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CUTTING THE LOSS OF DERIVATIVES FOR
SOLVABILITY UNDER CONDITION (!)

by Nicolas Lerner

Abstract. Ñ For a principal type pseudodi!erential operator, we prov e that condi-
tion ( ψ) implies local solvability with a loss of 3/2 derivatives. W e use many elements
of DenckerÕs paper on the proof of the Nirenberg-Treves conj ecture and we provide
some improvements of the key energy estimates which allows u s to cut the loss of
derivatives from ε + 3 /2 for any ε > 0 (DenckerÕs most recent result) to 3/2 (the
present paper). It is already known that condition ( ψ) does not imply local solvability
with a loss of 1 derivative, so we have to content ourselves wi th a loss > 1.

Résumé (Diminution de la perte de dérivées pour la résolubilité sous la condition ("))
Pour un op«erateur de type principal, nous d«emontrons que l a condition (") implique

la r«esolubilit«e locale avec perte de 3/2 d«eriv«ees. Nous utilisons beaucoup dÕ«el«ements de
la d«emonstration par Dencker de la conjecture de Nirenberg -Treves et nous limitons
la perte de d«eriv«ees à 3/2, am«eliorant le r«esultat le pl us r«ecent de Dencker (perte de
ε + 3 /2 d«eriv«ees pour tout ε > 0). La condition (") nÕimpliquant pas la r«esolubilit«e
locale avec perte dÕune d«eriv«ee, nous devons nous contenter dÕune perte> 1.

1. Introduction and statement of the results

1.1. Introduction. Ñ In 1957, Hans Lewy [25] constructed a counterexam-
ple showing that very simple and natural di!erential equati ons can fail to have
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560 LERNER (N.)

local solutions; his example is the complex vector ÞeldL0 = ∂x 1 + i∂x 2 + i(x1 +
ix2)∂x 3 and one can show that there exists someC ! function f such that
the equation L0u = f has no distribution solution, even locally. A geometric
interpretation and a generalization of this counterexample were given in 1960
by L. H¬ormander in [10] and extended in [11] to pseudodi!erential operators.
In 1970, L. Nirenberg and F. Treves ([29, 30, 31]), after a study of complex
vector Þelds in [28] (see also [26]), reÞned this condition on the principal sym-
bol to the so-called condition (ψ), and provided strong arguments suggesting
that it should be equivalent to local solvability. The necessity of condition ( ψ)
for local solvability of pseudodi!erential equations was proved in two dimen-
sions by R. Moyer in [27] and in general by L. H¬ormander ([13]) in 1981. The
su"ciency of condition ( ψ) for local solvability of di!erential equations was
proved by R. Beals and C. Fe!erman ([1]) in 1973; they createda new type of
pseudodi!erential calculus, based on a Calder«on-Zygmunddecomposition, and
were able to remove the analyticity assumption required by L. Nirenberg and
F. Treves. For di!erential equations in any dimension ([1]) and for pseudod-
i!erential equations in two dimensions ([18], see also [19]), it was shown more
precisely that (ψ) implies local solvability with a loss of one derivative with
respect to the elliptic case: for a di!erential operator P of order m (or a pseu-
dodi!erential operator in two dimensions), satisfying condition ( ψ), f ∈ Hs

loc,
the equation Pu = f has a solution u ∈ Hs+m " 1

loc . In 1994, it was proved by
N.L. in [20] (see also [16], [24]) that condition (ψ) does not imply local solvabil-
ity with loss of one derivative for pseudodi!erential equations, contradicting
repeated claims by several authors. However in 1996, N. Dencker in [4], proved
that these counterexamples were indeed locally solvable, but with a loss of two
derivatives.

In [5], N. Dencker claimed that he can prove that condition (ψ) implies local
solvability with loss of two derivatives; this preprint con tains several break-
through ideas on the control of the second derivatives subsequent to condi-
tion ( ψ) and on the choice of the multiplier. The paper [7] contains aproof
of local solvability with loss of two derivatives under condition ( ψ), providing
the Þnal step in the proof of the Nirenberg-Treves conjecture; the more recent
paper [6] is providing a proof of local solvability with loss of ε + 3

2 derivatives
under condition (ψ), for any positive ε. In the present article, we show that
the loss can be limited to 3/2 derivatives, dropping the ε in the previous result.
We follow the pattern of DenckerÕs paper and give some improvements on the
key energy estimates.

Acknowledgement. Ñ For several months, I have had the privilege of ex-
changing several letters and Þles with Lars H¬ormander on the topic of solv-
ability. I am most grateful for the help generously provided. These personal
communications are referred to in the text as [17] and are important in all
sections of the present paper.
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1.2. Statement of the result. Ñ Let P be a properly supported principal-
type pseudodi!erential operator in a C ! manifold M, with principal
(complex-valued)(1) symbol p. The symbol p is assumed to be aC ! ho-
mogeneous(2) function of degreem on úT #(M), the cotangent bundle minus the
zero section. The principal type assumption that we shall use here is that

(1.2.1) (x, ξ) ∈ úT #(M), p(x, ξ) = 0 =⇒ ∂! p(x, ξ) #= 0 .

Also, the operator P will be assumed of polyhomogeneous type, which means
that its total symbol is equivalent to p +

∑
j $ 1 pm " j , where pk is a smooth

homogeneous function of degreek on úT #(M).

Definition 1.2.1 (Condition ( ψ)). Ñ Let p be a C ! homogeneous function
on úT #(M). The function p is said to satisfy condition (ψ) if, for z = 1 or i,
Im zp does not change sign from− to + along an oriented bicharacteristic of
Rezp.

It is a non-trivial fact that condition ( ψ) is invariant by multiplication by
an complex-valued smooth elliptic factor (see section 26.4in [14]).

Theorem 1.2.2. Ñ Let P be as above, such that its principal symbol p satisfies
condition (ψ). Let s be a real number. Then, for all x ∈ M, there exists a

neighborhood V such that for all f ∈ Hs
loc

, there exists u ∈ H
s+m " 3

2
loc

such that

Pu = f in V .

Proof. Ñ The proof of this theorem will be given at the end of section 4.

Note that our loss of derivatives is equal to 3/2. The paper [20] proves that
solvability with loss of one derivative doesnot follow from condition ( ψ), so we
have to content ourselves with a loss strictly greater than one. However, the
number 3/2 is not likely to play any signiÞcant röole and one should probably
expect a loss of 1+ε derivatives under condition (ψ). In fact, for the counterex-
amples given in [20], it seems (but it has not been proven) that there is only a
ÒlogarithmicÓ loss,i.e., the solution u should satisfy u ∈ log 〈Dx 〉

(
Hs+m " 1

)
.

Nevertheless, the methods used in the present article are strictly limited to
providing a 3/2 loss. We refer the reader to our appendix A.4 for an argument
involving a Hilbertian lemma on a simpliÞed model. This is ofcourse in sharp
contrast with operators satisfying condition (P ) such as di!erential operators
satisfying condition (ψ). Let us recall that condition ( P ) is simply ruling out
any change of sign of Im(zp) along the oriented Hamiltonian ßow of Re(zp).
Under condition (P ) ([1]) or under condition ( ψ) in two dimensions ([18]),

(1)Naturally the local solvability of real principal type oper ators is also a consequence of
the next theorem, but much stronger results for real princip al type equations were already
established in the 1955 paper [9] (see also section 26.1 in [14]).
(2)Here and in the sequel, ÒhomogeneousÓ will always mean positively homogeneous.
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local solvability occurs with a loss of one derivative, the ÒoptimalÓ loss, and
in fact the same as for∂/∂x1. One should also note that the semi-global
existence theorems of [12] (see also theorem 26.11.2 in [14]) involve a loss of
1+ ε derivatives. However in that case there is no known counterexample which
would ensure that this loss is unavoidable.

Remark 1.2.3. Ñ Theorem 1.2.2 will be proved by a multiplier method, in-
volving the computation of 〈Pu, Mu〉 with a suitably chosen operator M . It
is interesting to notice that, the greater is the loss of derivatives, the more
regular should be the multiplier in the energy method. As a matter of fact, the
Nirenberg-Treves multiplier of [30] is not even a pseudodi!erential operator in
the S0

1/ 2,1/ 2 class, since it could be as singular as the operator signDx 1 ; this
does not create any di"culty, since the loss of derivatives is only 1. On the
other hand, in [4], [23], where estimates with loss of 2 derivatives are handled,
the regularity of the multiplier is much better than S0

1/ 2,1/ 2, since we need
to consider it as an operator of order 0 in an asymptotic classdeÞned by an
admissible metric on the phase space.

N.B. Ñ For microdi!erential operators acting on microfunction s, the su"-
ciency of condition (ψ) was proven by J.-M. Tr«epreau [32] (see also [15]), so
the present paper is concerned only with theC ! category.

1.3. Some notations. Ñ First of all, we recall the deÞnition of the Weyl
quantization aw of a function a ∈ S(R2n ): for u ∈ S(Rn ),

(1.3.1) (aw u)(x) =
∫∫

e2i" (x " y)! a
(x + y

2
, ξ
)
u(y)dy.

Our deÞnition of the Fourier transform öu of u ∈ S(Rn ) is öu(ξ) =
∫

e" 2i"x! u(x)dx
and the usual quantization a(x, Dx ) of a ∈ S(R2n ) is (a(x, Dx )u)(x) =∫

e2i"x! a(x, ξ)öu(ξ)dξ. The phase spaceRn
x × Rn

! is a symplectic vector space
with the standard symplectic form

(1.3.2)
[
(x, ξ), (y, η)

]
= 〈ξ, y〉 − 〈η, x〉.

Definition 1.3.1. Ñ Let g be a metric on R2n , i.e., a mapping X (→ gX

from R2n to the cone of positive deÞnite quadratic forms onR2n . Let M be a
positive function deÞned onR2n .

(1) The metric g is said to be slowly varying whenever∃C > 0, ∃r > 0,
∀X, Y, T ∈ R2n ,

gX (Y −X) ≤ r2 =⇒ C" 1gY (T ) ≤ gX (T ) ≤ CgY (T ).

(2) The symplectic dual metric g# is deÞned asg#
X (T ) = sup gX (U )=1[T, U ]2.

The parameter of g is deÞned asλg(X) = inf T %=0

(
g#

X (T )/gX (T )
)1/ 2

and
we shall say that g satisÞes the uncertainty principle if infX λg(X) ≥ 1.
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LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (Ψ) 563

(3) The metric g is said to be temperate when∃C > 0, ∃N ≥ 0, ∀X, Y, T ∈
R2n ,

g#
X (T ) ≤ Cg#

Y (T )
(
1 + g#

X (X − Y )
)N

.

When the three properties above are satisÞed, we shall say that g is
admissible. The constants appearing in (1) and (3) will be called the
structure constants of the metric g.

(4) The function M is said to beg-slowly varying if ∃C > 0, ∃r > 0, ∀X, Y ∈
R2n ,

gX (Y −X) ≤ r2 =⇒ C" 1 ≤ M (X)
M (Y )

≤ C.

(5) The function M is said to be g-temperate if ∃C > 0, ∃N ≥ 0, ∀X, Y ∈
R2n ,

M (X)
M (Y )

≤ C
(
1 + g#

X (X − Y )
)N

.

When M satisÞes (4) and (5), we shall say thatM is a g-weight.

Definition 1.3.2. Ñ Let g be a metric on R2n and M be a positive function
deÞned onR2n . The set S(M, g) is deÞned as the set of functionsa ∈ C ! (R2n )
such that, for all l ∈ N, supX ‖a(l )(X)‖gX M (X)" 1 <∞, where a(l ) is the l-th
derivative. It means that ∀l ∈ N, ∃Cl , ∀X ∈ R2n , ∀T1, . . . , Tl ∈ R2n ,

|a(l )(X)(T1, . . . , Tl )| ≤ Cl M (X)
∏

1& j & l

gX (Tj )1/ 2.

Remark. Ñ If g is a slowly varying metric and M is g-slowly varying, there
exists M# ∈ S(M, g) such that there exists C > 0 depending only on the
structure constants of g such that

(1.3.3) ∀X ∈ R2n , C" 1 ≤ M#(X)
M (X)

≤ C.

That remark is classical and its proof is sketched in the appendix A.2.

1.4. Partitions of unity. Ñ We refer the reader to the chapter 18 in [14] for
the basic properties of admissible metrics as well as for thefollowing lemma.

Lemma 1.4.1. Ñ Let g be an admissible metric on R2n . There exists a se-
quence (Xk )k ' N of points in the phase space R2n and positive numbers r0, N0,
such that the following properties are satisfied. We define Uk , U#

k , U##
k as the

gk = gX k balls with center Xk and radius r0, 2r0, 4r0. There exist two families
of non-negative smooth functions on R2n , (χk )k ' N, (ψk )k ' N such that

∑

k

χk (X) = 1 , suppχk ⊂ Uk , ψk ≡ 1 on U#
k , suppψk ⊂ U##

k .
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Moreover, χk ,ψk ∈ S(1, gk ) with semi-norms bounded independently of k. The
overlap of the balls U##

k is bounded, i.e.,
⋂

k 'N U##
k #= ! ⇒ # N ≤ N0. More-

over, gX ∼ gk all over U##
k ( i.e., the ratios gX (T )/gk (T ) are bounded above

and below by a fixed constant, provided that X ∈ U##
k ).

The next lemma in proved in [2] (see also lemma 6.3 in [22]).

Lemma 1.4.2. Ñ Let g be an admissible metric on R2n and
∑

k χk (x, ξ) = 1
be a partition of unity related to g as in the previous lemma. There exists a
positive constant C such that for all u ∈ L2(Rn )

C" 1 ‖u‖2L 2(Rn) ≤
∑

k

‖χw
k u‖2L 2(Rn) ≤ C ‖u‖2L 2(Rn) ,

where aw stands for the Weyl quantization of the symbol a.

The following lemma is proved in [3].

Lemma 1.4.3. Ñ Let g be an admissible metric on R2n , m be a weight for g,
Uk and gk as in lemma 1.4.1. Let (ak ) be a sequence of bounded symbols in
S
(
m(Xk ), gk

)
such that, for all non-negative integers l, N

sup
k' N,T ' R2n

|m(Xk )" 1a(l )
k (X)T l (1 + g#

k (X − Uk )
)N

gk (T )" l/ 2| < +∞.

Then the symbol a =
∑

k ak makes sense and belongs to S(m, g). The important
point here is that no support condition is required for the ak , but instead some
decay estimates with respect to g# . The sequence (ak ) will be called a confined
sequence in S(m, g).

2. The geometry of condition ( ψ)

In this section and also in section 3, we shall consider that the phase space is
equipped with a symplectic quadratic form # (# is a positive deÞnite quadratic
form such that # = # # , see the deÞnition 1.3.1(2) above). It is possible to Þnd
some linear symplectic coordinates (x, ξ) in R2n such that

#(x, ξ) = |(x, ξ)|2 =
∑

1& j & n

x2
j + ξ2

j .

The running point of our Euclidean symplectic R2n will be usually denoted by
X or by an upper-case letter such asY, Z. The open #-ball with center X and
radius r will be denoted by B(X, r).
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LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (Ψ) 565

2.1. The basic structure. Ñ Let q(t, X, $) be a smooth real-valued func-
tion deÞned on % =R× R2n × [1, +∞), vanishing for |t| ≥ 1 and satisfying

∀k ∈ N, sup
Ξ

∥∥∂k
X q
∥∥
Γ

$ " 1+ k
2 = γk < +∞, i.e., q(t, ·) ∈ S($ , $ " 1#) ,(2.1.1)

s > t and q(t, X, $) > 0 =⇒ q(s, X, $) ≥ 0.(2.1.2)

Notation. Ñ In this section and in the next section, the Euclidean norm
#(X)1/ 2 is Þxed and the norms of the vectors and of the multilinear forms are
taken with respect to that norm. We shall write everywhere | · | instead of‖·‖Γ.
Furthermore, we shall say that C is a ÒÞxedÓ constant if it depends only on a
Þnite number of γk above and on the dimensionn.

We shall always omit the dependence ofq with respect to the large parameter
$ and write q(t, X) instead of q(t, X, $). The operator Q(t) = q(t)w will stand
for the operator with Weyl symbol q(t, X). We introduce now for t ∈ R,
following [17],

X+(t) = ∪s& t {X ∈ R2n , q(s, X) > 0},
X" (t) = ∪s$ t {X ∈ R2n , q(s, X) < 0},

(2.1.3)

X0(t) = X" (t)c ∩ X+(t)c,(2.1.4)

Thanks to (2.1.2), X+(t), X" (t) are disjoint open subsets ofR2n ; moreover
X0(t), X0(t)∪X± (t) are closed since their complements are open. The three sets
X0(t), X± (t) are two by two disjoint with union R2n (note also that X± (t) ⊂
X0(t) ∪ X± (t) since X0(t) ∪ X± (t) are closed). When t increases,X+(t) in-
creases andX" (t) decreases.

Lemma 2.1.1. Ñ Let (E, d) be a metric space, A ⊂ E and κ > 0 be given.
We define &A,$ (x) = κ if A = ! and if A #= ! , we define &A,$ (x) =
min

(
d(x, A),κ

)
. The function &A,$ is valued in [0,κ], Lipschitz continuous

with a Lipschitz constant ≤ 1. Moreover, the following implication holds:
A1 ⊂ A2 ⊂ E =⇒ &A 1,$ ≥ &A 2,$ .

Proof. Ñ The Lipschitz continuity assertion is obvious since x (→ d(x, A) is
Lipschitz continuous with Lipschitz constant 1. The monotonicity property is
trivially inherited from the distance function.

Lemma 2.1.2. Ñ For each X ∈ R2n , the function t (→ &X+(t ),$ (X) is de-
creasing and for each t ∈ R, the function X (→ &X+(t ),$ (X) is supported in
X+(t)c = X" (t) ∪ X0(t). For each X ∈ R2n , the function t (→ &X−(t ),$ (X)
is increasing and for each t ∈ R, the function X (→ &X−(t ),$ (X) is sup-
ported in X" (t)c = X+(t) ∪ X0(t). As a consequence the function X (→
&X+(t ),$ (X)& X−(t ),$ (X) is supported in X0(t).
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Proof. Ñ The monotonicity in t follows from the fact that X+(t)(resp. X" (t))
is increasing (resp. decreasing) with respect tot and from Lemma 2.1.1. More-
over, if X belongs to the open setX± (t), one has &X±(t ),$ (X) = 0, implying
the support property.

Lemma 2.1.3. Ñ For κ > 0, t ∈ R, X ∈ R2n , we define(3)

(2.1.5) σ(t, X,κ) = & X−(t ),$ (X) − &X+(t ),$ (X).

The function t (→ σ(t, X,κ) is increasing and valued in [−κ,κ], the function
X (→ σ(t, X,κ) is Lipschitz continuous with Lipschitz constant less than 2; we
have

σ(t, X,κ) =

{
min( |X − X" (t)|,κ) if X ∈ X+(t),
−min( |X − X+(t)|,κ) if X ∈ X" (t).

We have {X ∈ R2n ,σ(t, X,κ) = 0 } ⊂ X0(t) ⊂ {X ∈ R2n , q(t, X) = 0 }, and

(2.1.6) {X ∈ R2n ,±q(t, X) > 0} ⊂ X± (t) ⊂ {X ∈ R2n ,±σ(t, X,κ) > 0}
⊂ {X ∈ R2n ,±σ(t, X,κ) ≥ 0} ⊂ {X ∈ R2n ,±q(t, X) ≥ 0}.

Proof. Ñ Everything follows from the previous lemmas, except for the
Þrst, fourth and sixth inclusions. Note that if X ∈ X+(t), σ(t, X,κ) =
min( |X−X" (t)|,κ) is positive (otherwise it vanishes andX ∈ X+(t)∩X" (t) ⊂
X+(t) ∩

(
X" (t) ∪ X0(t)

)
= ! ). As a consequence, we get the penul-

timate inclusions X+(t) ⊂ {X ∈ R2n ,σ(t, X,κ) > 0} and similarly
X" (t) ⊂ {X ∈ R2n ,σ(t, X,κ) < 0}, so that

{X ∈ R2n ,σ(t, X,κ) = 0 } ⊂ X+(t)c ∩ X" (t)c = X0(t),

giving the Þrst inclusion. The last inclusion follows from the already established

{X ∈ R2n , q(t, X)) < 0} ⊂ X" (t) ⊂ {X ∈ R2n ,σ(t, X,κ) < 0}.

Definition 2.1.4. Ñ Let q(t, X) be as above. We deÞne

(2.1.7) δ0(t, X) = σ(t, X, $ 1/ 2)

and we notice that from the previous lemmas,t (→ δ0(t, X) is increasing, valued
in [−$ 1/ 2, $ 1/ 2], satisfying

(2.1.8) |δ0(t, X) − δ0(t, Y )| ≤ 2|X − Y |
and such that

{X ∈ R2n , δ0(t, X) = 0 }⊂{X ∈ R2n , q(t, X) = 0 },(2.1.9)

{X ∈ R2n ,±q(t, X) > 0}⊂{X,±δ0(t, X) > 0}⊂{X,±q(t, X) ≥ 0}.(2.1.10)

(3)When the distances of X to both X± (t) are less than κ, we have σ(t, X, κ) = |X ! X" (t)| !
|X ! X+(t)|.
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Lemma 2.1.5. Ñ Let f be a symbol in S($ m , $ " 1#) where m is a positive real
number. We define

(2.1.11) λ(X) = 1 + max
0≤j<2m

j∈N

(
‖f (j )(X)‖

2
2m−j

Γ

)
.

Then f ∈ S(λm ,λ" 1#) and the mapping from S($ m , $ " 1#) to S(λm ,λ" 1#) is

continuous. Moreover, with γ = max 0≤j<2m
j∈N

γ
2

2m−j

j , where the γj are the semi-
norms of f , we have for all X ∈ R2n ,

(2.1.12) 1≤ λ(X) ≤ 1 + γ$ .

The metric λ" 1# is admissible(def. 1.3.1), with structure constants depending
only on γ. It will be called the m-proper metric of f . The function λ above is
a weight for the metric λ" 1# and will be called the m-proper weight of f .

Proof. Ñ The proof of this lemma is given in the appendix A.3.

Lemma 2.1.6. Ñ Let q(t, X) and δ0(t, X) be as above. We define, with 〈s〉 =
(1 + s2)1/ 2,

(2.1.13) µ(t, X) = 〈δ0(t, X)〉2 + |$ 1/ 2q(
X (t, X)| + |$ 1/ 2q((

XX (t, X)|2.

The metric µ" 1(t, ·)# is slowly varying with structure constants depending only
on a finite number of semi-norms of q in S($ , $ " 1#) . Moreover, there exists
C > 0, depending only on a finite number of semi-norms of q, such that

(2.1.14) µ(t, X) ≤ C$ ,
µ(t, X)
µ(t, Y )

≤ C(1 + |X − Y |2),

and we have

(2.1.15) $1/ 2q(t, X) ∈ S(µ(t, X)3/ 2, µ" 1(t, ·)#) ,

so that the semi-norms depend only the semi-norms of q in S($ , $ " 1#) .

Proof. Ñ We notice Þrst that

1 + max
(
|$ 1/ 2q(

X (t, X)|, |$ 1/ 2q((
XX (t, X)|2

)

is the 1-proper weight of the vector-valued symbol $1/ 2q(
X (t, ·). Using the

lemma A.2.2, we get thatµ" 1# is slowly varying, and the lemma A.2.1 provides
the second part of (2.1.14). From the deÞnition 2.1.4 and (2.1.1), we obtain that
µ(t, X) ≤ C$ + 〈δ0(t, X)〉2 ≤ C($ and $ 1/ 2q(

X (t, ·) ∈ S(µ(t, X), µ" 1(t, ·)#) .
We are left with the proof of |$ 1/ 2q(t, X)| ≤ Cµ3/ 2(t, X). Let us consider

µ̃(t, X) the 3/2-proper weight of $ 1/ 2q(t, X):

µ̃(t, X) = 1 + max
j =0,1,2

|$ 1/ 2q(j )(t, X)|
2

3−j ,
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where all the derivatives are taken with respect toX ; if the maximum is realized
for j ∈ {1, 2}, we get from Lemma 2.1.5 and (2.1.15) that

|$ 1/ 2q(t, X)| ≤ µ̃(t, X)3/ 2 = (1 + max
j =1,2

|$ 1/ 2q(j )(t, X)|
2

3−j )
3
2

≤ (1 + max
j =1,2

µ( 3
2 " j

2 )( 2
3−j ))

3
2 ≤ (2µ(t, X))3/ 2,

which is the result that we had to prove. We have eventually to deal with the
case where the maximum in the deÞnition of̃µ is realized for j = 0; note that
if µ̃(t, X) ≤ C0, we obtain

|$ 1/ 2q(t, X)| ≤ µ̃(t, X)3/ 2 ≤ C3/ 2
0 ≤ C3/ 2

0 µ(t, X)3/ 2,

so we may also assumẽµ(t, X) > C0. If C0 > 1, we haveC0 < µ̃(t, X) =
1 + ($ 1/ 2|q(t, X)|) 2

3 entailing

(1− C" 1
0 )µ̃(t, X) ≤ |$ 1/ 2q(t, X)| 23 ≤ µ̃(t, X).

Now if h ∈ R2n is such that |h| ≤ rµ̃(t, X)1/ 2, we get from the slow vari-
ation of the metric µ̃" 1#, that the ratio µ̃(t, X + h)/µ̃(t, X) is bounded
above and below, providedr is small enough. Using now that $1/ 2q(t, ·) ∈
S(µ̃3/ 2(t, ·), µ̃" 1(t, ·)#), we get by TaylorÕs formula

$ 1/ 2q(t, X + h) = $ 1/ 2q(t, X)+$ 1/ 2q((t, X)h+
1
2

$ 1/ 2q(((t, X)h2+ O(γ3|h|3/6),

so that

$ 1/ 2|q(t, X + h)| ≥ $ 1/ 2|q(t, X)|− µ̃(t, X)|h|− 1
2
|h|2µ̃(t, X)1/ 2 − γ3|h|3/6

≥ $ 1/ 2|q(t, X)|− µ̃(t, X)3/ 2
(
r +

r2

2
+ γ3

r3

6

)

︸ ︷︷ ︸
=%(r )

.

This gives $1/ 2|q(t, X + h)| ≥ $ 1/ 2|q(t, X)| − ε(r)µ̃(t, X)3/ 2, lim r ) 0 ε(r) = 0 ,
so that, for r, C" 1

0 small enough,

|$ 1/ 2q(t, X + h)| ≥
(
(1− C" 1

0 )3/ 2 − ε(r)
)
µ̃(t, X)3/ 2 ≥ 1

2
µ̃(t, X)3/ 2.

As a consequence, the #-ballB
(
X, rµ̃(t, X)1/ 2

)
is included in X+(t) or in

X" (t) and thus, in the Þrst case (the second case is similar)|X − X+(t)| =
0, |X − X" (t)| ≥ rµ̃(t, X)1/ 2,

(
otherwise |X − X" (t)| < rµ̃(t, X)1/ 2 and

! #= B
(
X, rµ̃(t, X)1/ 2

)
∩ X" (t) ⊂ X+(t) ∩ X" (t) = !

)
, implying that, with a

Þxedr0 > 0,

δ0(t, X) ≥ min($ 1/ 2, rµ̃(t, X)1/ 2) ≥ r0µ̃(t, X)1/ 2 ≥ r0|$ 1/ 2q(t, X)|1/ 3,

so that, in both cases,|$ 1/ 2q(t, X)| ≤ r" 3
0 |δ0(t, X)|3 ≤ r" 3

0 µ(t, X)3/ 2.
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Lemma 2.1.7. Ñ Let q(t, X), δ0(t, X), µ(t, X) be as above. We define,

(2.1.16) ν(t, X) = 〈δ0(t, X)〉2 + |$ 1/ 2q(
X (t, X)µ(t, X)" 1/ 2|2.

The metric ν" 1(t, ·)# is slowly varying with structure constants depending only
on a finite number of semi-norms of q in S($ , $ " 1#) . There exists C > 0,
depending only on a finite number of semi-norms of q, such that

(2.1.17) ν(t, X) ≤ 2µ(t, X) ≤ C$ ,
ν(t, X)
ν(t, Y )

≤ C(1 + |X − Y |2),

and we have

(2.1.18) $1/ 2q(t, X) ∈ S(µ(t, X)1/ 2ν(t, X), ν(t, ·)" 1#) ,

so that the semi-norms of this symbol depend only the semi-norms of q in
S($ , $ " 1#) . Moreover the function µ(t, X) is a weight for the metric ν(t, ·)" 1#.

Proof. Ñ Let us check the two Þrst inequalities in (2.1.17). From |$ 1/ 2q(| ≤
µ(t, X) ≤ C$, established in the previous lemma, we get

ν(t, X) ≤ 〈δ0(t, X)〉2 + µ(t, X) ≤ 2µ(t, X) ≤ 2C$ .

We introduce now the weight µ#(t, X) as in (1.3.3) so that the ratios
µ#(t, X)/µ(t, X) are bounded above and below by some constants depending
only on a Þnite number of semi-norms ofq. That weight µ#(t, X) belongs to
S(µ, µ" 1#) = S(µ#, µ" 1

# #). We notice Þrst that

|$ 1/ 2(qµ" 1/ 2
# )(|2 ≤ 2|$ 1/ 2q(µ" 1/ 2

# |2 + C1|$ 1/ 2qµ" 1|2

≤ C2|$ 1/ 2q(µ" 1/ 2|2 + C1|$ 1/ 2qµ" 1/ 2|

!1
︷ ︸︸ ︷
|$ 1/ 2qµ" 3/ 2|

≤ C2|$ 1/ 2q(µ" 1/ 2|2 + C3|$ 1/ 2qµ" 1/ 2|.

Since we have also(4)

|$ 1/ 2q(µ" 1/ 2| ∼ |$ 1/ 2q(µ" 1/ 2
# | ! |$ 1/ 2(qµ" 1/ 2

# )(| + |$ 1/ 2qµ" 1
# |

! |$ 1/ 2(qµ" 1/ 2
# )(| + |$ 1/ 2qµ" 3/ 2

# |1/ 2

︸ ︷︷ ︸
!1

|$ 1/ 2qµ" 1/ 2
# |1/ 2

we get that
(2.1.19)

ν̃(t, X) = 1 + max
(
|$ 1/ 2q(

X (t, X)µ(t, X)" 1/ 2|2, |$ 1/ 2q(t, X)µ(t, X)" 1/ 2|
)

is equivalent to the 1-proper weight of the symbol $1/ 2q(t, X)µ#(t, X)" 1/ 2 in
S(µ, µ" 1#). As a consequence, from the lemma A.2.2, we get that (̃ν+ 〈δ0〉2)" 1#
is slowly varying.

(4)Below, the inequality a ! b means that a " Cb where C is a constant depending only on
a Þnite number of semi-norms of q. The equivalence a # b stands for a ! b and b ! a.
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- We need only to prove that

(2.1.20) |$ 1/ 2q(t, X))µ(t, X)" 1/ 2| ≤ Cν(t, X).

In fact, from (2.1.20), we shall obtain ν(t, X) ≤ ν̃(t, X) + 〈δ0(t, X)〉2 ≤
(C + 1) ν(t, X) so that the metrics (ν̃ + 〈δ0〉2)" 1# and ν" 1# are equivalent
and thus both slowly varying (that property will also give th e last inequal-
ity in (2.1.17) from Lemma A.2.1). Moreover, from Lemma 2.1.5, we have
$ 1/ 2q(t, X)µ#(t, X)" 1/ 2 ∈ S(ν̃, ν̃" 1#) , so that

$ 1/ 2(qµ" 1/ 2
# )(k) !






ν1" k/ 2 for k ≤ 2,
since $1/ 2qµ" 1/ 2

# ∈S(ν̃; , ν̃" 1#) and ν̃!ν,

µ1" k/ 2 !ν1" k/ 2 for k ≥ 2,
since $1/ 2qµ" 1/ 2

# ∈S(µ; µ" 1#) and ν !µ,

which implies that $ 1/ 2qµ" 1/ 2
# ∈ S(ν, ν" 1#); moreover, we have µ1/ 2

# ∈
S(µ1/ 2

# , ν" 1#) since, usingν ! µ, we get

|(µ1/ 2
# )(k)| ! µ

1−k
2 ! µ

1
2 ν" k/ 2,

entailing $ 1/ 2q ∈ S(µ1/ 2ν, ν" 1#) , i.e., (2.1.18). On the other hand,µ is slowly
varying for ν" 1#, since

|X − Y |5 ν(t, X)1/ 2(! µ(t, X)1/ 2) implies |X − Y |5 µ(t, X)1/ 2

and thus µ(t, X) ∼ µ(t, Y ), which proves along with (2.1.14) that µ is a weight
for ν" 1#.

- Let us now check (2.1.20). This inequality is obvious if |$ 1/ 2qµ" 1/ 2| ≤
|$ 1/ 2q(µ" 1/ 2|2. Note that if ν̃(t, X) ≤ C0, we obtain |$ 1/ 2qµ" 1/ 2| ≤ C0 ≤ C0ν
so we may also assumẽν(t, X) > C0. If C0 > 1, we haveC0 < ν̃(t, X) =
1 + ($ 1/ 2|q|µ" 1/ 2) entailing

(1− C" 1
0 )ν̃(t, X) ≤ |$ 1/ 2qµ" 1/ 2| ≤ ν̃(t, X).

Now if h ∈ R2n is such that |h| ≤ rν̃(t, X)1/ 2, we get from the slow variation
of the metric ν̃" 1#, that the ratio ν̃(t, X + h)/ν̃(t, X) is bounded above and
below, provided r is small enough. Using now that $1/ 2qµ" 1/ 2

# ∈ S(ν̃, ν̃" 1#),
we get by TaylorÕs formula

$ 1/ 2q(t, X + h)µ" 1/ 2
# (t, X + h) = $ 1/ 2q(t, X)µ" 1/ 2

# (t, X) + ε(r)ν̃(t, X),

limr ) 0 ε(r) = 0, so that, for r, C" 1
0 small enough,

|$ 1/ 2q(t, X + h)µ" 1/ 2
# (t, X + h)| ≥

(
(1− C" 1

0 ) − ε(r)
)
ν̃(t, X) ≥ 1

2
ν̃(t, X).

As a consequence, the #-ballB(X, rν̃(t, X)1/ 2) is included in X+(t) or in
X" (t) and thus, in the Þrst case (the second case is similar)|X − X+(t)| = 0,
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|X − X" (t)| ≥ rν̃(t, X)1/ 2, implying that, with a Þxed r0 > 0,

δ0(t, X) ≥ min($ 1/ 2, rν̃(t, X)1/ 2) ≥ r0ν̃(t, X)1/ 2

≥ r0|$ 1/ 2q(t, X)µ(t, X)" 1/ 2|1/ 2,

so that, in both cases, |$ 1/ 2q(t, X)µ(t, X)" 1/ 2| ≤ C0|δ0(t, X)|2 ≤ C0ν(t, X).
The proof of the lemma is complete.

We wish now to discuss the normal forms attached to the metricν" 1(t, ·)#
for the symbol q(t, ·). In the sequel of this section, we consider thatt is Þxed.

Definition 2.1.8. Ñ Let 0 < r1 ≤ 1/2 be given. With ν deÞned in (2.1.16),
we shall say that

(1) Y is a nonnegative (resp. nonpositive) point at level t if δ0(t, Y ) ≥
r1ν(t, Y )1/ 2, (resp. δ0(t, Y ) ≤ −r1ν(t, Y )1/ 2).

(2) Y is a gradient point at level t if |$ 1/ 2q(
Y (t, Y )µ(t, Y )" 1/ 2|2 ≥

ν(t, Y )/4 and δ0(t, Y )2 < r2
1ν(t, Y ).

(3) Y is a negligible point in the remaining cases|$ 1/ 2q(
Y (t, Y )µ(t, Y )" 1/ 2|2 <

ν(t, Y )/4 and δ0(t, Y )2 < r2
1ν(t, Y ). Note that this implies ν(t, Y ) ≤

1 + r2
1ν(t, Y ) + ν(t, Y )/4≤ 1 + ν(t, Y )/2 and thus ν(t, Y ) ≤ 2.

Note that if Y is a nonnegative point, from (2.1.8) we get, forT ∈ R2n ,
|T | ≤ 1, 0≤ r ≤ r1/4

δ0

(
t, Y + rν1/ 2(t, Y )T

)
≥ δ0(t, Y ) − 2rν1/ 2(t, Y ) ≥ r1

2
ν1/ 2(t, Y )

and from (2.1.10), this implies that q(t, X) ≥ 0 on the ball B(Y, rν1/ 2(t, Y )).
Similarly if Y is a nonpositive point, q(t, X) ≤ 0 on the ball B(Y, rν1/ 2(t, Y )).
Moreover if Y is a gradient point, we may assume thatB(Y, r3

1ν
1/ 2(t, Y )) in-

tersects {X, q(t, X) = 0 }, otherwise it is included either in {X, q(t, X) > 0}
or in {X, q(t, X) < 0}; as a result, there exists a pointZ ∈ B(Y, r3

1ν
1/ 2(t, Y ))

such that q(t, Z) = 0. The function

(2.1.21) f (T ) = $ 1/ 2q
(
t, Y + r1ν

1/ 2(t, Y )T
)
µ(t, Y )" 1/ 2ν(t, Y )" 1

satisÞes for r1 small enough with respect to the semi-norms ofq and
c0, C0, C1, C2 Þxed positive constants,|T | ≤ 1, from (2.1.18),

|f (0)| = |$ 1/ 2q(t, Y )µ(t, Y )" 1/ 2ν(t, Y )" 1|
≤ $ 1/ 2µ" 1/ 2ν" 1 max

X ' [Y,Z ]
|q((t, X)||Y − Z| ≤ C0r

3
1 ,

|f ((T )| ≥ r1c0, |f (((T )| ≤ C2r
2
1 .
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The standard analysis (see our appendix A.6) of the Beals-Fe!erman metric
shows that, on B(Y, r1ν1/ 2(t, Y ))

q(t, X) = $ " 1/ 2µ1/ 2(t, Y )ν1/ 2(t, Y )e(t, X)β(t, X),(2.1.22)

1≤ e ∈ S(1, ν(t, Y )" 1#) , β ∈ S(ν(t, Y )1/ 2, ν(t, Y )" 1#) ,(2.1.23)

β(t, X) = ν(t, Y )1/ 2(X1 + α(t, X ()) ,α ∈ S(ν(t, Y )1/ 2, ν(t, Y )" 1#) .(2.1.24)

Lemma 2.1.9. Ñ Let q(t, X) be a smooth function satisfying (2.1.1-2) and let
t ∈ [−1, 1] be given. The metric gt on R2n is defined as ν(t, X)" 1# where ν
is defined in (2.1.16). There exists r0 > 0, depending only on a finite number
of semi-norms of q in (2.1.1) such that, for any r ∈]0, r0], there exist a se-
quence of points (Xk ) in R2n , and sequences of functions (χk ), (ψk ) satisfying
the properties in the lemma 1.4.1 such that there exists a partition of N,

N = E+ ∪ E" ∪ E0 ∪E00

so that, according to the definition 2.1.8, k ∈ E+ means that Xk is a non-
negative point, (k ∈ E" :Xk nonpositive point; k ∈ E0:Xk gradient point,
k ∈ E00:Xk negligible point).

Proof. Ñ This lemma is an immediate consequence of the deÞnition 2.1.8, of
lemma 1.4.1 and of lemma 2.1.7, asserting that the metricgt is admissible.

2.2. Some lemmas on C3 functions. Ñ We prove in this section a key
result on the second derivativef ((

XX of a real-valued smooth functionf (t, X)
such that τ − if (t, x, ξ) satisÞes condition (ψ). The following claim gives a
good qualitative version of what is needed for our estimates; we shall not use
this result, so the reader may skip the proof and proceed directly to the more
technical Lemma 2.2.2.

Claim 2.2.1. Ñ Let f1, f2 be two real-valued twice differentiable functions de-
fined on an open set ' of RN and such that f " 1

1 (R#
+) ⊂ f " 1

2 (R+) ( i.e., f1(x) >
0 =⇒ f2(x) ≥ 0). If for some ω ∈ ' , the conditions f1(ω) = f2(ω) =
0, df1(ω) #= 0 , df2(ω) = 0 are satisfied, we have f ((

2 (ω) ≥ 0 (as a quadratic
form).

Proof. Ñ Using the obvious invariance by change of coordinates of the state-
ment, we may assumef1(x) ≡ x1 and ω = 0. The assumption is then for
x = ( x1, x() ∈ R× RN " 1 in a neighborhood of the origin

f2(0) = 0 , df2(0) = 0 , x1 > 0 =⇒ f2(x1, x
() ≥ 0.

Using the second-order Taylor-Young formula for f2, we get f2(x) =
1
2 〈f

((
2 (0)x, x〉 + ε(x)|x|2, limx ) 0 ε(x) = 0 , and thus for T = ( T1, T (), |T | = 1,

ρ #= 0 small enough, the implication T1 > 0 =⇒ 〈f ((
2 (0)T, T 〉 + 2 ε(ρT ) ≥ 0.

Consequently we have{S, 〈f ((
2 (0)S, S〉 ≥ 0} ⊃ {S, S1 > 0} and since the larger
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set is closed and stable by the symmetry with respect to the origin, we get
that it contains also {S, S1 ≤ 0}, which is the result f ((

2 (0) ≥ 0.

Remark. Ñ This claim has the following consequence: take three functions
f1, f2, f3, twice di!erentiable on ', such that, for 1 ≤ j ≤ k ≤ 3, fj (x) >
0 ⇒ fk (x) ≥ 0. Assume that, at some point ω we have f1(ω) = f2(ω) =
f3(ω) = 0 , df1(ω) #= 0 , df3(ω) #= 0 , df2(ω) = 0 . Then one hasf ((

2 (ω) = 0. The
claim 2.2.1 givesf ((

2 (ω) ≥ 0 and it can be applied to the couple (−f3,−f2) to
get −f ((

2 (ω) ≥ 0.

Notation. Ñ The open Euclidean ball of RN with center 0 and radius r will
be denoted by Br . For a k-multilinear symmetric form A on RN , we shall
note ‖A‖ = max |T |=1 |AT k | which is easily seen to be equivalent to the norm
max|T1|=ááá=|Tk |=1 |A(T1, . . . , Tk )| since the symmetrized T1 ⊗ · · · ⊗ Tk can be
written a sum of kth powers.

Lemma 2.2.2. Ñ Let R0 > 0 and f1, f2 be real-valued functions defined in
øBR0 . We assume that f1 is C2, f2 is C3 and for x ∈ øBR0 ,

(2.2.1) f1(x) > 0 =⇒ f2(x) ≥ 0.

We define the non-negative numbers ρ1, ρ2, by

(2.2.2) ρ1 = max
(
|f1(0)| 12 , |f (

1(0)|
)
, ρ2 = max

(
|f2(0)| 13 , |f (

2(0)| 12 , |f ((
2 (0)|

)
,

and we assume that, with a positive C0,

(2.2.3) 0 < ρ1, ρ2 ≤ C0ρ1 ≤ R0.

We define the non-negative numbers C1, C2, C3, by
(2.2.4)

C1 = 1 + C0 ‖f ((
1 ‖L ∞(B̄ R0) , C2 = 4 +

1
3
‖f (((

2 ‖L ∞(B̄ R0) , C3 = C2 + 4πC1.

Assume that for some κ2 ∈ [0, 1], with κ2C1 ≤ 1/4,

ρ1 = |f (
1(0)| > 0,(2.2.5)

max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)
≤ κ2|f ((

2 (0)|,(2.2.6)

B(0,κ2
2ρ2) ∩ {x ∈ øBR0 , f1(x) ≥ 0} #= ! .(2.2.7)

Then we have

(2.2.8) |f ((
2 (0)" | ≤ C3κ2ρ2,

where f ((
2 (0)" stands for the negative part of the quadratic form f ((

2 (0). Note
that, whenever (2.2.7) is violated, we get B(0,κ2

2ρ2) ⊂ {x ∈ øBR0 , f1(x) < 0}
(note that κ2

2ρ2 ≤ ρ2 ≤ R0) and thus

(2.2.9) distance
(
0, {x ∈ øBR0 , f1(x) ≥ 0}

)
≥ κ2

2ρ2.
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Proof. Ñ We may assume that for x = ( x1, x() ∈ R × RN " 1, ρ1 = |f (
1(0)| =

&f 1

&x1
(0, 0), &f 1

&x ′ (0, 0) = 0, so that

(2.2.10) f1(x) ≥ f1(0) + ρ1x1 −
1
2
‖f ((

1 ‖! |x|2.

Moreover, from (2.2.7), we know that there existsz ∈ B(0,κ2
2ρ2) such that

f1(z) ≥ 0. As a consequence, we have 0≤ f1(z) ≤ f1(0) + ρ1z1 + 1
2 ‖f

((
1 ‖! κ4

2ρ
2
2

and thus

(2.2.11) f1(x) ≥ ρ1x1 − ρ1κ
2
2ρ2 −

1
2
‖f ((

1 ‖! (|x|2 + κ4
2ρ

2
2).

On the other hand, we have

f2(x) ≤ f2(0) + f (
2(0)x +

1
2
f ((
2 (0)x2 +

1
6
‖f (((

2 ‖! |x|3

≤ κ3
2ρ

3
2 + κ2

2ρ
2
2|x| +

1
6
‖f (((

2 ‖! |x|3 +
1
2
f ((
2 (0)x2

and the implications, for |x| ≤ R0,

(2.2.12) ρ1x1 > ρ1κ
2
2ρ2 +

1
2
‖f ((

1 ‖! (|x|2 + κ4
2ρ

2
2) =⇒ f1(x) > 0 =⇒

f2(x) ≥ 0 =⇒ −1
2
f ((
2 (0)x2 ≤ κ3

2ρ
3
2 + κ2

2ρ
2
2|x| +

1
6
‖f (((

2 ‖! |x|3.

Let us take x = κ2ρ2y with |y| = 1 (note that |x| = κ2ρ2 ≤ R0); the property
(2.2.12) gives, usingρ2/ρ1 ≤ C0,

y1 > κ2(1 + ‖f ((
1 ‖! C0) =⇒ −f ((

2 (0)y2 ≤ κ2ρ2

(
4 +

1
3
‖f (((

2 ‖!

)
,

so that {y ∈ SN " 1,−f ((
2 (0)y2 ≤ κ2ρ2(4 + 1

3 ‖f
(((
2 ‖! )} ⊃ {y ∈ SN " 1, y1 >

κ2(1 + ‖f ((
1 ‖! C0)} and since the larger set is closed and stable by symmetry

with respect to the origin, we get, with

C1 = 1 + ‖f ((
1 ‖! C0, C2 = 4 +

1
3
‖f (((

2 ‖! ,

the implication

(2.2.13) y ∈ SN " 1, |y1| ≥ κ2C1 =⇒ −f ((
2 (0)y2 ≤ κ2ρ2C2.

Let us now take y ∈ SN " 1, such that |y1| < κ2C1(≤ 1/4). We may assume
y = y1 4e1 ⊕ y2 4e2, with 4e1, 4e2, orthogonal unit vectors and y2 = (1 − y2

1)1/ 2. We
consider the following rotation in the ( 4e1, 4e2) plane with ε0 = κ2C1 ≤ 1/4,

R =
(

cos(2πε0) sin(2πε0)
− sin(2πε0) cos(2πε0)

)
, so that |(Ry)1| = |y1 cos(2πε0) + y2 sin(2πε0)|,

and sinceε0 ≤ 1/4,

|(Ry)1| ≥ −|y1| + (1 − y2
1)1/ 24ε0 ≥ ε0(

√
15− 1) > ε0 = κ2C1.
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Moreover the rotation R satisÞes‖R− Id‖ ≤ 2πε0 = 2πκ2C1. We have, using
(2.2.13) and |(Ry)1| ≥ κ2C1, |y| = 1,

− f ((
2 (0)y2 = −f ((

2 (0)(Ry)2 − 〈f ((
2 (0)(y −Ry), y + Ry〉

≤ −f ((
2 (0)(Ry)2 + |f ((

2 (0)||y −Ry||y + Ry|
≤ κ2ρ2C2 + 2ρ2|y −Ry| ≤ κ2ρ2C2 + 2ρ22πκ2C1.

Eventually, for all y ∈ SN " 1, we have

(2.2.14) −f ((
2 (0)y2 ≤ κ2ρ2(C2 + 4πC1) = C3κ2ρ2.

Considering now the quadratic formQ = f ((
2 (0) and its canonical decomposition

Q = Q+−Q" , we have, for ally ∈ RN , 〈Q" y, y〉 ≤ κ2ρ2C3|y|2+ 〈Q+y, y〉. Using
now the canonical orthogonal projectionsE± on the positive (resp. negative)
eigenspaces, we writey = E+y ⊕ E" y and we get that

〈Q" y, y〉 = 〈Q" E" y, E" y〉
≤ C3κ2ρ2|E" y|2 + 〈Q+E" y, E" y〉 = C3κ2ρ2|E" y|2 ≤ C3κ2ρ2|y|2,

yielding (2.2.8). The proof of Lemma 2.2.2 is complete.

Lemma 2.2.3. Ñ Let f1, f2, f3 be real-valued functions defined in øBR0 . We
assume that f1, f3 are C2, f2 is C3 and for x ∈ øBR0 , 1≤ j ≤ k ≤ 3,

(2.2.15) fj (x) > 0 =⇒ fk (x) ≥ 0.

We define the non-negative numbers ρ1, ρ2, ρ3 by

(2.2.16)
ρ1 = max

(
|f1(0)| 12 , |f (

1(0)|
)

ρ3 = max
(
|f3(0)| 12 , |f (

3(0)|
) ρ2 = max

(
|f2(0)| 13 , |f (

2(0)| 12 , |f ((
2 (0)|

)
,

and we assume that, with a positive C0,

(2.2.17) 0 < ρ1, ρ3 and ρ2 ≤ C0 min(ρ1, ρ3) ≤ C0 max(ρ1, ρ3) ≤ R0.

We define the non-negative numbers C1, C2, C3, by

C1 = 1 + C0 max(‖f ((
1 ‖L ∞(B̄ R0) , ‖f ((

3 ‖L ∞(B̄ R0)),

C2 = 4 +
1
3
‖f (((

2 ‖L ∞(B̄ R0) , C3 = C2 + 4πC1.(2.2.18)

Assume that for some κ1,κ3 ∈ [0, 1], and 0 < κ2C3 ≤ 1/2,

|f1(0)|1/ 2 ≤ κ1|f (
1(0)|, |f3(0)|1/ 2 ≤ κ3|f (

3(0)|,(2.2.19)

B(0,κ2
2ρ2) ∩ {x ∈ øBR0 , f1(x) ≥ 0} #= ! ,(2.2.20)

B(0,κ2
2ρ2) ∩ {x ∈ øBR0 , f3(x) ≤ 0} #= ! .(2.2.21)

Then we have

(2.2.22) max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)
≤ ρ2 ≤ κ" 1

2 max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)
.
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Note that, whenever (2.2.20) or (2.2.21) is violated, we get

B(0,κ2
2ρ2) ⊂ {x ∈ øBR0 , f1(x) < 0} or B(0,κ2

2ρ2) ⊂ {x ∈ øBR0 , f3(x) > 0}
and thus
(2.2.23)
dist

(
0, {x ∈ øBR0 , f1(x) ≥ 0}

)
≥ κ2

2ρ2 or dist
(
0, {x ∈ øBR0 , f3(x) ≤ 0}

)
≥ κ2

2ρ2.

Proof. Ñ This follows almost immediately from the previous lemma and it is
analogous to the remark following the claim 2.2.1: assumingthat we have

(2.2.24) max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)
≤ κ2|f ((

2 (0)|

will yield |f ((
2 (0)| ≤ C3κ2ρ2 by applying lemma 2.2.2 (note that κ2C1 ≤ κ2

C3
4" ≤

1
8" < 1/4) to the couples (f1, f2) and (−f3,−f2); consequently, if (2.2.24) is
satisÞed, we get

max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)
≤ ρ2 ≤ max

(
|f2(0)|1/ 3, |f (

2(0)|1/ 2, C3κ2ρ2

)

and sinceC3κ2 < 1, it yields

(2.2.25) max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)

= ρ2,

which implies (2.2.22). Let us now suppose that (2.2.24) does not hold, and
that we have κ2|f ((

2 (0)| < max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)
. This implies (2.2.22):

max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)
≤ ρ2 ≤ κ" 1

2 max
(
|f2(0)|1/ 3, |f (

2(0)|1/ 2
)
.

The proof of the lemma is complete.

Remark. Ñ We shall apply this lemma to a ÒÞxedÓκ2, depending only on the
constant C3 such asκ2 = 1/(2C3).

2.3. Inequalities for symbols. Ñ In this section, we apply the results of
the previous section to obtain various inequalities on symbols linked to our
symbol q introduced in (2.1.1). Our main result is the following theorem.

Theorem 2.3.1. Ñ Let q be a symbol satisfying (2.1.1-2) and δ0, µ, ν as de-
fined above in (2.1.7), (2.1.13) and (2.1.16). For the real numbers t(, t, t((, and
X ∈ R2n , we define

N (t(, t((, X) =
〈δ0(t(, X)〉
ν(t(, X)1/ 2

+
〈δ0(t((, X)〉
ν(t((, X)1/ 2

,(2.3.1)

R(t, X) = $ " 1/ 2µ(t, X)1/ 2ν(t, X)" 1/ 2〈δ0(t, X)〉.(2.3.2)

Then there exists a constant C0 ≥ 1, depending only on a finite number of
semi-norms of q in (2.1.1), such that, for t( ≤ t ≤ t((, we have
(2.3.3)

C" 1
0 R(t, X) ≤ N (t(, t((, X) +

δ0(t((, X) − δ0(t, X)
ν(t((, X)1/ 2

+
δ0(t, X) − δ0(t(, X)

ν(t(, X)1/ 2
.
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Proof. Ñ We are given X ∈ R2n and t( ≤ t ≤ t(( real numbers.

- First reductions. First of all, we may assume that, for some positive (small)
κ to be chosen later, we have

(2.3.4) 〈δ0(t(, X)〉 ≤ κν(t(, X)1/ 2 and 〈δ0(t((, X)〉 ≤ κν(t((, X)1/ 2.

In fact, otherwise, we haveN (t(, t((, X) > κ and since from (2.1.14), we have
µ(t, X) ≤ C$ where C depends only on a Þnite number of semi-norms ofq, we
get from (2.3.2), (2.1.16)

R(t, X) ≤ C1/ 2ν(t, X)" 1/ 2〈δ0(t, X)〉 ≤ C1/ 2 ≤ C1/ 2κ" 1N (t(, t((, X),

so that we shall only need

(2.3.5) C0 ≥ C1/ 2κ" 1

to obtain (2.3.3). Also, we may assume that, with the same positive (small) κ,

(2.3.6) ν(t, X) ≤ κ2ν(t(, X) and ν(t, X) ≤ κ2ν(t((, X).

Otherwise, we would have for instanceν(t, X) > κ2ν(t(, X) and sincet ≥ t(,

R(t, X) ≤ $ " 1/ 2µ(t, X)1/ 2κ" 1 〈δ0(t, X)〉
ν(t(, X)1/ 2

≤ C1/ 2κ" 1

(
〈δ0(t(, X)〉 + |

$ 0︷ ︸︸ ︷
δ0(t, X) − δ0(t(, X) |

ν(t(, X)1/ 2

)

≤ C1/ 2κ" 1N (t(, t((, X) + C1/ 2κ" 1 δ0(t, X) − δ0(t(, X)
ν(t(, X)1/ 2

,

which implies (2.3.3) provided that (2.3.5) holds. Finally, we may also assume
that

(2.3.7) ν(t, X) ≤ κ2µ(t, X),

otherwise we would have, using thatδ0(t(, X) ≤ δ0(t, X) ≤ δ0(t((, X) and the
convexity of s (→

√
1 + s2 = 〈s〉,

R(t, X) ≤ κ" 1 〈δ0(t, X)〉
$ 1/ 2

≤ κ" 1 〈δ0(t(, X)〉
$ 1/ 2

+ κ" 1 〈δ0(t((, X)〉
$ 1/ 2

and this implies, using ν(t(, X), ν(t((, X) ≤ C$ (see (2.1.17)),

R(t, X) ≤ C1/ 2κ" 1 〈δ0(t(, X)〉
ν(t(, X)1/ 2

+ C1/ 2κ" 1 〈δ0(t((, X)〉
ν(t((, X)1/ 2

,

which gives (2.3.3) provided that (2.3.5) holds. On the other hand, we may
assume that

(2.3.8) max
(
〈δ0(t, X)〉,κ1/ 2|$ 1/ 2q((t, X)|1/ 2

)
≤ 2κµ(t, X)1/ 2.
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Otherwise, we would have either

µ(t, X)1/ 2 ≤ 1
2
κ" 1〈δ0(t, X)〉 ≤ 1

2
κ" 1ν(t, X)1/ 2 ≤︸︷︷︸

from (2.3.7)

1
2
µ(t, X)1/ 2

which is impossible, or we would have

µ(t, X)1/ 2 ≤ 1
2
κ" 1/ 2|$ 1/ 2q((t, X)|1/ 2

from (2.1.16)
︷︸︸︷
≤ 1

2
κ" 1/ 2ν(t, X)1/ 4µ(t, X)1/ 4

≤︸︷︷︸
from (2.3.7)

1
2
µ(t, X)1/ 2, (which is also impossible).

The estimate (2.3.8) implies that, for κ < 1/16 ,

$ |q(((t, X)|2 ≤︸︷︷︸
(2.1.13)

µ(t, X) ≤︸︷︷︸
(2.1.13)

〈δ0(t, X)〉2 + |$ 1/ 2q((t, X)| + $ |q(((t, X)|2

≤︸︷︷︸
(2.3.8)

(4κ2 + 4κ)µ(t, X) + $ |q(((t, X)|2,

and thus

(2.3.9) $ |q(((t, X)|2 ≤ µ(t, X) ≤ 1
1− 8κ

$ |q(((t, X)|2 ≤ 2$ |q(((t, X)|2.

This implies that

(2.3.10)

R(t, X) ≤ $ " 1/ 221/ 2$ 1/ 2|q(((t, X)| 〈δ0(t, X)〉
(
〈δ0(t, X)〉2 + $ |q((t, X)|2µ(t, X)" 1

)1/ 2

≤ 21/ 2|q(((t, X)|.
- Rescaling the symbols . We sum-up our situation, changing the notations so
that X = 0 , t( = t1, t = t2, t(( = t3, ν1 = ν(t(, 0), ν2 = ν(t, 0), ν3 = ν(t((, 0), δj =
δ0(tj , 0), µj = µ(tj , 0). The following conditions are satisÞed:

(2.3.11)






〈δ1〉 ≤ κν1/ 2
1 , 〈δ3〉 ≤ κν1/ 2

3 ,

ν2 ≤ κ2ν1, ν2 ≤ κ2ν3, ν2 ≤ κ2µ2

R(t2, 0) ≤ 2|q(((t2, 0)| 〈δ2〉
〈δ2〉 + |q((t2, 0)|/|q(((t2, 0)| ≤ 2|q(((t2, 0)|,

$ |q(((t2, 0)|2 ≤ µ2 ≤ 2$ |q(((t2, 0)|2,

κ < 1/16, C0 ≥ κ" 1C1/ 2,

where κ > 0 is to be chosen later andC depends only on a Þnite number of
semi-norms ofq. We deÞne now the smooth functionsf1, f2 deÞned onR2n by

(2.3.12) f1(Y ) = q(t1, Y )$ 1/ 2µ" 1/ 2
1 , f2(Y ) = ν1/ 2

1 q(t2, Y ),
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and we note (see (2.1.1)-(2.1.15)) that‖f ((
1 ‖L ∞ and ‖f (((

2 ‖L ∞ are bounded above
by semi-norms ofq; moreover the assumption (2.2.1) holds for that couple of
functions, from (2.1.2).

Lemma 2.3.2. Ñ We define

(2.3.13) µ1/ 2
12 = max

(
〈δ2〉, |ν1/ 2

1 q((t2, 0)|1/ 2, |ν1/ 2
1 q(((t2, 0)|

)
.

If max
(
〈δ2〉,κ1/ 2|ν1/ 2

1 q((t2, 0)|1/ 2
)

> 2κµ1/ 2
12 , then (2.3.3) is satisfied provided

C0 ≥ 3/κ.

Proof. Ñ We have either |ν1/ 2
1 q(((t2, 0)| ≤ µ1/ 2

12 ≤ 1
2κ" 1〈δ2〉 implying

|q(((t2, 0)| ≤ 1
2κ

〈δ2〉
ν1/ 2
1

≤ 1
2κ

〈δ1〉
ν1/ 2
1

+
1

2κ

δ2 − δ1

ν1/ 2
1

which gives (2.3.3) (usingR(t2, 0) ≤ 2|q(((t2, 0)| in (2.3.11)), provided C0 ≥ 1/κ,
or we have

|ν1/ 2
1 q(((t2, 0)| ≤ µ1/ 2

12 <
1
2
κ" 1/ 2|ν1/ 2

1 q((t2, 0)|1/ 2,

implying
|q(((t2, 0)|2

|q((t2, 0)| ≤
1

4κν1/ 2
1

so that (using R(t2, 0) ≤ 2|q(((t2, 0)|2〈δ2〉/|q((t2, 0)|

in (2.3.11)), we get R(t2, 0) ≤ 1
2$

*' 2+

( 1/2
1

, which gives similarly (2.3.3), provided

C0 ≥ 1/(2κ).

A consequence of this lemma is that we may assume

max
(
〈δ2〉,κ1/ 2|ν1/ 2

1 q((t2, 0)|1/ 2
)

≤ 2κµ1/ 2
12 = 2κ max

(
〈δ2〉, |ν1/ 2

1 q((t2, 0)|1/ 2, |ν1/ 2
1 q(((t2, 0)|

)
,

and sinceκ < 1/4, we get
(2.3.14)

µ1/ 2
12 = |ν1/ 2

1 q(((t2, 0)|, max
(
〈δ2〉,κ1/ 2|ν1/ 2

1 q((t2, 0)|1/ 2
)
≤ 2κ|ν1/ 2

1 q(((t2, 0)|.

Lemma 2.3.3. Ñ The functions f1, f2 defined in (2.3.12) satisfy the assump-
tions (2.2.1-2-3-4-5-6) in the lemma 2.2.2.

Proof. Ñ We have already checked (2.2.1). We know from Lemma 2.1.7 that,
with a constant C depending only on a Þnite number of semi-norms ofq
(see (2.1.18)),

|f1(0) = q(t1, 0)$ 1/ 2µ" 1/ 2
1 |1/ 2 ≤ Cν1/ 2

1 ,

but we may assume here thatC ≤ 1/2: if we had |f1(0)| > ν1/ 2
1 /2, the function

f1 would be positive (resp.negative) onB(0, r0ν
1/ 2
1 ), with some Þxed r0 > 0

and consequently we would have|δ1| ≥ r0ν
1/ 2
1 . But we know that 〈δ1〉 ≤ κν1/ 2

1 ,
so we can choosea priori κ small enough so that|δ1| ≥ r0ν

1/ 2
1 does not occur.
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From (2.3.11), we have〈δ1〉 ≤ κν1/ 2
1 , the latter implying f (

1(0) #= 0 from (2.1.16)
sinceκ2 < 3/4 and more precisely

(2.3.15) ρ1 = |f (
1(0)| ≥ (1− κ2)1/ 2ν1/ 2

1 ≥ ν1/ 2
1 /2.

Moreover we have, from (2.1.18) andν2 ≤ κ2ν1 in (2.3.11),

max(|ν1/ 2
1 q((t2, 0)|1/ 2, |ν1/ 2

1 q(((t2, 0)|) ≤ µ1/ 2
12 ≤ C1ν

1/ 2
1 ,

with a constant C1 depending only on a Þnite number of semi-norms ofq and
thus

(2.3.16) max(|f (
2(0)|1/ 2, |f ((

2 (0)|) ≤ 2C1ρ1.

Moreover, we have from Lemma 2.1.7, $1/ 2|q(t2, 0)|µ" 1/ 2
2 ≤ C2ν2, so that with

constants C2, C3 depending only on a Þnite number of semi-norms ofq, us-
ing (2.3.8), we get

|f2(0)| ≤ ν1/ 2
1 C2ν2$ " 1/ 2µ1/ 2

2 ≤ ν1/ 2
1 C3ν2 ≤ C3κ

2ν3/ 2
1 .

That property and (2.3.16-15) give (2.2.3) with R0 = Cρ1, where C depends
only on a Þnite number of semi-norms ofq. We have already seen that the
constants occurring in (2.2.4) are bounded above by semi-norms of q and that
(2.2.5) holds. Let us now check (2.2.6). We already know that, from (2.3.14),

(2.3.17) |f (
2(0)|1/ 2 = |ν1/ 2

1 q((t2, 0)|1/ 2 ≤ 2κ1/ 2|ν1/ 2
1 q(((t2, 0)| = 2κ1/ 2|f ((

2 (0)|.

If we have |ν1/ 2
1 q(t2, 0)| ≥ κ1/ 2µ3/ 2

12 then for |h| ≤ κ1/ 3µ1/ 2
12 , we get, using

ν1 ! $ and TaylorÕs formula along with (2.3.13-14),

|ν1/ 2
1 q(t2, h)| ≥ κ1/ 2µ3/ 2

12 − 4κ4/ 3µ3/ 2
12 −

1
2
κ2/ 3µ3/ 2

12 − Cν1/ 2
1 $ " 1/ 2κµ3/ 2

12

= µ3/ 2
12

(
κ1/ 2 − 4κ4/ 3 − κ2/ 3

2
− C(κ

)
≥ µ3/ 2

12 κ1/ 2/2 > 0,

provided κ is small enough with respect to a constant depending only on aÞnite
number of semi-norms ofq; that inequality implies that the ball B(0,κ1/ 3µ1/ 2

12 )
is included in X+(t2) or in X" (t2) implying that |δ0(t2, 0) = δ2| ≥ κ1/ 3µ1/ 2

12

which is incompatible with (2.3.14), provided κ < 2" 3/ 2, since (2.3.14) implies
|δ2| ≤ 2κµ1/ 2

12 . Eventually, we get

(2.3.18) |f2(0)|1/ 3 = |ν1/ 2
1 q(t2, 0)|1/ 3 ≤ κ1/ 6µ1/ 2

12 = κ1/ 6|f ((
2 (0)|

and with (2.3.18) we obtain (2.2.6) with

(2.3.19) κ2 = κ1/ 6.

The proof of Lemma 2.3.3 is complete.
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- End of the proof of Theorem 2.3.1. To apply Lemma 2.2.2, we have to
suppose (2.2.7). In that case we getν1/ 2

1 |q(((t2, 0)" | = |f ((
2 (0)" | ≤ Cκ2ρ2 =

Cκ1/ 6ν1/ 2
1 |q(((t2, 0)| i.e.,

(2.3.20) |q(((t2, 0)" | ≤ Cκ1/ 6|q(((t2, 0)|.

If (2.2.7) is not satisÞed, we obtain, according to (2.2.9),(2.3.19) and µ12 =
ν1/ 2
1 |q(((t2, 0)|,

δ0(t1, 0) = δ1 ≤ −κ1/ 3ν1/ 2
1 |q(((t2, 0)|,

which gives 1
3R(t2, 0) ≤ |q(((t2, 0)| ≤ κ" 1/ 3 | ' 1 |

( 1/2
1

and (2.3.3) provided C0 ≥

3κ" 1/ 3. If we introduce now the smooth functionsF1, F2 deÞned onR2n by

(2.3.21) F1(Y ) = −q(t3, Y )$ 1/ 2µ" 1/ 2
3 , F2(Y ) = −ν1/ 2

3 q(t2, Y ),

starting over our discussion, we see that (2.3.3) is satisÞed, provided

(2.3.22) κ ≤ κ0 and C0 ≥ γ0κ
" 1,

where κ0, γ0 are positive constants depending only on the semi-norms ofq,
except in the case where we have (2.3.20) and

(2.3.23) |q(((t2, 0)+| ≤ Cκ1/ 6|q(((t2, 0)|.

Naturally, since |q(((t2, 0)| = |q(((t2, 0)+|+ |q(((t2, 0)" |, the estimates (2.3.20-23)
cannot be both true for a κ small enough with respect to a constant depend-
ing on a Þnite number of semi-norms ofq and a non-vanishingq(((t2, 0) (that
vanishing is prevented by the penultimate line in (2.3.11)). The proof of The-
orem 2.3.1 is complete.

Remark 2.3.4. Ñ The readers may Þnd our proof quite tedious, but referring
them to the simpler remark following claim 2.2.1, we hope that they can Þnd
there some motivation to read the details of our argument, which is the rather
natural quantitative statement following from that remark . On the other hand,
Theorem 2.3.1 is analogous to one of the key argument provided by N. Dencker
in [7] in which he proves, using our notations in the theorem,

(2.3.24) R(t, X) ! N (t(, t((, X) + δ0(t((, X) − δ0(t(, X)

which is weaker than our (2.3.3). In particular, R (and N ) looks like a symbol of
order 0 (weight 1) whereas the right-hand-side of (2.3.24) contains the di!erence
δ0(t((, X)−δ0(t(, X), which looks like a symbol of order 1/2. Our theorem gives
a stronger and in some sense more homogeneous version of N. DenckerÕs result,
which will lead to improvements in the remainderÕs estimates. Also, we note
the (inhomogeneous) estimate

$ " 1/ 2µ(t, X)1/ 2ν(t, X)" 1/ 2 ! N (t(, t((, X),
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which is in fact a consequence of our proof, but is not enough to handle the
remainderÕs estimate below in our proof, and which will not be used: in fact
(2.3.3) implies

$ " 1/ 2µ1/ 2ν" 1/ 2 = R〈δ0〉" 1

!
N (t(, t((, X)
〈δ0(t, X)〉 +

δ0(t((, X) − δ0(t, X)
ν(t((, X)1/ 2〈δ0(t, X)〉

+
δ0(t, X) − δ0(t(, X)
ν(t(, X)1/ 2〈δ0(t, X)〉

!
N (t(, t((, X)
〈δ0(t, X)〉 +

1
ν(t((, X)1/ 2

+
1

ν(t(, X)1/ 2
! N (t(, t((, X).

2.4. Quasi-convexity. Ñ A di!erentiable function ψ of one variable is said
to be quasi-convex onR if úψ(t) does not change sign from + to− for increasing
t (see [15]). In particular, a di!erentiable convex function is such that úψ(t) is
increasing and is thus quasi-convex.

Definition 2.4.1. Ñ Let σ1 : R → R be an increasing function,C1 > 0 and
let ρ1 : R→ R+. We shall say that ρ1 is quasi-convex with respect to (C1,σ1)
if for t1, t2, t3 ∈ R,

(2.4.1) t1 ≤ t2 ≤ t3 =⇒ ρ1(t2) ≤ C1 max
(
ρ1(t1), ρ1(t3)

)
+ σ1(t3) − σ1(t1).

When σ1 is a constant function and C1 = 1, this is the deÞnition of quasi-
convexity.

Lemma 2.4.2. Ñ Let σ1 : R → R be an increasing function and let ω : R →
R+. We define

(2.4.2) ρ1(t) = inf
t ′& t & t ′′

(
ω(t() + ω(t(() + σ1(t(() − σ1(t()

)
.

Then the function ρ1 is quasi-convex with respect to (2,σ1).

Proof. Ñ We consider t1 ≤ t2 ≤ t3 three real numbers. We have

ρ1(t2)= inf
t ′& t 2& t ′′

(
ω(t() + ω(t(()+ σ1(t(()−σ1(t()

)

≤ inf
t ′& t 1,t 3& t ′′

(
ω(t()+ ω(t(()+ σ1(t(()−σ1(t3)+ σ1(t1)−σ1(t()

)

+ σ1(t3)−σ1(t1)

≤ inf
t′≤t1≤t′′1 ,

t′3≤t3≤t′′

(
ω(t()+ ω(t((

1 )+ ω(t(
3)+ ω(t(()+ σ1(t(()−σ1(t(

3)+ σ1(t((
1 )−σ1(t()

)

+ σ1(t3)−σ1(t1)

= ρ1(t1)+ ρ1(t3)+ σ1(t3)−σ1(t1)≤2 max(ρ1(t1), ρ1(t3))+ σ1(t3)−σ1(t1).

The following lemma is due to L. H¬ormander [17].
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Lemma 2.4.3. Ñ Let σ1 : R → R be an increasing function and let ω : R →
R+. Let T > 0 be given. We consider the function ρ1 as defined in Lemma 2.4.2
and we define

(2.4.3) ( T (t) = sup
" T & s& t

{
σ1(s) − σ1(t) +

1
2T

∫ t

s
ρ1(r)dr − ρ1(s)

}
.

Then we have

(2.4.4) 2T∂t (( T + σ1) ≥ ρ1, and for |t| ≤ T , |( T (t)| ≤ ρ1(t).

Proof. Ñ We have ( T (t) ≥ −ρ1(t), and

( T (t) + σ1(t) = sup
" T & s& t

{
σ1(s) +

1
2T

∫ 0

s
ρ1(r)dr − ρ1(s)

}

︸ ︷︷ ︸
increasing with t

+
1

2T

∫ t

0
ρ1(r)dr,

so that ∂t (( T + σ1) ≥ 1
2T ρ1. Moreover, from the proof of Lemma 2.4.2, we

obtain for s ≤ r ≤ t that ρ1(r) ≤ ρ1(s) + ρ1(t) + σ1(t) − σ1(s) and thus

1
2T

∫ t

s
ρ1(r)dr ≤ 1

t− s

∫ t

s
ρ1(r)dr ≤ ρ1(s) + ρ1(t) + σ1(t) − σ1(s)

which gives ( T (t) ≤ ρ1(t), ending the proof of the lemma.

Definition 2.4.4. Ñ For T > 0, X ∈ R2n , |t| ≤ T , we deÞne

ω(t, X) =
〈δ0(t, X)〉
ν(t, X)1/ 2

,

σ1(t, X) = δ0(t, X),

η(t, X) =
∫ t

" T
δ0(s, X)$ " 1/ 2ds + 2T,

(2.4.5)

where δ0, ν are deÞned in (2.1.7),(2.1.16). ForT > 0, (t, X) ∈ R × R2n , we
deÞne (( t, X) by the formula (2.4.3)
(2.4.6)

(( t, X) = sup
" T & s& t

{
σ1(s, X) − σ1(t, X) +

1
2T

∫ t

s
ρ1(r, X)dr − ρ1(s, X)

}
,

where ρ1 is deÞned by (2.4.2). We deÞne also

(2.4.7) m(t, X) = δ0(t, X) + (( t, X) + T " 1δ0(t, X)η(t, X).
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Theorem 2.4.5. Ñ With the notations above for ( , ρ1, m, with R and C0

defined in Theorem 2.3.1, we have for T > 0, |t| ≤ T , X ∈ R2n , $ ≥ 1,

|(( t, X)| ≤ ρ1(t, X) ≤ 2
〈δ0(t, X)〉
ν(t, X)1/ 2

, |σ1(t, X)| = |δ0(t, X)|,(2.4.8)

C" 1
0 R(t, X) ≤ ρ1(t, X) ≤ 2T

∂

∂t

(
(( t, X) + σ1(t, X)

)
,(2.4.9)

0≤ η(t, X) ≤ 4T,
d

dt

(
δ0η

)
≥ δ2

0$ " 1/ 2, |η(
X (t, X)| ≤ 4T$ " 1/ 2,(2.4.10)

T
d

dt
m ≥ 1

2
ρ1 + δ2

0$ " 1/ 2 ≥ 1
2C0

R + δ2
0$ " 1/ 2 ≥ 1

23/ 2C0
〈δ0〉2$ " 1/ 2.(2.4.11)

Proof. Ñ It follows immediately from the previous results: the Þrst estimate
in (2.4.8) is (2.4.4), whereas the second is due toρ1 ≤ 2ω which follows
from (2.4.2). The equality in (2.4.8) follows from DeÞnition 2.4.4. The Þrst
inequality in (2.4.9) is a consequence of (2.4.2) and (2.3.3) and the second
is (2.4.4). The Þrst two inequalities in (2.4.10) are a consequence of|δ0(t, X)| ≤
$ 1/ 2 which follows from deÞnition 2.1.4. The third inequality reads

d

dt

(
δ0η

)
= úδ0η + δ0 úη ≥ δ0 úη = δ2

0$ " 1/ 2,

and the fourth inequality in (2.4.10) follows from (2.1.8). Let us check Þnally
(2.4.11): sincem = δ0 + ( + T " 1δ0η, (2.4.4) and the already proven (2.4.10)
imply T d

dt m ≥
1
2ρ1 + δ2

0$ " 1/ 2 and (2.4.9)(proven) gives

1
2
ρ1 + δ2

0$ " 1/ 2 ≥ 1
2C0

R + δ2
0$ " 1/ 2 =

1
2C0

$ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉 + δ2
0$ " 1/ 2

≥︸︷︷︸
from (2.1.17)

1
2C0

$ " 1/ 2
(
2" 1/ 2〈δ0〉 + δ2

0

)
≥ 1

23/ 2C0
$ " 1/ 2〈δ0〉2,

completing the proof of Theorem 2.4.5.

3. Energy estimates

3.1. Preliminaries

Definition 3.1.1. Ñ Let T > 0 be given. With m deÞned in (2.4.7), we
deÞne for|t| ≤ T ,

(3.1.1) M (t) = m(t, X)Wick,

where the Wick quantization is given by the deÞnition A.1.1.
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Lemma 3.1.2. Ñ With T > 0 and M given above, we have with ρ1 given in
(2.4.2), R defined by (2.3.2), for |t| ≤ T , $ ≥ 1,

(3.1.2)
d

dt
M (t) ≥ 1

2T
ρ1(t, X)Wick +

1
T

(δ2
0)

Wick
$ " 1/ 2

≥ 1
2C0T

RWick + T " 1(δ2
0)

Wick
$ " 1/ 2 ≥ 1

23/ 2C0T
(〈δ0〉2)Wick$ " 1/ 2.

|(( t, X)| ≤ ρ1(t, X) ≤ 2
〈δ0(t, X)〉
ν(t, X)1/ 2

,(3.1.3)

T " 1|δ0(t, X)η(t, X)| ≤ 4|δ0(t, X)|,(3.1.4)

T " 1|δ(
0X (t, X)η(t, X)| + T " 1|δ0X (t, X)η(

X (t, X)| ≤ 12.(3.1.5)

Proof. Ñ The derivative in (3.1.2) is taken in the distribution sen se, i.e., the
Þrst inequality in (3.1.2) means that (A.1.5) is satisÞed with

a(t, X) = m(t, X) − 1
2T

∫ t

" T
ρ1(s, X)ds− 1

T
$ " 1/ 2

∫ t

" T
δ0(s, X)2ds.

It follows in fact from (2.4.11). The other inequalities in ( 3.1.2) follow directly
from (2.4.11) and the fact that the Wick quantization is positive (see (A.1.3)).
The inequality (3.1.3) is (2.4.8) and (3.1.4) follows from (2.4.10) whereas (3.1.5)
is a consequence of (2.1.8), (2.4.10) and DeÞnition 2.1.4.

Lemma 3.1.3. Ñ Using the definitions above and the notation (A.1.4), we
have

(( t, ·) ∗ exp−2π# ∈ S
(
〈δ0(t, ·)〉ν(t, ·)" 1/ 2, #

)
,(3.1.6)

δ0(t, ·) ∗ exp−2π# ∈ S
(
〈δ0(t, ·)〉, #

)
,(3.1.7)

δ(
0X (t, ·) ∗ exp−2π# ∈ S

(
1, #

)
,(3.1.8)

T " 1η(t, ·) ∗ exp−2π# ∈ S
(
1, #

)
,(3.1.9)

T " 1η(t, ·)(
X ∗ exp−2π# ∈ S

(
$ " 1/ 2, #

)
,(3.1.10)

with semi-norms independent of T ≤ 1 and of t for |t| ≤ T . According to the
definition 1.3.1, the function X (→ 〈δ0(t, X)〉 is a #-weight.

Proof. Ñ The last statement follows from (2.1.8). The inequalitie s ensuring
(3.1.6Ñ10) are then immediate consequences of the lemmas 3.1.2 and A.1.3.

3.2. Stationary estimates for the model cases. Ñ Let T > 0 be given
and Q(t) = q(t)w given by (2.1.1-2). We deÞneM (t) according to (3.1.1). We
consider

(3.2.1) Re
(
Q(t)M (t)

)
=

1
2
Q(t)M (t) +

1
2
M (t)Q(t) = P (t).
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We have, omitting now the variable t Þxed throughout all this section 3.2,

(3.2.2) P = Re
[
qw (δ0(1 + T " 1η)

)Wick
+ qw ( Wick

]
.

[1]. Let us assume Þrst thatq = $ " 1/ 2µ1/ 2ν1/ 2βe0 with β ∈ S(ν1/ 2, ν" 1#) , 1≤
e0 ∈ S(1, ν" 1#) and δ0 = β. Moreover, we assume 0≤ T " 1η ≤ 4, T " 1|η(| ≤
4$" 1/ 2, |( | ≤ C〈δ0〉ν" 1/ 2. Here $, µ, ν are assumed to be positive constants
such that $ ≥ µ ≥ ν ≥ 1

Then using the lemma A.1.5 with

a1 = βe0, m1 = 〈β〉, a2 = (1 + T " 1η)e" 1
0 , m2 = ν" 1/ 2,

we get, with obvious notations,

(δ0e0)Wick
(
e" 1
0 (1 + T " 1η)

)Wick
=
(
δ0(1 + T " 1η)

)Wick
+ S(〈δ0〉ν" 1/ 2, #)

w

and as a consequence from the proposition A.1.2(2), we obtain, with

(3.2.3) β0 = βe0, η0 = e" 1
0 (1 + T " 1η),

the identity
(
β0

w + S(ν" 1/ 2, ν" 1#)
w )

ηWick
0 =

(
δ0(1 + T " 1η)

)Wick
+ S(〈δ0〉ν" 1/ 2, #) w ,

entailing
(
δ0(1 + T " 1η)

)Wick
= β0

w ηWick
0 + S(〈δ0〉ν" 1/ 2, #)

w
.

As a result, we have

QM = $ " 1/ 2µ1/ 2ν1/ 2βw
0 βw

0 ηWick
0 + βw

0 S(

=Λ−1/2µ1/2*' 0+
︷ ︸︸ ︷
$ " 1/ 2µ1/ 2ν1/ 2〈δ0〉ν" 1/ 2, #) w

+ βw
0 S($ " 1/ 2µ1/ 2ν1/ 2〈δ0〉ν" 1/ 2

︸ ︷︷ ︸
=Λ−1/2µ1/2*' 0+

, #) w .

This implies that, with γ0 = 1/ supe0 > 0, (so that 1 ≤ e0 ≤ γ" 1
0 )

2 ReQM = 2$ " 1/ 2µ1/ 2ν1/ 2βw
0 ηWick

0 βw
0 + 2 Re βw

0 $ " 1/ 2µ1/ 2ν1/ 2

' S(( −1/2,Γ)w .
︷ ︸︸ ︷[
βw

0 , ηWick
0

]

+ Re βw
0 S($ " 1/ 2µ1/ 2〈δ0〉, #) w

= 2$ " 1/ 2µ1/ 2ν1/ 2βw
0 ηWick

0 βw
0 + Re βw

0 S($ " 1/ 2µ1/ 2〈δ0〉, #) w

≥︸︷︷︸
since η0 ≥ e−1

0
from η ≥ 0 in (2.4.10)

2$" 1/ 2µ1/ 2ν1/ 2βw
0 γ0β

w
0 + βw

0 bw
0 + øbw

0 βw
0 ,(3.2.4)
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with b0 ∈ S($ " 1/ 2µ1/ 2〈δ0〉, #) . With the notation λ = $ " 1/ 2µ1/ 2ν1/ 2γ0, we use
the identity,

$ 1/ 2µ1/ 2ν1/ 2βw
0 γ0β

w
0 + βw

0 bw
0 + øbw

0 βw
0 =

(
λ1/ 2βw

0 + λ" 1/ 2øbw
0

)(
λ1/ 2βw

0 + λ" 1/ 2bw
0

)
−λ" 1øbw

0 bw
0 ,

so that from (3.2.4), we obtain the inequality

(3.2.5) 2 ReQM + bw
1 ≥ $ " 1/ 2µ1/ 2ν1/ 2γ0β

w
0 βw

0 .

with b1 real valued in S($ 1/ 2µ" 1/ 2ν" 1/ 2$ " 1µ〈δ0〉2︸ ︷︷ ︸
Λ−1/2µ1/2( −1/2*' 0+2

, #).

Using now (A.1.11), we get, with a ÒÞxedÓ constantC, that

bw
1 ≤ C$ " 1/ 2µ1/ 2ν" 1/ 2(1 + β2)Wick

= C$ " 1/ 2µ1/ 2ν" 1/ 2 Id + C$ " 1/ 2µ1/ 2ν" 1/ 2(β2
0e" 2

0 )Wick

≤ C$ " 1/ 2µ1/ 2ν" 1/ 2 Id + C$ " 1/ 2µ1/ 2ν" 1/ 2(β2
0 )Wick,

and since, from the proposition A.1.2(2), we have

(β2
0)Wick = ( β2

0 )
w

+ S(1, ν" 1#) w = βw
0 βw

0 + S(1, ν" 1#) w ,

the inequality (3.2.4) implies

2 ReQM + C$ " 1/ 2µ1/ 2ν" 1/ 2 Id + C$ " 1/ 2µ1/ 2ν" 1/ 2β0
wβ0

w +

+ S($ " 1/ 2µ1/ 2ν" 1/ 2, ν" 1#) w ≥ 2 ReQM + bw
1 ≥ $ " 1/ 2µ1/ 2ν1/ 2γ0β

w
0 βw

0 ,

so that

(3.2.6) ReQM + S($ " 1/ 2µ1/ 2ν" 1/ 2, #) w

≥ βw
0 βw

0 ($ " 1/ 2µ1/ 2ν1/ 2γ0 − C($ " 1/ 2µ1/ 2ν" 1/ 2).

The rhs of (3.2.6) is nonnegative providedν ≥ C(γ" 1
0 and since C(γ" 1

0 is a
Þxed constant, we may Þrst suppose that this condition is satisÞed; if it is not
the case, we would have thatν is bounded above by a Þxed constant and since
ν ≥ 1, that would imply q ∈ S($ " 1/ 2µ1/ 2, #) and P ∈ S($ " 1/ 2µ1/ 2, #) w . In
both cases, we get

(3.2.7) ReQM + S($ " 1/ 2µ1/ 2ν" 1/ 2, #) w ≥ 0.

[2]. Let us assume now thatq ≥ 0, q ∈ S($ " 1/ 2µ1/ 2ν, ν" 1#), γ0ν1/ 2 ≤ δ0 ≤
γ" 1
0 ν1/ 2 with a positive Þxed constant γ0. Moreover, we assume 0≤ T " 1η ≤

4, T " 1|η(| ≤ 4$" 1/ 2, |(( X)| ≤ C, ( real-valued. Here $ , µ, ν are assumed to
be positive constants such that $≥ µ ≥ ν ≥ 1.

We start over our discussion from the identity (3.2.2):

(3.2.8) P = Re
[
qw
(
δ0(1 + T " 1η) + (

)Wick]
.
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We deÞne

(3.2.9) a0 = δ0(1 + T " 1η)

and we note that γ0ν1/ 2 ≤ a0 ≤ 5γ" 1
0 ν1/ 2.

Remark 3.2.1. Ñ We may assume that ν1/ 2 ≥ 2C/γ0 which implies C ≤
1
2γ0ν1/ 2 so that

(3.2.10)
1
2
γ0ν

1/ 2 ≤ a0 + ( ≤ (5γ" 1
0 + γ0/2)ν1/ 2.

In fact if ν1/ 2 < 2C/γ0 we have
(
δ0(1 + T " 1η) + (

)Wick ∈ S(1, #) w ,
$ 1/ 2µ" 1/ 2q ∈ S(1, #) and P ∈ S($ " 1/ 2µ1/ 2, #) w so that (3.2.7) holds
also in that case.

We have the identity

(3.2.11) qw (δ0(1 + T " 1η)
)Wick

= qw aWick
0 with

{
γ0ν1/ 2 ≤ a0 ≤ 5γ" 1

0 ν1/ 2,

|a(
0| ≤ 14.

The Weyl symbol of (a0 + () Wick, which is

(3.2.12) a = ( a0 + () ∗ 2n exp−2π#,

belongs to S1(ν1/ 2, ν" 1#)(see deÞnition A.5.1): this follows from the
lemma A.5.3 and (3.2.11) fora0 ∗ exp−2π# and is obvious for ( ∗ 2n exp−2π#
which belongs to S(1, #). Moreover the estimates (3.2.10) imply that the
symbol a satisÞes
(3.2.13)

1
2
γ0ν

1/ 2 ≤ a(X) =
∫

(a0 + ()( X + Y )2n e" 2" |Y |2dY ≤ (5γ" 1
0 + Cγ0/2)ν1/ 2.

As a result, the symbol b = a1/ 2 belongs to S1(ν1/ 4, ν" 1#) and 1/b ∈
S1(ν" 1/ 4, ν" 1#): we have

2" 1/ 2γ1/ 2
0 ν1/ 4 ≤ |b| ≤ (5γ" 1

0 + Cγ0/2)1/ 2ν1/ 4

and moreovera( = a(
0 ∗ 2n exp−2π# + ( ∗ 2n (exp−2π#) (, so that, using

|a(| ≤ 14 + C ‖2n (exp−2π#) (‖L 1(R2n) = C1,

we get 2|b(| = |a((X)|a(X)" 1/ 2 ≤ 21/ 2γ" 1/ 2
0 ν" 1/ 4C1, and the derivatives ofa1/ 2

of order k ≥ 2 are a sum of terms of type

a
1
2 " m a(k1) . . . a(km), with k1 + · · · + km = k, all kj ≥ 1,

which can be estimated by Cν
1
4 " m

2 ≤ Cν" 1
4 since m ≥ 1. Similarly

we obtain that b" 1 ∈ S1(ν" 1/ 4, ν" 1#) . From the lemma A.5.2, we have
bw bw = aw + S(ν" 1/ 2, #) w = ( a0 + () Wick + S(ν" 1/ 2, #) w , which means
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(a0 + () Wick = bw bw + rw
0 , r0 ∈ S(ν" 1/ 2, #) , real-valued. Using that 1/b

belongs toS1(ν" 1/ 4, ν" 1#), we write, using again the lemma A.5.2,

(
b +

1
2
b" 1r0

)w (
b +

1
2
b" 1r0

)w
= bw bw + rw

0 + S(ν" 1/ 4ν" 1/ 2ν" 1/ 4, #) w ,

which gives,

(3.2.14) (a0 + () Wick =
(
b +

1
2
b" 1r0

)w (
b +

1
2
b" 1r0

)w
+ S(ν" 1, #) w .

Note that b0 = b + 1
2b" 1r0 belongs toS1(ν1/ 4, ν" 1#) since it is true for b and

b" 1r0 ∈ S(ν" 3/ 4, #): we get then

2 Re
(
qw (a0 + () Wick

)
= 2 bw

0 qw bw
0 +

S(Λ−1/2µ1/2( 1/4( −1/4,Γ)
︷ ︸︸ ︷
[ [qw , bw

0 ]︸ ︷︷ ︸
S(Λ−1/2µ1/2( 1/2( −1/4,Γ)

, bw
0 ] + Re( qw S(ν" 1, #) w )

so that

(3.2.15) P = bw
0 qw bw

0 + S($ " 1/ 2µ1/ 2, #) w .

Using now the Fe!erman-Phong inequality ([8], Theorem 18.6.8 in [14]) for
the nonnegative symbol q, we get bw

0 qw bw
0 = bw

0 (qw + C$ " 1/ 2µ1/ 2ν" 1)bw
0 +

S($ " 1/ 2µ1/ 2ν" 1/ 2, #) w ≥ S($ " 1/ 2µ1/ 2ν" 1/ 2, #) w , so that, from (3.2.15) we
get eventually

(3.2.16) Re(QM ) + S($ " 1/ 2µ1/ 2, #) w ≥ 0.

3.3. Stationary estimates. Ñ Let T > 0 be given andQ(t) = q(t)w given
by (2.1.1-2). We deÞneM (t) according to (3.1.1). We consider

(3.3.1) Re
(
Q(t)M (t)

)
=

1
2
Q(t)M (t) +

1
2
M (t)Q(t) = P (t).

We have, omitting now the variable t Þxed throughout all this section 3.3,

(3.3.2) P = Re
[
qw (δ0(1 + T " 1η)

)Wick
+ qw ( Wick

]
.

Lemma 3.3.1. Ñ Let p be the Weyl symbol of P defined in (3.3.2) and (̃ =
( ∗ 2n exp−2π#, where ( is defined in (2.4.6) (and satisfies (2.4.8)). Then we
have
(3.3.3)

p(t, X) ≡ p0(t, X) = q(t, X)
(
δ0(1 + T " 1η) ∗ 2n exp−2π#

)
+ q(t, X)(̃( t, X),

modulo S($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉, #) .
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Proof. Ñ Using the results of section 2.1, we know that the symbol X (→
q(t, X) belongs to the class

S($ " 1/ 2µ(t, X)1/ 2ν(t, X), ν(t, X)" 1#)

as shown in lemma 2.1.7. In fact from (2.1.18) we know that q ∈
S($ " 1/ 2µ1/ 2ν, ν" 1#) , and from (3.1.3) and Lemma A.1.3, we obtain, us-
ing Theorem 18.5.5 in [14],

q5(̃ = q(̃ +
1

4iπ

{
q, (̃

}
+ S($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉, #) .

This implies that Re (q5(̃) ∈ q(̃ + S($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉, #) . On the other
hand, we know that

Re
(
q5

)︷ ︸︸ ︷[
δ0(1 + T " 1η) ∗ exp−2π#

])

= qω +
∑

|* |=|+ |=2

c*+ q(* )ω(+) + S($ " 1/ 2µ1/ 2ν" 1, #)

so that it is enough to concentrate our attention on the ÒproductsÓq((ω((. We
have (

δ0(1 + T " 1η)
)(( ∗ exp−2π# ∈ S(1, #)

and since q(( ∈ S($ " 1/ 2µ1/ 2, ν" 1#) , we get a remainder in S($ " 1/ 2µ1/ 2, #) ,
which is Þne as long as〈δ0〉 ≥ cν1/ 2. However when 〈δ0〉 ≤ cν1/ 2, we know
that, for a good choice of the Þxed positive constantc, the function δ0 satisÞes
the estimates of S(ν1/ 2, ν" 1#) , since it is the #-distance function to the set
of (regular) zeroes of the functionq so that q((δ((

0 ∈ S($ " 1/ 2µ1/ 2ν" 1/ 2, ν" 1#)
which is what we are looking for. However, we are left with

q(((δ0η ∗ exp−2π#) ((T " 1.

Since we have (δ0η)(( = δ((
0η+2 δ(

0η
(+ δ0η(( and |δ((

0 η+2 δ(
0η

(| ≤ CT (ν" 1/ 2+$ " 1/ 2),
we have only to deal with the term

δ0η
(( ∗ exp−2π# =

∫
δ0(Y )η(((Y ) exp−2π#(X − Y )dY

= −
∫

δ(
0(Y )η((Y )
︸ ︷︷ ︸

!TΛ−1/2

exp−2π#(X − Y )dY

−
∫

δ0(Y )η((Y )
︸ ︷︷ ︸
!TΛ−1/2*' 0+

4π(X − Y ) exp−2π#(X − Y )dY.

For future reference we summarize part of the previous discussion by the fol-
lowing result.
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Lemma 3.3.2. Ñ With the notations above, we have
∣∣∣
(
δ0(1 + T " 1η) ∗ exp−2π#

)∣∣∣ ≤ C〈δ0〉,
∣∣∣∣
(
δ0(1 + T " 1η) ∗ exp−2π#

)(
∣∣∣∣ ≤ C,

∣∣∣∣
(
δ0(1 + T " 1η) ∗ exp−2π#

)((
∣∣∣∣ ≤ C〈δ0〉ν" 1/ 2.

Proof. Ñ Starting over the discussion, we have already seen that the result is
true whenever 〈δ0〉 " ν1/ 2. Moreover when 〈δ0〉 5 ν1/ 2, we have seen that
|δ((

0 | ! ν" 1/ 2 and T " 1|η| ! 1; moreover we have already checked|η(| ! T$ " 1/ 2

and T " 1|δ(
0η

(| ! $ " 1/ 2 ! ν" 1/ 2 as well as|δ0η(( ∗ exp−2π#| ! $ " 1/ 2〈δ0〉 !
〈δ0〉ν" 1/ 2.

Eventually, using the lemma A.1.3, we get that the Þrst integral above is
in S(T$ " 1/ 2, #) whereas the second belongs toS(T$ " 1/ 2〈δ0〉, #). Finally, it
means that, up to terms in S($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉, #) , the operator P (t) has a
Weyl symbol equal to the rhs of (3.3.3).

We shall use a partition of unity 1 =
∑

k χ2
k related to the metric ν(t, X)" 1#

and a sequence (ψk ) as in section 1.4. We have, omitting the variablet, with
p0 deÞned in (3.3.3),

p0(X) =
∑

k

χk (X)2q(X)
∫

δ0(Y )
(
1 + T " 1η(Y )

)
2n exp−2π#(X − Y )dY

+
∑

k

χk (X)2q(X)
∫

(( Y )2n exp−2π#(X − Y )dY.

Using the lemma A.1.6, we obtain, assumingδ0 = δ0k , ( = ( k , q = qk on Uk

(3.3.4) p0 =
∑

k

χ2
k qk

(
δ0k (1 + T " 1η) ∗ 2n exp−2π#

)

+
∑

k

χ2
k qk

(
( k ∗ 2n exp−2π#

)
+ S($ " 1/ 2µ1/ 2ν"! , #) .

Lemma 3.3.3. Ñ With (̃ k = ( k ∗ 2n exp−2π#, dk = δ0k (1 + T " 1η) ∗
2n exp−2π# and qk ,χk defined above, we have

(3.3.5)
∑

k

χk 5qk dk 5χk +
∑

k

χk 5qk (̃ k 5χk = p0 + S($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉, #) .

Proof. Ñ We already know that |dk | ! 〈δ0〉, |d(
k | ! 1, |d((

k | ! 〈δ0〉ν" 1/ 2, so
that

(3.3.6) |(qk dk )(( = q((
k dk + 2 q(

kd(
k + qk d((

k | ! $ " 1/ 2µ1/ 2
(
〈δ0〉 + ν1/ 2 + ν1/ 2〈δ0〉

)

! $ " 1/ 2µ1/ 2ν1/ 2〈δ0〉.
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As a consequence, we get
∑

k

χk 5qk dk 5χk

=
∑

k

(
χk qk dk +

1
4iπ

{χk , qk dk} + S(ν" 1($ " 1/ 2µ1/ 2〈δ0〉ν1/ 2), #)
)
5χk

=
∑

k

(
χk qk dk +

1
4iπ

{χk , qk dk}
)
5χk +

∑

k

S($ " 1/ 2µ1/ 2〈δ0〉ν" 1/ 2, #) 5χk

=
∑

k

(
χk qk dk +

1
4iπ

{χk , qk dk}
)
χk +

1
4iπ

∑

k

{
χk qk dk +

1
4iπ

{χk , qk dk} ,χk

}

+ S($ " 1/ 2µ1/ 2〈δ0〉ν" 1/ 2, #)

since|(χk qk dk )((χ((
k | ! $ " 1/ 2µ1/ 2(〈δ0〉+ ν1/ 2+ ν〈δ0〉ν" 1/ 2)ν" 1 ! 〈δ0〉ν" 1/ 2$ " 1/ 2µ1/ 2.

Using now that χk 5qk dk 5χk is real-valued, we obtain

(3.3.7)
∑

k

χk 5qk dk 5χk =

∑

k

χ2
k qk dk −

1
16π2

∑

k

{{χk , qk dk} ,χk} + S($ " 1/ 2µ1/ 2〈δ0〉ν" 1/ 2, #) .

We note now that, using (3.3.6), we have

(3.3.8) {{χk , qk dk} ,χk} = −H2
, k

(qk dk ) ∈ S($ " 1/ 2µ1/ 2〈δ0〉ν1/ 2ν" 1, #) .

We examine now the term

χk 5qk (̃ k 5χk =
(
χk qk (̃ k

)
5χk +

1
4iπ

{
χk , qk (̃ k

}
5χk + S(ν" 1$ " 1/ 2µ1/ 2ν〈δ0〉ν" 1/ 2, #) 5χk .

We have

Re(χk qk (̃ k 5χk ) ∈ χ2
kqk (̃ k + S(ν" 1$ " 1/ 2µ1/ 2ν〈δ0〉ν" 1/ 2, #) ,

1
4iπ

{
χk , qk (̃ k

}
∈ iR + S(ν" 1/ 2$ " 1/ 2µ1/ 2ν〈δ0〉ν" 1/ 2, #) .

Sinceχk 5qk (̃ k 5χk is real-valued, we get

(3.3.9)
∑

k

χk 5qk (̃ k 5χk =
∑

k

χ2
k qk (̃ k + S($ " 1/ 2µ1/ 2〈δ0〉ν" 1/ 2, #) .

Collecting the information (3.3.4), (3.3.7), (3.3.8) and (3.3.9) we obtain (3.3.5)
and the lemma.
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From this lemma and the lemma 3.3.1 we obtain that
(3.3.10)

Re
(
Q(t)M (t)

)
=
∑

k

χw
k

(
qk dk + qk (̃ k

)w
χw

k + S($ " 1/ 2µ1/ 2〈δ0〉ν" 1/ 2, #) w .

Moreover the same arguments as above in Lemma 3.3.1 give alsothat

(3.3.11) Re(qw
k dw

k + qw
k (̃ w

k ) = ( qk dk + qk (̃ k )w + S($ " 1/ 2µ1/ 2〈δ0〉ν" 1/ 2, #) w .

Proposition 3.3.4. Ñ Let T > 0 be given and Q(t) = q(t)w given by
(2.1.1-2). We define M (t) according to (3.1.1). Then, with a partition of unity
1 =

∑
k χ2

k related to the metric ν(t, X)" 1# we have

Re (Q(t)M (t)) =
∑

k

χw
k Re

(
qw

k dw
k + qw

k (̃ w
k

)
χw

k + S($ " 1/ 2µ1/ 2〈δ0〉ν" 1/ 2, #) w

(3.3.12)

Re (Q(t)M (t)) + S($ " 1/ 2µ1/ 2〈δ0〉ν" 1/ 2, #) w ≥ 0.(3.3.13)

Proof. Ñ The equality (3.3.12) follows from (3.3.10-11). According to Lemma
2.1.9, we have to deal with four subsets of indices,E± , E0, E00. The classiÞ-
cation in DeÞnition 2.1.8 shows that section 3.2.[1] takes care of the casesE0

and shows that, from (3.2.7),

(3.3.14) for k ∈ E0, Re
(
qw

k dw
k + qw

k (̃ w
k ) + S($ " 1/ 2µ1/ 2ν" 1/ 2, #) w ≥ 0.

Furthermore, the estimate (3.2.16) in section 3.2.[2] shows that

(3.3.15) for k ∈ E± , Re
(
qw

k dw
k + qw

k (̃ w
k ) + S($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉, #) w ≥ 0.

Moreover if k ∈ E00, the weight ν is bounded above and

(3.3.16) qw
k dw

k + qw
k (̃ w

k ∈ S($ " 1/ 2µ1/ 2ν" 1/ 2, #) w .

The equality (3.3.12) and (3.3.14-15-16) give (3.3.13).

3.4. The multiplier method

Theorem 3.4.1. Ñ Let T > 0 be given and Q(t) = q(t)w given by (2.1.1-2).
We define M (t) according to (3.1.1). There exist T0 > 0 and c0 > 0 depending
only on a finite number of γk in (2.1.1) such that, for 0 < T ≤ T0, with
D(t, X) = 〈δ0(t, X)〉, (D is Lipschitz continuous with Lipschitz constant 2, as
δ0 in (2.1.8) and thus a #-weight),

(3.4.1)
d

dt
M (t) + 2 Re

(
Q(t)M (t)

)
≥ T " 1(D2)Wick$ " 1/ 2c0.
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Moreover we have with m defined in (2.4.7), m̃(t, ·) = m(t, ·) ∗ 2n exp−2π#,

M (t) = m(t, X)Wick = m̃(t, X)w , with m̃ ∈ S1(D, D" 2#) + S(1, #) .(3.4.2)

m(t, X) = a(t, X) + b(t, X), |a/D| + |a(
X | + |b| bounded, úm ≥ 0,(3.4.3)

a = δ0(1 + T " 1η), b = (̃ .

Proof. Ñ From the estimate (3.1.2), we get, with a positive Þxed constant C0,

d

dt
M (t) ≥ 1

2C0T
($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉)Wick + T " 1(δ2

0)
Wick

$ " 1/ 2,

and from (3.3.13) and Lemma A.1.4 we know that, with a Þxed (nonnegative)
constant C1,

2 Re
(
Q(t)M (t)

)
+ C1($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉)Wick ≥ 0.

As a result we get, if 4C1C0T ≤ 1 (we shall chooseT0 = 1
4C0(C1+1) ),

d

dt
M (t)+2 Re

(
Q(t)M (t)

)
≥ 1

4C0T
($ " 1/ 2µ1/ 2ν" 1/ 2〈δ0〉)Wick+ T " 1(δ2

0)
Wick

$ " 1/ 2.

Using (2.1.17)( µ ≥ ν/2), this gives

d

dt
M (t) + 2 Re

(
Q(t)M (t)

)
≥ T " 1$ " 1/ 2(1 + δ2

0)Wick
( 1

25/ 2C0 + 1

)
,

which is the sought result.

4. From semi-classical to local estimates

4.1. From semi-classical to inhomogeneous estimates. Ñ Let us con-
sider a smooth real-valued functionf deÞned onR×Rn ×Rn , satisÞying (2.1.2)
and such that, for all multi-indices α,β,

(4.1.1) sup
t∈R

(x,ξ)∈R2n

|(∂*
x ∂+

! f )( t, x, ξ)|(1 + |ξ|)" 1+|+ | = C*+ <∞.

Using a Littlewood-Paley decomposition, we have

f (t, x, ξ) =
∑

j ' N

f (t, x, ξ)ϕj (ξ)2, suppϕ0 compact,

for j ≥ 1, suppϕj ⊂ {ξ ∈ Rn , 2j " 1 ≤ |ξ| ≤ 2j +1}, sup
j,!

|∂*
! ϕj (ξ)|2j |* | <∞.

We introduce also some smooth nonnegative compactly supported functions
ψj (ξ), satisfying the same estimates thanϕj and supported in 2j " 2 ≤ |ξ| ≤ 2j +2

for j ≥ 1, identically 1 on the support of ϕj . For each j ∈ N, we deÞne the
symbol

(4.1.2) qj (t, x, ξ) = f (t, x, ξ)ψj (ξ)
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and we remark that (2.1.2) is satisÞed forqj and the following estimates hold:
|(∂*

x ∂+
! qj )| ≤ C(

*+ $ 1"| + |
j , with $ j = 2 j . Note that the semi-norms of qj can be

estimated from above independently ofj. We can reformulate this by saying
that
(4.1.3)

qj ∈ S($ j , $ " 1
j #j ), with # j (t, τ ) = |t|2$ j + |τ |2$ " 1

j (note that # j = # #
j ).

Lemma 4.1.1. Ñ There exists T0 > 0, c0 > 0, depending only on a finite num-
ber of semi-norms of f such that, for each j ∈ N, we can find Dj a #j –uniformly
Lipschitz continuous function with Lipschitz constant 2, valued in [1,

√
2$j ],

aj , bj real-valued such that

(4.1.4) sup
j∈N,|t|≤T0

X∈R2n

(∣∣∣∣
aj (t, X)
Dj (t, X)

∣∣∣∣ + ‖∇X aj (t, X)‖Γj
+ |bj (t, X)|

)
<∞.

Moreover we have with mj = aj + bj , m̃j (t, ·) = mj (t, ·) ∗ 2n exp−2π#j ,
Qj (t) = qj (t)w ,
(4.1.5)
Mj (t) = mj (t, X)Wick(Γj) = m̃j (t, X)w , with m̃j ∈ S1(Dj , D

" 2
j #j ) + S(1, #j ),

(the Wick(# j ) quantization is defined in definition A.1.7) the estimate

(4.1.6)
d

dt
Mj (t) + 2 Re

(
Qj (t)Mj (t)

)
≥ T " 1

(
D2

j

)Wick(Γj)$ " 1/ 2
j c0.

Proof. Ñ It is a straightforward consequence of DeÞnition A.1.7 and of The-
orem 3.4.1: let us check this. Considering the linear symplectic mapping L :
(t, τ ) (→ ($ " 1/ 2

j t, $ 1/ 2
j τ ), we see that the symbolsqj ◦ L belong uniformly to

S($ j , $ " 1
j #0). Applying the theorem 3.4.1 to qj ◦L, we ÞndD a #0Ðuniformly

Lipschitz continuous function ≥ 1, a, b real-valued such that

(4.1.7) sup
j∈N,|t|≤T0

X∈R2n

(∣∣∣∣
a(t, X)
D(t, X)

∣∣∣∣ + ‖∇X a(t, X)‖Γ0
+ |b(t, X)|

)
<∞,

and so that, with m = a + b, m̃(t, ·) = m(t, ·) ∗ 2n exp−2π#0, Q(t) =
(qj (t) ◦ L)w ,

M (t) = m(t, X)Wick = m̃(t, X)w , with m̃ ∈ S1(D, D" 2#0) + S(1, #0),

(4.1.8)
d

dt
M (t) + 2 Re

(
Q(t)M (t)

)
≥ T " 1

(
D2
)Wick(Γ0)$ " 1/ 2

j c0.
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Now we deÞne the real-valued functionsaj = a◦L" 1, bj = b◦L" 1, Dj = D◦L" 1

and we have, since #0(S) = # j (LS),
∣∣∣∣
aj (t, X)
Dj (t, X)

∣∣∣∣ + ‖∇X aj (t, X)‖Γj
+ |bj (t, X)|

=

∣∣∣∣
a(t, L" 1X)
D(t, L" 1X)

∣∣∣∣ + sup
T ' R2n

|a(
j (t, X) · T |
#j (T )1/ 2

+ |b(t, L" 1X)|

=

∣∣∣∣
a(t, L" 1X)
D(t, L" 1X)

∣∣∣∣ + sup
T ' R2n

|a((t, X) · L" 1T |
#j (T )1/ 2

+ |b(t, L" 1X)|

=

∣∣∣∣
a(t, L" 1X)
D(t, L" 1X)

∣∣∣∣ + ‖a((t, X)‖Γ0
+ |b(t, L" 1X)|,

so that (4.1.7) implies (4.1.4). Considering nowmj = aj + bj and for a meta-
plectic U in the Þber of the symplecticL (see deÞnition A.1.7), we have

(4.1.9) Mj (t) = mj (t, X)Wick(Γj) = U (mj ◦ L)Wick(Γ0)U#.

Thus we obtain
d

dt
Mj (t) + 2 Re

(
Qj (t)Mj (t)

)

from (4.1.9.) = U
d

dt
(mj ◦ L)Wick(Γ0)U# +2 Re

(
UU#qj (t)w U (mj ◦ L)Wick(Γ0)U#

)

= U
[ d

dt
(mj ◦ L)Wick(Γ0) + 2 Re

(
U#qj (t)w U (mj ◦ L)Wick(Γ0)

)]
U#

using
m=mj◦L

(q◦L)w=U∗qwU

#

= U
[ d

dt
(m)Wick(Γ0) + 2 Re

(
(qj ◦ L)w (m)Wick(Γ0)

)]
U#

from (4.1.8) ≥ U
[
T " 1

(
D2
)Wick(Γ0)$ " 1/ 2

j c0

]
U#

from (A.1.16) = T " 1UU#(D2 ◦ L" 1
)Wick(Γj)UU#$ " 1/ 2

j c0

= T " 1
(
D2

j

)Wick(Γj)$ " 1/ 2
j c0,

which is (4.1.6), completing the proof of the lemma.

We deÞne now, withϕj given after (4.1.1), Mj in (4.1.5)

(4.1.10) M(t) =
∑

j ' N

ϕw
j $ " 1/ 2

j Mj (t)ϕw
j .

Lemma 4.1.2. Ñ With Mj defined in (4.1.5) and ϕj ,ψj as above,

(4.1.11)
∑

j

ϕw
j Mj (t)

(
(1− ψj )f (t)

)w
ϕw

j ∈ S(〈ξ〉"! , 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2)w ,

(4.1.12)
∑

j

ϕw
j Mj (t)ϕw

j

(
(1− ψj )f (t)

)w ∈ S(〈ξ〉"! , 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2)w .

tome 134 – 2006 – no 4



LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (Ψ) 597

Proof. Ñ Since ψj ≡ 1 on the support of ϕj , we get that, uniformly with
respect to j,

(4.1.13)
(
(1 − ψj )f (t)

)w
ϕw

j ∈ S(〈ξ〉"! , |dx|2 + 〈ξ〉" 2|dξ|2)w .

Sincem̃j ∈ S($ 1/ 2
j , $ j |dx|2+$ " 1

j |dξ|2), we get that ψj m̃j ∈ S(〈ξ〉1/ 2, 〈ξ〉|dx|2+
〈ξ〉" 1|dξ|2), and consequentlyϕj 5ψj m̃j ∈ S(〈ξ〉1/ 2, 〈ξ〉|dx|2+ 〈ξ〉" 1|dξ|2) so that

(4.1.14) ϕj 5ψj m̃j 5(1 − ψj )f (t)5ϕj ∈ S(〈ξ〉"! , 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2)

⊂ S(〈ξ〉"! , |dx|2 + |dξ|2).

Moreover we haveϕj 5(1−ψj )m̃j ∈ S($ "!
j , $ j |dx|2+$ " 1

j |dξ|2) ⊂ S($ "!
j , |dx|2+

|dξ|2) so that (4.1.13) implies

(4.1.15) ϕj 5(1− ψj )m̃j 5(1− ψj )f (t)5ϕj ∈ S(〈ξ〉"! , |dx|2 + |dξ|2)

⊂ S(〈ξ〉"! , 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2).

As a consequence, from (4.1.14) and (4.1.15) we get, uniformly in j, that

(4.1.16) ϕj 5m̃j 5(1 − ψj )f (t)5ϕj ∈ S(〈ξ〉"! , 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2).

Since ϕj ,ψj depend only on the variable ξ, the support condition implies
ϕw

j ψw
j = ϕw

j and we obtain that from (4.1.16)

∑

j

ϕj 5m̃j 5(1 − ψj )f (t)5ϕj

=
∑

j

ψj 5ϕj 5m̃j 5(1 − ψj )f (t)5ϕj 5ψj ∈ S(〈ξ〉"! , 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2),

completing the proof of (4.1.11). The proof of (4.1.12) follows almost in the
same way: we get as in (4.1.16) that

ϕj 5m̃j 5ϕj 5(1− ψj )f (t) ∈ S(〈ξ〉"! , 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2).

Now with ) j = ϕj 5(1−ψj )f (t), we have ) j ∈ S(〈ξ〉"! , |dx|2 + 〈ξ〉" 2|dξ|2) and
from the formula (A.5.5) we have also |(∂*

x ∂+
! ) j )(x, ξ)| ≤ C*+N 2jn (1 + |ξ −

suppϕj |)" N (1 + |ξ|), so that

|(∂*
x ∂+

! ) j )(x, ξ)| ≤






C*+N 2jn 2" j (N " 1) if |ξ| ≥ 2j +2,

C*+N 2jn 2" jN if 2j " 2 < |ξ| < 2j +2,

C*+N 2jn 2" j (N " 1) if |ξ| ≤ 2j " 2,

implying that
∑

j ϕj 5m̃j 5) j belongs toS(〈ξ〉"! , |dx|2 + 〈ξ〉" 2|dξ|2).
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Lemma 4.1.3. Ñ With F (t) = f (t, x, ξ)w , M defined in (4.1.10), Mj in
(4.1.5)

d

dt
M(t)+2 Re(M(t)F (t)) =

∑

j

$ " 1/ 2
j ϕw

j

(
úMj (t) + 2 Re

(
Mj (t)

(
ψj f (t)

)w
))

ϕw
j

+
∑

j

2 Re
(
ϕw

j Mj (t)[ϕw
j , (ψj f (t))w ]$ " 1/ 2

j

)

+ S(〈ξ〉"! , 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2)w .

Proof. Ñ We have

d

dt
M(t) + 2 Re(M(t)F (t))

=
∑

j

ϕw
j

úMj (t)$ " 1/ 2
j ϕw

j + 2 Re
(
ϕw

j Mj (t)$ " 1/ 2
j ϕw

j F (t)
)

=
∑

j

ϕw
j

úMj (t)$ " 1/ 2
j ϕw

j + 2 Re
(
ϕw

j $ " 1/ 2
j Mj (t)F (t)ϕw

j

)

+ 2 Re
(
ϕw

j $ " 1/ 2
j Mj (t)[ϕw

j , F (t)]
)
.

(4.1.17)

On the other hand, we have

2 Re
(
ϕw

j $ " 1/ 2
j Mj (t)F (t)ϕw

j

)
= 2 Re

(
ϕw

j $ " 1/ 2
j Mj (t)

(
ψj f (t)

)w
ϕw

j

)

+ 2 Re
(
ϕw

j $ " 1/ 2
j Mj (t)

(
(1 − ψj )f (t)

)w
ϕw

j

)

and since we have also

2 Re
(
ϕw

j $ " 1/ 2
j Mj (t)[ϕw

j , F (t)]
)

= 2 Re
(
ϕw

j $ " 1/ 2
j Mj (t)[ϕw

j ,
(
ψj f (t)

)w
]
)

+ 2 Re
(
ϕw

j $ " 1/ 2
j Mj (t)[ϕw

j ,
(
(1− ψj )f (t)

)w
]
)
,

we get the result of the lemma from Lemma 4.1.2 and (4.1.17).

Lemma 4.1.4. Ñ With the above notations, we have
(4.1.18)∑

j

Re
(
ϕw

j $ " 1/ 2
j Mj (t)[ϕw

j , (ψj f (t))w ]
)
∈ S(〈ξ〉" 1, 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2)w .

Proof. Ñ The Weyl symbol of the bracket [ ϕw
j , (ψj f (t))w ] is 1

2i" {ϕj ,ψj f (t)}+
rj , rj ∈ S($ " 1

j , $ " 1
j #j ) where (rj ) is a conÞned sequence inS(〈ξ〉" 1, |dx|2 +

〈ξ〉" 2|dξ|2). As a consequence, we have
∑

j

ϕw
j $ " 1/ 2

j Mj (t)rw
j ∈ S(〈ξ〉" 1, 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2)w .
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With & j = − 1
2" {ϕj ,ψj f (t)} (real-valued ∈ S(1, $ " 1

j #j )), we are left with
∑

j $ " 1/ 2
j Re(ϕj 5m̃j (t)5i&j ) which belongs to S(〈ξ〉" 1, 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2).

Definition 4.1.5. Ñ The symplectic metric * on R2n is deÞned as

(4.1.19) * ! = 〈ξ〉|dx|2 + 〈ξ〉" 1|dξ|2.

With Dj given in lemma 4.1.1, we deÞne

(4.1.20) d(t, x, ξ) =
∑

j

ϕj (ξ)2Dj (t, x, ξ).

Lemma 4.1.6. Ñ The function d(t, ·) is uniformly Lipschitz continuous for the
metric * in the strongest sense, namely, there exists a positive fixed constant
C such that
(4.1.21)

C" 1|d(t, x, ξ) − d(t, y, η)| ≤ min
(
〈ξ〉1/ 2, 〈η〉1/ 2

)
|x− y| +

|ξ − η|
max

(
〈ξ〉1/ 2, 〈η〉1/ 2

) .

Moreover it satisfies d(t, x, ξ) ∈ [1, 2〈ξ〉1/ 2]. It is thus a weight for that metric * .

Proof. Ñ Since the ϕj are nonnegative with
∑

j ϕ2
j = 1, we get from

Lemma 4.1.1 that

1 =
∑

j

ϕ2
j ≤

∑

j

ϕ2
j Dj = d≤

∑

j

ϕj (ξ)2$ 1/ 2
j 21/ 2 ≤

∑

j

ϕj (ξ)2〈ξ〉1/ 22 = 〈ξ〉1/ 22.

Also, we have

d(t, x, ξ) − d(t, y, η)

=
∑

j

ϕj (ξ)2
(
Dj (t, x, ξ) −Dj (t, y, η)

)
+
∑

j

Dj (t, y, η)
(
ϕj (ξ)2 − ϕj (η)2

)
,

so that, with X = ( x, ξ), Y = ( y, η), # j given in (4.1.3),

|d(t, x, ξ) − d(t, y, η)|

≤
∑

j

ϕj (ξ)22#j (X − Y )1/ 2 +
∑

j,
ϕj(ξ))=0 or ϕj(η))=0

21/ 22j/ 2|ξ − η|2" j C

!
∑

j

ϕj (ξ)24
(
〈ξ〉1/ 2|x− y| + 〈ξ〉" 1/ 2|ξ − η|

)
+ |ξ − η|

∑

j,
ϕj(ξ))=0 or ϕj(η))=0

2" j/ 2

! 〈ξ〉1/ 2|x− y| + 〈ξ〉" 1/ 2|ξ − η| + |ξ − η|
(
〈ξ〉" 1/ 2 + 〈η〉" 1/ 2

)
.
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We get thus, if 〈ξ〉 ∼ 〈η〉,

(4.1.22) |d(t, x, ξ) − d(t, y, η)| ! 〈ξ〉1/ 2|x− y| + 〈ξ〉" 1/ 2|ξ − η|.

If 2j 0 ∼ 〈ξ〉 5 〈η〉 ∼ 2k0 , we have

|d(t, x, ξ) − d(t, y, η)| ≤
∑

j,- j(! )%=0

ϕj (ξ)22(j +1)/ 2 +
∑

j,- j(. )%=0

ϕj (η)22(j +1)/ 2

! 2j 0/ 2 + 2 k0/ 2 ∼ 2k0/ 2 ∼ |η − ξ|2" k0/ 2 ∼ 〈η〉" 1/ 2|η − ξ|.(4.1.23)

Eventually, (4.1.23) and (4.1.22) give (4.1.21), completing the proof of the
lemma.

Note also that 〈ξ〉 is a *-weight and is even such that

(4.1.24) |〈ξ〉1/ 2 − 〈η〉1/ 2| ≤ |ξ − η|
〈ξ〉1/ 2 + 〈η〉1/ 2

.

Lemma 4.1.7. Ñ With F (t) = f (t, x, ξ)w , M defined in (4.1.10), Mj

in (4.1.5), the positive constant c0 defined in lemma 4.1.1,
(4.1.25)
d

dt
M(t) + 2 Re(M(t)F (t)) ≥ c0T

" 1
∑

j

ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j + S(〈ξ〉" 1, *) w .

The operator M(t) has a Weyl symbol in the class S1(〈ξ〉" 1/ 2d, d" 2*) . More-
over the selfadjoint operator M(t) satisfies, with a fixed constant C,

(4.1.26) M(t)M(t) ≤ C2
∑

j

ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j .

Proof. Ñ The estimate (4.1.25) is a consequence of the lemmas 4.1.3, 4.1.4 and
4.1.1. From (4.1.10), we get that

M(t) ∈
∑

j

ϕw
j S1(Dj $ " 1/ 2

j , D" 2
j #j )w ϕw

j ⊂ S1(d〈ξ〉" 1/ 2, d" 2*) w .

From the lemma 4.1.1 and the Þnite overlap of theϕj , we get

‖M(t)u‖2 !
∑

j

$ " 1
j

∥∥ϕw
j Mj (t)ϕw

j u
∥∥2

=
∑

j

$ " 1
j 〈ϕw

j Mj ϕ
w
j u,ϕw

j Mj ϕ
w
j u〉 =

∑

j

$ " 1
j 〈ϕw

j u, Mj (ϕ2
j )w Mj︸ ︷︷ ︸

' S(D 2
j ,Γj)w

ϕw
j u〉 !︸︷︷︸

from lemma A.1.4

∑

j

〈ϕw
j u,

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u〉,

which is (4.1.26).
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Lemma 4.1.8. Ñ Let a be a symbol in S(〈ξ〉" 1, *) . Then, with constants
C1, C2 depending on a finite number of semi-norms of a, we have

|〈aw u, u〉| ≤ C1 ‖u‖2H −1/2 ≤ C2

∑

j

〈
(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u,ϕw

j u〉.

Proof. Ñ We have, since Dj ≥ 1 and the Wick quantizations are nonnegative
∑

j

〈
(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u,ϕw

j u〉

≥
∑

j

〈
(
$ " 1

j

)Wick(Γj)ϕw
j u,ϕw

j u〉 =
〈(∑

j

$ " 1
j ϕ2

j

)w
u, u

〉
∼ ‖u‖2H −1/2 ,

whereH " 1/ 2 is the standard Sobolev space of index−1/2. Now, it is a classical
result that

〈aw u, u〉 = 〈 (〈ξ〉1/ 2)w aw (〈ξ〉1/ 2)w

︸ ︷︷ ︸
' S(1,Υ)w,L (L 2)

(〈ξ〉" 1/ 2)w u, (〈ξ〉" 1/ 2)w u〉

which implies that |〈aw u, u〉| ! ‖u‖2H −1/2 .

Theorem 4.1.9. Ñ Let f (t, x, ξ) be a smooth real-valued function defined on
R×Rn ×Rn , satisfiying (2.1.2) and (4.1.1). Let f0(t, x, ξ) be a smooth complex-
valued function defined on R×Rn ×Rn , such that 〈ξ〉f0(t, x, ξ) satisfies (4.1.1).
Then there exists T0 > 0, c0 > 0 depending on a finite number of seminorms of
f, f0, such that, for all T ≤ T0 and all u ∈ C !

c

(
(−T, T ); S(Rn )

)

‖Dt u + if (t, x, ξ)w u + f0(t, x, ξ)w u‖L 2(Rn+1) ≥ c0T
" 1

(∫
‖u(t)‖2H −1/2(Rn) dt

)1/ 2

Proof
(i) We assume first that f0 ≡ 0. Using the lemmas 4.1.7-8, we get

(4.1.27) 2 Re〈Dt u + if (t)w u, iM(t)u〉

≥ (c0T
" 1 − C2)

∑

j

〈ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u, u〉,

and from the estimate (4.1.26), provided that

(4.1.28) c0/(2C2) ≥ T,

we get

2‖Dt u + if (t)w u‖L 2(Rn+1)

[∑

j

〈ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u, u〉

]1/ 2
C

≥ c0

2T

∑

j

〈ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u, u〉
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so that, with Þxed positive constantsc1, c2, using again the lemma 4.1.8

‖Dt u + if (t)w u‖L 2(Rn+1) ≥
c1

T

[∑

j

〈ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u, u〉

]1/ 2

≥ c2

T

(∫
‖u(t)‖2H −1/2(Rn) dt

)1/ 2

,

which is our result. Let us check now the casef0 #≡ 0.

(ii) Let us assume that Im(f0) ∈ S(〈ξ〉" 1, 〈ξ〉" 1*). Going back to the compu-
tation in (4.1.27), with (4.1.28) fulÞlled, we have

2 Re〈Dt u + if (t)w + f0(t)w u, iM(t)u〉 ≥ c0

2T

∑

j

〈ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u, u〉

+ 2 Re〈Re(f0(t))w u, iM(t)u〉 + 2 Re〈Im(f0(t))w u,M(t)u〉.

From the identity 2 Re 〈Re(f0(t))w u, iM(t)u〉 = 〈
[
Re(f0(t))w , iM(t)

]
u, u〉 and

the fact that, from Theorem 18.5.5 in [14] we have
[
Re(f0(t))w , iM(t)

]
∈ S(〈ξ〉" 1/ 2dd" 1〈ξ〉" 1/ 2, *) w = S(〈ξ〉" 1, *) w

we can use the lemma 4.1.8 to control this term by

C
∑

j

〈ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u, u〉.

On the other hand, from our assumption on Imf0, we get that

M(t) Im( f0(t))w ∈ S(〈ξ〉" 1/ 2d〈ξ〉" 1, *) w ⊂ S(〈ξ〉" 1, *) w ,

which can be also controlled byC
∑

j 〈ϕw
j

(
$ " 1

j D2
j

)Wick(Γj)ϕw
j u, u〉. Eventually,

we obtain the result in that case too, for T small enough.

(iii) We are left with the general case Im(f0) ∈ S(1, 〈ξ〉" 1*); we note that,
with

(4.1.29) ω0(t, x, ξ) =
∫ t

0
Im f0(s, x, ξ)ds, (which belongs to S(1, 〈ξ〉" 1*)),

we have

Dt + if (t)w + (Re f0(t))w + i(Im f0(t))w

= ( e) 0(t ))w Dt (e" ) 0(t ))w + if (t)w + (Re f0(t))w

= ( e) 0(t ))w
(
Dt + if (t)w +(Re f0(t))w

)
(e" ) 0(t ))w+

(
if (t)−e) 0(t )5if (t)5e" ) 0(t ))w

+ S(〈ξ〉" 1, 〈ξ〉" 1*) w .
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Noting that e± ) 0 belongs toS(1, 〈ξ〉" 1*), we compute

e) 05if5e" ) 0 =
(
e) 0if +

1
4iπ

{e) 0 , if}
)
5e" ) 0 + S(〈ξ〉" 1, 〈ξ〉" 1*)

= if +
1

4iπ

{
e) 0 if, e" ) 0

}
+

1
4iπ

{e) 0 , if} e" ) 0 + S(〈ξ〉" 1, 〈ξ〉" 1*)

= if +
1

2π
{ω0, f} + S(〈ξ〉" 1, 〈ξ〉" 1*) .

We obtain

L = Dt + if (t)w + f0(t)w

= ( e) 0(t ))w
(
Dt + if (t)w + (Re f0(t) +

1
2π

{f,ω0})w
)

(e" ) 0(t ))w

+ S(〈ξ〉" 1, 〈ξ〉" 1*) w ,

(4.1.30)

and analogously

L0 = Dt + if (t)w +
(

Ref0(t) +
1

2π
{f,ω0}

)w
+ S(〈ξ〉" 1, 〈ξ〉" 1*) w

= ( e" ) 0(t ))w L(e) 0(t ))w .
(4.1.31)

Using now the fact that the symbol Ref0(t) + 1
2" {f,ω0} is real-valued in

S(1, 〈ξ〉" 1*), we can use (ii) to prove the estimate in the theorem for the
operator

L0 = Dt + if (t)w + (Re f0(t) +
1

2π
{f,ω0})w + S(〈ξ〉" 1, 〈ξ〉" 1*) w .

We note also that e) 05e" ) 0 = 1 + t2S(〈ξ〉" 2, 〈ξ〉" 1*) so that, for |t| small
enough,

(4.1.32)
{

the operators (e± ) 0)w are invertible in L2(Rn ) and
their inverses are pseudodi!erential operators inS(1, 〈ξ〉" 1*) w .

From the previous identity and (ii), we get for u ∈ C !
c ((−T, T ), > S(Rn ))

∫
‖(e" ) 0(t ))w L(e) 0(t ))w u(t)‖2L 2(Rn)dt ≥ c2

0

T 2

∫
‖u(t)‖2H −1/2(Rn)dt.

Applying this to

(4.1.33) u(t) =
(

(e) 0(t ))w
)" 1

v(t),

we obtain

(4.1.34)
∫
‖(e" ) 0(t ))w Lv(t)‖2L 2(Rn)dt ≥ c2

0

T 2

∫ ∥∥((e) 0(t ))w )" 1
v(t)

∥∥2

H −1/2(Rn)
dt.
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We have
∥∥((e) 0(t ))w )" 1

v(t)
∥∥2

H −1/2(Rn)

=
∥∥(〈ξ〉" 1/ 2)w ((e) 0(t ))w )" 1

(〈ξ〉1/ 2)w (〈ξ〉" 1/ 2)w v(t)
∥∥2

L 2(Rn)
.

Now the operator (〈ξ〉" 1/ 2)w ((e) 0(t ))w )" 1(〈ξ〉1/ 2)w is invertible with inverse

(4.1.35) '( t) = ( 〈ξ〉" 1/ 2)w (e) 0(t ))w (〈ξ〉1/ 2)w

which is a bounded operator onL2(Rn ) so that

(4.1.36) ‖v‖L 2 =
∥∥'' " 1v

∥∥
L 2 ≤ ‖' ‖L (L 2)

∥∥' " 1v
∥∥

L 2 .

As a result, from the inequality (4.1.34), we get

∫
‖(e" ) 0(t ))w Lv(t)‖2L 2(Rn)dt ≥ c2

0

T 2

∫
‖'( t)" 1(〈ξ〉" 1/ 2)w v(t)‖2L 2(Rn)dt

≥ c2
0

T 2

∫
‖(〈ξ〉" 1/ 2)w v(t)‖2L 2(Rn)

1

‖'( t)‖2
dt ≥ c2

1

T 2

∫
‖v(t)‖2H −1/2(Rn)dt,

which is the result. The proof of Theorem 4.1.9 is complete.

Comment 4.1.10. Ñ Although Theorem 4.1.9 is providing a solvability result
with loss of 3/2 derivatives for the evolution equation

∂t + f (t, x, ξ)w + f0(t, x, ξ)w ,

where f, f0 are satisfying the assumptions of this theorem, the statement does
not seem quite su"cient to handle operators with homogeneous symbols for
two reasons. The Þrst one is that the reduction of homogeneous symbols in
the cotangent bundle of a manifold will lead to a model operator like the one
above, but only at the cost of some microlocalization in the cotangent bundle.
We need thus to get a microlocal version of our estimates. Thesecond rea-
son is that the function f (t, x, ξ) is not a classical symbol in the phase space
Rt ×Rn

x ×R/ ×Rn
! and we have to pay attention to the discrepancy between ho-

mogeneous localization in the phase spaceR2n+2 and localization in R2n with
parameter t. That di"culty should be taken seriously, since the loss of deriva-
tives is strictly larger than 1; in fact, commuting a cuto! fu nction with the
operator will produce an error of order 0, larger than what iscontrolled by the
estimate. In the next section, we prove a localized version of the theorem 4.1.9,
which will be suitable for future use in the homogeneous framework.

4.2. From semi-classical to localized inhomogeneous estim ates
We begin with a modiÞed version of Lemma 4.1.7, involving a microlocal-

ization in R2n .
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Lemma 4.2.1. Ñ Let f (t, x, ξ) be real-valued satisfying (2.1.2) and (4.1.1); we
shall note F (t) = f (t, x, ξ)w . Let M be defined in (4.1.10). We define c1 =
c0/C2, where c0 is given by lemma 4.1.1 and C appears in (4.1.26). Let ψ(x, ξ)
be a real-valued symbol in S(1, 〈ξ〉" 1*) . We have

(4.2.1)
d

dt

(
ψwM(t)ψw ) + 2 Re

(
ψwM(t)ψw F (t)

)

≥ c1T
" 1ψwM(t)M(t)ψw + S(〈ξ〉" 1, *) w .

Proof. Ñ We compute, using (4.1.25) on the fourth line below,

d

dt

(
ψwM(t)ψw ) + 2 Re

(
ψwM(t)ψw F (t)

)

= ψw úM(t)ψw + ψwM(t)ψw F (t) + F (t)ψwM(t)ψw

= ψw
(

úM(t) + 2 Re M(t)F (t)
)
ψw + ψwM(t)

[
ψw , F (t)

]
+
[
F (t),ψw ]M(t)ψw

≥ c1T
" 1ψwM(t)M(t)ψw + c2ψ

w S(〈ξ〉" 1, *) wψw +

+ ψw
[
M(t),

[
ψw , F (t)

]]
+ ψw [ψw , F (t)

]
M(t) −

[
ψw , F (t)

]
M(t)ψw

= c1T
" 1ψwM(t)M(t)ψw + c2ψ

w S(〈ξ〉" 1, *) wψw +

+ ψw
[
M(t),

[
ψw , F (t)

]]
+
[
ψw ,

[
ψw , F (t)

]]
M(t) +

[
ψw , F (t)

][
ψw ,M(t)

]
.

Next we analyze each term on the last line. We have

• ψw
[
M(t),

[
ψw , F (t)

]]
∈ S(d〈ξ〉" 1/ 21d" 1〈ξ〉" 1/ 2, *) w = S(〈ξ〉" 1, *) w

since

ψw , [ψw , F (t)
]
∈ S(1, 〈ξ〉" 1*) w , M(t) ∈ S1(d〈ξ〉" 1/ 2, d" 2*) w ,

•
[
ψw ,

[
ψw , F (t)

]]
M(t) ∈ S(d〈ξ〉" 3/ 2, *) w ⊂ S(〈ξ〉" 1, *) w since d ≤

2〈ξ〉1/ 2 and
[
ψw ,

[
ψw , F (t)

]]
∈ S(〈ξ〉" 1, 〈ξ〉" 1*) w , M(t) ∈ S1(d〈ξ〉" 1/ 2, d" 2*) w ,

•
[
ψw , F (t)

][
ψw ,M(t)

]
,∈ S(d〈ξ〉" 1/ 2〈ξ〉" 1/ 2d" 1, *) w = S(〈ξ〉" 1, *) w

since
[
ψw , F (t)

]
∈ S(1, 〈ξ〉" 1*) w , M(t) ∈ S1(d〈ξ〉" 1/ 2, d" 2*) w .

We have proven in particular that

(4.2.2)
d

dt

(
ψwM(t)ψw ) + 2 Re

(
ψwM(t)ψw F (t)

)

= ψw
(

úM(t) + 2 Re M(t)F (t)
)
ψw + S(〈ξ〉" 1, *) w .
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Also, we have d
dt

(
ψwM(t)ψw

)
+2 Re

(
ψwM(t)ψw F (t)

)
≥ c1T " 1ψwM(t)M(t)ψw

+ S(〈ξ〉" 1, *) w , which is (4.2.1).

Theorem 4.2.2. Ñ Let f (t, x, ξ) be a smooth real-valued function defined on
R×Rn ×Rn , satisfiying (2.1.2) and (4.1.1). Let f0(t, x, ξ) be a smooth complex-
valued function defined on R×Rn ×Rn , such that 〈ξ〉f0(t, x, ξ) satisfies (4.1.1).
We define

L = Dt + if (t, x, ξ)w + f0(t, x, ξ)w .

Let ψ(x, ξ) ∈ S(1, 〈ξ〉" 1*) be a real-valued symbol. Then there exists T0 >
0, c0 > 0, C ≥ 0, depending on a finite number of seminorms of f, f0,ψ, such
that, for all T ≤ T0, all u ∈ C !

c

(
(−T, T ); S(Rn )

)
, with ω0 given by (4.1.29),

T
∥∥ψw (e" ) 0)w Lu

∥∥
L 2(Rn+1)

+ CT 1/ 2

(∫
‖u(t)‖2H −1/2(Rn) dt

)1/ 2

+ C

(∫
‖u(t)‖2H −3/2(Rn) dt

)1/ 2

≥ c0

(∫
‖ψw u(t)‖2H −1/2(Rn) dt

)1/ 2

.

(4.2.3)

Proof. Ñ We compute, noting F (t) = f (t, x, ξ)w ,

2 Re〈Lu, iψwM(t)ψw u〉 =
〈(

ψw úM(t)ψw + 2 Re
(
ψwM(t)ψw F (t)

))
u, u

〉

+
〈[(

Ref0(t)
)w

, iψwM(t)ψw
]
u, u

〉
+ 2 Re 〈ψwM(t)ψw Im f0(t)w u, u〉 .

(i) Let us assume that Im(f0) ∈ S(〈ξ〉" 1, 〈ξ〉" 1*). Then we get that

ψwM(t)ψw Im f0(t)w ∈ S(d〈ξ〉" 1/ 2〈ξ〉" 1, *) w ⊂ S(〈ξ〉" 1, *) w

and since [(Ref0(t))w, iψwM(t)ψw ]∈S(d〈ξ〉" 1/ 2〈ξ〉" 1/ 2d" 1,*) w = S(〈ξ〉" 1,*) w ,
the inequality (4.1.25) , the identity (4.2.2) and lemmas 4.1.8 Ð 4.2.1 show that

2 Re〈Lu, iψwM(t)ψw u〉 =
〈(

ψw úM(t)ψw + 2 Re
(
ψwM(t)ψw F (t)

))
u, u

〉

≥ c1

2
T " 1

∫
‖M(t)ψw u(t)‖2L 2(Rn) dt +

c0

2
T " 1

∫
‖ψw u(t)‖2H −1/2(Rn) dt

− C

∫
‖u(t)‖2H −1/2(Rn) dt.

As a consequence, we have

2T

∫
‖ψw Lu(t)‖L 2(Rn) ‖M(t)ψw u(t)‖L 2(Rn) dt + CT

∫
‖u(t)‖2H −1/2(Rn) dt

≥ c1

2

∫
‖M(t)ψw u(t)‖2L 2(Rn) dt +

c0

2

∫
‖ψw u(t)‖2H −1/2(Rn) dt,
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so that, with α > 0,

T

∫ (
Tα" 1 ‖ψw Lu(t)‖2L 2(Rn) + αT " 1 ‖M(t)ψw u(t)‖2L 2(Rn)

)
dt

+ CT

∫
‖u(t)‖2H −1/2(Rn) dt

≥ c1

2

∫
‖M(t)ψw u(t)‖2L 2(Rn) dt +

c0

2

∫
‖ψw u(t)‖2H −1/2(Rn) dt.

Choosingα ≤ c1/2 yields the result

T 2α" 1

∫
‖ψw Lu(t)‖2L 2(Rn) dt + CT

∫
‖u(t)‖2H −1/2(Rn) dt

≥ c0

2

∫
‖ψw u(t)‖2H −1/2(Rn) dt,

which is a better estimate than the sought one.

(ii) Let us deal now with the general case Im(f0) ∈ S(1, 〈ξ〉" 1*). Using the
deÞnitions (4.1.29), (4.1.31) and the property (4.1.30), we can use (i) above to
get the estimate for L0, so that with a Þxed c2 > 0

(4.2.4) T ‖ψw L0u‖L 2(Rn+1) + T 1/ 2

(∫
‖u(t)‖2H −1/2(Rn) dt

)1/ 2

≥ c2

(∫
‖ψw u(t)‖2H −1/2(Rn) dt

)1/ 2

,

so that

(4.2.5) T
∥∥ψw (e" ) 0)w L(e) 0)w u

∥∥
L 2(Rn+1)

+ T 1/ 2

(∫
‖u(t)‖2H −1/2(Rn) dt

)1/ 2

≥ c2

(∫
‖ψw u(t)‖2H −1/2(Rn) dt

)1/ 2

.

Applying this to u(t) given by (4.1.33), we obtain

(4.2.6)

T
∥∥ψw (e" ) 0)w Lv

∥∥
L 2(Rn+1)

+ T 1/ 2

(∫
‖
(

(e) 0 )w
)" 1

v(t)‖2H −1/2(Rn)dt

)1/ 2

≥ c2

(∫
‖ψw

(
(e) 0)w

)" 1
v(t)‖2H −1/2(Rn)dt

)1/ 2

.

Using that (( e) 0 )w )" 1 is a pseudodi!erential operator with symbol in
S(1, 〈ξ〉" 1*), we obtain, using the notation (4.1.35),

(4.2.7) T
∥∥ψw (e" ) 0)w Lv

∥∥
L 2(Rn+1)

+ CT 1/ 2

(∫
‖v(t)‖2H −1/2(Rn) dt

)1/ 2

≥ c2

(∫ ∥∥∥'( t)" 1(〈ξ〉" 1/ 2)w ψw v(t)
∥∥∥

2

L 2(Rn)
dt

)1/ 2

−C1

(∫
‖v(t)‖2H −3/2(Rn) dt

)1/ 2

,
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so that, using (4.1.36),

(4.2.8) T
∥∥ψw (e" ) 0)w Lv

∥∥
L 2(Rn+1)

+ CT 1/ 2

(∫
‖v(t)‖2H −1/2(Rn) dt

)1/ 2

+ C1

(∫
‖v(t)‖2H −3/2(Rn) dt

)1/ 2

≥ c2

(∫
‖(〈ξ〉" 1/ 2)w ψw v(t)‖2L 2(Rn)

1

‖'( t)‖2
dt

)1/ 2

≥ c3

(∫
‖(〈ξ〉" 1/ 2)w ψw v(t)‖2L 2(Rn)dt

)1/ 2

= c3

(∫
‖ψw v(t)‖2H −1/2(Rn)dt

)1/ 2

,

which is the result. The proof of the theorem is complete.

4.3. From inhomogeneous localization to homogeneous local ization
In this section, we are given a positive integern, and we deÞneN = n + 1.

The running point of T #(RN ) will be denoted by (y, η). We are also given a
point ( y0; η0) ∈ RN × SN " 1 such that
(4.3.1)
Y0 = ( y0; η0) = ( t0, x0; τ0, ξ0) ∈ R×Rn×R×Rn , with τ0 = 0 , ξ0 ∈ Sn " 1, t0 = 0.

We consider F (t, x, ξ) = f (t, x, ξ) − if0(t, x, ξ), with f, f0 satisfying the as-
sumptions of Theorem 4.2.2. Letψ0(ξ) be a function supported in a conic
neighborhood ofξ0 and χ0(τ, ξ) be an homogeneous localization nearτ = 0 as
in the appendix A.7 with some positive r0. We consider also a classical Þrst-
order pseudodi!erential operator R in RN such that Y0 /∈ WFR. We consider
the Þrst-order operator

(4.3.2) L = Dt + i
(
F (t, x, ξ)ψ0(ξ)χ0(τ, ξ)

)w
+ R.

We have

(4.3.3) L = Dt + i
(
F (t, x, ξ)ψ0(ξ)

)w
+ i

(
F (t, x, ξ)ψ0(ξ)

(
χ0(τ, ξ) − 1

))w

︸ ︷︷ ︸
=F1(t,x,/,! )w

+ R.

Let ψ1(ξ) be a function supported in a conic neighborhood ofξ0 and χ1(τ, ξ)
be an homogeneous localization nearτ = 0 as in the appendix A.7 with some
positive r1 < r0 and such that

suppχ1 ⊂ {χ0 = 1}, supp(ψ1χ1) ⊂ {ψ0χ0 = 1},(4.3.4)

[−T1, T1]×K1 × suppψ1χ1 ⊂ (WFR)c,(4.3.5)
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whereT1 > 0 andK1 is a compact neighborhood ofx0. Let ψ(x, ξ) be a symbol
satisfying the assumptions of Theorem 4.2.2 and letρ1 ∈ C !

c (R), such that

(4.3.6) suppψ ⊂ K1 × {ψ1 = 1}, suppρ1 ⊂ [−T1, T1].

We can apply the theorem 4.2.2 to the operatorL = Dt + i
(
F (t, x, ξ)ψ0(ξ)

)w
.

We have, with u ∈ S(RN ),

T1

∥∥ψw (e" ) 0)w (L− F1 −R)ρ1χ
w
1 u
∥∥

L 2(Rn+1)

+ CT 1/ 2
1

(∫
‖ρ1χ

w
1 u(t)‖2H −1/2(Rn) dt

)1/ 2

+ C

(∫
‖ρ1χ

w
1 u(t)‖2H −3/2(Rn) dt

)1/ 2

≥ c0

(∫
‖ψw ρ1χ

w
1 u(t)‖2H −1/2(Rn) dt

)1/ 2

.

We get then

T1

∥∥ψw (e" ) 0)w ρ1χ
w
1 Lu + ψw (e" ) 0)w ρ1[L,χw

1 ]u
∥∥

L 2(Rn+1)

+ T1

∥∥ψw (e" ) 0)w [L, ρ1]χw
1 u
∥∥

L 2(Rn+1)

+ T1

∥∥ψw (e" ) 0)w F w
1 ρ1χ

w
1 u
∥∥

L 2(Rn+1)
+ T1

∥∥ψw (e" ) 0)w Rρ1χ
w
1 u
∥∥

L 2(Rn+1)

+ CT 1/ 2
1 ‖(〈ξ〉" 1/ 2)w ρ1χ

w
1 u‖L 2(Rn+1) + C‖(〈ξ〉" 3/ 2)w ρ1χ

w
1 u‖L 2(Rn+1)

≥ c0

(∫
‖ψw ρ1χ

w
1 u‖2H −1/2(Rn) dt

)1/ 2

.(4.3.7)

We assume now thatu ∈ S(RN ), suppu ⊂ {(t, x), |t| ≤ T1/2} and also that ρ1

is 1 on [−3T1/4, 3T1/4]. We introduce two admissible(5) metrics on R2N ,
(4.3.8)

G = |dt|2 + |dx|2 +
|dξ|2 + |dτ |2

1 + |ξ|2 + τ2
≤ g = |dt|2 + |dx|2 +

|dξ|2

1 + |ξ|2 +
|dτ |2

1 + |ξ|2 + τ2
.

(1) The operator [L,χw
1 ] has a symbol in S(1, G) which is essentially sup-

ported in the region where |τ | ∼ |ξ|.
(2) The quantity [ L, ρ1]χw

1 u = [L, ρ1]χw
1 ρ2u if ρ2(t) is 1 on [−T1/2, T1/2] and

supported in [−3T1/4, 3T1/4] and thus the operator [L, ρ1]χw
1 ρ2 has a

symbol in S((1 + |ξ| + |τ |)"! , G).
(3) The operator F w

1 ρ1χw
1 is the composition of the symbolF1 ∈ S(〈ξ〉, g)

with the symbol in ρ15χ1 ∈ S(1, G) and thus is a priori in S(〈ξ〉, g);
however, looking at the expansion, and using (4.3.4), we seethat it has
a symbol in S((1 + |ξ| + |τ |)"! , G): it is not completely obvious though
and we refer the reader to the lemma A.8.1 for a complete argument.

(5)The properties of deÞnition 1.3.1 are classical for G and easily checked for g. One can
check also that (1 + |ξ| + |τ |)s are G-weights and (1 + |ξ|)s are g-weights.
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(4) The operator ψw (e" ) 0 )w Rρ1χw
1 is also the composition of an operator

in S(1, g)w with an operator in S(〈ξ, τ〉, G)w ; however, using (4.3.4-5-6)
and the appendix A.8, we see thatψw (e" ) 0)w Rρ1χw

1 has a symbol in
S((1 + |ξ| + |τ |)"! , G).

(5) The operator (〈ξ〉s)w ρ1χw
1 is also the sum of an operator inS(〈τ, ξ〉s , G)

plus a symbol in S((1 + |ξ| + |τ |)"! , G).

We write now, with R1 of order −∞ (weight 〈ξ, τ〉"! ) for G, E0 of or-
der 0 (weight 1) for G, supported in {(t, x, τ, ξ), |t| ≤ T1, x ∈ K1, (τ, ξ) ∈
supp∇χ1, (x, ξ) ∈ suppψ},

(4.3.9) T1

∥∥ψw (e" ) 0 )w ρ1χ
w
1 Lu + E0u

∥∥
L 2(Rn+1)

+ T1 ‖R1u‖L 2(Rn+1)

+ CT 1/ 2
1 ‖u‖H −1/2(Rn+1) + C ‖u‖H −3/2(Rn+1)

≥ c0

(∫
‖ψw ρ1χ

w
1 u‖2H −1/2(Rn) dt

)1/ 2

.

Theorem 4.3.1. Ñ Let L be the pseudodifferential operator given by (4.3.2)
and Y0 = ( y0, η0) be given by (4.3.1). We assume that {Y0} ⊂ + 0 ⊂ (WFR)c,
where + 0 is a compact-conic neighborhood of Y0. Then, there exists two pseu-
dodifferential operators ) 0, &0 of order 0 (weight 1) for G, both essentially
supported in + 0 with ) 0 is elliptic at Y0, and there exists r > 0 such that, for
all u ∈ S(RN ), suppu ⊂ {(t, x), |t| ≤ r},
(4.3.10)

r ‖&0Lu‖L 2(RN ) + r1/ 2 ‖u‖H −1/2(RN ) + ‖u‖H −3/2(RN ) ≥ ‖) 0u‖H −1/2(RN ) .

Proof. Ñ It is a direct consequence of (4.3.9) since, using the ellipticity of
L in the support of the symbol of E0, we get E0 = KL + R2, where K is
a pseudodi!erential operator of order 0 such that WFK ⊂ + 0 and R2 is a
pseudodi!erential operator of order −∞ for G.

4.4. Proof of the solvability result stated in Theorem 1.2.2 . Ñ Let P
be a Þrst-order pseudodi!erential operator with principal symbol p satisfying
the assumptions of Theorem 1.2.2 and let (y0, η0) be a point in the cosphere
bundle. If p(y0, η0) #= 0, then there exists a pseudodi!erential operator ) 0 of
order 0, elliptic at ( y0, η0) such that

(4.4.1) ‖P #u‖0 + ‖u‖" 1 ≥ ‖) 0u‖1 .

In fact, the ellipticity assumption implies that there exis t a pseudodi!erential
operator K of order −1 and a pseudodi!erential operator R of order 0 such
that

Id = KP # + R, (y0, η0) /∈ WFR.

As consequence, for )0 of order 0 essentially supported close enough to (y0, η0),
we get ) 0 = ) 0KP # + ) 0R with ) 0R of order −∞, which gives (4.4.1).
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Let us assume now thatp(y0, η0) = 0. We know from the assumption (1.2.1)
that ∂. p(y0, η0) #= 0 and we may suppose that (∂. Rep)(y0, η0) #= 0 . Using the
Malgrange-Weierstrass theorem, we can Þnd a conic neighborhood of (y0, η0)
in which

p(y, η) =
(
σ + a(s, z, ζ) + ib(s, z, ζ)

)
e0(y, η)

where a, b are real-valued positively homogeneous of degree 1,e0 is homoge-
neous of degree 0, elliptic near (y0, η0), (s, z; σ, ζ) ∈ R× Rn × R× Rn a choice
of symplectic coordinates in T #(RN ) (N = n + 1), with y0 = (0 , 0), η0 =
(0, . . . , 0, 1). Noting that the Poisson bracket

{σ + a, s} = 1

we see that there exists an homogeneous canonical transformation %" 1, from
a (conic) neighborhood of (y0, η0) to a conic neighborhood of (0; 0, . . . 0, 1) in
RN × RN such that

p ◦% =
(
τ + iq(t, x, ξ)

)
(e ◦%).

Note in particular that, setting τ = σ+ a, t = s, (which preserves the coordinate
s) yields

−∂/ q = {t, q} = {s, b} ◦ χ = 0 .

We see now that there exists some elliptic Fourier integral operators A, B and
E a pseudodi!erential operator of order 0, elliptic at (y0, η0) such that

AEP #B = Dt + i(f (t, x, ξ)χ0(τ, ξ))w + R,

BA = Id + S, (y0, η0) ∈ #0(conic neighborhood of (y0,η0)) ⊂ (WFS)c,

where f satisÞes (2.1.2),R is a pseudodi!erential operator of order 0, andχ0

is a nonnegative homogeneous localization nearτ = 0. Using the fact that the
coordinate s is preserved by the canonical transformation, we can assumethat
A, B are local operators in thet variable, i.e., are such that

u ∈ C !
c , suppu ⊂ {(t, x) ∈ R× Rn , |t| ≤ r}

=⇒ suppBu ⊂ {(s, z) ∈ R× Rn , |s| ≤ r}.

Using the fact that the operator P is polyhomogeneous, one can iterate the use
of the Malgrange-Weierstrass theorem to reduce our case toAEP #B = L of
the type given in (4.3.2). We can apply the theorem 4.3.1, giving the existence
of a pseudodi!erential operator &0 of order 0, elliptic at %" 1(y0, η0), essentially
supported in %" 1(# 0) such that for all u ∈ C !

c (RN ), suppu ⊂ {|t| ≤ r},

r ‖&0AEP #Bu‖0 + r1/ 2 ‖u‖" 1/ 2 + ‖u‖" 3/ 2 ≥ ‖) 0u‖" 1/ 2 .
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We may assume thatA and B are properly supported and apply the previous
inequality to u = Av, whose support in thes variable is unchanged. We get

r ‖&0AEP #BAv‖0 + r1/ 2 ‖Av‖" 1/ 2 + ‖Av‖" 3/ 2 ≥ ‖) 0Av‖" 1/ 2 ,

so that

r ‖&0AEP #v‖0 + Cr1/ 2 ‖v‖" 1/ 2 + C1 ‖v‖" 3/ 2

≥ ‖) 0Av‖" 1/ 2 ≥ C" 1
2 ‖B) 0Av‖" 1/ 2 ,

which gives, for all v ∈ C !
c (RN ), suppv ⊂ {y ∈ RN , |y − y0| ≤ r},

(4.4.2) r ‖P #v‖0 + r1/ 2 ‖v‖" 1/ 2 + ‖v‖" 3/ 2 ≥ ‖) v‖" 1/ 2 ,

where ) = cB) 0A is a pseudodi!erential operator of order 0, elliptic near
(y0, η0). By compactness of the cosphere bundle, one gets, using (4.4.2)
or (4.4.1),

(4.4.3) ‖v‖" 1/ 2 ≤ C
∑

1& $& l

‖) 0$v‖" 1/ 2 + C ‖v‖" 1

≤ C1r ‖P #v‖0 + C1r
1/ 2 ‖v‖" 1/ 2 + C1 ‖v‖" 1 ,

which entails, by shrinking r, the existence ofr0 > 0, C0 > 0, such that for
v ∈ C !

c (RN ), suppv ⊂ {y ∈ RN , |y − y0| ≤ r0} = Br 0 ,

(4.4.4) ‖v‖" 1/ 2 ≤ C0 ‖P #v‖0 .

Let s be a real number andP be an operator of orderm, satisfying the assump-
tions of Theorem 1.2.2. LetE# be a properly supported operator with symbol
〈ξ〉# . Then the operator E1" m " sPEs is of Þrst order, satisÞes condition (ψ)
and from the previous discussion, there existsC0 > 0, r0 > 0 such that

‖v‖" 1/ 2 ≤ C0 ‖EsP
#E1" m " sv‖0 , v ∈ C !

c (RN ), suppv ⊂ Br 0 .

We get, with χr supported in Br and χr = 1 on Br/ 2, with supp u ⊂ Br 0/ 4,
∥∥χr 0Em +s" 1χr 0/ 2u

∥∥
" 1/ 2

≤ C0

∥∥EsP
#E1" m " sχr 0Em +s" 1χr 0/ 2u

∥∥
0

≤ C0‖EsP
#E1" m " s [χr 0 , Em +s" 1]χr 0/ 2︸ ︷︷ ︸

S−∞

u‖0

+ C0‖EsP
# E1" m " sEm +s" 1︸ ︷︷ ︸

=Id +S−∞

χr 0/ 2u︸ ︷︷ ︸
=u

‖0

≤ C0 ‖P #u‖s + ‖Ru‖0 ,

where R is of order−∞. Since we have

χr 0Em +s" 1χr 0/ 2u = [ χr 0 , Em +s" 1]χr 0/ 2︸ ︷︷ ︸
S−∞

u + Em +s" 1 χr 0χr 0/ 2u︸ ︷︷ ︸
=u

,
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we get ‖u‖s+m " 3
2
≤ C0 ‖P #u‖s + C1 ‖u‖s+m " 2 and, shrinking the support of

u, we obtain the estimate

(4.4.5) ‖u‖s+m " 3
2
≤ C2 ‖P #u‖s ,

for u ∈ C !
c with support in a neighborhood of y0. This implies the local

solvability of P , with the loss of derivatives claimed by the theorem 1.2.2,
whose proof is now complete.

Appendix A

A.1. Wick quantization. Ñ We recall here some facts on the so-called Wick
quantization, as used in [21, 22, 23].

Definition A.1.1. Ñ Let Y = ( y, η) be a point in R2n . The operator , Y is
deÞned as

[
2n e" 2" |á" Y |2

]w
. This is a rank-one orthogonal projection: , Y u =

(Wu)(Y )τY ϕ with ( Wu)(Y ) = 〈u, τY ϕ〉L 2(Rn), where ϕ(x) = 2 n/ 4e" " |x |2 and
(τy,. ϕ)(x) = ϕ(x−y)e2i" *x " y

2 ,. +. Let a be in L! (R2n ). The Wick quantization
of a is deÞned as

(A.1.1) aWick =
∫

R2n

a(Y ), Y dY.

The following proposition is classical and easy (see e.g. section 5 in [22]).

Proposition A.1.2
1. Let a be in L! (R2n ). Then aWick = W #aµ W and 1Wick = IdL 2(Rn) where
W is the isometric mapping from L2(Rn ) to L2(R2n ) given above, and aµ the
operator of multiplication by a in L2(R2n ). The operator πH = WW # is the
orthogonal projection on a closed proper subspace H of L2(R2n ). Moreover, we
have

(A.1.2)
∥∥aWick

∥∥
L (L 2(Rn))

≤ ‖a‖L ∞(R2n) ,

(A.1.3) a(X) ≥ 0 for all X implies aWick ≥ 0.

2. Let m be a real number,and p ∈ S($ m , $ " 1#) . Then pWick = pw + r(p)w ,
with r(p) ∈ S($ m " 1, $ " 1#) so that the mapping p (→ r(p) is continuous. More
precisely, one has

r(p)(X) =
∫ 1

0

∫

R2n

(1− θ)p(((X + θY )Y 2e" 2" Γ(Y )2n dY dθ.

Note that r(p) = 0 if p is affine.
3. For a ∈ L! (R2n ), the Weyl symbol of aWick is
(A.1.4)

a ∗ 2n exp−2π# which belongs to S(1, #) with kth -seminorm c(k) ‖a‖L ∞.
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4. Let R = t (→ a(t, X) ∈ R such that, for t ≤ s, a(t, X) ≤ a(s, X). Then, for
u ∈ C1

c

(
Rt , L2(Rn )

)
, assuming a(t, ·) ∈ L! (R2n ),

(A.1.5)
∫

R

Re〈Dt u(t), ia(t)Wicku(t)〉L 2(Rn)dt ≥ 0.

5. With the operator , Y given in definition A.1.1, we have the estimate

(A.1.6) ‖, Y , Z ‖L (L 2(Rn)) ≤ 2n e" π
2 Γ(Y " Z ).

6. More precisely, the Weyl symbol of , Y , Z is, as a function of the variable
X ∈ R2n , setting #(T ) = |T |2

(A.1.7) e" π
2 |Y " Z |2e" 2i" [X " Y,X " Z ]2n e" 2" |X " Y +Z

2 |2 .

Since for the Weyl quantization, one has‖aw‖L (L 2(Rn)) ≤ 2n ‖a‖L 1(R2n) ,
we get the result (A.1.7) from (A.1.6). Note that (A.1.5) is simply a way of
writing that d

dt

(
a(t)Wick

)
≥ 0, which is a consequence of (A.1.3) and of the

non-decreasing assumption made ont (→ a(t, X).

Lemma A.1.3. Ñ Let M be a #-weight, i.e., a positive function such that
M (X)M (Y )" 1 ≤ C(1 + #( X − Y ))N (see definition 1.3.1). Then if a mea-
surable function a defined on R2n satisfies for all X, |a(X)| ≤ C1M (X), the
symbol a ∗ exp−2π# belongs to S(M, #) with semi-norms depending only on
C1. More generally, for a polynomial p the symbol A defined by

A(X) =
∫

a(Y )p(X − Y ) exp−2π#(X − Y )dY

belongs to to S(M, #) .

Proof. Ñ We check Þrst

(A.1.8) (a ∗2n exp−2π#) (k)(X) =
∫

a(Y )Pk (X −Y )2n exp−2π#(X −Y )dY

with a polynomial Pk , which gives

M (X)" 1|(a ∗ 2n exp−2π#) (k)(X)|

≤ C1

∫
M (Y )
M (X)

|Pk (X − Y )|2n exp−2π#(X − Y )dY

≤ C1

∫
C
(
1+#( X−Y )

)N |Pk (X−Y )|2n exp−2π#(X−Y )dY = C1Cγ(k, N, n).

Let us examineA(k): it is a sum of terms of type (A.1.8) and thus the above
argument works.
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Lemma A.1.4. Ñ Let g be an admissible metric on R2n (see definition 1.3.1)
such that, with # a given symplectic norm, there exists C0 > 0, n0 ≥ 0 such
that

(A.1.9) ∀X, Y, T, gX (T ) ≤ C0#(T ),
gX (T )
gY (T )

≤ C0

(
1 + #( X − Y )

)n 0 .

Let m be a weight for g (definition 1.3.1) such that

(A.1.10)
m(Y )
m(Z)

≤ C0

(
1 + #( Z − Y )

)n 0 .

Then, if A ∈ Op(S(m, g)) , there exists a semi-norm γ of the symbol of A such
that

(A.1.11) |〈Av, v〉| ≤ γ〈mWickv, v〉 = γ

∫

R2n

m(Y ) ‖, Y v‖2L 2 dY.

Proof. Ñ Theorem 6.9 in [2] shows that the spaceH(m1/ 2, g) is equal to
H(m1/ 2, #) provided that m1/ 2 is regular. In fact we may assume thatm
is regular since it is anyhow always equivalent to a regular weight. Using deÞ-
nition 7.1 in [2], we check that g is dominated by a strongly temperate metric,
namely the constant metric #. Moreover the corollary 6.7 and theorem 7.8
in [2] imply

|〈Av, v〉| ≤ ‖Av‖H (m −1/2,g)‖v‖H (m 1/2,g) ≤ γ‖v‖2H (m 1/2,g)

= γ‖v‖2H (m 1/2,Γ) = γ

∫

R2n

m(Y ) ‖θw
Y u‖2L 2 dY,

where (θY ) is a partition of unity related to the metric #. We have, usin g
the results of this section, (A.1.10) and (A.1.6), with 〈T 〉2 = 1 + #( T ), for
all N1, N2,
∫

m(Y ) ‖θw
Y u‖2 dY

=
∫∫∫

R2n

m(Y )〈θw
Y , Z 1 , Z 1u, θw

Y , Z 2 , Z 2u〉dY dZ1dZ2

≤
∫∫∫

m(Z1)1/ 2m(Z2)1/ 2 ‖, Z 1u‖ ‖, Z 2u‖ 〈Y − Z1〉" N 1〈Z2 − Z1〉" N 2

dY dZ1dZ2CN 1,N 2

≤
∫∫

m(Z1)1/ 2m(Z2)1/ 2 ‖, Z 1u‖ ‖, Z 2u‖ 〈Z2 − Z1〉" N 2dZ1dZ2CN 1,N 2

≤
∫

m(Z) ‖, Z u‖2 dZ,

which completes the proof of the lemma.
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Lemma A.1.5. Ñ Let m1, m2 be two #-weights (see definition 1.3.1) and
a1, a2 be two locally Lipschitz continuous functions such that |a1(X)| ≤
m1(X), |a(

2(X)| ≤ m2(X). Then the operator

(A.1.12) aWick
1 aWick

2 ∈ (a1a2)Wick + Op(S(m1m2, #)) .

Proof. Ñ We use the deÞnition A.1.1 and TaylorÕs formula to write

aWick
1 aWick

2 =
∫∫

a1(Y )
(
a2(Y )+

∫ 1

0
a(
2

(
Y + θ(Z−Y )

)
dθ(Z−Y )

)
, Y , Z dY dZ

= ( a1a2)Wick + Rw ,

with

(A.1.13) R(X) =
∫∫∫ 1

0
a1(Y )a(

2

(
Y + θ(Z − Y )

)
(Z − Y )e" π

2 |Y " Z |2×

× e" 2i" [X " Y,X " Z ]2n e" 2" |X " Y +Z
2 |2dY dZdθ.

We have, using (5) in deÞnition 1.3.1,

|R(X)| ≤
∫∫∫ 1

0
m1(Y )m2(Y )

m2(Y + θ(Z − Y ))
m2(Y )

|Z − Y |e" π
2 |Y " Z |2

2n e" 2" |X " Y +Z
2 |2dY dZdθ

≤ Cm1(X)m2(X)
∫∫∫ 1

0
(1 + |Y −X |2)N (1 + |Y − Z|2)N +1/ 2e" π

2 |Y " Z |2

e" 2" | Y +Z
2 " X |2dY dZdθ

= Cm1(X)m2(X)
∫∫

(1+ |T/2+ S|2)N (1+ |T |2)N +1/ 2e" π
2 |T |2e" 2" |S|2dTdS

= C(m1(X)m2(X).

Moreover taking derivatives of R in its deÞning formula (A.1.13) above leads
to the same estimate forR(k)(X). The proof of the lemma is complete.

Lemma A.1.6. Ñ Let (χk ) be a partition of unity and (ψk ) be a sequence as in
lemma 1.4.1 for an admissible metric of type λ" 1(X)# , where λ is a #-weight
and # = # # . Let ω be a locally bounded function such that |ω(X)| ≤ M (X)
where M is a #-weight. Assume that, for each k, there exist a bounded function
ωk such that ω(X) = ωk (X) for all X ∈ suppχk and such that for all X ∈ R2n ,
|ωk (X)| ≤ M (X)λ(X)N 0 . Then with ω̃(X) =

∫
ω(Y )2n exp−2π#(X − Y )dY,

we have

(A.1.14) χk (X)ω̃(X) = χk (X)ω̃k (X) + rk (X),
∑

k

rk ∈ S(λ"! , #) .
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Proof. Ñ We already know from the lemma A.1.3 that X (→ ω̃(X) =∫
ω(Y )2n exp−2π#(X − Y )dY belongs toS(M, #). We check now

(A.1.15) χk (X)ω̃(X) = χk (X)
∫

ω(Y )2n exp−2π#(X − Y )dY

= χk (X)
∫

ψk (Y )ω(Y )2n exp−2π#(X − Y )dY

+ χk (X)
∫

Y,0 k(Y )%=1
(1− ψk (Y ))ω(Y )2n exp−2π#(X − Y )dY

= χk (X)
∫

ψk (Y )ωk (Y )2n exp−2π#(X − Y )dY + rk (X).

We have #(Uk − (U#
k )c) = inf Γ(T )< 1& Γ(S) #(Xk + r0λ(Xk )1/ 2T − Xk −

λ(Xk )1/ 22r0S) and thus #(Uk − (U#
k )c) ≥ λ(Xk )r2

0 . Sinceψk is equal to 1 on
U#

k (notations of section 1.4) we obtain from (A.1.15)

|r(j )
k (X)|Γ ≤ Cj ψk (X) exp−π#(Uk − (U#

k )c) ≤ Cj,N,r 0ψk (X)λ(X)" N

and thus
∑

k rk ∈ S(λ"! , #) . We obtain

χk ω̃ = χk
(
ψk ωk ∗ 2n exp−2π#

)
+ rk

= χk
(
ωk ∗ 2n exp−2π#

)
+ χk

(
ωk (ψk − 1) ∗ 2n exp−2π#

)
+ rk ,

and applying again the same reasoning to the penultimate term above, we get
for Y ∈ (U#

k )c and X ∈ Uk , that #( X − Y ) ≥ λ(Xk )r2
0 the following estimate

for the integrand

exp−π#(X − Y ) exp−πλ(Xk )r2
0 ×M (Y )λ(Y )N 0

≤ CM (X)λ(X)N 0(1 + #( X − Y ))N 0 exp−π#(X − Y ) exp−πλ(Xk )r2
0

≤ C(M (X)λ(Xk )N 0 (1 + #( X −Xk ))N 0 exp−π

2
#(X − Y ) exp−πλ(Xk )r2

0

≤ C((M (X)λ(Xk )3N 0 exp−π

2
#(X − Y ) exp−πλ(Xk )r2

0

≤ C(((M (X)λ(Xk )3N 0 exp−π

2
#(X − Y ) exp−πλ(Xk )r2

0

which yields the result.

Definition A.1.7. Ñ Let # be a symplectic quadratic form on Rn ×Rn , i.e.,
a positive deÞnite quadratic form such that # = # # (see deÞnition 1.3.2(2)).
There exists a unique linear symplectic mappingA such that for all X = ( x, ξ),
#(AX) =

∑
1& j & n x2

j + ξ2
j . Let U be a metaplectic transformation in the Þber

of A. Then for a ∈ L! (R2n ), we deÞne

(A.1.16) aWick(Γ) =
∫

a(Y )2n (exp−2π#( ·− Y )
)w

dY = U (a ◦A)WickU#.
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Remark A.1.8. Ñ Note that since U is uniquely determined up to a factor
of modulus one, that deÞnition is consistent. We remark alsothat, deÞning for
X ∈ R2n , )( X) = 2 n exp−2π#(X), we have )( AX − AY ) = 2 n exp−2π|X −
Y |2, which is the Weyl symbol of , Y (deÞnition A.1.1). From the Segal formula,
we have, with a metaplecticU in the Þber of A

)( X − Z)w = U )( AX − Z)w U#

and thus we can justify the equality in formula (A.1.16) since

∫
a(Y )2n (exp−2π#(X − Y )

)w
dY =

∫
a(AY ))( X −AY )w dY =

∫
a(AY )U )( AX −AY )w U# =

∫
a(AY )U , Y U#dY = U (a ◦A)WickU#.

Remark A.1.9. Ñ We can also notice that the deÞnition above is consistent
with the fact that Wick and Weyl quantization coincide for li near forms: if a
is a linear form, we have

(A.1.17) aWick(Γ) = U (a ◦A)WickU# = U (a ◦A)w U# = UU#aw UU# = aw .

Also, it is easy with the formula (A.1.16) to check that the results of section A.1
on the Wick quantization can be extended,mutatis mutandis, to the Wick(#)
quantization.

A.2. Properties of some metrics. Proof of the remark followi ng def-
inition 1.3.1. Ñ Using a partition of unity related to the slowly varying g,
as in [3], we deÞneM#(X) =

∫
R2n M (Y )ϕY (X)|gY |1/ 2dY. It is a simple matter

left to the reader to check that M# belongs toS(M, g) and satisÞes (1.3.3).

Lemma A.2.1. Ñ Let # be a positive definite quadratic form on R2n such that
# = # # and let gX = λ(X)" 1# be a metric conformal to # such that g is
slowly varying and inf X λ(X) ≥ 1. Then the metric g satisfies gX (T ) ≤
CgY (T )

(
1 + #( X − Y )

)
, i.e.,

(A.2.1)
λ(Y )
λ(X)

≤ C
(
1 + #( X − Y )

)
,

implying that g is admissible.

Proof. Ñ Since g is slowly varying, we may assume, with a positiver0, gY (Y −
X) ≥ r2

0 , which means #(Y −X) ≥ r2
0λ(Y ) and using λ(X) ≥ 1 we get

λ(Y )/λ(X) ≤ r" 2
0 #(Y −X).

tome 134 – 2006 – no 4



LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (Ψ) 619

Lemma A.2.2. Ñ Let # be a positive definite quadratic form on R2n such that
# = # # and let gX = λ(X)" 1# be a metric conformal to #. Assume that
λ(X) = d(X)2 + λ1(X) with a function d uniformly Lipschitz continuous (with
respect to #) and λ" 1

1 # slowly varying with λ1 ≥ 1. Then the metric g is slowly
varying.

Proof. Ñ Let us assume that |X − Y |2 ≤ r2
(
d(X)2 + λ1(X)

)
. If d(X)2 ≤

λ1(X), using the fact that λ" 1
1 # is slowly varying, we can chooser small enough

so that λ1(X) ≤ C1λ1(Y ) and thus

λ(X) ≤ 2C1λ1(Y ) ≤ 2C1λ(Y ).

If d(X)2 > λ1(X), we have, with L standing for the Lipschitz constant of d,

2" 1/ 2λ(X)1/ 2 < d(X) ≤ d(Y ) + L|X − Y | ≤ λ(Y )1/ 2 + Lrλ(X)1/ 2

so that, for r ≤ 1
23/2L +1

we getλ(X) ≤ 8λ(Y ).

Remark A.2.3. Ñ It is a simple exercise left to the reader to show that (1)
in DeÞnition 1.3.1 is satisÞed whenever there existsr0 > 0, C0 > 0 such that
for all X, Y, T ∈ R2n , gX (Y −X) ≤ r2

0 implies gY (T ) ≤ C0gX (T ).

Taking this remark into account, we complete the proof of the lemma.

A.3. Proof of Lemma 2.1.5 on the proper class. Ñ All norms in this
proof are taken with respect to the constant quadratic form #, so we omit the
index everywhere and denote‖·‖Γ by | · |. Since for all j ∈ N, |f (j )(X)| ≤
γj $ m " j

2 , we get 1≤ λ(X) ≤ 1 + $ max 0≤j<2m
j∈N

γ
2

2m−j

j = 1 + γ$ ≤ (1 + γ)$

and (2.1.12). For 0≤ j < 2m, we have from the deÞnition ofλ, the estimate
|f (j )(X)| ≤ λ(X)m " j

2 , and for j ≥ 2m, we can use

|f (j )(X)| ≤ γj $ m " j
2 = γj $ " (j−2m)

2 ≤ γj λ
" (j−2m)

2 (1 + γ)
(j−2m)

2 ,

so that f ∈ S(λm ,λ" 1#) with a j-th semi-norm less than 1 forj < 2m and less

than γj (1 + γ)
(j−2m)

2 for j ≥ 2m .
Let us now prove that λ" 1# is slowly varying. Let us assume that|X−Y |2 ≤

r2λ(X). Using TaylorÕs formula, we get for the smallest integerN ≥ 2m
(N = −[−2m]) and 0≤ j < 2m,

|f (j )(X)| ≤
∑

l,j +l< 2m

|f (j +l )(Y )|r
l

l!
λ(X)l/ 2 + γN $ m " N

2
rN " j

(N − j)!
λ(X)(N " j )/ 2,
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so that |f (j )(X)| ≤
∑

l,j +l< 2m λ(Y )
2m−j−l

2 λ(X)
l
2 r l

l ! + γN $
2m−N

2 λ(X)
N−j

2 r N−j

(N " j )! ,
and

|f (j )(X)|

≤
∑

l,j +l< 2m

(λ(Y )
2m−j

2 )
2m−j−l
2m−j (λ(X)

2m−j
2 )

l
2m−j

rl

l!
+ γN $

≤0︷ ︸︸ ︷
2m−N

2 λ(X)
N−j

2
rN " j

(N − j)!

≤
∑

l,j +l< 2m

2m− j − l

2m− j
λ(Y )

2m−j
2

rl

l!
+

l

2m− j
λ(X)

2m−j
2

rl

l!

+ γN (1 + γ)
N−2m

2 λ(X)
2m−j

2
rN " j

(N − j)!

implying

|f (j )(X)| ≤ λ(Y )
2m−j

2

= p(r ) a polynomial in r
︷ ︸︸ ︷
∑

l,j +l< 2m

2m− j − l

2m− j

rl

l!

+ λ(X)
2m−j

2

( ∑

1& l,j +l< 2m

l

2m− j

rl

l!
+ γN (1 + γ)

N−2m
2

rN " j

(N − j)!

)

︸ ︷︷ ︸
= %(r ) goes to zero with r .

.

Assuming then that j was chosen so thatλ(X) = 1 + |f (j )(X)|
2

2m−j , we get

λ(X) ≤ 1 +
(
λ(Y )

2m−j
2 p(r) + λ(X)

2m−j
2 ε(r)

) 2
2m−j

,

so that there exist r0 > 0, C0 ≥ 1, depending only on theN Þrst semi-norms
of f , such that for r ≤ r0, we have

|X − Y |2 ≤ r2λ(X) =⇒ λ(X) ≤ C0λ(Y ),

and thus r ≤ r0, |X − Y |2 ≤ r2C" 1
0 λ(X) =⇒ C" 1

0 λ(X) ≤ λ(Y ) ≤ C0λ(X),
which is the property (1) in DeÞnition 1.3.1. The property (2) in that deÞnition
is obviously satisÞed sinceλ(X) ≥ 1. Moreover, we get a stronger property
than (3) from the Lemma A.2.1 above in this appendix.

A.4. Some a priori estimates and loss of derivatives. Ñ In this section,
we prove that when a factorization occurs in an abstract setting, it is possible
to limit the loss of derivatives to 3/2 (the loss is always counted with respect
to the elliptic case). Let us study the model-case

L = Dt + iA0B1, A0 ∈ Op(S0), B1 ∈ Op(S1)
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with real-valued Weyl symbols such that A0 ≥ c0$ " 1, úB1 ≥ 0. We compute,
using the notation

‖u‖ =
(∫

|u(t)|2dt

)1/ 2

, |v| = ‖v‖
H

, H = L2(Rn ), |u|! = sup
t ' R

|u(t)|,

2 Re〈Lu, iB1u〉 = 〈 úB1(t)u(t), u(t)〉 + 2 Re〈A0B1u, B1u〉 ≥ 2c0$ " 1 ‖B1u‖2 .

As a consequence, for suppu ⊂ [−T, T ],

2 Re〈Lu, iB1u〉 + 2 Re〈Lu, iH(t− T0)u〉

≥ c0$ " 1 ‖B1u‖2 + |u|2! + ‖A1/ 2
0 B1u‖2 + 2 Re〈A1/ 2

0 B1u, iHT0A
1/ 2
0 u〉

≥ c0$ " 1 ‖B1u‖2 + |u|2! (1− sup
|t |& T

‖A0(t)‖T )

(for T small enough) ≥ c0$ " 1 ‖B1u‖2 +
1
2
|u|2! ,

so that c" 1
0 $ ‖Lu‖2 + c0$ " 1 ‖B1u‖2 + 2 ‖Lu‖ ‖u‖ ≥ c0$ " 1 ‖B1u‖2 + 1

2 |u|
2
! and

thus

(c" 1
0 $ + 1) ‖Lu‖2 + T |u|2! ≥

1
2
|u|2!

entailing for T ≤ 1/4, (c" 1
0 $ + 1) ‖Lu‖2 ≥ 1

4 |u|
2
! , which gives ‖Lu‖ >

$ " 1/ 2 ‖u‖, an estimate with loss of 3/2 derivatives.
The next question is obviously: how do we manage to get the estimate

A0 ≥ $ " 1? AssumingA0 ≥ −C$ " 1, we can always consider insteadA0 + ( C +
1)$ " 1 ≥ $ " 1; now this modiÞes the operatorL and although our estimate is
too weak to absorb a zeroth order perturbation, it is enough to check that the
energy method is stable by zeroth order perturbation. We consider then

Dt + iA0B1 + S + iR, A0 ≥ $ " 1, S, R ∈ Op(S0).

Inspecting the method above, we see thatS will not produce any trouble, since
we shall commute it with B1, producing an operator of order 0. The term
produced by R are more delicate to handle: we shall have to deal with

2〈Ru, B1u〉 + 2 〈Ru, HT0u〉.
The second term isL2 bounded and can be absorbed. There is no simple
way to absorb the Þrst term, which is of size‖B1u‖ ‖u‖ which is too large
with respect to the terms that we dominate. However we can consider the
L2-bounded invertible operator U (t) (which is in Op( S0) and self-adjoint) such
that U (0) = Id and úU (t) = −U (t)R(t) so that

L = Dt + iR + iA0B1 + S = U (t)" 1Dt U (t) + iA0B1 + S

= U (t)" 1
(
Dt + iA0B1 + S

)
U (t) − U (t)" 1

[
iA0B1 + S, U (t)

]

= U (t)" 1
(
Dt + iA0B1 + S +

[
U (t), iA0B1 + S

]
U (t)" 1

)
U (t).
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Now the term
[
U (t), iA0B1

]
U (t)" 1 has a real-valued principal symbol in S0

and amounts to a modiÞcation of S, up to unimportant terms of order −1. The
term

[
U (t), S

]
U (t)" 1 is of order−1 and can be absorbed. We have proven the

following lemma.

Lemma A.4.1. Ñ Let $ ≥ 1 be given. We consider the metric G = |dx|2 +
$ " 2|dξ|2 on Rn ×Rn . Let a0(t, x, ξ) be in S(1, G) such that a0(t, x, ξ) ≥ 0. Let
b1(t, x, ξ) be real-valued and in S($ , G) such that

(
b1(t, x, ξ) − b(s, x, ξ)

)
(t− s) ≥ 0.

Let r(t, x, ξ) be a complex-valued symbol in S(1, G). Assuming that a0, b1, r0

are continuous functions, there exists a constant C > 0 depending only on the
semi-norms of the symbols a0, b1, r0, such that, for all u ∈ C1

c ([−T, T ], L2(Rn ))
with CT ≤ 1,

C ‖Lu‖L 2(Rn+1) ≥ $ " 1/ 2T " 1 ‖u‖L 2(Rn+1) .

A.5. Some lemmas on symbolic calculus. Ñ Let g be an admissible
metric on R2n and m be a g-weight (see deÞnition 1.3.1). Then, at each point
X ∈ R2n , we can deÞne a metricg1

X by taking the geometric mean ofgX , g#
X

so that in particular

(A.5.1) gX ≤ g1
X = ( g1

X )# ≤ g#
X .

We deÞne

(A.5.2) h(X) = sup
g%

X (T )=1

gX (T )

and we note that wheneverg# = λ2g we get from the deÞnition 1.3.1 that
g1 = λgg and λg = 1/h.

Definition A.5.1. Ñ Let l be a nonnegative integer. We deÞne the set
Sl (m, g) as the set of smooth functionsa deÞned onR2n such that a satis-
Þes the estimates ofS(m, g) for derivatives of order ≤ l, and the estimates of
S(m, g1) for derivatives of order ≥ l + 1, which means

|a(k)(X)T k | ≤ Ck m(X) ×






gX (T )k/ 2 if k ≤ l,

g1
X (T )k/ 2h(X)

l+1
2 if k ≥ l + 1,

with h(X) = sup
g%

X(T )=1

gX (T ).

Note that since h ≤ 1 and g ≤ hg1, we get S(m, g) ⊂ Sl (m, g). If g =
λ(X)" 1#X , where λ(X) is positive (scalar) and #X = # #

X , then g1
X = # X and

a belongs toSl (m,λ" 1#) means

|a(k)(X)|ΓX ≤ Ck m(X) ×
{

λ(X)" k/ 2 if k ≤ l,

λ(X)" l/ 2 if k ≥ l + 1 .

Moreover, if g ≡ g1, then for all l, S(m, g) = Sl (m, g).
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Lemma A.5.2. Ñ Let # be a positive definite quadratic form on R2n such that
# = # # and λ be a #-weight. Let b be a symbol in S1(λm ,λ" 1#) , where m is a
real number. Then b5b− b2 ∈ S(λ2m " 1, #)

Proof. Ñ We have ( b5b)(X) = exp iπ[DX 1 , DX 2 ]
(
b(X1) ⊗ b(X2)

)
|X 1=X 2=X so

that using TaylorÕs formula with integral remainder fors (→ es yields

(b5b)(X)= b(X)2+
∫ 1

0
expiπθ[DX 1 , DX 2 ]dθiπ[DX 1 , DX 2 ]b(X1)⊗b(X2)|X 1=X 2=X .

Sinceb( ∈ S(λm " 1/ 2, #) and

expiπθ[DX 1 , DX 2 ](a1(X1) ⊗ a2(X2))

= exp iπ[DX 12−1/2 , DX 22−1/2 ](a1(θ" 1/ 2X1θ
1/ 2) ⊗ a2(θ" 1/ 2X2θ

1/ 2)) |X 1=X 2=X

= exp iπ[DY1 , DY2 ](a1(θ1/ 2Y1) ⊗ a2(θ1/ 2Y2)) |Y1=Y2=2−1/2X

=
(
(a1 ◦ θ1/ 2)5(a2 ◦ θ1/ 2)

)
(θ" 1/ 2X),

we get that, if aj ∈ S(λm j , #), we have aj ◦ θ1/ 2 ∈ S(λm j , θ#) so that the
symbolic calculus for the metricθ# (observe that it is admissible for θ bounded)
gives

(a1 ◦ θ1/ 2)5(a2 ◦ θ1/ 2) ∈ S(λm 1+m 2 , θ#)

which implies
(
(a1 ◦ θ1/ 2)5(a2 ◦ θ1/ 2)

)
◦ θ" 1/ 2 ∈ S(λm 1+m 2 , #). Applying this

to the integral above gives the result of the lemma.

Lemma A.5.3. Ñ Let # be a positive definite quadratic form on R2n such that
# = # # and λ be a #-weight. Let l ∈ N, µ ∈ R and a be a locally bounded
function defined on R2n such that

∀j ∈ {0, . . . , l}, |a(j )(X)| ≤ Cλ(X)µ " j
2 .

Then the function a ∗ exp−2π# belongs to Sl (λµ ,λ" 1#) .

Proof. Ñ We use the formula (a∗exp−2π#)( X) =
∫

a(X−Y ) exp−2π#(Y )dY
to obtain the estimate for the derivatives of order≤ l: we get for k ≤ l

|(a ∗ exp−2π#) (k)(X)| ≤ Cλ(X)µ " k
2

∫
λ(X − Y )µ " k

2

λ(X)µ " k
2

exp−2π#(Y )dY

≤ Cλ(X)µ " k
2

∫
(1 + #( Y ))N |µ " k

2 | exp−2π#(Y )dY = C(λ(X)µ " k
2 ,

and for k > l we have (a ∗ exp−2π#) (k) = ( a(l ) ∗ (exp−2π#) (k" l )) yielding
immediately the result.
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Let us recall the composition formula in the Weyl quantization, with the
symplectic form [, ] given in (1.3.2). We haveaw bw = ( a5b)w and, for X ∈ R2n ,

(a5b)(X) = 2 2n
∫∫

R2n- R2n

a(Y )b(Z) exp−4iπ[X − Y, X − Z]dY dZ(A.5.3)

= 2 2n
∫∫

R2n- R2n

a(Y + X)b(Z + X) exp−4iπ[Y, Z]dY dZ.

We note also that

(A.5.4) (a5b)( = a(5b + a5b(.

Moreover, if a is a function only of ξ, we have

(a5b)(x, ξ) = 2 2n
∫

R4n

a(η)b(z, ζ)e" 4i" (! " . )(x " z)e4i" (x " y)(! " 3)dydηdzdζ

= 2 n
∫

R2n

a(η)b(z, ξ)e" 4i" (! " . )(x " z)dηdz

= 2 n
∫

R2n

((1 + D2
. /4)N a)(η)b(z, ξ)(1 + |x− z|2)" N e" 4i" (! " . )(x " z)dηdz

= 2 n
∫

R2n

((1 + D2
. /4)N a)(η)(1 + |ξ − η|2)" N (1 + D2

z/4)N

(
b(z, ξ)(1 + |x− z|2)" N )e" 4i" (! " . )(x " z)dηdz

so that with N ≥ E(n/2) + 1
(A.5.5)

|(a5b)(x, ξ)| ≤ max
j & 2N

‖a(j )‖L ∞ max
j & 2N

‖b(j )‖L ∞(1 + |ξ − suppa|)" N/ 2c(n, N ).

A.6. The Beals-Fe"erman reduction

Lemma A.6.1. Ñ Let F : R→ R be a C2 function such that

(A.6.1) 16|F (0)| < F ((0)2, ‖F ((‖L ∞(R) ≤ 1.

We set ρ = |F ((0)|/4. Then there exists t0 ∈ [−ρ/2, ρ/2] and e ∈ C1(R) such
that

(A.6.2) for |t| ≤ ρ, F (t) = ( t− t0)e(t), 8ρ ≥ e(t) ≥ ρ, ‖e(‖L ∞(R) ≤ 1.

Proof. Ñ Assume Þrst that F (0) = 0 and F ((0) = 4 ρ. Then, for |t| ≤ 2ρ,

F (t) = te(t), 6ρ ≥ e(t) ≥ 4ρ− 2ρ = 2ρ, ‖e(‖L ∞(R) ≤ 1.

Now if F (0) > 0 and F ((0) = 4 ρ, F (− 4
2 ) ≤ ρ2 − 4

24ρ + 42

4 < 0, so that, for
somet0 ∈] − ρ/2, 0[ we haveF (t0) = 0 . Using what was done above, we have
for |s| ≤ |F ((t0)|/2,

F (s + t0) = ( s + t0)e0(s), 3|F ((t0)|/2≥ e0(s) ≥ |F ((t0)|/2, ‖e(
0‖L ∞(R) ≤ 1.
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But since
|F ((t0)|

2
≥ 1

2
(4ρ− ρ

2
) =

7ρ

4
and

7ρ

4
− ρ

2
=

5ρ

4
≥ ρ

we have on [t0 − 74
4 , t0 + 74

4 ] which contains [−ρ, ρ],

F (t) = ( t− t0)e(t), |t0| ≤ ρ/2, 8ρ ≥ 27ρ
4
≥ e(t) ≥ 7ρ/4≥ ρ, ‖e(‖L ∞(R) ≤ 1.

Lemma A.6.2. Ñ Let F : Rd → R be a C2 function such that

(A.6.3) 26|F (0)| < ‖∇F (0)‖2, ‖F ((‖L ∞(Rd) ≤ 1.

We set ρ = ‖∇F (0)‖2" 5. There exists two C1 functions α : Rd" 1 →
[−5ρ, 5ρ] and e : Rd → [7ρ, 70ρ], a set of orthonormal coordinates
(x1, x() ∈ R× Rd" 1 such that for max

(
|x1|, |x(|

)
≤ ρ,

(A.6.4) F (x) =
(
x1 + α(x()

)
e(x), ‖e(‖L ∞(Rd) ≤ 1, ‖α(‖L ∞(Rd−1) ≤ 1.

Proof. Ñ We can choose the coordinates so that∇F (0) = &F
&x1

(0)
)
e1. Then for

|x(| ≤ ρ, we have|F (0, x()| ≤ 2" 6+10ρ2 + ρ25ρ + 1
2ρ2 = ρ2(25 + 2 4 + 2 " 1) and

∣∣∣∣
∂F

∂x1
(0, x()

∣∣∣∣ ≥
∣∣∣∣
∂F

∂x1
(0, 0)

∣∣∣∣− ρ = (2 5 − 1)ρ

so that
16|F (0, x()|
∣∣∣ &F

&x1
(0, x()

∣∣∣
2 ≤

16× 48.5
312

< 1.

Applying the lemma A.6.1, we get for all |x(| ≤ ρ the existence ofα(x() such
that, when |x1| ≤ 31ρ/4

F (x1, x
() =

(
x1 + α(x()

)
e(x), |α(x()| ≤ 33ρ

8
< 5ρ,

70ρ ≥ 8× 33ρ/4≥ |e(x)| ≥ 31ρ/4 > 7ρ.

The implicit function theorem guarantees the C1 regularity of the function α
and the Taylor-Lagrange formula with integral remainder provides the regular-
ity of e.

Remark A.6.3. Ñ If the function F in the lemma A.6.2 is C ! , since the
function α is obtained by the implicit function theorem, and e by TaylorÕs
formula with integral remainder, both function α, e are C ! . Moreover, the
identity F (−α(x(), x() = 0 implies that

|α(k)(x()| ≤ Ck ρ1" k , |e(k)(x()| ≤ Ck ρ" k

whereCk are semi-norms of the functionF in max(|x1|, |x(|) ≤ ρ. In particular,
if we apply this result to the function (2.1.21)

F (T ) = $ 1/ 2q
(
t, Y + ν(t, Y )1/ 2T

)
µ(t, Y )" 1/ 2ν(t, Y )" 1
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we get that |F (k)| is bounded above byγk (q) and 1/2 ≤ ρ ≤ γ1(q) as deÞned
in (2.1.1). We get then from the lemma A.6.2

$ 1/ 2q
(
t, Y + ν(t, Y )1/ 2T

)
µ(t, Y )" 1/ 2ν(t, Y )" 1 = e0(T )(T1 + α0(T ())

so that e0,α0 are smooth with Þxed bounds and thus

$ 1/ 2q
(
t, X

)
µ(t, Y )" 1/ 2

= e0

(
(X − Y )ν(t, Y )" 1/ 2

)
ν(t, Y )1/ 2×

×
(
X1 − Y1 + α0

(
(X ( − Y ()ν(t, Y )" 1/ 2

)
ν(t, Y )1/ 2

)

which corresponds exactly to (2.1.22-23-24).

A.7. On tensor products of homogeneous functions. Ñ Let n ≥ 1 be
an integer and N = n + 1. Let ( y0; η0) ∈ RN × SN " 1 such that

(y0; η0) = ( t0, x0; τ0, ξ0) ∈ R× Rn × R× Rn , with τ0 = 0 , ξ0 ∈ Sn " 1.

Let r ∈]0, 1/4] be given. There exists a functionχ0 ∈ C ! (RN ; [0, 1]) such that
for λ ≥ 1 and η ∈ RN with |η| ≥ 1, we haveχ0(λη) = χ0(η) (Òhomogeneity of
degree zero outside the unit ballÓ) and

χ0(τ, ξ) =

{
1 if τ2 + |ξ|2 ≥ 1 and |τ | ≤ r|ξ|,
0 if τ2 + |ξ|2 ≤ 1/4 or |τ | ≥ 2r|ξ|.

There exists a function ψ0 ∈ C ! (Rn ; [0, 1]) such that for λ ≥ 1 and ξ ∈ Rn

with |ξ| ≥ 1, we haveψ0(λξ) = ψ0(ξ) and,

ψ0(ξ) =

{
1 if |ξ| ≥ 1 and | !

| ! | − ξ0| ≤ r,

0 if |ξ| ≤ 1/2 or | !
| ! | − ξ0| ≥ 2r .

We deÞne the function )0 by

(A.7.1) ) 0(τ, ξ) = χ0(τ, ξ)ψ0(ξ).

Lemma A.7.1. Ñ The function ) 0 is such that for λ ≥ 1 and η ∈ RN with
|η| ≥ 2, we have ) 0(λη) = ) 0(η). Moreover, with η0 = (0 , ξ0), we have

) 0(η) = 1 for |η| ≥ 2 and

∣∣∣∣
η

|η| − η0

∣∣∣∣ ≤ r/2,

) 0(η) = 0 for |η| ≥ 2 and

∣∣∣∣
η

|η| − η0

∣∣∣∣ ≥ 4r.

Proof. Ñ The function ) 0 is such that for λ ≥ 1 and η ∈ RN with |η| ≥ 2,
we have ) 0(λη) = ) 0(η): in fact, if τ2 + |ξ|2 ≥ 4 and |τ | ≤ 2r|ξ|, we get
|ξ|2 ≥ 4(1 + 4r2)" 1 ≥ 1, so that ψ0(λξ) = ψ0(ξ) and since we have also in that
caseχ0(λη) = χ0(η), we get the sought property. Now if τ2 + |ξ|2 ≥ 4 and
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|τ | > 2r|ξ|, we see thatχ0(λτ,λξ) = χ0(τ, ξ) = 0 so that, ) 0(λη) = 0 = ) 0(η).
Moreover, if τ2 + |ξ|2 ≥ 4 and

τ2

τ2 + |ξ|2 +

∣∣∣∣
ξ

(τ2 + |ξ|2)1/ 2
− ξ0

∣∣∣∣
2

≤ r2/4,

we get that |τ | ≤ r|ξ|(4− r2)" 1/ 2 ≤ r|ξ| and thus χ0(τ, ξ) = 1; also this implies
|ξ| ≥ 2(1 + r2)" 1/ 2 ≥ 1, so that ψ0(ξ) = ψ0(ξ/|ξ|). We have then
∣∣∣∣

ξ

|ξ| − ξ0

∣∣∣∣ ≤
r

2
+

∣∣∣∣
ξ

|ξ| −
ξ

(τ2 + |ξ|2)1/ 2

∣∣∣∣ ≤
r

2
+ |ξ||τ |2|ξ|" 3 ≤ r

2
+

r2

4− r2
≤ r,

which implies ψ0(ξ) = ψ0(ξ/|ξ|) = 1, so that ) 0 is equal to 1 on a conic
neighborhood of (0, ξ0) in RN minus a ball. Similarly, if τ2 + |ξ|2 ≥ 4 and

τ2

τ2 + |ξ|2 +

∣∣∣∣
ξ

(τ2 + |ξ|2)1/ 2
− ξ0

∣∣∣∣
2

≥ 16r2,

either |τ | ≥ 2r|ξ| and χ0(τ, ξ) = 0, entailing ) 0(τ, ξ) = 0 or |τ | ≤ 2r|ξ| and

then
∣∣∣ !
(/ 2+| ! |2)1/2 − ξ0

∣∣∣
2
≥ 12r2 and |ξ| ≥ 2(1 + 4r2)" 1/ 2 ≥ 1 so that ψ0(ξ) =

ψ0(ξ/|ξ|). In this case, we have
∣∣∣∣

ξ

|ξ| − ξ0

∣∣∣∣ ≥ 2
√

3r −
∣∣∣∣

ξ

|ξ| −
ξ

(τ2 + |ξ|2)1/ 2

∣∣∣∣ ≥ 2
√

3r − τ2

|ξ|2 ≥ 2
√

3r − 4r2 ≥ 2r,

implying ψ0(ξ) = 0 and thus ) 0(τ, ξ) = 0. Eventually, we have proven that ) 0

is also supported in a conic neighborhood of (0, ξ0) in RN .

A.8. Composition of symbols

Lemma A.8.1. Ñ Let G, g be the metrics on R2N defined in (4.3.8) and let
s1, s2 be two real numbers. Let a be a symbol in S(〈ξ〉s1 , g) and b be a symbol in
S(〈ξ, τ〉s2 , G) such that suppb ⊂ ZC = {(t, x, τ, ξ) ∈ R2N , |τ | ≤ 1+ C|ξ|}. Then
the symbols a5b, b5a, a ◦ b, b ◦ a belong to S(〈ξ, τ〉s1+s2 , G) and are essentially
supported in ZC , i.e., are the sum of a symbol of S(〈ξ, τ〉s1+s2 , G) supported in
ZC and of a symbol in S(〈ξ, τ〉"! , G) = ∩N S(〈ξ, τ〉" N , G).

Proof. Ñ We have

(A.8.1) (a ◦ b)(t, x, τ, ξ)

=
∫

e" 2i" (s# +y. )a(t, x, τ + σ, ξ + η)b(t + s, x + y, τ, ξ)dsdσdydη,
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so that, using the standard expansion of the symbols and the fact that b is
supported in ZC ,

a◦b =
∑

|* |<(

1
α!

' S(*/,! +1−|α|,G )
︷ ︸︸ ︷
D*

/,! a ∂*
t,x b +

∫ 1

0

(1− θ)( " 1

(ν − 1)!
e" 2i" (s# +y. )D(

/,! a(t, x, τ+ θσ, ξ+ θη)×

× ∂(
t,x b(t + s, x + y, τ, ξ)dsdσdydηdθ.

We deÞne

(A.8.2) I2(τ, ξ) =
∫

e" 2i" (s# +y. )D(
/,! a(t, x, τ + θσ, ξ + θη) ×

× ∂(
t,x b(t + s, x + y, τ, ξ)dsdσdydη

and integrating by parts, we obtain for all nonnegative evenintegers m that

I2(τ, ξ) =
∫

e" 2i" (s# +y. )〈σ〉" m 〈Ds〉m 〈s〉" m 〈D# 〉m 〈y〉" m 〈D. 〉m 〈η〉" m 〈Dy 〉m

D(
/,! a(t, x, τ + θσ, ξ + θη)∂(

t,x b(t + s, x + y, τ, ξ)dsdσdydη,

and consequently

|I2(τ, ξ)| !

∫
〈σ〉" m 〈s〉" m 〈y〉" m 〈η〉" m (1 + |ξ + θη|)s1" ( dsdσdydη

(1 + |ξ| + |τ |)s21(|τ | ! |ξ|).
In the integrand, when |η| ≤ |ξ|/2, we get, sinceθ ∈ [0, 1], |ξ + θη| ≥ |ξ|− |η| ≥
|ξ|/2. As a result, we get for this part of the integral the estimate

(1+ |ξ|)|s1|" ( (1+ |ξ|+ |τ |)s21(|τ | ! |ξ|) ! (1+ |ξ|+ |τ |)" (/ 2, for ν large enough.

When |η| > |ξ|/2, we use the term〈η〉" m and the estimate

(1+ |ξ|)" m/ 2(1+ |ξ|+ |τ |)s21(|τ | ! |ξ|) ! (1+ |ξ|+ |τ |)" m/ 4, for m large enough.

To check that the derivatives of I2 will satisfy the expected estimates, we dif-
ferentiate the expression (A.8.2) and repeat the previous proof. We know now
that, for ν large enough,

a ◦ b =
∑

|* |<(

1
α!

D*
/,! a ∂*

t,x b + r( , r( ∈ S(〈τ, ξ〉" (/ 2, G).

Using the standard Borel argument, we Þndc ∈ S(〈τ, ξ〉s1+s2 , G), essentially
supported in ZC such that, for all ν

c−
∑

|* |<(

1
α!

D*
/,! a ∂*

t,x b ∈ S(〈τ, ξ〉s1+s2" ( , G),

entailing that, for all ν ≥ N0,

a ◦ b− c = −c +
∑

|* |<(

1
α!

D*
/,! a ∂*

t,x b + r( ∈ S(〈τ, ξ〉max(" (/ 2,s1+s2" ( ), G),
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implying that a ◦ b − c ∈ S(〈τ, ξ〉"! , G), which gives the result of the lemma
for a ◦ b. To get the result for b ◦ a is somewhat easier by looking at (A.8.2), to
obtain the estimate

|I2(τ, ξ)| !

∫
〈σ〉" m 〈s〉" m 〈y〉" m 〈η〉" m (1 + |ξ + θη| + |τ + θσ|)s2" (

1(|τ + θση| ! |ξ + θη|)dsdσdydη(1 + |ξ|)s1 .

When |τ | ! |ξ| the discussion is the same as fora ◦ b. When |τ | > |ξ|, we
split the integral in two parts: the region where |σ| ≤ |τ |/2, in which we get
negative powers of (1 +|τ |) from the term with the exponent s2 − ν, and the
region where |σ| > |τ |/2 in which we use the term 〈σ〉" m . The last part of
the discussion is the same. To obtain the result fora5b (which will give also
b5a since a5b = øb5øa), we use the groupJ t = exp 2iπtDx D! and the formula
a5b = J " 1/ 2

(
J1/ 2a ◦ J1/ 2b

)
. Using the assumptions of the lemma, we see that

J1/ 2a satisÞes the same hypothesis asa and J1/ 2b is essentially supported in
ZC . The proofs above give thus thatJ1/ 2a◦J1/ 2b satisÞes the conclusion of the
lemma, which is ÒstableÓ by the action ofJ " 1/ 2. The proof of the lemma A.8.1
is complete.
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