2). The points x such that h1

ε(x) = n are “good” for times larger
than n. Hence, the lack of expansion of the system at time n is evaluated by

(6) Leb{x | h1
ε(x) > n},

and it is natural to try to estimate the speed of decay of correlations using
this quantity. This is done in [6] in the polynomial case: if (6) = O(1/nγ) for
some γ > 1, then the correlations of Hölder functions decay at least like 1/nγ−1.

Set Λ =
⋂

n!0 T n(M). We will say that T is topologically transitive on
the attractor Λ if, for every nonempty open subsets U, V of Λ, there exists n
such that T−n(U) ∩ V contains a nonempty open set (the precise formulation
is important since T may not be continuous on S).

We will say that a sequence (un)n∈N has polynomial decay if there exists
C > 0 such that, for all 1

2n " k " n, 0 < uk " Cun. This implies in particular
that un does not tend too fast to 0: there exists γ > 0 such that 1/nγ = O(un)
(for example γ = log C/log 2).
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4 GOUËZEL (S.)

Finally, the basin of a probability measure µ is the set of points x such that
n−1

∑n−1
k=0 δT kx converges weakly to µ, where δy is the Dirac mass at y.

Theorem 1.1. — Assume that all the iterates of T are topologically transi-
tive on Λ and that, for all ε = (ε1, ε2), there exists a sequence un(ε) with∑

un(ε) < +∞ and Leb{x | h1
ε(x) > n} = O(un(ε)). Assume moreover that

un(ε) satisfies one of the following properties:

1) un(ε) has polynomial decay.

2) There exist c(ε) > 0 and η(ε) ∈ (0, 1] such that un(ε) = e−c(ε)nη(ε)
.

Then T preserves a unique (up to normalization) absolutely continuous (with
respect to Lebesgue) measure µ. Moreover, this is a mixing probability measure,
whose basin contains Lebesgue-almost every point of M .

Finally, there exists ε0 = (ε0
1, ε

0
2) such that, if f, g : M → R are two functions

with f Hölder and g bounded, their correlations

Cor(f, g ◦ T n) =

∫
f · g ◦ T n dµ −

∫
f dµ

∫
gdµ

decay at the following speed:

1) |Cor(f, g ◦ T n)| " C
∑∞

p=n up(ε0) in case 1).

2) There exists c′ > 0 such that |Cor(f, g ◦ T n)| " C e−c′nη(ε0)
in case 2).

In fact, ε0 can be chosen a priori, depending only on λ and T . It would then
be sufficient to have (5) for ε0

1 and ε0
2 to get the theorem. However, in practical

cases, it is often not harder to prove (5) for all values of ε than to prove it for
a specific value of ε. This is why, as in [5] and [6], we have preferred to state
the theorem in this more convenient way.

In the first case, taking un = 1/nγ , we get another proof of the result of [6].
The main problem of this theorem is that (6) is often difficult to estimate,

since h1
ε(x) states a condition on all iterates of x, and not only a finite number

of them.

1.2. The Alves-Viana map. — Theorem 1.1 applies to the Alves-Viana
map, given by

(7) T :

{
S1 × I −→ S1 × I,
(ω, x) +−→

(
16ω, a0 + ε sin(2πω) − x2

)
,

where a0 ∈ (1, 2) is a Misiurewicz point (i.e. the critical point 0 is preperiodic
for x +→ a0 − x2), ε is small enough and I is a compact interval of (−2, 2) such
that T sends S1 × I into its interior.

This map has been introduced by Viana in [12]. He shows that T (and in
fact any map close enough to T in the C3 topology) has almost everywhere two
positive Lyapunov exponents, even though there are critical points in the fibers.
More precisely, Viana shows that the points that do not see the expansion in
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the fiber have a measure decaying like O(e−c
√

n). In [3], Alves and Araújo
obtain from this information that, for every ε = (ε1, ε2), for every c < 1

4 ,

(8) Leb
{
x | h1

ε(x) > n
}

= O(e−c
√

n).

Moreover, [7] shows that all the iterates of T are topologically transitive on Λ.

A consequence of the results of [6] is that the correlations of the Alves-Viana
map decay faster than any polynomial. However, their method of proof can
deal only with polynomial speeds (see paragraph 1.4), and hence can not reach
the conjectural upper bound of e−c′

√
n. Theorem 1.1 implies this conjecture

(already announced in [8]):

Theorem 1.2. — The correlations of Hölder functions for any map close
enough (in the C3 topology) to the Alves-Viana map decay at least like e−c′

√
n

for some c′ > 0.

This result applies also if the expansion coefficient 16 is replaced by 2, ac-
cording to [10]. Note that the specific method of [9], which proves Theorem
1.2, can not be directly used when 16 is replaced by 2, since it uses in particular
the specific form of admissible curves. On the other hand, the abstract method
of this article applies immediately, since [10] proves essentially (8).

1.3. Decorrelation and expansion in finite time. — The function h1
ε(x)

takes into account the expansion at x for large enough times, and is conse-
quently hard to estimate in general. It is more natural to consider the first
time with enough expansion. For technical reasons, we will need three param-
eters to get results in this setting (see the proof of Lemma 2.1). Set

h2
(ε1,ε2,ε3)(x) = inf

{
n ∈ N∗ |

1

n

n−1∑

k=0

log ‖DT (T kx)−1‖−1 !
λ

2

and for i = 1, 2, 3,
1

n

n−1∑

k=0

− log distδ(εi)(T
kx, S) " 2εi

}
.

This definition takes only the first n iterates of x into account, and can conse-
quently be checked in finite time. We will write ε = (ε1, ε2, ε3). The time h2

ε is
related to the notion of first hyperbolic time studied for example in [4].

If there were only two parameters in the definition of h2, we would
have h2 " h1. However, since there are three parameters, h1 and h2 can
rigourously not be compared.

We will estimate the speed of decay of correlations using Leb{x | h2
ε(x) > n}.

Our main result is the following theorem:

Theorem 1.3. — Assume that all the iterates of T are topologically transi-
tive on Λ and that, for all ε = (ε1, ε2, ε3), there exists a sequence un(ε) with
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∑
(log n)un(ε) < +∞ and Leb

{
x | h2

ε(x) > n
}

= O(un(ε)). Assume moreover
that un(ε) satisfies one of the following properties:

1) un(ε) has polynomial decay.

2) there exist c(ε) > 0 and η(ε) ∈ (0, 1] such that un(ε) = e−c(ε)nη(ε)
.

Then T preserves a unique (up to normalization) absolutely continuous invari-
ant measure µ. Moreover, this measure is a mixing probability measure, whose
basin contains Lebesgue almost every point of M .

Finally, there exists ε0 = (ε0
1, ε

0
2, ε

0
3) such that, if f, g : M → R are two

functions with f Hölder and g bounded, their correlations

Cor(f, g ◦ T n) =

∫
f · g ◦ T n dµ −

∫
f dµ

∫
gdµ

decay at the following speed:

1) |Cor(f, g ◦ T n)| " C
∑∞

p=n(log p)up(ε0) in case 1).

2) There exists c′ > 0 such that |Cor(f, g ◦ T n)| " C e−c′nη(ε0)

in case 2).

For example, when Leb{x | h2
ε(x) > n} = O(1/nγ) with γ > 1, the corre-

lations decay like log n/nγ−1. In the first case (polynomial decay), note that
there is a loss of log n between Theorem 1.1 and Theorem 1.3. It is not clear
whether this loss is real, or due to the technique of proof.

The comments on the choice of ε0 following Theorem 1.1 are still valid here.
It is even possible to take the same value for ε0

1 and ε0
2 in both theorems.

We will return later to the existence of invariant measures (Theorems 3.2
and 4.3). Without transitivity assumptions, we will get a spectral decompo-
sition: T admits a finite number of absolutely continuous invariant ergodic
probability measures, and each of these measures has a finite number of com-
ponents which are mixing for an iterate of T , with the same bounds on the
decay of correlations as in Theorems 1.1 and 1.3: these theorems correspond
to the case where the spectral decomposition is trivial.

Remark. — If un has polynomial decay and un = O(1/nγ) for some γ > 1,
then

∑∞
p=n(log p)up = O((log n)

∑∞
p=n up), which simplifies a little the bound

on the decay of correlations.

Remark. — In the stretched exponential case (i.e. 0 < η < 1), the conclusions
of Theorems 1.1 and 1.3 are true for any c′ < c(ε0). This can easily be checked
in all the following proofs (except in the proof of Lemma 4.2, where slightly
more careful estimates are required).

1.4. Strategy of proof. — As it is often the case when one wants to estimate
the decay of correlations, the strategy of proof consists in building a Young
tower (see [14]), i.e. selecting a subset B of M and building a partition B =

⋃
Bi

such that T Ri is an isomorphism between Bi and B, for some return time
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Ri. Then [14] gives estimates on the decay of correlations, depending on the
measure of points coming back to B after time n, i.e., Leb

(⋃
Ri>n Bi

)
. To

construct the sets Bi, we will use hyperbolic times. Denote by Hn the set of
points for which n is a hyperbolic time.

This strategy is implemented in [6]. We will describe quickly their inductive
construction, in a somewhat incorrect way but giving the essential ideas. Before
time n, assume that some sets Bi have already been constructed, with a return
time Ri satisfying Ri < n. At time n, consider Hn \

(⋃
Ri<n Bi

)
, and con-

struct new sets Bj covering a definite proportion of this set, with return time
Rj = n. Using some information about the repartition of hyperbolic times (the
Pliss Lemma), it is then possible to prove that Leb

(⋃
Ri>n Bi

)
decays at least

polynomially. The main limitation of this strategy is that, at time n, it can
deal only with a fraction of Hn. Since the repartition of hyperbolic times is a
priori unknown (except for the Pliss Lemma), we may have to wait a long time
(∼ n) to see another hyperbolic time. This makes it impossible to prove that

the decorrelations decay faster than e−c(log n)2 without further information.
To avoid this problem, we will deal with all points of Hn at time n, and not

only a fraction. To do this, we will consider a fixed partition U1, . . . , UN of the
space (with N fixed) and use T−n(U1), . . . , T−n(UN ) to partition Hn. In this
way, we will get a partition Bi of Ui (for each i), and each element of Bi will
be sent on some (possibly different) Uj by an iterate of T . Moreover, we will
keep a precise control on the measure of points having long return times.

Using this auxiliary partition, it will be quite easy to build a Young tower,
using an inductive process: select some Ui, for example U1. While a point does
not fall into U1, go on iterating, so that it falls in some Uj , then some Uk, and
so on. Most points will come back to U1 after a finite (and well controlled)
number of iterates, and this will give the required partition of U1.

Finally, to estimate the decay of correlations, it will not be possible to apply
directly the results of [14], since they are slightly too weak (in the case of e−cnη

with 0 < η < 1, Young proves only a decay of correlations of e−c′nη′

for any
η′ < η, which is weaker than the results of Theorems 1.1 and 1.3). However, the
combinatorial techniques used in the construction of the partition will easily
enable us to strengthen the results of [14], to obtain the required estimates.

The main difficulty of the proof will be to get the estimates on the auxiliary
partition U1, . . . , UN , in Section 3 (for example, the logarithmic loss between
Theorems 1.3 and 1.1 will appear there). Then we will build the Young tower
in Section 4, and estimate the decay of correlations in paragraph 4.2. We will
prove at the same time Theorems 1.1 and 1.3.

Acknowledgments. — I would like to thank V. Baladi for many enlight-
ening discussions and explanations, and the referee for his valuable comments.
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2. Hyperbolic times

We recall in this section the notion of hyperbolic times, of [2] and [5], and
we describe different sets that can be built at hyperbolic times. These sets will
be the basic stones used to build the auxiliary partition in Section 3.

Let b be a constant such that 0 < b < min(1/2, 1/(4β)). For σ < 1 and
δ > 0, we say that n is a (σ, δ)-hyperbolic time for x if, for all 1 " k " n,

(9)
n−1∏

j=n−k

‖DT (T jx)−1‖ " σk and distδ(T
n−kx, S) ! σbk.

We will denote by Hn = Hn(σ, δ) the set of points for which n is a (σ, δ)-
hyperbolic time.

In paragraph 2.1, we will choose carefully the constants σ and δ (as well
as ε0 given by Theorems 1.1 and 1.3). However, the reasons for this choice
will not become clear before paragraph 3.3, and the reader may admit the
existence of σ, δ and ε0, and come back to paragraph 2.1 just before reading
paragraph 3.3.

2.1. Frequency of hyperbolic times. — The following lemma is a slight
generalization of [5, Lemma 5.4]:

Lemma 2.1. — Take T : M → M and δ : R∗
+ → R∗

+ such that (1) and (5) are
satisfied. Then there exist ε3 > 0 and κ > 0 such that, for all ε1, ε2 < κ, there
exists θ(ε1, ε2) > 0 such that, if x ∈ M and n ∈ N∗ satisfy

1

n

n−1∑

k=0

log ‖DT (T kx)−1‖−1 !
λ

2

and for i = 1, 2, 3,

1

n

n−1∑

k=0

− log distδ(εi)(T
kx, S) " 2εi,

then there exist times 1 " p1 < · · · < p% " n with - ! θ(ε1, ε2)n such that, for
all j " -,

(10) ∀k, 1 " k " pj,

pj−1∑

s=pj−k

log ‖DT (T sx)−1‖−1
!

λ

4
k

and for i = 1, 2,

pj−1∑

s=pj−k

− log distδ(εi)(T
sx, S) " 2

√
εi k.

This means that the density of times p between 1 and n satisfying (10) is
at least θ(ε1, ε2). Before giving the proof of the lemma, we will state another
lemma with the same flavor:
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Lemma 2.2. — Take T : M → M and δ : R∗
+ → R∗

+ such that (1) and (5) are
satisfied. Take also κ > 0. Then there exist ε1, ε2 < κ and θ > 0 such that, if
x ∈ M and n ∈ N∗ satisfy

1

n

n−1∑

k=0

log ‖DT (T kx)−1‖−1 !
λ

4

and for i = 1, 2,

1

n

n−1∑

k=0

− log distδ(εi)(T
kx, S) " 2

√
εi,

then there exist times 1 " p1 < · · · < p% " n with - ! θn such that, for
all j " -,

∀k, 1 " k " pj ,

pj−1∑

s=pj−k

log ‖DT (T sx)−1‖−1 !
λ

8
k

and
pj−1∑

s=pj−k

− log distδ(ε1)(T
sx, S) " b

λ

8
k.

Until the end of this article, we will denote by ε0
3 the value of ε3 given by

Lemma 2.1, and by ε0
1, ε

0
2 the values of ε1 and ε2 given by Lemma 2.2. We will

also set σ = e−
1
8λ < 1. Finally, write δ = δ(ε0

1).

Hence, the times pj given by the conclusion of Lemma 2.2 are (σ, δ)-
hyperbolic. In the same way, the times pj satisfying (10) are also (σ, δ)-
hyperbolic (if κ is small enough), but they are more than that since they
guarantee a control at the same time for ε0

1 and for ε0
2 (whence Lemma 2.2 can

be applied to them): we will say that a time which satisfies (10) for ε0
1 and ε0

2

is a super hyperbolic time. We will write SHn for the set of points for which n
is a super hyperbolic time, and Hn = Hn(σ, δ) for the set of points for which n
is a (σ, δ)-hyperbolic time. In particular, SHn ⊂ Hn.

In the following proof, we will see why an index ε is lost: it is used to obtain
the conclusion on

∑pj−1
s=pj−k log ‖DT (T sx)−1‖−1, since Pliss Lemma can not be

applied directly (since this sequence is not bounded), whence another control
is needed.

Proof of Lemma 2.1. — The proof is essentially the proof of Lemma 5.4 of [5]:
they first show that there exist ε3 > 0 (which can be taken arbitrarily small)
and θ1 > 0 such that, if

1

n

n−1∑

k=0

log ‖DT (T kx)−1‖−1 !
λ

2
and

1

n

n−1∑

k=0

− log distδ(ε3)(T
kx, S) " 2ε3,

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



10 GOUËZEL (S.)

then there is a proportion at least θ1 > 0 of times p between 1 and n such that

∀k, 1 " k " p,
p−1∑

s=p−k

log ‖DT (T sx)−1‖−1
!

λ

4
k.

Moreover, [5, Lemma 3.1] also shows that, for ε > 0, if x satisfies

1

n

n−1∑

k=0

− log distδ(ε)(T
kx, S) " 2ε,

then there exists a proportion at least θ(ε) = 1−
√

ε of times p between 1 and n
such that

∀k, 1 " k " p,
p−1∑

s=p−k

− log distδ(ε)(T
kx, S) " 2

√
ε k.

When ε → 0, θ(ε) → 1. Hence, if κ is small enough, for all ε1, ε2 < κ, we will
have θ(ε1, ε2) := θ1 + θ(ε1) + θ(ε2) − 2 > 0, which gives the conclusion of the
lemma.

The proof of Lemma 2.2 is similar.

2.2. Constructions at hyperbolic times. — The following lemma refines
[5, Lemma 5.2] and [6, Lemma 4.1]:

Lemma 2.3. — There exist δ2, D1, λ1 < 1 such that, if x ∈ M and n is a
(σ, δ)-hyperbolic time for x, there exists a unique neighborhood Vn(x) of x with
the following properties:

1) T n is a diffeomorphism between Vn(x) and the ball B(T nx, δ2).

2) For 1 " k " n and y, z ∈ Vn(x),

dist(T n−ky, T n−kz) " σ
1
2 k dist(T ny, T nz).

3) For all y, z ∈ Vn(x),
∣∣∣∣
detDT n(y)

detDT n(z)
− 1

∣∣∣∣ " D1 dist(T ny, T nz).

4) Vn(x) ⊂ B(x, λn
1 ).

5) If n " m, y ∈ Hm and Vn(x) ∩ Vm(y) .= ∅, then T n is injective on
Vn(x) ∪ Vm(y).

Note that the third assertion of the lemma implies that the volume-distortion
of T n is bounded by D2 := 2δ2D1 + 1, i.e., for all U, V ⊂ Vn(x),

(11) D−1
2

Leb(T n(U))

Leb(T n(V ))
"

Leb(U)

Leb(V )
" D2

Leb(T n(U))

Leb(T n(V ))
·

tome 134 – 2006 – no 1
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Proof. — Lemma 5.2 of [5] shows that there exists δ1 > 0 such that, if x belongs
to Hn(σ, δ), then there exists a neighborhood V ′

n(x) mapped diffeomorphically
by T n to B(T nx, δ1). We set Vn(x) = V ′

n(x)∩T−n(B(T nx, 1
4δ1)), and δ2 = 1

4δ1.
As Vn(x) ⊂ V ′

n(x), the first and second assertion of the lemma come from
Lemma 5.2 of [5], and the third one from Lemma 4.1 of [6]. The fourth one is
a consequence of the second one (for λ1 = σ

1
2 ).

For the uniqueness, note that two distinct neighborhoods V 1
n (x) and V 2

n (x)
would give two different lifts by T n of a path from T n(x) to a point in
B(T n(x), 1

4δ1), which is not possible.
Finally, assume that Vn(x) ∩ Vm(y) contains a point z. Then

diam
(
T n

(
Vm(y)

))
" diam

(
T m

(
Vm(y)

))
= 1

2δ1,

whence T n(Vm(y)) ⊂ B(T nx, δ1). We build a set

Wm(y) = T−n
(
T n

(
Vm(y)

))
∩ V ′

n(x).

By definition of V ′
n(x), T n is an isomorphism between Wm(y) and T n(Vm(y)).

But T n is also an isomorphism between Vm(y) and T n(Vm(y)). As Vm(y)
and Wm(y) both contain z, the previous uniqueness argument implies that
Vm(y) = Wm(y). In particular, Vm(y) ⊂ V ′

n(x). As T n is injective on V ′
n(x),

it is also injective on Vn(x) ∪ Vm(y).

Take U = {U1, . . . , UN} a finite partition of M by sets of diameter at
most 1

10δ2, with nonempty interiors and piecewise smooth boundaries (for ex-
ample a triangulation of M). Hence, there exist constants C2 > 0 and λ2 < 1
such that

(12) ∀i, 1 " i " N, ∀n ∈ N, Leb
{
x ∈ Ui | dist(x, ∂Ui) " λn

1

}
" C2λ

n
2 .

We will write U ′
i = {x ∈ M | dist(x, Ui) " δ2/10}. Increasing C2 and λ2 if

necessary, we can also assume that

∀i, 1 " i " N, ∀n ∈ N,(13)

Leb
{
x ∈ M | dist(x, ∂U ′

i) " 1
2δ2σ

1
2n

}
" C2λ

n
2 Leb(Ui).

We will finally assume that, for any ball B(x, δ2) of radius δ2 and for
all 1 " i " N ,

(14) Leb B(x, δ2) " C2 Leb(Ui).

Take x ∈ Hn. Then T nx belongs to a unique Ui =: U(x, n), included in
B(T nx, δ2) = T n(Vn(x)). We will write In

∞(x) = T−n(Ui) ∩ Vn(x). In the
construction of the auxiliary partition in Section 3, the partition elements will
be such sets In

∞(x). In the construction, if we choose In
∞(x) and then In+1

∞ (y)
while y .∈ In

∞(x) but y is very close to the boundary of In
∞(x), the two sets In

∞(x)
and In+1

∞ (y) may have a nonempty intersection, which we want to avoid since
we are building a partition. As in [13], we will have to introduce a waiting time
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telling when it is not dangerous to select y, ensuring that In
∞(x) ∩ Im

∞(y) = ∅.
We thus set, for m > n,

In
m(x) =

{
y ∈ Vn(x) | 1

10δ2σ
1
2 (m−n) < dist(T ny, U(x, n)) " 1

10δ2σ
1
2 (m−n−1)

}

and
In
!m(x) =

⋃

m"t<∞

In
t (x).

These are the points which are not allowed to be selected at time m, because
they could interfere with x at time n (this choice will be justified by Lemma 2.5,
and (15)). We will say that a point of In

!m(x) is forbidden by the time n, at
the time m. We will also write

Ĩn
!m(x) =

⋃

m"t"∞

In
t (x),

i.e. we add the “core” In
∞(x). The main difference with [14] or [6] is that, in

these articles, the combinatorial estimates are less precise, whence they can
afford to forget the time by which a point is forbidden (the n in In

!m).

Lemma 2.4. — If 0 < n " m and Ĩn
!n+1(x) ∩ Ĩm

!m+1(y) .= ∅, then

Ĩn
!n+1(x) ∪ Ĩm

!m+1(y) ⊂ Vn(x).

Note that, when we write Ĩn
!n+1(x) (for example), it is implicit that this set

is well defined, i.e. that x ∈ Hn.

Proof. — Take z ∈ Ĩn
!n+1(x) ∩ Ĩm

!m+1(y). By Lemma 2.3,

T n
(
Ĩm
!m+1(y)

)
⊂ B(T nz, 1

2δ2) ⊂ B(T nx, δ2).

In particular, every u ∈ T n(Ĩm
!m+1(y)) has a preimage u′ under T n in Vn(x).

We have to see that u′ belongs to Ĩm
!m+1(y). Otherwise, u would have another

preimage u′′ in Ĩm
!m+1(y). As Vn(x) ∩ Vm(y) contains z, the fifth assertion of

Lemma 2.3 gives that T n is injective on Vn(x)∪Vm(y). This is a contradiction
since u′ .= u′′ but T n(u′) = T n(u′′).

Lemma 2.5. — There exists P > 0 such that, for 0 < n < m, x ∈ Hn and
y ∈ Hm \ Ĩn

!m(x),

Ĩn
!m+P (x) ∩ Ĩm

!m+P (y) = ∅.

This means that, if it not forbidden by x to choose y at time m, then there
is no interaction between x and y after time m + P . Thus, the waiting time P
makes it possible to separate completely the two points (which will be used in
Lemma 3.6). In particular,

(15) In
∞(x) ∩ Im

∞(y) = ∅,
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which implies that the sets we will select in the construction of the auxiliary
partition will be disjoint.

Proof. — Set Ui = T n(In
∞(x)). Assume that Ĩn

!m+P (x) ∩ Ĩm
!m+P (y) .= ∅, and

take a point z in this intersection. Then

dist(T nz, Ui) " 1
10δ2σ

1
2 (m+P−n−1) and dist(T mz, T my) " 1

10δ2

(
1 + σ

1
2 (P−1)

)
.

Note also that, since y, z ∈ Vm(y), Lemma 2.3 implies that

dist(T ny, T nz) " σ
1
2 (m−n) dist(T my, T mz).

Hence,

dist(T ny, Ui) " dist(T ny, T nz) + dist(T nz, Ui)

" σ
1
2 (m−n) dist(T my, T mz) + dist(T nz, Ui)

" σ
1
2 (m−n) 1

10δ2

(
1 + σ

1
2 (P−1)

)
+ 1

10δ2σ
1
2 (m+P−n−1)

= 1
10δ2σ

m−n
2

(
1 + 2σ

1
2 (P−1)

)
.

If P is large enough so that 1 + 2σ
1
2 (P−1) " σ− 1

2 , we get dist(T ny, Ui) "
1
10δ2σ

1
2 (m−n−1). As y ∈ Vn(x) by Lemma 2.4, we finally get y ∈ Ĩn

!m(x).

Lemma 2.6. — There exists a positive sequence cn such that, for all n ∈ N∗,
for every x ∈ Hn, Leb In

∞(x) ! cn.

Proof. — The condition x ∈ Hn implies that, for k " n, dist(T kx, S) ! αn > 0,
and T is a local diffeomorphism on M \S by definition of S. As T is C1 on
{y | dist(y, S) ! αn}, there exists a constant Cn which bounds detDT n(x)
for x ∈ Hn. Since the volume-distortion is bounded by D2 on Vn(x), we get
that, for any y ∈ Vn(x), | detDT n(y)| " D2Cn. In particular, Leb In

∞(x) !

Leb(T n(In
∞(x)))/(D2Cn). But T n(In

∞(x)) is one of the Ui, whence its measure
is uniformly bounded away from 0.

Lemma 2.7. — There exists a positive constant C > 0 such that, for any mea-
surable set A, for any n ∈ N∗, Leb(Hn ∩ T−n(A)) " C Leb(A).

Proof. — The sets In
∞(x), for x ∈ Hn, cover Hn, and are equal or disjoint. By

Lemma 2.6, there is a finite number of them, say In
∞(x1), . . . , In

∞(xk) (where k
depends on n).

For 1 " j " k, the distortion is bounded by D2 on In
∞(xj), whence

Leb(In
∞(xj) ∩ T−nA)

Leb(In
∞(xj))

" D2
Leb(A)

Leb(T n(In
∞(xj)))

·

But T n(In
∞(xj)) is one of the Ui, and its measure is consequently ! c for some

positive c. Summing over j, we get

Leb
(
Hn ∩ T−n(A)

)
"

D2

c
Leb(A) Leb(M).
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14 GOUËZEL (S.)

3. The auxiliary partition

In this section, we will show the following result (without any transitivity
assumption on T ):

Theorem 3.1. — Let T be a map on a compact manifold M and δ : R∗
+ → R∗

+

be such that (1) and (5) are satisfied. Let ε0 be given by Lemmas 2.1 and 2.2.
We assume that T satisfies one of the following conditions:

1) Leb{x | h1
ε0(x) > n} = O(un) where un has polynomial decay and tends

to 0.
2) Leb{x | h1

ε0(x) > n} = O(un) where un = e−cnη

with η ∈ (0, 1].

3) Leb{x | h2
ε0(x) > n} = O(un) where un has polynomial decay and

(log n)un → 0.

4) Leb{x | h2
ε0(x) > n} = O(un) where un = e−cnη

with η ∈ (0, 1].

Then there exist a finite partition U1, . . . , UN of M , another finer partition
(modulo a set of zero Lebesgue measure) W1, W2, . . . and times R1, R2, . . . such
that, for all j,

1) T Rj is a diffeomorphism between Wj and one of the Ui.

2) T
Rj

|Wj
expands the distances of at least σ− 1

2 > 1.

3) The volume-distortion of T
Rj

|Wj
is Lipschitz, i.e. there exists a constant C

(independent of j) such that, for every x, y ∈ Wj,
∣∣∣1 −

detDT Rj(x)

detDT Rj(y)

∣∣∣ " C dist(T Rj x, T Rjy).

4) For x, y ∈ Wj and n " Rj, dist(T nx, T ny) " dist(T Rjx, T Rj y).

Moreover, there exists c′ > 0 such that, under the different assumptions, the
following estimates on the tails hold:

Leb
( ⋃

Rj>n

Wj

)
=






O(un) in the first case,

O((log n)un) in the third case,

O(e−c′nη

) in the second and fourth cases.

In the proof of the theorem, it will be sufficient to work on U1, since the
same construction can then be made on each Uj .

The fact that the Wj form a partition of M modulo a set of zero Lebesgue
measure will come from the estimates on the size of the tails, and is not at all
trivial from the construction.

This theorem implies the following result on invariant measures:

Theorem 3.2. — Under the assumptions of Theorem 3.1, assume moreover
that

∑
un < ∞ in the first case,

∑
(log n)un < ∞ in the third case. Then

there exists a finite number of invariant absolutely continuous ergodic probability
measures µ1, . . . , µk. Moreover, their basins cover almost all M . Finally, there
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exist disjoint open subsets O1, . . . , Ok such that µi is equivalent to Leb on Oi

and vanishes on M \Oi.

In particular, if T is topologically transitive on Λ, there exists a unique
absolutely continuous invariant measure.

Proof of Theorem 3.2. — We build an extension of M , similar to a Young
tower except that the basis will be constituted of the finite number of sets
U1, . . . , UN . More precisely, set

X =
{
(x, i) | x ∈ Wj , i < Rj

}
,

and let π : X → M be given by π(x, i) = T i(x). We set, for x ∈ Wj ,

T ′(x, i) =

{
(x, i + 1) if i + 1 < Rj ,

(T Rj (x), 0) if i + 1 = Rj .

Thus, π◦T ′ = T ◦π. Let m be the measure on X given by m(A×{i}) = Leb(A)
when A ⊂ Wj and i < Rj , so that π∗(m) is equivalent to Lebesgue measure.
The condition on the tails ensures that m is of finite mass.

On X , the map T ′ is Markov, and the map T ′
Y induced by T on the basis

Y = {(x, 0)} is Markov with a Lipschitz volume-distortion and the big im-
age property. Classical arguments (see [1, Section 4.7]) show that T ′

Y admits
a finite number of invariant ergodic absolutely continuous probability mea-
sures ρ1, . . . , ρ%. Moreover, each of these measures is equivalent to m on a
union Yj of some sets Ui × {0} (the Yj are exactly the transitive subsystems
for the map T ′

Y ). Finally, almost every point of Y lands in one of these Yj

after a finite number of iterations of T ′
Y . Inducing (see [1, Prop. 1.5.7]), we get

a finite number of absolutely continuous invariant ergodic measures ν1, . . . , ν%,
whose basins cover almost all X . The condition on the measure of the tails
ensures that the νi are still of finite mass, whence we can assume that they are
probability measures.

The measures π∗(νi) are not necessarily all different. Let µ1, . . . , µk be
these measures without repetition. They are ergodic, and their basins cover
almost all M , whence there is no other absolutely continuous invariant ergodic
measure.

Let µ = π∗(ν) be one of the measures µj . Since ν is equivalent to m on
some set Ui × {0}, µ is equivalent to Leb on Ui. We will construct the open
set O(µ) of the statement of the theorem. Let Ω0 be the interior of Ui (it is
nonempty by construction). By induction, if Ωn is defined and open, set Ωn+1 =
T (Ωn \S) ∪ Ωn. As S is closed and T is a local diffeomorphism outside of S,
Ωn+1 is still an open set. Set O =

⋃
Ωn. As µ is invariant, we check by

induction that µ is equivalent to Leb on Ωn, whence on O. Let us show that,
if A ⊂ M \O, then µ(A) = 0. Otherwise, by ergodicity, there would exist n
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such that µ(T−n(A) ∩Ω0) > 0. As µ(S) = 0 (since Leb(S) = 0), we get

µ(T−n(A) ∩
(
Ω0 \S)

)
> 0,

whence µ(T−(n−1)(A) ∩ Ω1) > 0. By induction, µ(A ∩ Ωn) > 0, which is a
contradiction.

This result is a first step towards the spectral decomposition of T . It was al-
ready known, under weaker assumptions (see in [5] the remark following Corol-
lary D). We will get later a complete spectral decomposition: each measure µi

has a finite number of components which are mixing (and even exact) for an
iterate of T (Theorem 4.3, which also gives the speed of decay of correlations).

3.1. Description of the construction. — To prove Theorem 3.1, we will
build a partition of U1 by sets W1, W2, . . . such that, for every n, there exists a
return time Rn such that T Rn is an isomorphism between Wn and one of the Ui,
expanding of at least σ− 1

2n and whose volume-distortion is D1-Lipschitz. In
fact, Wn will be some set IRn

∞ (x). Set

Hn(U1) = Hn ∩
{
y ∈ U1 | dist(y, ∂U1) ! λn

1

}
.

Hence, if x ∈ Hn(U1), we have Vn(x) ⊂ U1 by the fourth assertion of
Lemma 2.3.

We build in fact points x1
1, . . . , x

1
%(1) at time 1, and x2

1, . . . , x
2
%(2) at time 2,

and so on. They will satisfy the following properties:

• xn
1 , . . . , xn

%(n) belong to Hn(U1) \
⋃

i<n, j"%(i) Ĩi
!n(xi

j), and this set is cov-

ered by
⋃

j In
∞(xn

j );

• the sets In
∞(xn

j ) (for n ∈ N∗ and 1 " j " -(n)) are disjoint, and included
in U1.

We will take for Wj the sets In
∞(xn

i ), and the corresponding return time Rj

will be n.

Construction of xn
i . — The construction is by induction on n. At time n, note

that, if x, y ∈ Hn(U1), then In
∞(x) and In

∞(y) are either disjoint or equal. Hence,
there exists a system In

∞(xn
1 ), . . . , In

∞(xn
%(n)) of representatives of the sets In

∞(x)

for x ∈ Hn(U1) \
⋃

i<n, j"%(i) Ĩi
!n(xi

j) (and it is finite by Lemma 2.6).

By construction, two sets In
∞(xn

i ) constructed at the same time are disjoint.

Take m > n, and xm
k ∈ Hm(U1) \

⋃
i<m, j"%(i) Ĩi

!m(xi
j). Then xm

k belongs to

Hm \ Ĩn
!m(xn

i ), whence Lemma 2.5 ensures that Im
∞(xm

k ) is disjoint from In
∞(xn

i ).

Finally, to see that In
∞(xn

i ) ⊂ U1, we use the fact that xn
i ∈ Hn(U1), whence

dist(xn
i , ∂U1) ! λn

1 . As Vn(xn
i ) ⊂ B(xn

i , λn
1 ), this implies that In

∞(xn
i ) ⊂ U1.
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The properties of hyperbolic times given in Lemma 2.3 imply that the expan-
sion and distortion requirements of Theorem 3.1 are satisfied. It only remains
to estimate Leb{x | ∃j, x ∈ Wj and Rj > n}.

3.2. Measure of points which are forbidden many times. — We will
denote by In the set of points which are forbidden at the instant n, i.e.

In =
⋃

i<n
j"%(i)

Ĩi
!n(xi

j),

and In the set of points which are forbidden by the instant n, i.e.

In =
⋃

j"%(n)

Ĩn
!n+1(x

n
j ).

In particular, In ⊂ In+1. Finally, set

(16) Sn =
⋃

i"n
j"%(i)

Ii
∞(xi

j).

This is the set of points which are selected before the instant n. In this para-
graph, the word “time” will be used only for durations, and “instant” will be
used otherwise.

In this paragraph, we will prove Lemma 3.7, which says that the set of
points which are forbidden at k instants without being selected has a measure
which decays exponentially fast. The argument is combinatorial: if a point is
forbidden by few instants, then it will be forbidden for a long time at many of
these instants, and it is easily seen that this gives a small measure (Lemma 3.6).
Otherwise, the point is forbidden by many instants, and we have to see that
each of these instants enables us to gain a multiplicative factor λ < 1. We will
treat two cases: either the forbidden sets are included one in each other, whence
only a proportion < 1 is kept at each step, which concludes (Lemma 3.4), or
the forbidden sets intersect each other close to their respective boundaries, and
we just have to ensure that these boundaries are small enough (Lemma 3.3).

We will write B for a set Ĩn
!n+1(x

n
i ), i.e. a “forbidden ball” (where xn

i is one
of the points defined in the construction of paragraph 3.1). Then t(B) will
denote the instant n by which it is forbidden, while the “core” C(B) = In

∞(xn
i )

is the inner part of B, corresponding to points which are really selected.
If T t(B)(C(B)) = Ui, then T t(B)(B) = {x | dist(x, Ui) " 1

10δ2}, whence
diamT t(B)(B) " 3

10δ2 " 1
2δ2. In all the statements and proofs of this para-

graph, the sets denoted by Bi or B′
i will implicitly be such forbidden balls. We

will define in the following lemmas sets Z1, . . . , Z6 of “points which are forbid-
den at many instants”, and we will see that each of them has an exponentially
small measure.
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Lemma 3.3. — Let Q ∈ N∗. Set

Z1(k, B0) =
{
x | ∃B′

1, B1, . . . , B
′
r, Br with ∀i, 1 " i " r,

t(Bi−1) " t(B′
i) " t(Bi) − Q, Bi .⊂ B′

i,
r∑

i=1

⌊ t(Bi) − t(B′
i)

Q

⌋
! k, and x ∈

r⋂

i=0

Bi ∩
r⋂

i=1

B′
i

}
.

Then there exists a constant C3 (independent of Q) such that for all k and B0,

Leb(Z1
(
k, B0)

)
" C3(C3λ

Q
2 )k Leb

(
C(B0)

)
.

Recall that λ2 is a constant satisfying (12) and (13).

Proof. — Let C3 be such that, for 1 " i " N ,

Leb
{
x | dist(x, Ui) " 1

10δ2

}
"

C3

D2
Leb(Ui),

and such that C−1
3 /(1 − C−1

3 )(C2D2)2 " 1. We will prove that C3 satisfies the
assertion of the lemma, by induction on k.

Take k = 0. Let n = t(B0), and i be such that T n(C(B0)) = Ui. Then
Z1(0, B0) = B0, whence T n(Z1(0, B0)) = {x | dist(x, Ui) " 1

10δ2}. This
gives Leb(T n(Z1(0, B0))) " C3/D2 Leb(T n(C(B0))). As the distortion of T n

is bounded by D2, by (11), we get Leb(Z1(0, B0)) " C3 Leb(C(B0)).

Take now k ! 1. Then, decomposing according to the value of B′
1, we get

Z1(k, B0) ⊂
k⋃

t=1

⋃

B′

1∩B0 )=∅

⋃

B1∩B′

1 )=∅, B1 )⊂B′

1

+(t(B1)−t(B′

1))/Q,!t

Z1(k − t, B1).

Let us show that, if t(B1) − t(B′
1) = n, then B1 is included in an annulus

of size σ
1
2n around B′

1. More precisely, set p = t(B′
1), U ′

i = T p(B′
1), and let us

show that

(17) T p(B1) ⊂
{
y | dist(y, ∂U ′

i) " 1
2δ2σ

1
2n

}
.

Note that B1 contains a point of ∂B′
1, since it is connected and intersects B′

1

and its complement. Thus, T p(B1) contains a point of ∂U ′
i . Moreover,

diamT p(B1) " σ
1
2n diamT n+p(B1) " 1

2δ2σ
1
2 n.

This shows (17). Note that (13) gives an upper bound for the measure of (17).
Since the distortion is bounded by D2 at hyperbolic times, and the cores

C(B1) are disjoint by construction, we get by (17) and (13) that

(18)
∑

B1∩B′

1 )=∅, B1 )⊂B′

1

+(t(B1)−t(B′

1))/Q,!t

Leb
(
C(B1)

)
" C2λ

Qt
2 D2 Leb

(
C(B′

1)
)
.
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Finally, write q = t(B0). Let x be such that C(B0) = Iq
∞(x). The sets C(B′

1)
are pairwise disjoint by construction, and included in Vq(x) by Lemma 2.4.
Moreover, T q is a diffeomorphism on Vq(x) and its distortion is bounded
by D2. Since T q(C(B0)) is a set Ui and T q(Vq(x)) = B(T qx, δ2), we have
Leb(T q(Vq(x))) " C2 Leb(T q(C(B0))) by (14). By bounded distortion, we
obtain

(19)
∑

B′

1∩B0 )=∅

Leb
(
C(B′

1)
)

" C2D2 Leb
(
C(B0)

)
.

Using the induction assumption, we finally obtain

LebZ1(k, B0) "

k∑

t=1

∑

B′

1∩B0 )=∅

∑

B1∩B′

1 )=∅, B1 )⊂B′

1

+(t(B1)−t(B′

1))/Q,!t

LebZ1(k − t, B1)

"

k∑

t=1

∑

B′

1∩B0 )=∅

∑

B1∩B′

1 )=∅, B1 )⊂B′

1

+(t(B1)−t(B′

1))/Q,!t

C3(C3λ
Q
2 )k−t Leb

(
C(B1)

)

"

k∑

t=1

∑

B′

1∩B0 )=∅

C3(C3λ
Q
2 )k−tC2λ

Qt
2 D2 Leb

(
C(B′

1)
)

" C3λ
Qk
2 Ck

3 (C2D2)
2
( k∑

t=1

C−t
3

)
Leb

(
C(B0)

)
.

By definition of C3, we have (C2D2)2
(∑k

t=1 C−t
3

)
" 1. This concludes the

induction.

Lemma 3.4. — Set

Z2
k,N =

{
x | ∃B1 " B2 " · · · " Bk with t(Bk) " N

and x ∈ (B1 ∩ · · · ∩ Bk) \SN

}
.

Then there exists a constant λ3 < 1 such that Leb(Z2
k,N ) " λk

3 Leb(M).

Proof. — We fix N once and for all in this proof, and we will omit all indexes N .
We will show that λ3 = C2D2/(C2D2 + 1) satisfies the conclusion of the lemma.
Note that, for every B,

(20) Leb(B) " C2D2 Leb
(
C(B)

)

by (14) and the bounded distortion of hyperbolic times.

We will write B1 for the sets of balls B with t(B) " N which are not included
in any other ball B′. Write also B2 for the set of balls B .∈ B1 with t(B) " N
which are included only in balls of B1, and so on. We will say that a ball of Bi
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20 GOUËZEL (S.)

has rank i. Every ball B has finite rank, since a ball which is constructed at
time n has at most rank n.

Set S′
k =

⋃k
i=1

⋃
B∈Bi

C(B): these are the points which are selected in balls
of rank at most k. Set

Z3
k =

( ⋃

B∈Bk

B
)
\S′

k.

Let us show that Z2
k ⊂ Z3

k .

Take x ∈ Z2
k, it is in a set (B1∩· · ·∩Bk) \SN with B1 " B2 " · · · " Bk and

t(Bk) " N . In particular, Bk is of rank r ! k. Take B′
1 " B′

2 " · · · " B′
r−1 "

B′
r a sequence with B′

i ∈ Bi and B′
r = Bk. In particular, x ∈ B′

k. Moreover,
S′

k ⊂ SN . As x .∈ SN , we get x .∈ S′
k. This shows that x ∈ Z3

k.

Let us estimate Leb(Z3
k+1) using Leb(Z3

k). Consider Bk+1 ∈ Bk+1. Let Bk

be a ball of rank k containing Bk+1. As the cores of different balls are disjoint,
C(Bk+1)∩S′

k = ∅. Thus, C(Bk+1) ⊂ Bk \S′
k ⊂ Z3

k . However, C(Bk+1) ⊂ S′
k+1

by definition, whence C(Bk+1) ∩ Z3
k+1 = ∅. This shows that C(Bk+1) ⊂

Z3
k
\Z3

k+1.

Finally, by (20),

Leb(Z3
k+1) "

∑

Bk+1∈Bk+1

Leb(Bk+1) " C2D2

∑

Bk+1∈Bk+1

Leb
(
C(Bk+1)

)

" C2D2 Leb(Z3
k \Z3

k+1)

since the C(Bk+1) are disjoint. Hence,

(C2D2 + 1)Leb(Z3
k+1) " C2D2 Leb(Z3

k+1) + C2D2 Leb(Z3
k \Z3

k+1)

= C2D2 Leb(Z3
k).

We obtain by induction that Leb(Z3
k) " (C2D2/(C2D2 + 1))k Leb(M),

which gives the same inequality for Leb(Z2
k) since Z2

k ⊂ Z3
k.

Lemma 3.5. — Set

Z4(k, N) =
{
x | ∃ t1 < · · · < tk " N, x ∈ It1 ∩ · · · ∩ Itk

}
\SN .

There exist constants C4 > 0 and λ4 < 1 such that, for all 1 " k " N ,

Leb
(
Z4(k, N)

)
" C4λ

k
4 .

This lemma means that the points forbidden by at least k instants have an
exponentially small measure.

Proof. — Take Q large enough so that C3λ
Q
2 < 1 in Lemma 3.3. Write N =

rQ + s with s < Q.
Let x ∈ Z4(k, N), forbidden by the instants t1 < · · · < tk. For 0 " u < r, we

choose in each interval [uQ, (u + 1)Q) the first instant ti (if there exists one),
which gives a sequence t′1 < · · · < t′k′ , with Qk′ + s ! k. Then we keep the
instants with an odd index, which gives a sequence of instants u1 < · · · < u%
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with 2- ! k′, whence - ! k/(2Q) − s. Moreover, ui+1 − ui ! Q for all i. Let
B1, . . . , B% be balls constructed at the instants ui and forbidding x.

Set I = {1 " i " -, Bi ⊂ B1 ∩ · · · ∩Bi−1} and J = [1, -] \ I. If Card I ! 1
2-,

we keep only the balls whose indexes are in I. Since there are at least 1
2- such

balls, x ∈ Z2
1
2 %,N

(where Z2 is defined in Lemma 3.4). This lemma implies

that the points obtained in this way have an exponentially small measure (in -,
whence in k).

Otherwise, CardJ ! 1
2-. Let j0 = supJ , and i0 = inf{i < j0, Bj0 .⊂ Bi}.

Let j1 = sup{j " i0, j ∈ J}, and i1 = inf{i < j1, Bj1 .⊂ Bi}, and so on: the
construction stops at some step, say in. Then J ⊂

⋃
(is, js] by construction,

whence
∑

(js − is) ! CardJ ! 1
2-, which implies that

∑ ⌊ t(Bjs) − t(Bis)

Q

⌋
=

∑ ⌊ujs − uis

Q

⌋
!

1

2
-,

since two instants uj and ui are separated by at least Q(j− i) by construction.
Hence, the sequence Bin , Bin , Bjn , . . . , Bi0 , Bj0 shows that x ∈ Z1(1

2 -, Bin).
Summing the estimates given by Lemma we also get an exponentially small
measure (since the cores are disjoint).

Lemma 3.6. — For a ball B1 = Ĩt1
!t1+1(x1), set

Z5(n1, . . . , nk, B1) = {x | ∃ t2, . . . , tk with t1 < · · · < tk and x2, . . . , xk

such that ∀i, 1 " i " k, x ∈ Iti

!ti+ni
(xi)}.

There exists a constant C5 (independent of B1, n1, . . . , nk) such that, when
n1, . . . , nk > P (given by Lemma 2.5),

Leb
(
Z5(n1, . . . , nk, B1)

)
" C5(C5λ

n1
2 ) · · · (C5λ

nk
2 ) Leb

(
C(B1)

)
.

In fact, Z5(n1, . . . , nk, B1) is the set of points which are forbidden for a time
at least n1 by B1, and then for a time at least n2 by another ball B2, and so on.

Proof. — The proof is by induction on k.
Let x ∈ Z5(n1, . . . , nk, B1). There exists by definition a ball B2 = Ĩt2

!t2+1(x2),

constructed at an instant t2 > t1, such that x ∈ Z5(n2, . . . , nk, B2). The point
x2 is not forbidden at the instant t2 (otherwise, x2 could not be selected at the
instant t2 according to the construction of paragraph 3.1). Hence, Lemma 2.5
yields that Ĩt1

!t2+P (x1) ∩ Ĩt2
!t2+P (x2) = ∅. But x is forbidden by the instant

t2 for a time at least n2 > P , whence x ∈ Ĩt2
!t2+P (x2). Thus, x .∈ Ĩt1

!t2+P (x1).

As x ∈ Ĩt1
!t1+n1

(x1), we get t1 + n1 < t2 + P , i.e. t2 − t1 > n1 − P .

Set Ui = T t1(C(B1)). The expansion at hyperbolic times gives

diam
(
T t1(B2)

)
" σ

1
2 (t2−t1) diam

(
T t2(B2)

)
" σ

1
2 (n1−P ) 1

2δ2.
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As dist(T t1(x), ∂Ui) " 1
10δ2σ

1
2 (n1−1) since x if forbidden for a time at least n1,

we have proved that there exists a constant C6 such that

T t1(B2) ⊂ C :=
{
y | dist(y, ∂Ui) " C6σ

1
2n1

}
.

By the induction hypothesis,

Leb
(
Z5(n2, . . . , nk, B2)

)
" C5(C5λ

n2
2 ) · · · (C5λ

nk
2 ) LebC(B2).

As the distortion is bounded, we get

Leb
(
T t1

(
Z5(n2, . . . , nk, B2)

))
" D2C5(C5λ

n2
2 ) · · · (C5λ

nk
2 ) Leb

(
T t1

(
C(B2)

))
.

The sets C(B2) are disjoint by construction and included in Vt1(x1) by
Lemma 2.4. Since T t1 is injective on Vt1(x1) by Lemma 2.3, the sets
T t1(C(B2)) are still pairwise disjoint. Moreover, they are all included in the
annulus C. Hence,

Leb
(
T t1

(
Z5(n1, . . . , nk, B1)

))
"

∑

B2

Leb
(
T t1

(
Z5(n2, . . . , nk, B2)

))

" C5D2(C5λ
n2
2 ) · · · (C5λ

nk
2 )

∑

B2

Leb
(
T t1

(
C(B2)

))

" C5D2(C5λ
n2
2 ) · · · (C5λ

nk
2 ) Leb(C).

By (13), there exists C7 such that Leb(C) " C7λ
n1
2 Leb(Ui). Hence,

Leb
(
T t1

(
Z5(n1, . . . , nk, B1)

))
" C5C7D2λ

n1
2 (C5λ

n2
2 ) · · · (C5λ

nk
2 ) Leb(Ui).

The distortion of the map T t1 is bounded by D2 on B1. Since Ui = T t1(C(B1)),
the previous equation implies

Leb
(
Z5(n1, . . . , nk, B1)

)
" C5C7D

2
2λ

n1
2 (C5λ

n2
2 ) · · · (C5λ

nk
2 ) Leb

(
C(B1)

)
.

This concludes the proof, if C5 ! C7D2
2 is taken large enough so that the result

holds for k = 0.

The following lemma will subsume all the previous lemmas: it shows that
the points forbidden at k instants have an exponentially small measure.

Lemma 3.7. — Set

Z6(k, N) =
{
x | ∃ t1 < · · · < tk " N, x ∈ It1 ∩ · · · ∩ Itk

}
\SN .

There exist constants C8 > 0 and λ5 < 1 such that, for all k " N ,

Leb
(
Z6(k, N)

)
" C8λ

k
5 .

Proof. — Take R > P (given by Lemma 2.5) so that λ2 + C5λR
2 < 1. Let x ∈

Z6(k, N), and consider all the instants ui by which it is forbidden for a time ni !

R, ordered so that u1 < · · · < up. Then x ∈ Z5(n1, . . . , np, B1) for some ball
B1. If

∑
ni ! 1

2k, we do not do anything else. Otherwise, let v1 < · · · < vq be
the other instants by which x is forbidden, for times m1, . . . , mq < R. Then
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∑
ni +

∑
mj is not less than the number of instants at which x is forbidden,

whence
∑

mj ! 1
2k. This implies that Rq ! 1

2k. We obtain

Z6(k, N) ⊂
( ⋃

B1

⋃

n1,...,np!R
P

ni!
1
2k

Z5(n1, . . . , np, B1)
)
∪ Z4

( k

2R
, N

)
.

Consequently, Lemmas 3.5 and 3.6 yield that

Leb
(
Z6(k, N)

)
"

∑

B1

∑

n1,...,np!R
P

ni!
1
2k

C5(C5λ
n1
2 ) · · · (C5λ

np

2 ) Leb
(
C(B1)

)
+ C4λ

k/(2R)
4 .

As the cores C(B1) are disjoint,
∑

Leb(C(B1)) " Leb(M) < ∞. To con-
clude, it is therefore sufficient to prove that

∑

n1,...,np!R
P

ni!
1
2 k

(C5λ
n1
2 ) · · · (C5λ

np

2 )

decays exponentially fast.

We use generating series:

∑

n

∑

n1,...,np!R
P

ni=n

(C5λ
n1
2 ) · · · (C5λ

np

2 )zn =
∞∑

p=1

(
C5

∞∑

n=R

λn
2 zn

)p

=
C5λR

2 zR

1 − λ2z − C5λR
2 zR

·

As λ2 + C5λR
2 < 1, this function has no pole in a neighborhood of the unit

disk in C. Hence, its coefficients decay exponentially fast, i.e. there exist con-
stants C9 > 0 and λ6 < 1 such that

∑

n1,...,np!R
P

ni=n

(C5λ
n1
2 ) · · · (C5λ

np

2 ) " C9λ
n
6 .

We just have to sum over n ! 1
2k to conclude.

3.3. Proof of Theorem 3.1. — We check in the four cases of Theorem 3.1
that the conclusions on the measures of the tails hold. In this proof, the
precise choice of σ, δ and ε0 in paragraph 2.1 is important. From the previous
paragraph, we will only use Lemma 3.7.

Proof of the first and second cases. — Recall that Leb{x | h1
ε0(x) > n} =

O(un). Recall also that Sn is the set of points selected before time n, and
that θ is defined in Lemma 2.2. Let us show that

U1 \Sn⊂
{
x ∈ U1 | h1

ε0(x) > n
}
∪

{
x ∈ U1 | dist(x, ∂U1) " λ

1
2 θn
1

}
∪Z6(1

2θn, n).
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This will conclude the proof, since the second and third sets have an exponen-
tially small measure, by (12) and Lemma 3.7.

Take x in U1 \Sn, which does not belong either to {h1
ε0(x) > n} or to

{dist(x, ∂U1) " λ
1
2 θn
1 }. By Lemma 2.2, x has at least θn hyperbolic times

between 1 and n, whence at least 1
2θn between 1

2θn and n. We will denote them

by t1 < · · · < tk " n. As dist(x, ∂U1) > λ
1
2 θn
1 , we have in fact x ∈ Hti(U1) for

all these instants. If x was not forbidden at the instant ti, then it would be
selected at the instant ti by construction, which is not possible since x .∈ Sn.
Hence, x ∈ Iti . We obtain in this way at least θn/2 instants at which x is
forbidden, whence x ∈ Z6(1

2θn, n).

Proof of the third and fourth case. — Denote by N(x, n) the number of hyper-
bolic times of x between 1 and n.

Lemma 3.8. — Let n ∈ N∗ and k(n) ∈ [1, θn]. Then

Leb
{
x | N(x, n) < k(n)

}
" Ck(n)/θ Leb

{
x | h2

ε0(x) > n − k(n)/θ
}
.

Proof. — Write SH∗
% for the set of points whose first positive super hyperbolic

time is -. If a point x has a super hyperbolic time j between k(n)/θ and n, then
it will have at least θj ! k(n) hyperbolic times between 1 and j, by Lemma 2.2.
Hence,

{
x | N(x, n) < k(n)

}
⊂ M \

⋃

k(n)/θ"j"n

SHj.

Denote by k ∈ [0, k(n)/θ) the last super hyperbolic time of x before k(n)/θ.
We get

Leb
(
M \

⋃

k(n)/θ"j"n

SHj

)
"

k(n)/θ∑

k=0

Leb
(
SHk ∩ T−k

( ⋃

%>n−k

SH∗
%

))

" C

k(n)/θ∑

k=0

Leb
( ⋃

%>n−k

SH∗
%

)
,

using the inclusion SHk ⊂ Hk and Lemma 2.7 for the last inequality.

By Lemma 2.1, a point x has at least one super hyperbolic time between 1
and h2

ε0(x), whence
⋃

%>n−k SH∗
% ⊂ {x | h2

ε0(x) > n − k}. This concludes the
proof of the lemma.

For any k(n), the same arguments as in the proof of the first and second
cases imply that

U1 \Sn ⊂
{
x | N(x, n) < k(n)

}
∪

{
x | dist(x, ∂U1) " λ

1
2k(n)
1

}
∪ Z6

(
1
2k(n), n

)
.
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By (12), Lemma 3.7 and Lemma 3.8, we get

Leb(U1 \Sn)(21)

" C
k(n)

θ
Leb

{
h2

ε0(x) > n −
k(n)

θ

}
+ C2λ

1
2k(n)
2 + C8λ

1
2k(n)
5 .

To conclude the proof, we just have to choose correctly the sequence k(n).

Assume that Leb{x | h2
ε0(x) > n} = O(un) where un has polynomial decay.

Choose K large enough so that k(n) := 1K log n2 satisfies λ
1
2 k(n)
5 = O(un) and

λ
1
2 k(n)
2 = O(un). Then (21) gives

Leb(U1 \Sn) = O
(
(log n)un−k(n)/θ

)
= O

(
(log n)un

)
.

Assume finally that Leb{x | h2
ε0(x) > n} = O(e−cnη

) with η ∈ (0, 1].
Choose k(n) = 1nη2 if η < 1, and k(n) =

⌊
1
2θn

⌋
if η = 1. Then (21) gives

Leb(U1 \Sn) = O(e−c′nη

) for some c′ > 0.

The logarithmic loss in the polynomial case comes from the factor k(n) in
Lemma 3.8.

4. The Young tower

Using Theorem 3.1, it is possible to prove directly the estimates on the
decay of correlations (under a mixing assumption): the coupling arguments
of [14] apply to the “tower” built from the partition Wj (the only difference
with the towers of [14] is that the returns to the basis do not cover the whole
basis, but only one of the sets Ui). This is for example shown in [11]. However,
in view of the existing literature, it seems more economical to build a true
Young tower, in order to apply directly the results of [14] (or rather a small
improvement of these results, since the results of Young are not sharp enough
in the stretched exponential case).

4.1. Construction of the Young tower. — The Young tower is given by
the following theorem:

Theorem 4.1. — Under the assumptions of Theorem 3.2, let µ be one of the
invariant absolutely continuous ergodic probability measures given by this the-
orem. Then there exist a nonempty open set B on which µ is equivalent to
Lebesgue measure, a partition (modulo 0) Z1, Z2, . . . of B, and times R′

1, R
′
2, . . .

such that, for all j

1) T R′

j is a diffeomorphism between Zj and B;

2) T
R′

j

|Zj
expands the distances of at least σ− 1

2 > 1;

3) the volume-distortion of T
R′

j

|Zj
is Lipschitz;
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26 GOUËZEL (S.)

4) for x, y ∈ Zj and n " R′
j, dist(T nx, T ny) " dist(T R′

jx, T R′

j y).

Moreover, the estimates on the size of tails as given in Theorem 3.1 still hold.

Proof. — Let X be the extension of M constructed in the proof of Theorem 3.2
using the auxiliary partition, and ν one of the invariant ergodic measures on X
such that π∗(ν) = µ. We identify each set Ui in M with Ui × {0} in X .

On one Ui (let us say U1), the measure ν is equivalent to m. The basis B
of the Young tower will be U1. Write U2, . . . , Us for the other sets Ui on which
ν is equivalent to m. Let T ′

Y be the map induced by T ′ on Y = {(x, 0)} ⊂ X ,
i.e., on an element Wj of the partition B given by Theorem 3.1, with return
time Rj , we set T ′

Y (x, 0) = (T Rj (x), 0). We define a partition Bn of Y by

Bn =
n−1⋂

0

(T ′
Y )−i(B).

Thus, an element of Bn is sent by T ′
Y , . . . , (T ′

Y )n−1 on subsets of elements of B,
and by (T ′

Y )n on a set Ui. As ν is ergodic, there exists L > 0 such that
every Ui (with i " s) contains an element of Bn, for some n < L, whose image
under (T ′

Y )n is U1.
For x ∈

⋃s
1 Ui, we define a sequence of times t0(x) = 0, t1(x), t2(x), . . .

and an integer k(x) (corresponding to the number of iterations before x is
selected) in the following way: let B0 ∈ B contain x, and let R1 be its return
time. Set t1(x) = R1. If T ′

Y (B0) = U1, we set k(x) = 1 and we stop here.
Otherwise, T R1(B0) is one of the sets Ui with 2 " i " s. We consider the set
B1 of the partition B containing T R1(x), with a return time R2. Set t2(x) =
t1(x) + R2. If T t2(x)(x) is in U1, we set k(x) = 2 and we stop here. Otherwise
we consider the next iterate of T t2(x), that we denote by T t3(x), and we go
on. More formally, k(x) = k(T R1x) + 1 and tj(x) = tj−1(T R1(x)) + t1(x) for
every j " k(x). By definition, k(x) is the smallest integer n ! 1 such that the
element of Bn containing x is sent on U1 by (T ′

Y )n.
The elements of the final partition will be the sets Zj constructed in this way,

included in U1, and the corresponding return time will be tk(x)(x) for x ∈ Zj

(this is independent of x). By construction, T tk(x)(x)(Zj) = U1, and we have a
Young tower.

In the end, almost every point will be selected (we will see later that the
measure of the tails tends to 0). The distortion and expansion properties of
the partition B ensure that these properties will remain satisfied by the Young
tower. We just have to prove the estimates on the measures of the tails to
conclude.

Set τ(x) = tk(x)(x). In at most L steps, an element of every Ui is selected
to come back to U1, by definition of L. Since the distortion is bounded, there
exists ε > 0 such that

(22) Leb
(
τ = tj or . . . or τ = tj+L−1 | t1, . . . , tj−1, τ > tj−1

)
! ε.
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Moreover, still by bounded distortion,

(23) Leb
{
tj+1 − tj > n | t1, . . . , tj

}
" C

∑

Wk∈B, Rk>n

Leb(Wk),

this last term being estimated by Theorem 3.1. We want to obtain estimates
on the measure of the tails, i.e. on Leb{x | τ(x) > n}, and we will use (22)
and (23) to get them. The following lemma is indeed sufficient to conclude the
proof.

Lemma 4.2. — Let (X, µ) be a space endowed with a finite measure,
k : X → N and t0, t1, t2, . . . : X → N measurable functions such that
0 = t0 < t1 < t2 < · · · almost everywhere. Set τ(x) = tk(x)(x), and assume
that there exist L > 0 and ε > 0 such that

(24) µ
{
τ = tj or . . . or τ = tj+L−1 | t1, . . . , tj−1, τ > tj−1

}
! ε.

Assume moreover that there exist a positive sequence un and a constant C such
that

(25) µ
{
tj+1 − tj > n | t1, . . . , tj

}
" Cun.

Then

1) If un has polynomial decay, µ{τ > n} = O(un).

2) If un = e−cnη

with c > 0 and η ∈ (0, 1], then there exists c′ > 0 such that
µ{τ > n} = O(e−c′nη

).

Proof. — Young [14] considers a problem which is a priori completely different:
she wants to estimate the speed of decay of correlations in towers. However,
she introduces a sequence of times tn(x) which satisfies the assumptions of the
lemma, and she uses only the properties (24) and (25) to obtain estimates on
the set µ{τ > n}. In particular, in the fourth section of [14], she proves our
lemma when un = e−cn, and when un has polynomial decay. She assumes
L = 1, but her proofs can easily be adapted to the general case. Moreover,
for the polynomial case, she only deals with the case un = 1/nγ , but the same
proof works directly in the general case, using that un/i " uniγ for some γ > 0.

However, in the stretched exponential case (i.e. 0 < η < 1), the estimates of

Young give only µ{τ > n} = O(e−nη′

) for any η′ < η, which is weaker than
the result of our lemma. We will give a different proof in this case.

When w1 and w2 are two real sequences, we will write w1 2 w2 for their
convolution, given by (w1 2 w2)n =

∑
a+b=n w1

aw2
b . When w is a sequence,

we will also write w)% for the sequence obtained by convolving - times w with
itself.
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Write vn = C e−cnη

, so that µ{tj − tj−1 = n | tj−1, . . . , t1} " vn. Let us
show that, for large enough K, the sequence wn = 1n!K vn satisfies

(26) ∀p ∈ N, (w 2 w)p " wp.

Note that, on [0, 1
2 ], the function (xη + (1− x)η − 1)/xη is continuous (it tends

to 1 at 0), and positive, whence larger than some constant γ > 0. Hence,
xη + (1 − x)η ! 1 + γxη. For p < 2K, (w 2 w)p = 0. Take p ! 2K. Then

(w 2 w)p " 2C2
∑

K"j" 1
2p

e−cjη

e−c(p−j)η

= 2C2
∑

K"j" 1
2p

e−cpη((j/p)η+(1−j/p)η).

For x = j/p, we have x ∈ [0, 1
2 ], whence

(w 2 w)p " 2C2
∑

K"j" 1
2p

e−cpη(1+γ(j/p)η)
" 2C2 e−cpη ∑

j!K

e−cγjη

.

Taking K large enough so that 2C
∑

j!K e−cγjη

" 1, we obtain (26).

Let k ! 0 and A ⊂ {1, . . . , k}. For j ∈ A, take nj ! 1. Set

Y (A, nj) =
{
x | k(x) ! supA and ∀j ∈ A, tj(x) − tj−1(x) = nj

}
.

Conditioning successively with respect to the different times, we get by (25)
and the definition of vn,

µ
(
Y (A, nj)

)
"

∏

j∈A

µ
{
tj − tj−1 = nj | tj−1, . . . , t1

}
"

∏

j∈A

vnj .

Set q(n) = 1αnη2, where α will be chosen later. Take x such that τ(x) > n.
If k(x) > q(n), i.e. x is selected after more than q(n) steps, we do not do
anything. Otherwise, let - = k(x) " q(n), and let nj = tj(x)−tj−1(x) for j " -.
Write A = {j | nj ! K}. Thus, x ∈ Y (A, nj). Moreover, as

∑
nj = τ(x) > n,

we have
∑

j∈A nj ! n−Kq(n) ! 1
2n if n is large enough. We have shown that

(27)
{
x | τ(x) > n

}
⊂

{
k(x) > q(n)

}
∪

⋃

A⊂{1,...,q(n)}

⋃

nj!K
P

A nj! 1
2 n

Y (A, nj).
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By (24), µ{k(x) > q(n)} " (1 − ε)q(n)/L " e−c′′nη

for some c′′. Moreover,
writing - = CardA and using (26),

µ
( ⋃

A⊂{1,...,q(n)}

⋃

nj!K
P

A nj! 1
2n

Y (A, nj)
)

"
∑

A⊂{1,...,q(n)}

∑

nj!K
P

A nj! 1
2n

∏

j∈A

vnj

"
∑

0"%"q(n)

(q(n)

-

) ∑

n1,...,n#!K
P

nj! 1
2n

vn1 · · · vn#

=
∑

0"%"q(n)

(q(n)

-

) ∞∑

1
2n

(
w)%

)
p

"
∑

0"%"q(n)

(q(n)

-

) ∞∑

1
2n

wp = 2q(n)
∞∑

1
2 n

wp.

As wn = O(e−cnη

), one proves (comparing to an integral) that
∞∑

1
2n

wp = O(n1−η e−c( 1
2n)η

).

Hence, if α is small enough, 2q(n)
∑∞

1
2n wp = O(e−c′nη

) for some c′ > 0. By (27),

we have proved that µ{τ(x) > n} = O(e−c′nη

).

4.2. Consequences

Theorem 4.3. — Let T satisfy the assumptions of Theorem 3.2, µ be one of
the invariant ergodic absolutely continuous probability measures given by this
theorem, and O be an open set such that µ is equivalent to Leb|O.

Then there exists a finite partition (modulo 0) Ω0, . . . ,Ωd−1 of O in open
sets, such that T (Ωi) = Ωi+1 (modulo 0) for i " d − 1 (Ωd is identified with
Ω0), and such that, on each Ωi, the map T d is mixing (and even exact) for the
measure µ.

Finally, for every functions f, g : M → R with f Hölder and g bounded, there
exists a constant C such that, for 0 " i " d− 1, for all n ∈ N, the correlations

CorΩi(f, g ◦ T dn) :=
∫
Ωi

f · g ◦ T dn dµ −
(∫

Ωi
f dµ

) (∫
Ωi

gdµ
)

satisfy

(28)
∣∣CorΩi(f, g ◦ T dn)

∣∣ "






C
∑∞

p=n up in the first case,

C
∑∞

p=n(log p)up in the third case,

C e−c′nη

in the second.
and fourth cases.

When all the iterates of T are topologically transitive, there exist a unique
measure µ and a unique set Ω. This proves Theorems 1.1 and 1.3.
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Proof. — Theorem 4.1 makes it possible to construct an abstract Young tower
X = {(x, i) | x ∈ Zj, i < R′

j}, a projection π : X → M given by π(x, i) =
T i(x), and a map T ′ on X such that π◦T ′ = T ◦π, as in the proof of Theorem 3.2
(but using the partition given by Theorem 4.1 instead of the partition given by
Theorem 3.1).

By [14], T ′ admits a unique absolutely continuous invariant probability mea-
sure ν. The measure π∗(ν) is absolutely continuous with respect to µ, whence
π∗(ν) = µ by ergodicity.

Set d1 = gcd(R′
j), and write Xk = {(x, i) ∈ X | i ≡ k mod d1}, for

0 " k " d1 − 1. Thus, T ′ maps Xk to Xk+1 for k < d1 (taking k modulo d1).
The system (Xk, (T ′)d1) is then a Young tower whose return times are relatively
prime, and whose invariant measure is νk := ν|Xk

. [14, Theorem 1] implies that
νk is exact for (T ′)d1 . Moreover, the correlations of Hölder functions (as defined
in [14]) decay as indicated in (28): in the exponential case, this is proved in
[14]. Young treats the case of 1/nγ , but her proof can easily be adapted to the
polynomial case. It remains to treat the stretched exponential case, which is
given by the following lemma:

Lemma 4.4. — Let (X, T ′) be a mixing Young tower, and assume that the
return time on the basis R satisfies m(R > n) = O(e−cnη

) for some 0 < η < 1.
Then, if f is Hölder and g is bounded, the correlations of f and g are bounded
by e−c′nη

for some c′ > 0.

Proof. — This is a consequence of [14, Section 3.5] and Lemma 4.2.

These results are true on X , we still have to come back to M .
The measures λk = π∗(νk) satisfy T∗λk = λk+1, and are invariant and

ergodic for T d1 . In particular, two such measures are either equal or mutually
singular. Hence, there exists d (dividing d1, let us say d1 = sd) such that
λk = λ% if and only if k ≡ - mod d. Using the same argument as in the proof
of Theorem 3.2, we check that the measures λk (for 0 " k < d) are supported
on disjoint open sets Ωk. Moreover, T∗(λk) = λk+1, whence T (Ωk) = Ωk+1

modulo 0.
Let us show that λk is exact for T d. Let A ⊂ Ωk have nonzero measure, such

that A can we written as T−dn(An) for any n. Hence, A′ = π−1(A) is equal
to (T ′)−dn(A′

n), where A′
n = π−1(An). In particular, since Xk is invariant

under (T ′)d1 , we get A′ ∩ Xk = (T ′)−nd1(A′
sn ∩ Xk). As (Xk, νk) is exact, this

proves that A′ ∩ Xk has full νk-measure, which concludes the proof.
Let finally f, g be two functions on M such that f is Hölder and g is bounded.

Write f ′ = f◦π and g′ = g◦π: the function f ′ is Hölder on X , and g′ is bounded.
For n ∈ N, write n = ps + r with 0 " r < s. Then
∫

Ωk

f · g ◦ T dn =

∫

Xk

f ′ · (g′ ◦ (T ′)dr) ◦ (T ′)pds =

∫

Xk

f ′ · (g′ ◦ (T ′)dr) ◦ (T ′)pd1 .
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The function g′ ◦ (T ′)dr is bounded on Xk, whence the estimate on the speed
of decay of correlations for νk on Xk gives the same estimate for the decay of
correlations of f and g on M .
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