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CUTTING THE LOSS OF DERIVATIVES FOR
SOLVABILITY UNDER CONDITION (1)

BY NICcOLAS LERNER

AstracT. N For a principal type pseudodilerential operator, we prov e that condi-
tion ( ¢) implies local solvability with a loss of 3/2 derivatives. W e use many elements
of DenckerOs paper on the proof of the Nirenberg-Treves conjecture and we provide
some improvements of the key energy estimates which allows u s to cut the loss of
derivatives from ¢+ 3 /2 for any ¢ > 0 (DenckerOs most recent result) to 3/2 (the
present paper). It is already known that condition (1) does not imply local solvability
with a loss of 1 derivative, so we have to content ourselves wi th a loss > 1.

RESUME (Diminution de la perte de dérivées pour la résolubilité sous la condition ("))
Pour un operateur de type principal, nous demontrons que | a condition (") implique

la resolubilite locale avec perte de 3/2 derivees. Nous utilisons beaucoup dOelements de

la demonstration par Dencker de la conjecture de Nirenberg -Treves et nous limitons

la perte de derivees a 3/2, ameliorant le resultat le pl us recent de Dencker (perte de

€ + 3 /2 derivees pour tout ¢ > 0). La condition (") nOimpliquant pas la resolubilite

locale avec perte dOune derivee, nous devons nous contergr dOune perte> 1.

1. Introduction and statement of the results

1.1. Introduction. N In 1957, Hans Lewy [25] constructed a counterexam-
ple showing that very simple and natural dilerential equati ons can fail to have
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560 LERNER (N.)

local solutions; his example is the complex vector beld,g = Ok, + i0x, + i(x1 +
iz9)Ox, and one can show that there exists some>* function f such that
the equation Lou = f has no distribution solution, even locally. A geometric
interpretation and a generalization of this counterexampke were given in 1960
by L. Harmander in [10] and extended in [11] to pseudodilerential @erators.
In 1970, L. Nirenberg and F. Treves ([29, 30, 31]), after a stdy of complex
vector pPelds in [28] (see also [26]), rePned this conditiomahe principal sym-
bol to the so-called condition (i)), and provided strong arguments suggesting
that it should be equivalent to local solvability. The necessity of condition ()
for local solvability of pseudodilerential equations was proved in two dimen-
sions by R. Moyer in [27] and in general by L. Hermander ([13]) in 1981. The
su"ciency of condition ( ¢) for local solvability of dilerential equations was
proved by R. Beals and C. Felerman ([1]) in 1973; they createda new type of
pseudodi'erential calculus, based on a Calderen-Zygmundlecomposition, and
were able to remove the analyticity assumption required by L Nirenberg and
F. Treves. For dilerential equations in any dimension ([1]) and for pseudod-
i'lerential equations in two dimensions ([18], see also [19] it was shown more
precisely that () implies local solvability with a loss of one derivative with
respect to the elliptic case: for a dilerential operator P of order m (or a pseu-
dodilerential operator in two dimensions), satisfying condition (v), f € Hy .,
the equation Pu = f has a solutionu € HZt™ . In 1994, it was proved by
N.L. in [20] (see also [16], [24]) that condition (/) does not imply local solvabil-
ity with loss of one derivative for pseudodilerential equations, contradicting
repeated claims by several authors. However in 1996, N. Deker in [4], proved
that these counterexamples were indeed locally solvable,ub with a loss of two
derivatives.

In [5], N. Dencker claimed that he can prove that condition (i) implies local
solvability with loss of two derivatives; this preprint con tains several break-
through ideas on the control of the second derivatives subspient to condi-
tion (v) and on the choice of the multiplier. The paper [7] contains aproof
of local solvability with loss of two derivatives under condtion (), providing
the Pnal step in the proof of the Nirenberg-Treves conjectue; the more recent
paper [6] is providing a proof of local solvability with loss of ¢ + % derivatives
under condition (v), for any positive e. In the present article, we show that
the loss can be limited to 3/2 derivatives, dropping the e in the previous result.
We follow the pattern of DenckerOs paper and give some imprements on the
key energy estimates.

Acknowledgement. N For several months, | have had the privilege of ex-
changing several letters and Ples with Lars ldrmander on the topic of solv-
ability. | am most grateful for the help generously provided. These personal
communications are referred to in the text as [17] and are imprtant in all
sections of the present paper.
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LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (V) 561

1.2. Statement of the result. N Let P be a properly supported principal-
type pseudodilerential operator in a C' manifold M, with principal

(complex-valued))) symbol p. The symbol p is assumed to be aC' ho-
mogeneou$” function of degreem on TE#(M), the cotangent bundle minus the
zero section. The principal type assumption that we shall ug here is that

1.2.1) (z,6) € F(M), p(z,6)=0== 9 p(x,£) 70.

Also, the operator P will be assumed of polyhomogeneous type, which means
that its total symbol is equivalent to p + Zj$ 1 Pm» j, where p, is a smooth

homogeneous function of degreé on K#(M).

DEFINITION 1.2.1 (Condition (¢)). N Let p be aC' homogeneous function
on ¥(M). The function p is said to satisfy condition (z) if, for z = 1 or 4,

Im zp does not change sign from— to + along an oriented bicharacteristic of

Rezp.

It is a non-trivial fact that condition ( 1) is invariant by multiplication by
an complex-valued smooth elliptic factor (see section 26.énh [14]).

THEOREM 1.2.2. N Let P be as above, such that its principal symbol p satisfies
condition (). Let s be a real number. Then, for all x € M, there exists a

neighborhood V' such that for all f € H} ., there exists u € Hlsotm" H such that
Pu= finV.
Proof. N The proof of this theorem will be given at the end of section4. [

Note that our loss of derivatives is equal to 3/2. The paper [D] proves that
solvability with loss of one derivative doesnot follow from condition (), so we
have to content ourselves with a loss strictly greater than me. However, the
number 3/2 is not likely to play any signibcant role and one $iould probably
expect a loss of 1+ derivatives under condition (z). In fact, for the counterex-
amples given in [20], it seems (but it has not been proven) thathere is only a
OlogarithmicO lossj.e., the solution u should satisfy u € log (D) (HSt™" 1).

Nevertheless, the methods used in the present article are sttly limited to
providing a 3/2 loss. We refer the reader to our appendix A.4 ér an argument
involving a Hilbertian lemma on a simplibPed model. This is ofcourse in sharp
contrast with operators satisfying condition (P) such as dilerential operators
satisfying condition (). Let us recall that condition ( P) is simply ruling out
any change of sign of Imgp) along the oriented Hamiltonian Bow of Re(zp).
Under condition (P) ([1]) or under condition () in two dimensions ([18]),

(D Naturally the local solvability of real principal type oper  ators is also a consequence of
the next theorem, but much stronger results for real princip al type equations were already
established in the 1955 paper [9] (see also section 26.1 in [14]).

(2)Here and in the sequel, OhomogeneousO will always mean posiively homogeneous.
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562 LERNER (N.)

local solvability occurs with a loss of one derivative, the OptimalO loss, and
in fact the same as ford/dz;. One should also note that the semi-global
existence theorems of [12] (see also theorem 26.11.2 in [[L#jvolve a loss of
1+ ¢ derivatives. However in that case there is no known countenreample which
would ensure that this loss is unavoidable.

REMARK 1.2.3. N Theorem 1.2.2 will be proved by a multiplier method, in-
volving the computation of (Pu, Mu) with a suitably chosen operator M. It
is interesting to notice that, the greater is the loss of dervatives, the more
regular should be the multiplier in the energy method. As a mater of fact, the
Nirenberg-Treves multiplier of [30] is not even a pseudodikrential operator in
the SY,, ,, class, since it could be as singular as the operator sighy, ; this

does not create any di"culty, since the loss of derivatives 5 only 1. On the

other hand, in [4], [23], where estimates with loss of 2 deratives are handled,
the regularity of the multiplier is much better than S?,,,,,, since we need
to consider it as an operator of order 0 in an asymptotic classlePned by an
admissible metric on the phase space.

N.B. N For microdilerential operators acting on microfunction s, the su"-
ciency of condition (i) was proven by J.-M. Trepreau [32] (see also [15]), so
the present paper is concerned only with theC' category.

1.3. Some notations. N First of all, we recall the dePnition of the Weyl
guantization " of a function a € S(R?"): for u € S(R"),

(1.3.1) (a“u)(x) = // e Xy a(Lzy,«f)u(y)dy.

Our debpnition of the Fourier transform @ of u € S(R")is 6(¢) = [ 2™ w(x)dx
and the usual quantization a(x, Dx) of a € S(R?") is (a(z, Dx)u)(z) =
[ ™ a(x,£)8()d¢. The phase spaceR! x RI is a symplectic vector space
with the standard symplectic form

DerINITION 1.3.1. N Let g be a metric on R?", i.e., a mapping X — gx
from R2" to the cone of positive debnite quadratic forms orR?". Let M be a
positive function debPned onR?".
(1) The metric g is said to be slowly varying whenever3C > 0, Ir > 0,
VX,Y,T € R,
gx (Y = X) <r? == C" gy (T) < gx (T) < Cgy (T).
(2) The symplectic dual metric ¢* is debPned asy} (T) = sup g, =i [T, UT*.

The parameter of g is dePned as\g(X) = inf 10 (g% (T)/9x (T))U2 and

we shall say that g satisbes the uncertainty principle if infx Aq(X) > 1.

TOME 134 — 2006 — N°© 4



LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (V) 563

(3) The metric ¢ is said to be temperate whenidC > 0, dN > 0,VX,Y,T €
R2n,
N
gx (T) < Cgy (T) (1 + gx (X =Y)) .
When the three properties above are satisbed, we shall say dh g is
admissible. The constants appearing in (1) and (3) will be cled the

structure constants of the metric g.
(4) The function M is said to be g-slowly varying if 3C > 0, 3r > 0,VX,Y €

RQn,
. M(X)
Y —X)<r?= < <C.
gx( )_T = C _M(Y)_C
(5) The function M is said to be g-temperate if 3C > 0,IN > 0, VX,Y €
R2n7

M(X)
M(Y)
When M satisbes (4) and (5), we shall say thatM is a g-weight.

<c@a+gix-y)".

DEFINITION 1.3.2. N Let g be a metric onR?" and M be a positive function
dePned onR?". The set S(M, g) is dePned as the set of functions € C' (R?")
such that, for all 7 € N, supy [|a)(X)|gx M(X)" ! < 0o, where al!) is the i-th
derivative. It means that VI € N,3C),vX € R?" vTy,...,7] € R?",

aOXNTh,. . T < aMX) ] ox (1)Y2
1&j &1

ReMARK. N If g is a slowly varying metric and M is g-slowly varying, there
exists My € S(M,g) such that there exists C' > 0 depending only on the
structure constants of g such that

(1.3.3) VX eRM, (C'l< 22
That remark is classical and its proof is sketched in the appedix A.2.

1.4. Partitions of unity. N We refer the reader to the chapter 18 in [14] for
the basic properties of admissible metrics as well as for théllowing lemma.

LEMMA 1.4.1. N Let g be an admissible metric on R®. There exists a se-
quence (Xk)k n of points in the phase space R® and positive numbers 1o, No,
such that the following properties are satisfied. We define Uk, Uf, Ul as the
gk = gx, balls with center Xy and radius 1o, 2ro,4rg. There exist two families
of non-negative smooth functions on R®", (xi)k' n, (¥ )k n such that

> xk(X)=1, suppxk C U, =1 onUf, suppy C UF*.
k
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564 LERNER (N.)

Moreover, xk, ¥k € S(1,gx) with semi-norms bounded independently of k. The
overlap of the balls U is bounded, i.e., NN U #1 = #N < No. More-
over, gx ~ gk all over U (i.e., the ratios gx (T)/gk(T) are bounded above
and below by a fized constant, provided that X € Uf#)

The next lemma in proved in [2] (see also lemma 6.3 in [22]).

LEMMA 1.4.2. N Let g be an admissible metric on R®" and dSexk(z, & =1
be a partition of unity related to g as in the previous lemma. There exists a
positive constant C such that for all u € L*(R™)

2
|U||L2(1Rn Z”Xk UHL2(]R" CHU”Lz(]Rn)v
where aV stands for the Weyl quantization of the symbol a.
The following lemma is proved in [3].

LEMMA 1.4.3. N Let g be an admissible metric on R*™, m be a weight for g,
Ux and gk as in lemma 1.4.1. Let (ak) be a sequence of bounded symbols in
S(m(Xk), gk) such that, for all non-negative integers I, N

sup  |m(Xk)" Ll (X)T' (1 + gf (X — U))" ge(T)" " 2| < + 0.
k' NT' R2n

Then the symbola = ", ax makes sense and belongs to S(m, g). The important
point here is that no support condition is required for the ax, but instead some
decay estimates with respect to g*. The sequence (ax) will be called a confined
sequence in S(m, g).

2. The geometry of condition (%))

In this section and also in section 3, we shall consider thathie phase space is
equipped with a symplectic quadratic form # (# is a positive debnite quadratic
form such that # = # #, see the debnition 1.3.1(2) above). It is possible to bnd
some linear symplectic coordinates £, &) in R2" such that

#a,O)= (2.9 = Y 2P+ e

1&j&n

The running point of our Euclidean symplectic R?" will be usually denoted by
X or by an upper-case letter such ag’, Z. The open #-ball with center X and
radius r will be denoted by B(X, 7).
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LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (V) 565

2.1. The basic structure. N Let ¢(¢, X,$) be a smooth real-valued func-
tion dePned on % =R x R?" x [1,+ o0), vanishing for |t| > 1 and satisfying

(21.1) ¥k e N,supl|of g, $" % = < +oo, ie, gt ) € 58,87 ),
(2.1.2) s>tandq(t,X,$) >0==¢(s,X,$) > 0.

NoraTion. N In this section and in the next section, the Euclidean norm
#(X)Y 2 is bxed and the norms of the vectors and of the multilinear foms are
taken with respect to that norm. We shall write everywhere | - | instead of ||-|| .
Furthermore, we shall say that C' is a ObxedO constant if it depends only on a
Pnite number of v above and on the dimensiom.

We shall always omit the dependence of with respect to the large parameter
$ and write ¢(t¢, X) instead of ¢(¢, X, $). The operator Q(t) = ¢(t)" will stand
for the operator with Weyl symbol ¢(¢, X). We introduce now for ¢t € R,
following [17],

X+(t) = US&I{X € R2n)q(SaX) > O}a
X+ (t) = Usst{X € R, q(s, X) < 0},
(2.1.4) Xo(t) = X+ (1) N X, (8)°,

(2.1.3)

Thanks to (2.1.2), X, (¢), X (t) are disjoint open subsets ofR?"; moreover
Xo(t), Xo(t) UX+ (t) are closed since their complements are open. The three sets
Xo(t), X« (¢) are two by two disjoint with union R?" (note also that X, (t) C
Xo(t) U X+ (t) since Xp(t) U X« (t) are closed). Whent increases, X (%) in-
creases andX- (t) decreases.

LEMMA 2.1.1. N Let (E,d) be a metric space, A C E and k > 0 be given.
We define &as(x) = kK if A =1 and if A # !, we define &ag (r) =
min(d(x,A),li). The function &as is valued in [0, k], Lipschitz continuous
with a Lipschitz constant < 1. Moreover, the following implication holds:
A CACE==8&p, 3 > &na,s.

Proof. N The Lipschitz continuity assertion is obvious since z — d(z, A) is
Lipschitz continuous with Lipschitz constant 1. The monotonicity property is
trivially inherited from the distance function. O

LeMMA 2.1.2. N For each X € R™, the function t — &x, t)s(X) is de-
creasing and for each t € R, the function X +— &x, )s(X) is supported in
X1 (1)® = Xo (t) UXo(t). For each X € R, the function t — &x_)s(X)
is increasing and for each t € R, the function X +— &x_(1)s(X) is sup-
ported in X+ (£)¢ = X4(t) U Xo(t). As a consequence the function X —
&x, )8 (X)&x_(1),$(X) is supported in Xo(t).
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Proof. N The monotonicity in ¢ follows from the fact that X (t)(resp. X« (1))
is increasing (resp. decreasing) with respect te and from Lemma 2.1.1. More-
over, if X belongs to the open setX, (t), one has &, )s(X) = 0, implying
the support property. O

LEMMA 2.1.3. N For k> 0,t € R, X € R, we define®
(2.1.5) o(t, X, k) = & x_1)$(X) — &x_ 1),$(X).

The function t — o(t, X, k) is increasing and valued in [—k, k], the function
X — o(t, X, k) is Lipschitz continuous with Lipschitz constant less than 2; we
have
min(| X — X« (¢ if X € Xy (t
O’(ﬁ,X,Ii)z (| ()|a[€) Zf € +( );
—min(|X — X4+ (&), k) if X € X« (t).

We have {X € R®™ o(t, X,k) =0} C Xo(t) C {X € R ¢(t,X) =0}, and

(2.1.6) {X € R™ +q(t,X) > 0} C X4 (t) C {X € R*™, +o0(t, X,x) > 0}
C{X e R™ +0(t, X,k) >0} C {X € R*™", +¢(t, X) > O}
Proof. N Everything follows from the previous lemmas, except for the
brst, fourth and sixth inclusions. Note that if X € X, (t), o(t,X,k) =
min(|X — X« (¢)|, k) is positive (otherwise it vanishes andX € X (t) N X« (t) C
X1(t) N (X« (t) U Xo()) = !). As a consequence, we get the penul-
timate inclusions X (t) C {X € R™ o(t,X,x) > 0} and similarly
X+ (t) C {X € R™ o(t, X, k) < 0}, so that
{X € R2n50(t7X7 K/) = O} C X+(t)c nX- (t)c = X()(t),

giving the prst inclusion. The last inclusion follows from the already established

{X e R™ ¢(t,X)) <0} C X« (t) C {X e R*™,0(t,X,k) <0}. O

DEFINITION 2.1.4. N Let ¢(t, X) be as above. We debne
(2.1.7) So(t, X) = o(t, X,$"?)

and we notice that from the previous lemmasi — dy(¢, X) is increasing, valued
in [-$12,$ 2], satisfying

(2.1.8) [d0(t, X) — do(t,Y)| < 2| X — Y|
and such that
(2.1.9) {X e R™ §y(t,X)=0}C{X e R™ ¢(t,X)=01},

(2.1.10) {X € R®", +q(t,X) > 0} C{X, +0(t, X) > 0} C{X, +q(t, X) > O}.

(3)When the distances of X to both X. () are less than «, we have o(¢, X, k) = | X! X+ (¢)[!
[X ! X4 (D).
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LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (V) 567

LEMMA 2.1.5. N Let f be a symbol in S($™,$" '#) where m is a positive real
number. We define

- i) e
(2.1.12) A0 =1+ max (IF9OIF 7)),
JEN
Then f € SOA™, X" '#) and the mapping from S($™,$" #) to S(A™,\" #) is
2

Zm—j

continuous. Moreover, with v = MaX o<j<am 7
jEN
norms of f, we have for all X € R*, '€

(2.1.12) 1< AX) <1+78.

, where the v are the semi-

The metric X" # is admissible(def. 1.3.1), with structure constants depending
only on . It will be called the m-proper metric of f. The function A above is
a weight for the metric X" '# and will be called the m-proper weight of f.

Proof. N The proof of this lemma is given in the appendix A.3. O

LeEMMA 2.1.6. N Let q(t, X) and 6o(t, X) be as above. We define, with (s) =
(1 + 82)1/ 27

(2.1.13) pu(t, X) = (So(t, X))* + |87 244 (¢, X)| + 18" 2% (£, X))

The metric p” 1(t,-)# is slowly varying with structure constants depending only
on a finite number of semi-norms of q in S($,$" #). Moreover, there exists
C > 0, depending only on a finite number of semi-norms of q, such that

(2.1.14) wt, x) < s, HEX) oy x Cyp),
p(t,Y)

and we have

(2.1.15) $12q(t, X) € S(u(t, X)¥ 2 1" (¢, )#),

so that the semi-norms depend only the semi-norms of ¢ in S($,$" '#).

Proof. N We notice brst that
1+max (|$"2¢% (¢, X)|, 18" g« (£, X)]?)

is the 1-proper weight of the vector-valued symbol $/2¢{ (¢,-). Using the
lemma A.2.2, we get thaty” '#is slowly varying, and the lemma A.2.1 provides
the second part of (2.1.14). From the debnition 2.1.4 and (2..1), we obtain that
:U/(th) < C$+ <6O(t7X)>2 < C($ and $ Y 2q§( (ta ) € S(M(ta X)vM" 1(ta )#) .

We are left with the proof of |$2¢(t, X)| < Cu® ?(t, X). Let us consider
L(t, X) the 3/2-proper weight of $ ¥/ 2¢(¢, X):

A X) = 1+ max (81240 (1, X)[55,
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where all the derivatives are taken with respect toX; if the maximum is realized
for j € {1,2}, we get from Lemma 2.1.5 and (2.1.15) that
81 2q(t, X)| < ilt, X)¥? = (1 + max_[$Y%q0)(¢, X)|57)
i=1 v ‘
< @+ max p(3" DEE)E < 2u(t, X)¥2,
]=1,2
which is the result that we had to prove. We have eventually to deal with the
case where the maximum in the debnition ofu is realized for j = 0; note that
if u(t, X) < Cp, we obtain
81 2(t, X)| < it X)¥'? < ¢ < €7 P ut, X)¥?,
so we may also assume(t, X) > Cy. If Cy > 1, we haveCy < pu(t, X) =
1+ ($ Y2|q(t, X)|)? entailing
(1~ Co Dt X) < [$"2(t, X)|* < fi(t, X).

Now if » € R® is such that |h| < rf(t, X)"?2, we get from the slow vari-

ation of the metric ' '#, that the ratio (¢, X + h)/nu(t, X) is bounded
above and below, providedr is small enough. Using now that $2¢(t,-) €
S(¥ 2(t, ), ;i M(t,-)#), we get by TaylorOs formula

1
$12(t, X + h) =8 V2q(t, X)+$ (1, X)h+ 581240, X)h?+ Oy hl’ /6),
so that

- 1o
$12q(t, X + 1) > $Y2|g(t, X)| = i(t, X)|h] = 5Bt X)) — ys|h[*/6
2 3
> ¢l/2 o~ 3/ 2 r ~ .
> $12g(t, X)| = i(t, )V 2 (r+ S+ )
N———
=%r)
This gives $"2|q(t, X + h)| > $"2|q(t, X)| — e(r)fit, X)*' %, limpy oe(r) =0,
so that, for r,Cy, ' small enough,
. _ 1_
1$Y2q(t, X + h)| > (@ —C, ")¥2 —e(r)) (L, X)¥ 2 > é,u(t,X)?’/Q.

As a consequence, the #-ballB(X,rp(t, X)"?) is included in X (t) or in
X« (¢) and thus, in the brst case (the second case is similaf)X — X, (¢)| =
0, |X — X+ (®)| > ra(t,X)"2, (otherwise |X — X« (t)] < ra(t,X)"? and
U # B(X,ra(t, X)Y2) N X (1) C Xye() N X+ (£) = 1), implying that, with a
bxedry, > 0,

So(t, X) = min($ V2, ri(t, X)V'?) > rofit, X)? > ro|$ " *q(t, X) V',

so that, in both cases,|$ " 2¢(t, X)| < 7y *[do(t, X)|? < o u(t, X) 2. O
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LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (V) 569

LemMA 2.1.7. N Let q(t, X), 6o(t, X), u(t, X) be as above. We define,
(2.1.16) v(t, X) = (6o(t, X))2 + [$Y 2§ (¢, X)p(t, X)" 122

The metric v' Y(t, W is slowly varying with structure constants depending only
on a finite number of semi-norms of q in S($,$" #). There exists C > 0,
depending only on a finite number of semi-norms of q, such that

v(t, X)
v(t,Y)

(2.1.17) v(t, X) < 2u(t,X) < C$, <C@+ |X-Y],

and we have
(2118) $1/ 2q(t7 X) S S(,Lt(t, X)ll QV(ta X)v V(ta ) 1#) )
so that the semi-norms of this symbol depend only the semi-norms of q in
S($,$" #). Moreover the function u(t, X) is a weight for the metric v(t,-)" #.
Proof. N Let us check the two brst inequalities in (2.1.17). From |$2¢(| <
u(t, X) < C$, established in the previous lemma, we get

u(t, X) < (do(t, X)) + p(t, X) < 2u(t, X) < 2C$.

We introduce now the weight ux(t,X) as in (1.3.3) so that the ratios
wx(t, X)/pu(t, X) are bounded above and below by some constants depending
only on a bnite number of semi-norms ofg. That weight (¢, X) belongs to
S(p, " 1#) = S(us, uy #). We notice Prst that

1SV 2(quy )P < 218V 2y 22+ C1I$Y 2" Y2 I
S 02|$1/2q(M" 1/2|2+ Cl|$1/2q/1/" 1/2| |$1/2(IM" 3/2|
S 02|$1/2q(,u" 1/2|2 + CS|$1/2(ZM" 1/2|-
Since we have alsé®
181 20" V2]~ 181 20 V2 <18V 2 ) + 19 2y
< |$1’2(qu; 1/2)(|+ |$1/2qu;3/2|1/2|$”2qu; 1/2|1/2

<1
we get that
(2.1.19)

p(t, X) = 1+ max (1$" 24§ (¢, X)p(t, X)" V22, 187 2q(t, X)u(t, X)" 2

is equivalent to the 1-proper weight of the symbol $V 2q(¢, X)ux(t, X)" V2 in
S(u, 1" 1#). As a consequence, from the lemma A.2.2, we get thati{+ (5,)?)" '#
is slowly varying.

(4)Below, the inequality a < b means that « " Cb where C is a constant depending only on
a Pnite number of semi-norms of ¢. The equivalence a # b stands for a <b and b < a.
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> We need only to prove that
(2.1.20) 18 2q(t, X)) pu(t, X)" 2| < Cu(t, X).

In fact, from (2.1.20), we shall obtain v(t, X) < (t,X) + (do(t,X))? <
(C + 1) v(t, X) so that the metrics (v + (5)%)" '# and v '# are equivalent
and thus both slowly varying (that property will also give th e last inequal-
ity in (2.1.17) from Lemma A.2.1). Moreover, from Lemma 2.15, we have
$Y2q(t, X)ps(t, X)" V2 € S(v, 7" '#), so that

Pl K2 fork<2,
since $2quy 2 € S(w;, v #) and T <,

Ml" k/ 251/1" k/ 2 for k& > 2, .
since $2qus 2 € S(u; 1" #) and v < g,

$Y2(quy "0 <

which implies that $Y2qus "2 € S(v,v’ '#); moreover, we have ui > €

S(u# 2, 0" #) since, usingv < p, we get

12 1k 1.
I HO | Sz Spzv W2

entailing $V2¢ € S(u" %v,v" #), i.e., (2.1.18). On the other hand, x is slowly
varying for v" 1#, since

X = Y| < w(t, X)" (S ut, X)?)  implies | X — V| < p(t, X)"?
and thus u(t, X) ~ u(t,Y), which proves along with (2.1.14) that p is a weight
for v" 1#.
> Let us mow check (2.1.20). This inequality is obvious if |$V2qu" V2| <
|$2¢(u" V22, Note that if 7(t, X) < Cp, we obtain [$2qu" /2| < Cy < Cov
so we may also assume(t, X) > Cy. If Cy > 1, we haveCy < v(t, X) =
1+($ Y2|g|p" V2) entailing

(1—Co o(t, X) < 1$M2qu” V2| < o(t, X).

Now if A € R?" is such that |h| < ri(t, X)" 2, we get from the slow variation

of the metric 7" '#, that the ratio (¢, X + h)/v(t, X) is bounded above and

below, provided r is small enough. Using now that $/2qus V2 € ST, T ),
we get by TaylorOs formula

$Y2(t, X + ) (4, X + B) =$ V2t X) s V2t X) + e(r)i(t, X),
limyy ¢e(r) =0, so that, for r, C('; ! small enough,
" . 1
81 2q(t, X + B "2t X + )| = (L= Cg ') — () (e, X) = S0(t, X).

As a consequence, the #-ballB(X,ro(t, X)"?) is included in X, (t) or in
X« (t) and thus, in the brst case (the second case is similaf)X — X,.(¢)| =0,
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|X — X« ()] > ri(t, X)V 2, implying that, with a Pxed 7 > 0,

do(t, X) > min($ Y2, ro(t, X)V %) > roir(t, X)¥?
> 1ol$ Y 2q(t, X)pu(t, X)" V2V 2,

so that, in both cases, |$ 2¢(t, X)u(t, X)" V2| < Co|do(t, X)|> < Cov(t, X).
The proof of the lemma is complete. O

We wish now to discuss the normal forms attached to the metricv” (¢, -}#
for the symbol ¢(t,-). In the sequel of this section, we consider thatt is bxed.

DerINITION 2.1.8. N Let 0 < r; < 1/2 be given. With v debned in (2.1.16),
we shall say that

(1) Y is a nonnegative (resp. nonpositive) point at levelt if o(¢,Y) >
rv(t, Y)V2, (resp. 6o(t,Y) < —ruv(t, Y)Y 2).

(2 Y is a gradient point at level ¢ if [$Y2¢{ (t,Y)u(t,Y) V22 >
v(t,Y)/4 and 6o(t,Y)? < r2u(t,Y).

(3) Y is a negligible point in the remaining cases$$ ' 2¢{, (¢, V) u(t,Y)" V22 <
v(t,Y)/4 and do(t,Y)? < r2u(t,Y). Note that this implies v(t,Y) <
1+ 72u(t,Y)+ v(t,Y)/4<1+ v(t,Y)/2 and thus v(t,Y) < 2.

Note that if Y is a nonnegative point, from (2.1.8) we get, forT € R?",
|T| S 150§T S T1/4

So(t, Y + r2(£,Y)T) > 6o(t,Y) — 2r 2(t,Y) > %V“Q(t, Y)

and from (2.1.10), this implies that ¢(t, X) > 0 on the ball B(Y, " %(t,Y)).
Similarly if Y is a nonpositive point, ¢(t, X) < 0 on the ball B(Y, rv 2(¢,Y)).
Moreover if Y is a gradient point, we may assume thatB(Y, v 2(t,Y)) in-
tersects { X, ¢(¢t, X) = 0}, otherwise it is included either in {X, ¢(¢t, X) > O}
orin {X,q(t,X) < 0}; as a result, there exists a pointZ € B(Y, v 2(t,Y))
such that ¢(t, Z) = 0. The function

(2.1.21) () =% 1/2q(t, Y+ m 2, Y)T)u(t, Y)Y V2, y)

satispes forr; small enough with respect to the semi-norms ofg and
¢o, Co, C1, Co bxed positive constants,|T'| < 1, from (2.1.18),

£ = 13" 2q(t, V)t V) " 2u(t,Y) |
<$U20 T max (¢l XY - 2] < Cord,

(D) > rico,  |FUT)| < Car?.
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The standard analysis (see our appendix A.6) of the Beals-Ferman metric
shows that, on B(Y, riv" 2(t,Y))

(2.1.22) g(t, X)=$ V22 (8, V) (8, Y)e(t, X)B(t X),
(2123)  1<eeS@LuULY) ), §eSWLY) P m(tY) H),
(2.1.24) 6, X) = w(t, V)V 2(X + at, XO), 0 € SO Y) V2, (2, Y) ).

LEMMA 2.1.9. N Let q(t, X) be a smooth function satisfying (2.1.1-2) and let
t € [-1,1] be given. The metric g on R® is defined as v(t,X)" '# where v
is defined in (2.1.16). There exists ro > 0, depending only on a finite number
of semi-norms of q in (2.1.1) such that, for any r €]0,rg], there exist a se-
quence of points (Xx) in R®", and sequences of functions (xk), (¥k) satisfying
the properties in the lemma 1.4.1 such that there exists a partition of N,

N=ELUE UEyU Ey

so that, according to the definition 2.1.8, k € Ey means that Xy is a non-
negative point, (k € E- :Xy nonpositive point; k € FEy:Xy gradient point,
k € Eoo:Xk negligible point).

Proof. N This lemma is an immediate consequence of the dePnition 2.8, of
lemma 1.4.1 and of lemma 2.1.7, asserting that the metrig; is admissible. [

2.2. Some lemmas on C® functions. N We prove in this section a key
result on the second derivative £, of a real-valued smooth function f(t, X)
such that 7 — if(¢,z, &) satisbes condition ). The following claim gives a
good qualitative version of what is needed for our estimateswe shall not use
this result, so the reader may skip the proof and proceed diretly to the more
technical Lemma 2.2.2.

CrAamM 2.2.1. N Let f1, fo be two real-valued twice differentiable functions de-
fined on an open set' of RN and such that f1 1(R’j’;) C f2 YRy) (ie., fi(z) >
0 == fa(z) > 0). If for some w € ', the conditions fi(w) = fa(w) =
0, dfi(w) #0,dfs(w) =0 are satisfied, we have f{(w) > 0 (as a quadratic
form).

Proof. N Using the obvious invariance by change of coordinates of lhe state-
ment, we may assumef;(x) = z; and w = 0. The assumption is then for
z=(x1,20) € R x RN" 1 in a neighborhood of the origin

f2(0)=0,df2(0)=0, z; >0== fo(z1,2) >0.

Using the second-order Taylor-Young formula for f;, we get fa(x)
L)z, z) + e(z)|z|?, limy) oe(x) = 0, and thus for T = (13, 79),|T| =
;! 0 small enough, the implication T, > 0 == (f{(0)T,T) + 2¢(pT) >

Consequently we have{S, (f{(0)S,S) > 0} o {S,S; > 0} and since the Iarger

O_'_‘ 1
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set is closed and stable by the symmetry with respect to the dgin, we get
that it contains also {S,S; < 0}, which is the result £{{(0) > 0. O

ReEMARK. N This claim has the following consequence: take three funtions
fi, f2, f3, twice dilerentiable on ', such that, for 1 < j < k < 3, fi(2) >
0 = fk(x) > 0. Assume that, at some pointw we have fi(w) = fa(w) =
f3(w)=0, dfi(w) #0,dfs(w) #0,df2(w) =0. Then one hasf{(w) =0. The
claim 2.2.1 givesf{(w) > 0 and it can be applied to the couple (- f3, —f2) to
get — f{{(w) > 0.

NoTaTION. N The open Euclidean ball of RN with center 0 and radius r will
be denoted by By. For a k-multilinear symmetric form A on RN, we shall
note || Al| = max |1 [AT*| which is easily seen to be equivalent to the norm
maxt,|=aa&|T, =1 |A(T1, ..., Tk)| since the symmetrized Ty @ --- @ Ty can be
written a sum of k™ powers.

LEMMA 2.2.2. N Let Ry > 0 and fi, fo be real-valued functions defined in
Br,. We assume that fi is C?, f2 is C3 and for x € Br,),

(2.21) fi(z) > 0== fa(x) > 0.

We define the non-negative numbers p1, p2, by

(222) pr=max (|©Q)[% [AQ)]),  p2=max (|/0)[*. /50| |5,
and we assume that, with a positive Cp,

(2.2.3) 0<p1, p2<Copr < Ry.

We define the non-negative numbers C1,Csy, Cs, by
(2.2.4)

1
Ci=1+ COHf£(||L°°(I§RU)a C2=4+ 3 ||f§((|\Loc(E§RO)7 C3= Cy+4nCh.

Assume that for some ko € [0, 1], with koCy < 1/4,

(2.2.5) p1= |£40)] >0,

(2.2.6) max(|f200)["'?, [ £5(0) " %) < kol F£(0),
(2.2.7) B(0, k3p2) N {z € Br,, fiz) >0} 7 ! .
Then we have

(2.2.8) 1/§(0) | < Cshaps,

where f§(0)« stands for the negative part of the quadratic form f$(0). Note
that, whenever (2.2.7) is violated, we get B(0,k3p2) C {z € BRr,, fi(z) < 0}
(note that k3pa < pa < Rg) and thus

(2.2.9) distance(0,{z € BR,, fi(z) > 0}) > k3ps.
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Proof. N We may assume that for 2 = (z1,2() € Rx RV" 1, p; = |f{(0)] =
£1(0,0), £4(0,0) =0, so that

1
(2.2.10) h(@) 2 1)+ pray = S, [l

Moreover, from (2.2.7), we know that there existsz € B(0, x3p2) such that
fi(z) > 0. As a consequence, we have 9 fi(z) < fi(0)+ piz1+ L || f{l, #3p3
and thus

1
(2.2.11) fi(@) = pran = puszon — 5 1 (2l + w303).

On the other hand, we have

1 1
fo(w) < f>0) + [z + SO + S| Yy Jof?
1 1
<wzpd + wipdlel + I |of + S0

and the implications, for |z| < Ry,
1
(2.2.12) pizy > prirgps + 2 1AL (= + K303) == fi(z) > 0==

1 1
fow) > 0== =5 f(0)* < w3l + wipilal + S [of.
Let us take x = kapay With |y| = 1 (note that |z| = kap2 < Ry); the property
(2.2.12) gives, usingps/p1 < Co,

1
v > k(L4 £ Co) == —f0)y* < mapa(4+ 51784, ).

so that {y € S"" 1, —fl(0)y* < rapo(d+ 3|1, )} > {y € V" Ly >
ra(1+ || f{{l, Co)} and since the larger set is closed and stable by symmetry
with respect to the origin, we get, with

1
Cr=1+ |ffll, Co,Co=a+ I
the implication

(2.2.13) ye SV y1| > keCr == —f(0)y? < kopaCs.

Let us now take y € SN" 1, such that |y;| < k2C1(< 1/4). We may assume
y = y1€61 D y265, With €1, €3, orthogonal unit vectors and y, = (1 — y?)¥ 2. We
consider the following rotation in the (¢1, €3) plane with ¢y = k2Cy < 1/4,

- <COS(27T60) sin(2meg)

_gmzmomqkmo’sommKRw”:“”m“%“ykmgmhmm

and sinceep < 1/4,
|(Ry)1| > *|y1| +(1 - y%)u 2460 > fo(m* 1) > €9 = k(1.
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Moreover the rotation R satisbes||R — Id|| < 27ep = 27wx2C;. We have, using
(2.2.13) and |[(Ry)1| > k2C1, [yl = 1,
— 180)y* = —f{)(Ry)* — (f{O0)(y — Ry),y + Ry)
< —f80)(Ry)* + |fX(0)[|ly — Rylly + Ryl
< kopaCa + 2 poly — Ry| < KopaCo + 2 pa27kaCh.
Eventually, for all y € SN" !, we have
(2.2.14) —85(0)y? < Kapa(Co +47Cy) = Cakapo.

Considering now the quadratic form@ = £{(0) and its canonical decomposition

Q= Q+—Q,wehave, forally € RV, (Q- y,y) < r2paCsly[*+ (Q1y,y). Using
now the canonical orthogonal projectionsE; on the positive (resp. negative)
eigenspaces, we writey = E,y & E- y and we get that

(@ y,y) = (@ By, B y)
< Caropo| By + (Q1Br y, Br y) = Cakopa| B y* < Carapolyl?,
yielding (2.2.8). The proof of Lemma 2.2.2 is complete. O

LeEMMA 2.2.3. N Let fi1, fo, f3 be real-valued functions defined in Br,. We
assume that f1, f3 are C2, fy is C° and for x € HRO, 1<j<k<3,

(2.2.15) £ (x) > 0== fi(z) > 0.

We define the non-negative numbers p1, p2, p3 by

= % ( 1 1
@218) /1T = max (RO IO HO).

and we assume that, with a positive Cy,
(2.2.17) 0< p1,p3 and p2 < Comin(p1, p3) < Co max(p1, p3) < Ro.
We define the non-negative numbers C1,Cs, Cs, by

Ci=1+ Cy max(|‘f§(”L°°(l§Ro) ) Hf3(,(|||_°o(B’R0)),

1
(2.2.18) Cr=4+ S| <@y, Cs= CotanCh.
Assume that for some k1, k3 € [0,1], and 0 < koC3 < 1/2,
(2.2.19) 110" < kil O], 1£30)]"? < 53| £50)],
(2.2.20) B(0, k3p2) N{x € Br,, fi(x) 20} # !,
(2.2.21) B0, k3p2) N{z € Br,, f3(x) <O} # ! .

Then we have

(2.2.22)  max(|f2(0)[" 2, | £5(0)|"?) < p2 < Ky "max(] £2(0)1 3, | ££(0) [V 2).
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Note that, whenever (2.2.20) or (2.2.21) is violated, we get
B(Oa’igpQ) - {‘T € ERovfl(x) < 0} or B(Oa’igpQ) C {‘T € ngfB(z) > O}

and thus
(2.2.23)
dlSt(Oa {‘T € ERO) fl(z) > 0}) > ’igpQ or dZSt(Oa {‘T € ER07f3(:r) < O}) > K’%F’Q-

Proof. N This follows almost immediately from the previous lemma and it is
analogous to the remark following the claim 2.2.1: assuminghat we have

(2.2.24) max(| f2(0)|" 2, | £5(0)|¥ 2) < kol f{(0)]

will yield |f{{(0)| < Csrap2 by applying lemma 2.2.2 (note that k2C; < k252 <
8% < 1/4) to the couples (f1, f2) and (—fs, —f2); consequently, if (2.2.24) is
satisbped, we get

max(|2(0)[" %, |50 ?) < p2 < max(| 200", | 50)"'?, Csrizp2)

and sinceCsky < 1, it yields

(2.2.25) max(] f2(0)|" %, [ £(0)|?) = p,

which implies (2.2.22). Let us now suppose that (2.2.24) do® not hold, and

that we have r»|f{{(0)| < max(|f2(0)[*'2, | £5(0)|2). This implies (2.2.22):
max(|f20) "%, IfS0)"?) < p2 < k' max(| 200", 1 £5O) [ 2).

The proof of the lemma is complete. O

ReMARK. N We shall apply this lemma to a Obxed@:,, depending only on the
constant C5 such askqe = 1/(2Cs).

2.3. Inequalities for symbols. N In this section, we apply the results of
the previous section to obtain various inequalities on symbls linked to our
symbol ¢ introduced in (2.1.1). Our main result is the following theorem.

THEOREM 2.3.1. N Let q be a symbol satisfying (2.1.1-2) and 8o, 1, v as de-
fined above in (2.1.7), (2.1.13) and (2.1.16). For the real numbers t',t,t<, and
X € R, we define

l/(t(, X) 1/2 l/(t((, X) 1727

(2.3.2) R(t, X)=$ " " 2u(t, X)" 2u(t, X)" V2 (50(t, X))

Then there exists a constant Cy > 1, depending only on a finite number of

semi-norms of ¢ in (2.1.1), such that, for t{ <t < t{ we have
(2.3.3)

Ch 'R(t, X) < N(t 1 x) +

(2.3.1) N X)) =

50(ﬁ((7X) - 60(t7X) + 60(t7X) - 60(t(7X)
V(t((, X) 1/ 2 l/(f(, X) 1/ 2
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Proof. N We are given X € R?" and ¢{ <t < t(( real numbers.

> First reductions. First of all, we may assume that, for some positive (small)
k to be chosen later, we have

(2.3.4) ot X)) < kvt X)Y? and  (6o(t(, X)) < ro(t( X))V 2,

In fact, otherwise, we have N (t(,¢( X) > x and since from (2.1.14), we have
u(t, X) < C$ where C depends only on a Pnite number of semi-norms af, we
get from (2.3.2), (2.1.16)

R(t, X) < CY2u(t, X)" V2(50(t, X)) < CY2 < Y25 N1 X),

so that we shall only need

059

to obtain (2.3.3). Also, we may assume that, with the same poiive (small) «,
(2.3.6) v(t, X) < &2, X) and u(t, X) < &2t X).

Otherwise, we would have for instancev(t, X) > x?v(t(, X) and sincet > t(,

1 ot X))
l/(ﬁ(,X)UQ $0

< CUQH" 1<<6O(t(aX)> + |60(t7X) - 60(t(7X) |>
= (10, X)172

R(t,X) <$" V2u@t, X))V 2

1 50(t5 X) - 50(t(a X)
st xX)U2

which implies (2.3.3) provided that (2.3.5) holds. Finally, we may also assume
that

(2.3.7) v(t, X) < k?u(t, X),
otherwise we would have, using thatdy(t{, X) < do(t, X) < do(¢t((, X) and the
convexity of s — 1+ s2 = (s),
<50(taX)> < Ii" 1 <50(t(aX)> + Ii" 1 <50(t((7X)>
$ 1/ 2 - $ 1/ 2 $ 1/ 2
and this implies, using v(t(, X), v(t(, X) < C$ (see (2.1.17)),

ot X)) - cara, o 1 400 X))
l/(f(, X) 1/2 V(t((, X) 1/2

which gives (2.3.3) provided that (2.3.5) holds. On the othe hand, we may
assume that

(2.38) max((do(t, X)), k' 2$ M 2q(t, X) |V ?) < 2rpu(t, X)V 2.

<25 NGO Xy + oV 2R

R(t,X)<r !

R(t,X) < CY2%g" !
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Otherwise, we would have either

1. 1. 1
1/ 2 < = 1 < = 1 1/2 < - 1/2
(e, X0V < 5 (1, X)) < 5 e X0V < St X)
from (2.3.7)

which is impossible, or we would have
from (2.1.16)

1. ~~ 1.
,U(t,X)ll2 < EKI 1/2|$1/2q((t,X)|1/2 < EKI 1/2V(t,X)1/4’U,(t,X)1/4

1 1/2 PR ; ;
< — .
Z/L(t, X)" =, (which is also impossible)

from (2.3.7)

The estimate (2.3.8) implies that, for | k < 1/16|,

$1¢E, XN < wt, X) < (8o(t, X))+ |13V 24, X)| +$ |¢{(t, X)|?
(X7 < ult, X) < (0o(t, X))+ [$77¢(¢, X)[+$ |¢"(2, X))
(2.1.13) (2.1.13) < (AR +4AR)u(t, X)+$ |q(((t,X)|2,
~—
(2.3.8)

1
1-8x

and thus

239) 8¢t X)P < u(t, X) < $1g(t, X)I? < 281¢(t, X) 2.

This implies that

(2.3.10)

R(t,X) < $" V22V 2§12z, X)| (do(t, X))

((do(t, X))2 +$ [{(t, X) [Ppult, X)" 1
<224, X))

> Rescaling the symbols. We sum-up our situation, changing the notations so
that X =0, = t1,t = to,t(= t3,0, = v((,0),12 = v(t,0),3 = v(t(0),5 =
do(%,0), 1 = p(t;,0). The following conditions are satisbed:

)1/2

<51> S'%VllIQa <63> S:‘il/31/2,

ve < K%v1, ve <Ky, 1o < Ko

<62> ((
(82) + |g\(t2,0)]/|q"(t2, 0)| < 2|¢"(t2,0)],

$1¢((t2,0)[? < pa < 2$|"(22, 0)?,
k<1/16, Cy>r 1CV2,

where k > 0 is to be chosen later andC depends only on a Pnite number of
semi-norms ofg. We debne now the smooth functionsf;, f» debned onR?" by

(2.3.12) A = ¢, Y2 (V)= ! P, Y),

(2311) { R(t2,0) < 2/¢'(t2,0)|
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and we note (see (2.1.1)-(2.1.15)) that| f{{||, .. and || f{{||, . are bounded above
by semi-norms ofg; moreover the assumption (2.2.1) holds for that couple of
functions, from (2.1.2).

LEMMA 2.3.2. N We define

(2.313) piy” = max ((82), [ 2q{(t2, 01 2, v ¢ (12, 0))).

If max((6s), k¥ 2| (L, 0)[V 2) > 2kputl?, then (2.3.3) is satisfied provided
1 12

CO Z 3/,“6

Proof. N We have either |1’ 2¢((,,0)| < pih? < 1K 1(62) implying

100) 106, 106-0
2612 7 26,12 26 )02

which gives (2.3.3) (usingR(tz,0) < 2|¢{(t2,0)| in (2.3.11)), provided Cy > 1/k,
or we have

1.
"2 q (12, 0)] < " < 5" V2 (82, 0) 2,
144(22,0)?
lg(t2,0)] — 4,%1/11/2
in (2.3.11)), we get R(t2,0) < %:}—3;, which gives similarly (2.3.3), provided
Co > 1/(2k). O

implying so that (using R(ts, 0) < 2/¢(t, 0)[*(32) /|¢ (12, 0)|

A consequence of this lemma is that we may assume
1/2
max((d2), 5" %1 “{(t2, 0)['?)

/ / /
< 2" = 2max((82), ' % (t2, 0)" 2, [ *q(2,0))),

and sincex < 1/4, we get

(2.3.14)

/ / / /
iy = [ 2 (12, 0)],  max((82), k1 2[vy’ ¢ (t2, 0)|V'2) < 261y’ *¢{(22, 0)|.

LEMMA 2.3.3. N The functions f1, fo defined in (2.3.12) satisfy the assump-
tions (2.2.1-2-3-4-5-6) in the lemma 2.2.2.

Proof. N We have already checked (2.2.1). We know from Lemma 2.1.7hat,
with a constant C' depending only on a Pnite number of semi-norms of

(see (2.1.18)),

1100) = q(t2,08" 2, 7V < Oy,
but we may assume here thatC < 1/2: if we had |f1(0)| > u11/2/2, the function
f1 would be positive (resp.negative) OnB(O,royllu), with some bxedry > 0
and consequently we would haved, | > r0V11/2. But we know that (6;) < mzlm,

. . 1/ 2
so we can choose priori x small enough so that|d;| > 7’01/1/ does not occur.
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From (2.3.11), we have(d;) < fwl“Q, the latter implying f{(0) # 0 from (2.1.16)
sincex? < 3/4 and more precisely

(2.3.15) pr= IHO =@ -2 20?2
Moreover we have, from (2.1.18) andv; < k%vy in (2.3.11),
max(vy 2q{(t2, 01" 2, |1 3¢ (2, 0)]) < puh? < Cuy'?,

with a constant C; depending only on a Pnite number of semi-norms of and
thus

(2.3.16) max(| (02, | f£(0)]) < 2Cip1.

Moreover, we have from Lemma 2.1.7, $ 2|q(t2, 0)|py "' > < Caus, S0 that with
constants Cs, C3 depending only on a Pnite number of semi-norms of, us-
ing (2.3.8), we get

|f2(0)] < 1/11/2021/2$" 1/2M;/2 < 1/11/2031/2 < C’gﬂQVf/Q.

That property and (2.3.16-15) give (2.2.3) with Ry = Cp;, where C' depends
only on a bnite number of semi-norms ofg. We have already seen that the
constants occurring in (2.2.4) are bounded above by semi-nms of ¢ and that
(2.2.5) holds. Let us now check (2.2.6). We already know thatfrom (2.3.14),
(2317) |f5O)V2 = 11" 2q(t2, 0)["* < 26" 2]y *¢ (12, 0)| = 22| £(0) .

If we have |1’ 2q(t2,0)| > kY2437 then for |h| < kY3ulL? we get, using
v < $ and TaylorOs formula along with (2.3.13-14),

1/ 2 1/2 3/2 4/ 3 32 1 2/3 32 /24" 1/2 3/2
[ “a(te, B[ = K7 "pyy” — 4R™ Py — o M2 —Cr °$ K1

23
- Mi’/g2<“1/2*4’i4/3* “2 70(,{) > H?/22H1/2/2> 0,

provided x is small enough with respect to a constant depending only on &nite

number of semi-norms ofg; that inequality implies that the ball B(0, ﬁllsui/f)

is included in X (t2) or in X« () implying that [S(t2,0) = &3] > kY 3ul?

which is incompatible with (2.3.14), provided x < 2" 32, since (2.3.14) implies
[02] < Znu}/;. Eventually, we get

(2.3.18) 1220)1V3 = [ 2q(t2,0)[V? < 5 Opi3” = KV 6| £(0)]

and with (2.3.18) we obtain (2.2.6) with

(2.3.19) ko = kYO,

The proof of Lemma 2.3.3 is complete. O
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> End of the proof of Theorem 2.3.1. To apply Lemma 2.2.2, we have to

suppose (2.2.7). In that case we get.’ 2|¢{(t2,0) | = |f4(©0)- | < Chaps =
051/61/11/2|q«(t2,0)| i.e.,
(2.3.20) |q(t2,0) | < CxY 61" (t,0)].

If (2.2.7) is not satisbed, we obtain, according to (2.2.9),(2.3.19) and 12 =

1/ 2 «
141 |q (t27 O)|7

So(t1,0) = 81 < =" 3wy %q (12,0,

which gives L R(t2,0) < |¢(t2,0)] < &’ 1’3("11—}'2 and (2.3.3) provided C, >
3k 3. If we introduce now the smooth functions Fi, F», debned onR?" by
(2.3.21) F(Y)= —q(ts, V)$ Y20 "2 Fo(Y) = —13 %q(ta, ),
starting over our discussion, we see that (2.3.3) is satiske provided
(2.3.22) k<ko and Cy >k 1,

where xg,7o are positive constants depending only on the semi-norms of,
except in the case where we have (2.3.20) and

(2.3.23) 1q(t2,0)4 | < CkY6|q(t2,0)].

Naturally, since |¢((t2,0)| = |¢((t2,0) |+ |¢{(t2, 0)- |, the estimates (2.3.20-23)
cannot be both true for a x small enough with respect to a constant depend-
ing on a Pnite number of semi-norms of; and a non-vanishing¢{{(¢,, 0) (that
vanishing is prevented by the penultimate line in (2.3.11)) The proof of The-
orem 2.3.1 is complete. O

REMARK 2.3.4. N The readers may bnd our proof quite tedious, but referring
them to the simpler remark following claim 2.2.1, we hope tha they can bnd
there some motivation to read the details of our argument, whch is the rather
natural quantitative statement following from that remark . On the other hand,
Theorem 2.3.1 is analogous to one of the key argument providiby N. Dencker
in [7] in which he proves, using our notations in the theorem,

(2.3.24) R(t, X) < Nt X) + 60t X) — 6(t(, X)

which is weaker than our (2.3.3). In particular, R (and N) looks like a symbol of
order O (weight 1) whereas the right-hand-side of (2.3.24) @ntains the dilerence
8o (t(, X) — 80(t(, X), which looks like a symbol of order 1/2. Our theorem gives
a stronger and in some sense more homogeneous version of NnbieerOs result,
which will lead to improvements in the remainderOs estimate Also, we note
the (inhomogeneous) estimate

$" V2, X)) 20, X) 2 < N X)),
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which is ianact a consequence of our proof, but is not enoughat handle the
remainderOs estimate below in our proof, and which will not & used: in fact
(2.3.3) implies

$" 1/ 2,LL1/21/" 12 - R<50> 1
< NG X) st X) — ot X) | Go(t, X) — do(t, X)
<60(taX)> V(t((aX)1/2<50(taX)> V(t(aX)1/2<50(t7X)>

Nt X) 1 1
S oL < Nl ¢
™ (do(t, X)) * v(t( X)12 " (1 X)172 S N, X)),

2.4. Quasi-convexity. N _ A di'erentiable function ¢ of one variable is said
to be quasi-convex orR if ¥{¢) does not change sign from + to— for increasing
t (see [15]). In particular, a dilerentiable convex function is such that zL:(t) is
increasing and is thus quasi-convex.

DEFINITION 2.4.1. N Let o; : R — R be an increasing function,C; > 0 and
let p; : R — Ry. We shall say that p; is quasi-convex with respect to (1, 01)
if for ti1,t9,t3 € R,

(241) t1 <ty <t3 == pl(ﬁg) < max(pl(tl),pl(tg)) + Ul(ﬁg) — Ul(ﬁl).

When o, is a constant function and C; = 1, this is the debnition of quasi-
convexity.

LEMMA 2.4.2. N Let o1 : R — R be an increasing function and let w : R —
Ry. We define

(2.4.2) p= inf (w(t()+ Wt + oy (1O — al(t()).

Then the function py is quasi-convex with respect to (2,01).

Proof. N We consider ¢, < t, < t5 three real numbers. We have

prta)= inf (o) + w(t)+ o (19 o (1)

<ot (@9 w9+ o1 (K9 —0(t)+ a(ta) o (19)

U8t a&t”
+o01(t3) —o1(t1)

<t (0 el i)+ oG+ o109 o)+ 011 ~o1 (1)
ty<tg <t +o1(ts) —o1(t1)
= p1(t)+ p1(ts)+ o1(ts) —o1(t1) <2max(pi(t1), p1(ts))+ o1(ts) —o1(ta).
O
The following lemma is due to L. Harmander [17].
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LEMMA 2.4.3. N Let o1 : R — R be an increasing function and let w : R —
Ry. LetT > 0 be given. We consider the function py as defined in Lemma 2.4.2
and we define

t
@43 (1= swp {00+ 5 [ n0ir o) |

Then we have

(244)  2Ta( 1+ o) Zp, andfor [t ST, |(1()] < pu(t).

Proof. N We have ( 1(t) > —p.(t), and

0 t
(+0+ )= s {n+ 5 [ w0ar-n@} 51 [ o6

increasing with t

so that o(( T + o1) > %pl. Moreover, from the proof of Lemma 2.4.2, we
obtain for s < r <t that pi(r) < p1(s) + p1(t) + o1(t) — o1(s) and thus

1 [ 1 /[
o7 | 0 < 7 [ i) <)+ a0+ i) - ()
s —5Js
which gives (1(t) < p1(t), ending the proof of the lemma. O

DeFINITION 2.4.4. N For T > 0,X € R*, |t| < T, we debne

- <60(taX)>
A
(2.4.5) o1(t, X) = do(t, X),

t
77(1ﬁ,X)=/ do(s, X)$" V' 2ds+ 2T,
T

where dg, v are debned in (2.1.7),(2.1.16). ForT' > 0, (t,X) € R x R?", we
debne ((t, X) by the formula (2.4.3)
(2.4.6)

t
tx)= w0 {on(s. X))+ 5 [ 0 - s 0},

where p; is debned by (2.4.2). We debne also
(247) m(t7 X) = 60(ta X) + (( t7 X) + T" 150(@ X)n(t7 X)
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THEOREM 2.4.5. N With the notations above for ( ,p1,m, with R and Cy
defined in Theorem 2.5.1, we have for T >0, [t| <T, X e R®",$ > 1,

1)
(2.4.8) KMMKmW@Q%%%QM@MF%@ML
(2.4.9) Cy 'R(t, X) < p(t, X) < ZT% ((( t, X)+ al(t,X)),

(2410) 0<n(t,X) <4T, < (5om) > 5" V7, i (1, X)] < 478" 2

d 1 . 1 . .
(2411) T—om>Spi+ 628" 12 > 2—C’OR+ 628" V2 > (6)%$" V2.

dt = 23 2Cy

Proof. N It follows immediately from the previous results: the brst estimate
in (2.4.8) is (2.4.4), whereas the second is due t@; < 2w which follows
from (2.4.2). The equality in (2.4.8) follows from DePnition 2.4.4. The prst
inequality in (2.4.9) is a consequence of (2.4.2) and (2.3)3and the second
is (2.4.4). The brst two inequalities in (2.4.10) are a consguence of|dy(¢, X)| <
$ 2 which follows from dePnition 2.1.4. The third inequality reads

d ’ , , "
%(5077) = &+ SoMi> Somi= 63% vz,

and the fourth inequality in (2.4.10) follows from (2.1.8). Let us check bnally
(2.4.11): sincem = 6o+ (+ T '9¢n, (2.4.4) and the already proven (2.4.10)

imply T&m > 1p; + 63$" 12 and (2.4.9)(proven) gives

1 " 1 " 1 . " "
5/)1"' 5(2)$ 1/222_%R+ 6§$ 1/2=2_C’0$ 1/2'u1/2y 1/2<50>+ 5(2)$ 1/2
1 "1/2(9" 112 2 1 "1/2 2
> 2—%$ (2 <50> + 50) > 23/200$ <60> s
from (2.1.17)
completing the proof of Theorem 2.4.5. O

3. Energy estimates

3.1. Preliminaries

DerINITION 3.1.1. N Let T > 0 be given. With m debned in (2.4.7), we
debne for|t| < T,

(3.1.1) M(t) = m(t, X)WVick,
where the Wick quantization is given by the debnition A.1.1.
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LEMMA 3.1.2. N With T > 0 and M given above, we have with p, given in
(2.4.2), R defined by (2.3.2), for |t| < T, $ >1,

d

1 Wick 4 =
1. a > Wick 2 12
(3.1.2) dtM(t) > 2Tp1(t X) M+ (50) $
Wick 1 Wick g vz 1 2\ Wickg" 1/ 2
= ZCoTR MR GO S ZETen 7 ((00)) T8
<50(taX)>
3.1.3 t, X)| < t,X) <2——X—=
(3.13) (1201 < X) <2, 5550
(314) T" 1|50(t5X)77(t7X)| S 4|50(t5X)|5
(3.1.5) T" 88y (¢, X)n(t, X) |+ T *[dox (¢, X)nk (¢, X)| < 12

Proof. N The derivative in (3.1.2) is taken in the distribution sen se, i.e., the
Prst inequality in (3.1.2) means that (A.1.5) is satisPed wih

1 oo [ 2
pi(s, X)ds — =% / do(s, X)“ds.
ZT/ ! T .

It follows in fact from (2.4.11). The other inequalities in (3.1.2) follow directly
from (2.4.11) and the fact that the Wick quantization is positive (see (A.1.3)).
The inequality (3.1.3) is (2.4.8) and (3.1.4) follows from 2.4.10) whereas (3.1.5)
is a consequence of (2.1.8), (2.4.10) and Debpnition 2.1.4. O

a(t,X) = m(t, X) —

LEMMA 3.1.3. N Using the definitions above and the notation (A.1.4), we
have

(3.1.6) (( t,) xexp—2r# € S((Jo(t, ))v(t, )" V2, #),
(3.1.7) So(t, ") x exp—2r# € S((6o(t, ")), #),

(3.1.8) Sl (t,) xexp—2n# € S(1,#),

(3.1.9) T" 'n(t,-) «exp—2r# € S(1,#),

(3.1.10) T 'n(t, )& xexp—2n# € S($" V2, #),

with semi-norms independent of T < 1 and of t for |t| < T. According to the
definition 1.8.1, the function X — (0o(t, X)) is a #-weight.

Proof. ~N The last statement follows from (2.1.8). The inequalities ensuring
(3.1.6N10) are then immediate consequences of the lemmasB2 and A.1.3. O

3.2. Stationary estimates for the model cases. N Let 7" > 0 be given
and Q(t) = q(t)V given by (2.1.1-2). We debne)M (t) according to (3.1.1). We
consider

(321)  Re(QUM() = sQUM®D)+ MWD = P().
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We have, omitting now the variable ¢ Pxed throughout all this section 3.2,
(322) P =Re |:qW (50(1 + T 177))Wick + qW( Wick:| )

[1]. Letus assume brstthatg =$ " V2" 207 23¢q with 8 € S(vY2,0" 1#),1 <
eo € S(1,v" #) and dp = 3. Moreover, we assume < 7" 'n < 4, 7" | <
43" V2 |(| < C(o)v" V2. Here $,u,v are assumed to be positive constants
suchthat$ > pu>v>1

Then using the lemma A.1.5 with

a1 = Beg, mi=(B), az=(@1+ T 'mey' mo=0v V2

we get, with obvious notations,

Wick _

(Boeo) V' (eo 'L+ T 1)) T = (b1 + T M)

YV (o) V28"

and as a consequence from the proposition A.1.2(2), we obtaj with

(3.23) Bo = Beo, mo= ey L+ T 'n),
the identity

(8" + S 20 ) i = (so(d+ T ) T S((do) M2 ),

)Wick
entailing

)Wick

(Bo(1+ T" ') = Go" Vi + S((so)r" V2 )"

As a result, we have
:A*1/2p1/2*‘ oF

QM - $ "1 2/1,1/21/1/ 268/681778}“(:1(4- BSVS($" 1/ 2u1/2V1/2<50>V" 1/27#)W
+ ﬁ(\SVS($" 1/2u1/21/1/2<60>y" 1/2,#)W.

=A-1/2p1/2% o+

This implies that, with 79 =1/supeg > 0, (so that 1 < eg < 78 D)
' S((’l/Q,F)w.
2R M_2$"1/2 1/2. 1/ 2 pw, Wick W+2R W$"1/2 1/2,1/2 w , Wick
eQM = [ e e e By v [50#70 }
+Re 6(\3\15($" 1/2M1/2<50>7#)W
- 2$ "1/ 2,[1/1/2”1/ 255vnaNiCkﬁ8I +Re B&vs($ 1/ 2,“/1/2<60>a#)w
(3.24) > 28 AR a0 B + by + B

since ng > eg *
from n > 0 in (2.4.10)
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with by € S($" Y21l 2(50),#). With the notation A =$" 12,1212+, we use
the identity,

$1/2’u1/2V1/258/,yOﬁ(\3v + Bglb\g + 9(1)\’60 -
()‘1/268/ + )\ 1/293)()‘1/268, + )\ 1/2b\6v)7>‘" 196vb\6v7
so that from (3.2.4), we obtain the inequality
(3.2.5) 2ReQM + bW > §" V2,121 2y, gw g
with b, real valued in S($ Y2, Y20 V28" 11(5,)2, #).

A-1/2p1/2( —1/2% (42
Using now (A.1.11), we get, with a ObxedO constant, that

b\{v < C$" 1/ 2M1/2V" 1/2(1 + B2)Wick
- C$ 1/2M1/2V" 1/2 Id + C$ 1/ 2M1/2V" 1/2(6365 2)Wick
S C$" 1/2M1/2V" 1/2 Id + C$" 1/2M1/2V" 1/2(63)\7Vick7
and since, from the proposition A.1.2(2), we have
B2Wick: B2W+51,V"1#W=ﬁWﬁW'FSl,V"l#W,
0 0 0 ~0
the inequality (3.2.4) implies
ZREQM + C$" 1/ 2M1/2V" 1/2 Id+ C$" 1/ 2,[1/1/2”" 1/ QﬁOWﬁOW +
+ S($" 1/ 2‘u1/2y" 1/2, l/" 1#)W > ZRGQM + b‘iv > $" 1/ 2/1,1/21/1/ 27058/68,7
so that
(3.2.6) ReQM+ S($" V2u12) V2 gpw
Z ﬂgvﬂgv(ss 1/2M1/2V1/ 2,}/0 o C($ 1/ 2,LL1/2I/" 1/2)'

1 1

The rhs of (3.2.6) is nonnegative providedv > Cly, ' and since Cly, ! is a
bxed constant, we may brst suppose that this condition is sasbed; if it is not
the case, we would have thatv is bounded above by a bxed constant and since
v > 1, that would imply ¢ € S($" Y2u!2 #) and P € S($" V2uY2.#)". In
both cases, we get

3.2.7 ReQM + S($" V22" V2 #)W > 0.
I
[2]. Let us assume now thatqg > 0, ¢ € S($" V2u v, 0" #), yr? < 6§ <

v, "% with a positive Pxed constant~,. Moreover, we assume &< 7" ' <

4,7 Yn{| < 4% V2, |(( X)| < C, (real-valued. Here $ ., v are assumed to
be positive constants such that $> > v > 1.

We start over our discussion from the identity (3.2.2):
. Wick
(3.2.8) P=Re [qw (50(1+ T" 1) +( ) }
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We debne
(3.2.9) ap = do(1+ T n)
and we note that o'/ 2 < ag < 5y, ‘v 2.

REMARK 3.2.1. N We may assume that v'/? > 2C/~, which implies C' <
10112 so that

1 .
(3.2.10) 51002 Sao+ (< B+ /2R,
In fact if vY2 < 2C/y we have (So(1+ T 'p)+( )" € S@,#",

$V2, V2 ¢ S(,#) and P € S V2uY2,#)™ so that (3.2.7) holds
also in that case.

We have the identity
. . ) 12 ~ an < 5,)/" 11/1/2
3.211) " (o1 + T 1))V = @¥aVick with {107 =0 =T ¥
The Weyl symbol of (ag + () Wik, which is
(3.2.12) a=(ag+() =2"exp—2r#,

belongs to S,(vV2,v" '#)(see debnition A.5.1): this follows from the
lemma A.5.3 and (3.2.11) fora, * exp—27# and is obvious for ( * 2" exp—2n#
which belongs to S(1,#). Moreover the estimates (3.2.10) imply that the
symbol a satispes

(3.2.13)

1 W oo v |2 "

S0’ <a()= [(ag+00 X+ V)2 7Y < 5t Cro/2
As a result, the symbol b = a2 belongs to S;(v"*,v" #) and 1/b €
Si(v" V4 U ). we have

" U 273/2111/4 < b < (5% 1y 070/2)1/21/1/4
and moreoveral = af * 2" exp—2r#+ ( * 2" (exp —27#)(, so that, using
|a{| < 14+ C |2 (exp —21#) ||, 1 (geny = C1,
we get 26| = [a{(X)]a(X)" V? < 212+ V2" V4, and the derivatives ofa/ 2
of order k > 2 are a sum of terms of type
az" M a®m) o owith By + oo+ by = K all ko> 1,

which can be estimated by Cvi" % < Cv' 7 sincem > 1. Similarly

we obtain that "' € Si(v" V4, v '#). From the lemma A.5.2, we have
O = aV + S V2 Y = (ag+() Wik + S Y2 #)W, which means
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(ag+() Wik = pWpW + #% 1y € S Y2 #), real-valued Using that 1/b
belongs to Sy (v 4, " #), we write, using again the lemma A.5.2,
1. 1. " " "
(b+ Eb 1T0)W(b+ Eb 1T0)W = 00" + rV + S(v va, 1z, 1/4,#)w7

which gives,

(3.2.14) (@ +() Vik= (b+ %b" Lro)" (b+ %b" Lro)" + S L™,

Note that by = b+ 2b" 'ry belongs toS;(v'4,v" '#) since it is true for b and
b lrg € S(v' 34, #): we get then
S(A’l/zul/Q( 1/4( 71/4'F)
2Re(q" (a0 + () ™'*) = 205 ¢" by + [ [¢",00] bp1+Re(q"S(v 1 #)")

S(A—1/2u1/2(1/2( ~1/4T)

so that
(3.2.15) P=bVg"nl + S@$" V22 v

Using now the Felerman-Phong inequality ([8], Theorem 18.68 in [14]) for
the nonnegative symbolg, we get b ¢V by = b (q" + C$" Y 2ut 20" oy +
S V22 2w > (st V22 V2 #)W ) so that, from (3.2.15) we
get eventually

(3.2.16) Re@QM)+ S($" V2,12 #)" > 0.

3.3. Stationary estimates. N Let 7" > 0 be given andQ(t) = ¢(¢) given
by (2.1.1-2). We debnelM (t) according to (3.1.1). We consider

1 1
(3.3.1) Re(Q(t)M(t)) = EQ(t)M(t)+ EM(ﬁ)Q(zﬁ) = P(t).
We have, omitting now the variable ¢ Pxed throughout all this section 3.3,

(332) P =Re |:qW (50(1 + T 177))Wick + qW( Wick:| )

LEMMA 3.3.1. N Let p be the Weyl symbol of P defined in (3.3.2) and (~:
( *2" exp—2n#, where ( is defined in (2.4.6) (and satisfies (2.4.8)). Then we

have

(3.3.3)
p(t, X) = polt, X) = a(t, X) (do(L+ T ') + 2" exp—2r# ) + a(t, X)({ £, X),

modulo S($" V2 20" 1 2(50), #).
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Proof. N Using the results of section 2.1, we know that the symbol X +—
q(t, X) belongs to the class
SV 2ut, X) 20t X), v(t, X)" #)

as shown in lemma 2.1.7. In fact from (2.1.18) we know thatq €
S$" V2uY 2y, 0" 14#), and from (3.1.3) and Lemma A.1.3, we obtain, us-
ing Theorem 18.5.5 in [14],

qﬂ(~= q(~+ % {q,(}+ S V2N 1/2<(50>,#).

This implies that Re (¢t() € q(+ S Y2uY20" V2(5y),#). On the other

hand, we know that
)

Re(qﬂ (D01 + T" 1) = exp—27r#})

= qw+ Z Cop q(*)w(+) + S($ 1/2,LL1/2I/" 17#)

[* 1=1+1=2

so that it is enough to concentrate our attention on the OprodictsOg(w(. We
have

(o + 7" 'n)) Ui exp—2r# € S(1,#)

and since¢C € S($" Y2uV2 1" #), we get a remainder inS($" YV 2ul 2 #),

which is Pne as long agd,) > cv'/2. However when (5,) < cv'?2, we know
that, for a good choice of the bxed positive constant, the function ¢, satispes
the estimates of S(v'/2,1" '#), since it is the #-distance function to the set
of (regular) zeroes of the functiong so that ¢6{ € S($" V2u 20" V2 " 1#)

which is what we are looking for. However, we are left with

d(Bon + exp—2r#) (7" 1.
Since we have §on) (= 5(n+2 5§n+ donCand |5§n+26{n'| < CT (" V2+$ " V2),
we have only to deal with the term

Son x exp—2n# = / oM (V) exp —2a#(X — Y)dY

= —/53(1/)77((5/) exp—2m#(X — Y)dY
———
<TA-1/2
— /50(1/)17((1/) 4(X —Y)exp—2r#(X — Y)dY.
N———
STA—l/z*v o+

For future reference we summarize part of the previous discssion by the fol-
lowing result.
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LEMMA 3.3.2. N With the notations above, we have

‘(50(1 + T )« exp—Zw#)‘ < C(6),

" (
(60(1 + T 1)« exp—27r#) ’ <C,
. (( "
‘(50(1+ T" ) *exp727r#) ‘ < Oy V2.

Proof. N Starting over the discussion, we have already seen that tle result is
true whenever (5,) > 2. Moreover when (6,) < v'2, we have seen that
16| <v" Y2 and T" || < 1; moreover we have already checkegh(| < 7$" V2
and 7" 15{n{| < $" V2 < v V2 as well as|donCx exp—27#| < $" Y 2(5) <

~

<60>V" 1/2. O

Eventually, using the lemma A.1.3, we get that the brst integal above is
in S(T$" V2, #) whereas the second belongs t&(7$" V' 2(do),#). Finally, it
means that, up to terms in S($" V2 20" 12(5y), #), the operator P(t) has a
Weyl symbol equal to the rhs of (3.3.3). O

We shall use a partition of unity 1 = ", xZ related to the metric v(t, X)" '#
and a sequencefy) as in section 1.4. We have, omitting the variable¢, with
po debPned in (3.3.3),

Po(X) = D x(X)*q(X) /60(Y)(1 + T 1n(Y))2" exp—21#( X — Y)dY
k
+ ZXk(X)QQ(X)/(( Y)2" exp—2m#(X — Y)dY.
k
Using the lemma A.1.6, we obtain, assumingdg = dok,(=( «,q = gk on Ug
(3.34) po= ZXﬁQk (Sok (1 + T" ') % 2" exp—2r#)
‘ + Zxﬁqk ((k*2"exp—2r#t) + S V22" #).
k

LeMMA 3.3.3. N With (¢ = ( « * 2" exp—2r#, dq = ool + T n) %
2" exp—2n# and q«, xx defined above, we have

(335) Y xkbakdkixk + Y xwbak(bxk = po+ S 220 V2 (50),#).
k k

Proof. N We already know that |di| < (00), |d{| <1, [d{] < (6o)v" V2, so
that

(3.3.6) [(akd) = qldi +2qkdl + qudl| S 8" 2uV 2 ((60) + V% + 1V 2(60))
5 $ 1/ 2,LL1/2Z/1/2<50>.
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As a consequence, we get

ZXk fBar dicHxx

k

1 " "
= 3 (e + E{xk,qkdm S 1@ 2 50)0 %), ) )

Z(Xkadk + = {Xk,dek})ﬁXk + ZS($ V202600t M2 #)

k

Z(qukdk E{Xkandk})Xk"‘ —Z{XKQde"' 25 i akdi Xk}

k
+ S($ 1/2u1/2<60>l/" 1/2,#)

since (k) Ocfl| S 8 12! 2(80)+ v 24w (Go)y VA (o) 12822,
Using now that ykfigx dkfixk is real-valued, we obtain

(33.7) > xuflakdiixk =
k

1 ) .
2 /2 1/2 1/ 2
;Xk%dk—@;{{qukdk}»ckﬁ S@& p 00y T H).

We note now that, using (3.3.6), we have
(338)  {{xk.akdk}.xx}= —H? (adi) € S@" V2t 2(60) " 20" 1L #).

We examine now the term

Xicha (i =
(xeax ) x + ﬁ {Xkﬂlk(k} fxi+ S 182 2oy R #)
We have
Re(uak (ki) € xiak(k + S 18" V201 2u(50)" V2 #),

1 ~ . " . "
g LoeaCicf € iR+ SO7Y28T 2 sy 2 8.
Since itk ( kfxk is real-valued, we get

(3.3.9) ZXkﬂQk(kﬂXk = ZXE‘]k(k + S($" 1/2M1/2<50>V" 1/27#)-
k k

Collecting the information (3.3.4), (3.3.7), (3.3.8) and (3.3.9) we obtain (3.3.5)
and the lemma. O
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From this lemma and the lemma 3.3.1 we obtain that
(3.3.10)

Re(QOM()) = > xi¥ (akdi + a( )" xi + S@" 2! (o) V2, )",
k

Moreover the same arguments as above in Lemma 3.3.1 give altuat
(3:3.11) Re(@'dy + qi' (1) = (axdi + a( )™ + 5@ V20! ()" 12 #)".

PROPOSITION 3.3.4. N Let T > 0 be giwen and Q(t) = q(t)V given by
(2.1.1-2). We define M (t) according to (3.1.1). Then, with a partition of unity
1= 3", x¢ related to the metric v(t, X)" # we have

(3.3.12)
Re QM) = Y xi¥ Re(qddy + g (¥ )k + S 1 2p! 2 (do)r" V2, #)"
k
(3.3.13) Re (QU)M() + S($" Y2u2(50)r" V2, #)" > 0.

Proof. N The equality (3.3.12) follows from (3.3.10-11). According to Lemma
2.1.9, we have to deal with four subsets of indicesE: , Ey, Eyg. The classib-
cation in Debnition 2.1.8 shows that section 3.2.[1] takesare of the casesE)
and shows that, from (3.2.7),

3.314) forke Ey, Re(gld¥+ ¢“( )+ S Y22, V2 )W > 0.
k Ok k\ Kk K
Furthermore, the estimate (3.2.16) in section 3.2.[2] show that
3.315) forke Ex, Re(q'd) + () + S V2u" 2" V2(5,),#)" > 0.
k Yk k \ k
Moreover if k € Ey, the weight v is bounded above and
(3.3.16) qedd + g (F € S@" V222

The equality (3.3.12) and (3.3.14-15-16) give (3.3.13). O

3.4. The multiplier method

THEOREM 3.4.1. N Let T > 0 be given and Q(t) = q(t)" given by (2.1.1-2).
We define M(t) according to (3.1.1). There exist To > 0 and co > 0 depending
only on a finite number of v in (2.1.1) such that, for 0 < T < Ty, with
D(t,X) = (00(t, X)), (D is Lipschitz continuous with Lipschitz constant 2, as
0o tn (2.1.8) and thus a #-weight),

(3.4.1) %M(t) +2Re (Q)M(t)) > T" H(D*)Wickg" V3¢,
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Moreover we have with m defined in (2.4.7), m(t,-) = m(t,-) x 2" exp—27#,

(3.4.2) M(t) = m(t, X)Vik = m(t, X)V, with m € S1(D, D" *#)+ S(1,#).

(3.4.3)  m(t,X)= a(t,X)+ b(t,X), |a/D|+ |a$ |+ |b| bounded, i >0,
a= 6@+ T '), b=(.

Proof. N From the estimate (3.1.2), we get, with a positive bxed corstant Cy,

d
_M >
M = 2C,T

and from (3.3.13) and Lemma A.1.4 we know that, with a bxed (nmnegative)
constant C1,

2 Re(Q(t)M(t)) + Cl($ " 1/2M1/2V" 1/2<60>)Wick > 0.

Wick

($" 1/ 2u1/21/" 1/2<50>)Wi0k + T" 1(5(2)) $" 1/2,

As a result we get, if 40,CyT < 1 (we shall choosely = m),
d 1 "2, 12 " 12 Wick, " 1752y Wickg " 172
—M()+2Re (Q()M(t)) = ==& "2u'" v V2 ao)V+T o) S MR
dt 4CyT
Using (2.1.17)(u > v/2), this gives
d " let ; 1
—M(H) +2Re HM(t >T1 1/21+62W1ck7
MO+ 2Re (QIM®) 2T 18" Y2+ )V (o).
which is the sought result. O
4. From semi-classical to local estimates
4.1. From semi-classical to inhomogeneous estimates. N Let us con-

sider a smooth real-valued functionf debPned onR x R" x R", satispying (2.1.2)
and such that, for all multi-indices «, 3,
(4.1.1) sup (& 07 N)(t,z, )|+ [¢) T = Cn < o
(x,stfewmzﬂ
Using a Littlewood-Paley decomposition, we have
ft2, )= > f(tz,€)¢; (£, suppgy compact
i"N
for j > 1, suppy; € {€ € R", 2" 1 < |¢] <271}, sup|9] ¢ ()[21"] < oo
j!
We introduce also some smooth nonnegative compactly suppted functions
¥ (€), satisfying the same estimates thany; and supportedin 2" 2 < |¢| < 21 +2

for 7 > 1, identically 1 on the support of ¢;. For eachj € N, we debne the
symbol

(4.12) g (t,x,8) = f(t, 2,615 ()
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and we remark that (2.1.2) is satisbed forg and the following estimates hold:

(05 0 ;)| < Cf, $j1"| *| with $; = 21. Note that the semi-norms of ¢ can be
estimated from above independently ofj. We can reformulate this by saying
that

(4.1.3)

g €S5($;,%; '#), with#;(t,7) = [t]$; + |7]>$; ' (note that #; = #).

LEMMA 4.1.1. N There exists Ty > 0, ¢ > 0, depending only on a finite num-
ber of semi-norms of f such that, for each j € N, we can find D; a#; —uniformly
Lipschitz continuous function with Lipschitz constant 2, valued in [1,/2%j],
aj, b real-valued such that

aj (t, X)
4.1.4 su L+ |V (8 X) |l + b (¢ X)] ) < .
X eRr2n
Moreover we have with mj = qaj + by, mj(t,") = m;(t,-) = 2" exp—2n#;,
Q; (1) = ¢ ()",
(4.15)

M (t) = my (¢, X)WVKTD = 5y (¢, XY™, with iy € S1(Dy, D *#;) + S(1,#),

(the Wick(# ) quantization is defined in definition A.1.7) the estimate
d " Wick(T;) g "
(4.1.6) EMj (t)+2Re (Qj (t) M (t)) >T 1(Dj2) ( )$j 1/200.

Proof. N It is a straightforward consequence of Debnition A.1.7 ard of The-
orem 3.4.1: let us check this. Considering the linear symplgic mapping L :
(t,7) — ($; 1/21f,$11/27), we see that the symbolsg o L belong uniformly to
S($; ,$i' '#,). Applying the theorem 3.4.1 to ¢; o L, we bnd D a #,Duniformly
Lipschitz continuous function > 1, a, b real-valued such that

a(t, X)
4.1.7 —2r X + X
( ) jENiLt]\FS)TU (‘D(t,;() HVX a(t7 )HFO |b(t7 )|) < 00
X eR2n

and so that, with m = a+ b, m(t,-) = m(t,-) « 2" exp—2a#g, Q(t) =
(q; () o L),

M(t) = m(t, X)WVik = m(t, X)W, with m € S1(D, D" %#,) + S(1,#),

d

(4.1.8) %M(t) +2Re (Q()M(t)) > 71 (DQ)Wick(FO)

"1/2
$] Co.
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Now we dePne the real-valued functions;j = aoL" 1, = boL" !, Dj = DoL" !
and we have, since $(S5) =# ; (LS),

aj (t, X)
—— |+ i(t, X + |b (¢, X
Ay 19X @ Xl + 1y 0. X)
L'lx ((t,X)-T .
- |altL 7 X) X T 1))
D(t,L" 1X) T R2n ()2
t,L''X (t,X)-L''T .
- a’( ) _ ) |a’( 9 ) | + |b(t,L 1X)|
DL X)| 1ogen  #(T)V2
a(t, L' 'X) ;
TN ) + [lal(t, X) I, + [0(2, L 1 X)),

so that (4.1.7) implies (4.1.4). Considering nowm; = a; + b; and for a meta-
plectic U in the Pber of the symplectic L (see debnition A.1.7), we have

(4.1.9) M (t) = mj (t7X)WiCk(Fj) = U(mj o L)Wick(ro)U#_
Thus we obtain

%M (t) +2Re (Q; (1) M; (1))

from (4.1.9.) U%(mj o L)Wick(To) [7# 4 2 Re (UU#qj O U(m; o L)WiCk(FU)U#)

d ) .
U[E(mj o L)chk(Fo) +2Re (U#qj (t)w U(mj o L)chk(Fo))} Ut

. m=m_ oL
using J

oL)W=U*qWU
q q

from (4.1.8) > U [T" 1 (DQ)WiCk(F°)$; u QCQ} u#

U[%(m)WiCk(F") +2Re ((Qj ° L)W(m)Wick(Fo))} U#

from (A.1.16) = T 1UU#(D2 oL 1)W1Ck(rj)UU#$; 1/2c0
- T" 1(Dj2)WiCk(Fj)$; 1/ 260,
which is (4.1.6), completing the proof of the lemma. O
We debne now, withy; given after (4.1.1), M in (4.1.5)
(4.1.10) M) = Yo VM (1)
i'N

LEMMA 4.1.2. N With M; defined in (4.1.5) and ¢, as above,
(4.111) D G M) (A —¥)f(®) Y € S(©)" ,(©)ldxl* + (&) Mg,
i

(4.1.12) "o M (el (1 — ) f0)" € S(E)" L (E)ldal? + (&) Mde[)™.
i
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Proof. N Since 1 = 1 on the support of ¢, we get that, uniformly with
respect to j,
(4.1.13) (@ =¥ f®)" e € S(&)" [daf* + (&) *|de[*)".
Sincem; € S($,'°,$;|de>+$ | |dE[?), we getthat ¢y m; € S((€)V2, (€)|da|?+
(€)" 'd¢|?), and consequentlyy; fy mj € S((€)Y 2, (€)|dz[*+ (€)" *[d¢]?) so that
(4.1.14) @ity m g1 — ) f@Obg € SE)" ()ldal” + (&) '[def)
CS|E)" |l + |de?).
Moreover we havep; f(1—1j)m; € S($;! ,$j |dz|>+$ ] Yde?) ¢ S($;] | dx|?+
|d€]?) so that (4.1.13) implies
(4.1.15) @81 — o) B — ) f(B)kg) € S(E)" , ldaf? + |def?)
CS(E)" L (©)ldxf* + (&) M del?).
As a consequence, from (4.1.14) and (4.1.15) we get, unifotynin j, that
(4.1.16) it 81 — o) F(B)ey € S((€)"  (©)]dal® + (&) '[dE[?).

Since ¢ ,1; depend only on the variable £, the support condition implies
o' = " and we obtain that from (4.1.16)

> oyt (L — ) F(1) ey
j
=) it i L — ) F(Die € SE)" L (©)ldal” + (&) Hde]?),
i
completing the proof of (4.1.11). The proof of (4.1.12) folbws almost in the

same way: we get as in (4.1.16) that

i 8 fy 81— ) f(1) € S(E)" ()ldal* + (&) H]de[?).

Now with ) j = j #(1— ) f(t), we have ); € S((§)" . |dz[*+ (€)" *|d¢|*) and
from the formula (A.5.5) we have also|(9; 3) | )(z,&)| < Cun 2" (L + |€ —
suppy; [)" N (1 + [£]), so that

Cupy 2027 TINT D) i (g > 242,

(0 0) ) (@, )| < { Cuyy 27 2" N if2" 2 < ¢l <2F2
Crn 2N 27 TINT D i 1) < 207 2,
implying that >~ o ftm; £) ; belongs to S((€)" , |dz|* + (€)" ?|d¢]?). O
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LemMA 4.1.3. N With F(t) = f(t,z,&)%, M defined in (4.1.10), M; in
(4.1.5)

%M(t)+2 Re(M®F(1) = Y 8, %" (MJ (t)+2Re (Mj ) (¢ f(t))w)) o
j
+ 3" 2Re(g My (el (v F(1)™18] '?)
j

+ 5((&)" L (©ldx]* + (&) Mdg[P)".
Proof. N We have

% M(#) + 2 Re( M(1) F(t))

=Y oM (0% P +2Re (0 M (D] PGV (D))
(4.1.17) j
=Y M (8] A +2Re (B8] VM () F(D)G)
i

+2Re (', M (D[p", F(1)]).
On the other hand, we have
2Re(p!'$; 2 M; (1) F(1)p") = 2Re (<ij“$} Y20 () (¢ f(t))wgp}”)
+2Re('$] M (0(( - ) f0)" @)
and since we have also
2Re(p"$; 2 M, (D], F (1))

= 2Re(¢'s; "M (0" (v (1))

+2Re(@"$; "M (O, (@ — ) F()"]),
we get the result of the lemma from Lemma 4.1.2 and (4.1.17). O

LEMMA 4.1.4. N With the above notations, we have
(4.1.18)

S Re(@$; YIM (B[ ( FO)V]) € SUE) L (€) |daf? + (&) M|deP).
j

Proof. N The Weyl symbol of the bracket Lo, (v f()"]is 5+ i, 0 F(O}+
.1y € S($; 1. $; '#;) where (rj) is a conPned sequence i$((¢)" !, |dx|? +
(€)" 2|d¢|?). As a consequence, we have

Soe's; M (O € S(©)" () ldal + ()" g™

i

TOME 134 — 2006 — N°© 4



LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (V) 599

With & j = —5- {gj, 7 f()} (real-valued € S(1,$; '#)), we are left with
> $; ' Re(p iy (1)¢i&; ) which belongs to S((€)" 1, (€)[dz[? + (€)" ']de]?).
O

DerINITION 4.1.5. N The symplectic metric * on R?" is debned as
(4.1.19) * 1= (Q)ldal* + (&) Mg,

With D; given in lemma 4.1.1, we debne

(4.1.20) d(t, €)= Y ¢ (> Dj (¢, ,).
i

LEMMA 4.1.6. N The function d(t,-) is uniformly Lipschitz continuous for the
metric * in the strongest sense, namely, there exists a positive fixed constant
C such that
(4.1.21)

- . §—n
€ d(t.,) = d(t. )| < min((V 2, (1)) — gl + S0

maX(<€>1/2, <77>1/2) '

Moreover it satisfies d(t, x, &) € [1,2(¢)Y 2]. It is thus a weight for that metric* .

Proof. N Since the ¢; are nonnegative with Zi 4,012 = 1, we get from
Lemma 4.1.1 that

1= "2 <> @Dy =d<> ¢ (9)%8,'72V2 <> (92922 = ()22
i i i i
Also, we have

d(ta xz, 5) - d(t7 Y, 77)
=3 @ (D (t, 2,8 = Dy (ty,m) + > Di(ty,m) (4 () = o1 ()?),
j j

so that, with X =(x,¢),Y = (y,n), #; givenin (4.1.3),
|d(t, z, &) — d(t,y,n)]
<S @22 (X -2+ S 22 e g2 ic
! ©; ()70 o @ (m)#0
S A @O Pl —yl+ O VR —al) + M=l Y 2T
J 05 ()70 o1 o (m)#0

SOz —yl+ () Ve =+ [E—nl(©)" Y2+ ()" V2.
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We get thus, if (¢) ~ (n),
(4.1.22) jd(t, @, &) — d(t,y.m| <€) e —yl+ (&) ¢ —nl.

If 20 ~ (€) < (1)) ~ 2%, we have

jd(t, 2.0 —dty < Y @20+ YT g (n)?20HDr
j- 5(1)%0 j- (. )%0

(4123) 5 2]0/2 +2k0/2 ~ 2k0/2 ~ |77 _ §|2" kol 2 ~ (77>" 1/2|77 _ §|

Eventually, (4.1.23) and (4.1.22) give (4.1.21), completng the proof of the
lemma. O

Note also that (¢) is a *-weight and is even such that

@.1.24) 62 = 7 < Sl

Lemma 4.1.7. N With F(t) = f(t,z,&)%, M defined in (4.1.10), M,
in (4.1.5), the positive constant ¢y defined in lemma 4.1.1,
(4.1.25)

d . . ick(T; "
Z MO+ 2Re(MMF) > e D' (8] D7)+ S 1 .
j

The operator M(t) has a Weyl symbol in the class Sy((€)" V' 2d,d" ?*) . More-
over the selfadjoint operator M(t) satisfies, with a fixed constant C,

(4.1.26) MEOM() <2 gt (8 D7),
]

Proof. N The estimate (4.1.25) is a consequence of the lemmas 4.1.8.1.4 and
4.1.1. From (4.1.10), we get that

M) € g i(Di$; V2 D] )" g C siale) V2 .
j
From the lemma 4.1.1 and the bnite overlap of they; , we get
! 2 "
J j

" " Wick(T;)
D8 N My () M o) S D (g e (8] TDF) T g ),
- —_——— ~~ :
! ' S(D?,Fj)“’ from lemma A.1.4 !

which is (4.1.26). O
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LeEMMA 4.1.8. N Let a be a symbol in S((&)"1,*) . Then, with constants
C1,Cy depending on a finite number of semi-norms of a, we have

" Wick(T;
[(a"u,w)| < 1 ullf -1z < Co > (8] LDV gy, g,

J
Proof. N We have, since D; > 1 and the Wick quantizations are nonnegative

S (] 102V G, i)

j
w1y Wick(T; " w
> 3] )M gty = (3287 1) ) ~ e,
i j

where H" /2 is the standard Sobolev space of index-1/2. Now, it is a classical
result that

(@u,u) = (Y)Y (V)M u, ((€) )" u)

CS(LY)wL (L2)

which implies that |(a"u, )| < |jull? 1> O

THEOREM 4.1.9. N Let f(t,x,&) be a smooth real-valued function defined on
RxR" xR", satisfiying (2.1.2) and (4.1.1). Let fo(t, z, &) be a smooth complez-
valued function defined on R x R" x R", such that (§) fo(t, z, &) satisfies (4.1.1).
Then there exists Ty > 0,co > 0 depending on a finite number of seminorms of
> fo, such that, for all T < Ty and all u € C;, ((*T, T); S(R”))

172
[Dyu+ if(t,z, % u+ folt,, " ull 2 (gnsr) = T ! </|U(t)||a ~1/2(Rn) dt)

Proof
(i) We assume first that fy = 0. Using the lemmas 4.1.7-8, we get

(4.1.27) 2ReDiu+ if(t)"u,iM(t)u)
Wick(T;) w

> (o™ = Co) > (¢l (3] 'D}) ol u,u),
j
and from the estimate (4.1.26), provided that

we get

2] D+ 0 ull sy [S (' (8] D7

]
> 20N (s D7)V )
j
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so that, with Pxed positive constantsc;, ¢o, using again the lemma 4.1.8

c ; Wick(T; 12
1Deut if 0" ull oy > 2 [ St (85 102) " g )]

j Co 1/ 2
2
> 2 < JALCI R dt) ,

which is our result. Let us check now the casefy # 0.
(ii) Let us assume that Im( fo) € S({€)" 1, (€)" 1*¥). Going back to the compu-
tation in (4.1.27), with (4.1.28) fulblled, we have

Wick(T;) w

2Re(Dyu+ if(t)" + fo(t)Vu,iM(t)u) > ﬁ Z<(,DW ($" 1D2) ol u, u)
+ 2 Re(Re(fo(£)" u. zM(t)u} + 2 Re (Im( fo(1)"u, M()u).

From the identity 2 Re (Re(fo(t))" u, iM(t)u) = ([Re(fo()"™,iM(t)]u, ) and
the fact that, from Theorem 18.5.5 in [14] we have
[Re(fo(t))‘”,i/\/l(t)] c S(<€> 1/2dd" 1<§> 1/27*) wo— S(<€> 17*) w

we can use the lemma 4.1.8 to control this term by

" Wick(T;)
C’Z o ( 1D2 o u, u).

On the other hand, from our assumption on Imf;, we get that

M@ Im( fo()™ € S((€)" V2dE©)" 1, c S(g) Y

which can be also controlled byC' 37 (gt (87 1D2) ™)

we obtain the result in that case too, for 7' small enough.

(iii) We are left with the general case Im(fo) € S(1,(£)" 1*); we note that,
with

u, uy. Eventually,

(4.1.29) wo(t,z, &) = /t Im fo(s,z,€)ds, (which belongs to S(1, (€)" %)),
0

we have

Dy + if(t)" +(Re fo(t)™ + i(Im fo(t)"

= (oYW D (e o)W + if ()" + (Re fo(t)™

= (& 2O)" (Do i (1" +Re fo()*) (e * )" (if (1)~ *sif(ye ) o)
+ 80" @ "
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Noting that e*)© belongs to S(1, (¢)" '*), we compute
otifte V0= (i + g {0 if} ) ) 0w ST O

1 " 1 " " "
if # g {evifie o r g ifhe o+ S(E) T () )

i+ 5 {0, T+ SUE" (™)

We obtain

(4.1.30)
L= D¢+ if(t)" + fo(t)"

=( e o(t))w (Dt +if(OY + (Re fo(t) + 2_]7'r {f, wO})w)(e" ) O(t))w
+ S50 L™,
and analogously
0= Dot g + (Refo(d)+ o= {f.a})” + 519" (€ ) ™
= (e" ) o(t))WL(e) o(t))w.

L
(4.1.31)

Using now the fact that the symbol Refy(t) + 5 {f,wo} is real-valued in
S(1,(£)" 1*), we can use (ii) to prove the estimate in the theorem for the
operator

Lo = Dy +if ()" +(Re fo(t) + 2—1ﬁ {f,wo)™ + 5((&)" 1) ™ ™.

We note also that e ofe’ )0 = 1+ t25((¢)" 2,(¢)" 1*) so that, for [t| small
enough,

(4.1.32) the operators (¢*) )" are invertible in L?(R") and
- their inverses are pseudodilerential operators inS(1, (¢)" 1*) V.

From the previous identity and (i), we get for v € C'. ((-=T,T),> S(R™))

" C2
/ ") 2O LG 20N () 2. gt > 72 / (O F—"

Applying this to

(4.1.33) u(t) = ((e> 0<‘>)W) L),

we obtain

" 62 1 2
(4.1.34) /H(e )O(t))WLv(t)HEz(Rn)dtzT—%/H((e) o(Dyw) UG] 3
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We have
1@ O)*) O] 1y

o G e (XD R B € R W (S Mo KT O 1
Now the operator ((¢)" Y 2)W((e) o )W) 1((£)V 2) is invertible with inverse
(4.1.35) ()= () AN )Y
which is a bounded operator onL?(R") so that
(4.1.36) ol = 1" " Mol <1 leey 7 Molle -

As a result, from the inequality (4.1.34), we get
2
" C, n "
/H(e VoW Lo(t) P 2yt > —02 ) &) )Y o(0)|IF 2yt

> B I ooy =gt = S [ 1 eyt

which is the result. The proof of Theorem 4.1.9 is complete. O

COMMENT 4.1.10. N Although Theorem 4.1.9 is providing a solvability result
with loss of 3/2 derivatives for the evolution equation

O+ f(t,2, " + folt,z,8)",

where f, f, are satisfying the assumptions of this theorem, the statemet does
not seem quite su“cient to handle operators with homogeneos symbols for
two reasons. The brst one is that the reduction of homogene@symbols in
the cotangent bundle of a manifold will lead to a model operabr like the one
above, but only at the cost of some microlocalization in the otangent bundle.
We need thus to get a microlocal version of our estimates. Thesecond rea-
son is that the function f(t,x,£) is not a classical symbol in the phase space
Rt xR} xR, x R!' and we have to pay attention to the discrepancy between ho-
mogeneous localization in the phase spad@?'+2 and localization in R2" with
parameter t. That di"culty should be taken seriously, since the loss of deriva-
tives is strictly larger than 1; in fact, commuting a cuto! fu nction with the
operator will produce an error of order 0, larger than what iscontrolled by the
estimate. In the next section, we prove a localized versionfahe theorem 4.1.9,
which will be suitable for future use in the homogeneous frarawork.

4.2. From semi-classical to localized inhomogeneous estim ates
We begin with a modibed version of Lemma 4.1.7, involving a narolocal-
ization in R?",
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LEMMA 4.2.1. N Let f(t,z,€) be real-valued satisfying (2.1.2) and (4.1.1); we
shall note F(t) = f(t,z,&)V. Let M be defined in (4.1.10). We define ¢; =
co/C?, where cq is given by lemma 4.1.1 and C appears in (4.1.26). Let 1(x, &)
be a real-valued symbol in S(1,(£)" '*) . We have

(@2.2) (0" M) + 2Re (4" MDY F(1)
>aT WY MEMOP" + S(E) .
Proof. N We compute, using (4.1.25) on the fourth line below,
LU MU)UM) +2Re (M MU F()
= QY M + G MWV F () + P M)
= (M) +2Re MO F®) 0™+ 0" M@ [0, FO]+ [F(1), 0¥ M0
> T WYY MOM@PY + e S((€) %) Y+
=gV M@, [0, FO] | + 0" [, FOIME) - [0, FO] M@
= aT P MOM@P" + eV S((€) %) Mg+
= M), [0, PO+ [0, [0, PO MO + [, FO) [0, M),
Next we analyze each term on the last line. We have

o 0 [MO, [0 FO)]] € SWE) V2d O YR Y = S

since
v, [lﬂW,F(t)] e S, <€> 1*) WO M(®t) € Sl(d<§> 1/2,d" 2*) w

o [0 [ PO M) € S@E©)" YW C S ) since d <
2(6)V2 and

(0", [, FO]] € SUQ 148 ", M) € Sudle) V2 d 2,
o [0 FO] [ M@] € S(@E©)" V) VALY = S LY v

since

(0% F(1)] € SI(€) ) W, M(t) € Si(die) V2.d ) v,

We have proven in particular that
(4.2.2) %(w‘”/\/l(t)d;w) +2Re (YW M(t)Y" F(t))
=y (M) +2Re MO F(D) 0™ + S((€)" 1) ™.
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Also, we haved (v M(t)yp" ) +2Re (YW MYV F(t)) > erT" 1" ME) M) "
+ S(E)" 1, %) W, which is (4.2.1). O

THEOREM 4.2.2. N Let f(t,x,&) be a smooth real-valued function defined on
RxR" xR" | satisfiying (2.1.2) and (4.1.1). Let fo(t,x, &) be a smooth complez-
valued function defined on R x R" x R", such that (§) fo(t, x, &) satisfies (4.1.1).
We define

L= De+if(t,z, "+ folt,z,§)".
Let ¥(x,€) € S(,(&)" %) be a real-valued symbol. Then there evists Ty >
0,co > 0,C > 0, depending on a finite number of seminorms of f, fo, 1, such
that, for all T < Ty, all u € C. ((—T7 T; S(R”)), with wo given by (4.1.29),

T ||7/’W(e" ) U)WLUHLZ(R"+1)

1/2
@423 0T’ (/IU(t)Ilﬁl/z(Rn)dt>

1/ 2 1/ 2
2 2
0 ([ 1 oy 1) = o ([ 10O ey )

Proof. N We compute, noting F(t) = f(t,z,&)",

2 Re(Lu, i M(£)"u) = <(¢WM(t)¢W +2Re (Y™ M(t) g™ F(t)))u, u>
+ < [(Refo(t))w, mWM(t)sz}u, u> +2Re (" M(B)YY Im fo(t)"u, u) .
(i) Let us assume that Im( fo) € S((€)" 1, (€)" '*). Then we get that

PV MY IM fo()" € S(d€) V)" LMY C S|g) Y
and since [(Refo (1)), i "M (t)" 1€ S(d(€)" V2(¢)" V24" 1 %) W= S((&)" 1L} W,

the inequality (4.1.25) , the identity (4.2.2) and lemmas 41.8 b 4.2.1 show that
2 Re(Lu, i)™ M(£)y"u) = <(wW/\J?i(t)wW +2 Re (™ M(t) " F(t)))u, u>
> ST [ 1M 0Py e+ G110 sy

—c/||u(t)|\a,l/2(Rn)dt.

As a consequence, we have
28 [ 47 Lu(O) sy MU A gyt + T [ )y
C C
> % [ MO eyt + G [ 107 2 ey
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so that, with o > 0,
7 [(7a" " L)y + 0T MO 00 ey )
# CT [l -2rseny

C
> % [ IMOU ey e+ G [ 10722y .

Choosinga < ¢1/2 yields the result

N

1/WVL“(t”'ﬁZ(Rwd” CT/||u(t)||§|,1/2(Rn>dt
c
Z _O/H’L/qu(t)Hafl/Z(Rn) dt,

which is a better estimate than the sought one.

(i) Let us deal now with the general case Im(fo) € S(1,(€)" '*). Using the
debnitions (4.1.29), (4.1.31) and the property (4.1.30), & can use (i) above to
get the estimate for L, so that with a bxed ¢; > 0

1/ 2
424) 70" ol + T2 [ IO oo )
1/ 2
2
> C2 (/ " u(t) || ~1/2(Rn) dt) )
so that

1/ 2
(425) T wa(e )O)WL(e) O)Wu"Lz(RnJrl) + T1/2</ Hu(t)”a —1/2(Rn) dt>

1/ 2
2
> Co (/ ||¢Wu(t)||H ~1/2(Rn) dt) .

Applying this to «(t) given by (4.1.33), we obtain
(4.2.6)

W ") 0\W 1/2 )Ow"1 2 e
TH’L/J (e ) LUH|_2(]RTL+1)+T H((e ) ) U(t)HHfl/Z(R")dt

" 1/2
ex ([ 10 (@) ol arth)

Using that ((¢°)¥)" ! is a pseudodilerential operator with symbol in
S(1, (€)" 1*), we obtain, using the notation (4.1.35),

1/ 2
4.27) T[4 (e) ) Lof| o g *+ CT1’2(/|v(t)|a1/2(Rn)dt)

1/2 12
>y </H( £ (€)W (t)H dt> Cl< o) J/Z(Rn)dt) 7
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so that, using (4.1.36),

1/ 2
(4.2.8) TH’L/JW(en)O)WLUHLQ(RTL+1)+ cTV? (/||v(t)|al/2(Rn)dt>

1/ 2
+ 0 ([ I o )
1 1/ 2
"1/ 2\w W 2
> C2 </ ||(<€> ) ,U(ﬁ)HLQ(]Rn)iHI( ﬁ)|2dt>

. 1/2
G NCRR Ry

1/ 2
= o ([ IO ot

which is the result. The proof of the theorem is complete. O

4.3. From inhomogeneous localization to homogeneous local ization

In this section, we are given a positive integern, and we debneN = n + 1.
The running point of 7#(RN) will be denoted by (y,7). We are also given a
point (yo;n0) € RN x SN" 1 such that
(4.3.1)
Yo = (y0;770) =(ﬁ0,l’0;7'0,§0) € RxR" ><R><Rn7 with 79 = 0, & € Sn" 1,t0 =0.

We consider F(t,z,&) = f(t,x,£) — ifo(t,x, &), with f, fo satisfying the as-
sumptions of Theorem 4.2.2. Letyy(&) be a function supported in a conic
neighborhood of&; and xo(7, &) be an homogeneous localization near = 0 as
in the appendix A.7 with some positive ry. We consider also a classical brst-
order pseudodilerential operator R in RN such that Y, ¢ W FR. We consider
the brst-order operator

(4.3.2) L= D+ i(F(t,z,&)v0(E)xo(r,6))" + R.
We have

(433) £= Dot i(F(t,,00(€)" + i(F(t,2,960(6) (xo(r. &) = 1)) + R

=F(tx /! w

Let ¥1(&) be a function supported in a conic neighborhood of, and x;(r, &)
be an homogeneous localization near = 0 as in the appendix A.7 with some
positive r; < ry and such that

(4.3.4) suppx1 C {xo =1}, supp@ix1) C {#oxo=1},
(4.3.5) [-T1,T1] x K1 x suppynrx1 C (WEFR)S,
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whereT; > 0 and K is a compact neighborhood ofry. Let ¢(z, &) be a symbol
satisfying the assumptions of Theorem 4.2.2 and lep; € C. (R), such that

(4.3.6) suppy C K1 x {¢1 =1}, suppp: C [-T3,T1].

We can apply the theorem 4.2.2 to the operatorL = D; + z’(F(t,x,g)wo(g))W.
We have, with v € S(RN),

Ty wa(e" ) O)W(‘C - F - R)plx\ivu|||_2(Rn+1)
1/2

1/ 2
/
+ nl"([loncu@l aey )+ € [lond Ol s )

1/ 2
> (10w )
We get then
Ty ([0 (e )" pixd Lu+ 9 () )" pall € x| o iy
T [ (€ )L XY ] 2o
+ Ty [0 (e ) FY pixtull sy + T1 [0V (€7 )" Rouxul| oz

/ " "
+ CTY 2)((€)" )™ prxufl 2y + CIUE) ¥ 2)™ prx ullL 2 (ans)

1/2
@)zl [1tontull e dr)

We assume now thatu € S(RN), suppu C {(t, ), |t| < T1/2} and also that p;
is 1 on [-31} /4,31, /4]. We introduce two admissible (®) metrics on R\,
(4.3.8)
dé|* + |dr|? |d¢]? |dr|?
:dt2+d2+|7< = |dt|? + |dz|* + + .
G | | |$| 1+|§|2+T2_g | | |$| 1+|€|2 1+|§|2+T2

(1) The operator [£, x}] has a symbol in S(1,G) which is essentially sup-
ported in the region where|7| ~ [£].

(2) The quantity [ £, pi]x¥u = [ £, p1]x¥ pau if pa(t) is 1 on [-T1/2, Ty /2] and
supported in [-37;/4,3T,/4] and thus the operator [, p1]xY p2 has a
symbol in S((1+ [£] + |[7])" ,G).

(3) The operator F}p;xY is the composition of the symbol F; € S({¢), g)
with the symbol in pix; € S(1,G) and thus is a priori in S({£), 9);
however, looking at the expansion, and using (4.3.4), we sdhat it has
a symbol in S(1 + |¢]+ |7))" ,G): itis not completely obvious though
and we refer the reader to the lemma A.8.1 for a complete arguent.

(®)The properties of debnition 1.3.1 are classical for G and easily checked for g. One can
check also that (1 + || + |7])° are G-weights and (1 + |{])® are g-weights.
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(4) The operator ¢ (e ) °)¥ Rp;x¥ is also the composition of an operator
in S(1,¢)" with an operator in S({¢, 1), G)* ; however, using (4.3.4-5-6)
and the appendix A.8, we see thaty'(e' ) °)" Rp;x¥ has a symbol in
S(@+ g+ 7" L G).

(5) The operator ((£)%)¥p1xY is also the sum of an operator inS({r, £)*, G)
plus a symbol in S((1 + ¢+ |7))" ,G).

We write now, with R; of order —co (weight (¢, 7)" ) for G, E, of or-
der 0 (weight 1) for G, supported in {(t,z,7,€),[t| < T,z € K1,(1,§) €
SuppVx1, (2, &) € suppy},

(439 Ty Hz/Jw(e" VO X Lu + EouH,_Q(Rn+1) +T HRlu||L2(Rn+1)

12
+ CTy ully 12 o1y ¥ Cllully -s/2 o)

1/2
2
Z Co (/ ||¢WP1X‘{VU||H —1/2(Rn,) dt) .

THEOREM 4.3.1. N Let L be the pseudodifferential operator given by (4.3.2)
and Yy = (yo, o) be given by (4.3.1). We assume that {Yo} C +¢ C (WFR)S,
where + ¢ is a compact-conic neighborhood of Yy. Then, there exists two pseu-
dodifferential operators ) o,&o of order O (weight 1) for G, both essentially
supported in + o with ) ¢ is elliptic at Yy, and there exists r > 0 such that, for
all u € S(RN), suppu C {(t, ), |t| <7},

(4.3.10)

/
| &oLull sy + 72 ully /2y + llully —sr2eay 2 1) oully -1/2 gy -

Proof. N It is a direct consequence of (4.3.9) since, using the elfiticity of
L in the support of the symbol of Ey, we get Ey = KL + Rs, where K is
a pseudodilerential operator of order O such that WEFK C +, and R; is a
pseudodi'erential operator of order —oco for G. O

4.4. Proof of the solvability result stated in Theorem 1.2.2 .N LetP
be a brst-order pseudodilerential operator with principal symbol p satisfying
the assumptions of Theorem 1.2.2 and let g, 7o) be a point in the cosphere
bundle. If p(yq,7m0) # 0, then there exists a pseudodilerential operator ) o of
order 0, elliptic at (o, 70) such that

(4.4.2) [ P*ully + [Jull > 1) oull; -

In fact, the ellipticity assumption implies that there exist a pseudodi'erential
operator K of order —1 and a pseudodilerential operator R of order 0 such
that

ld= KP*+ R, (yo,m0) ¢ WFR.
As consequence, for ), of order 0 essentially supported close enough tayf, 7o),
we get)o =) oKP*+) (R with) (R of order —oc, which gives (4.4.1).
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Let us assume now thatp(yg, n0) = 0. We know from the assumption (1.2.1)
that 9. p(yo,n0) 70 and we may suppose that Q. Rep)(yo,7n0) 7 0. Using the
Malgrange-Weierstrass theorem, we can bnd a conic neighbwosod of (yq, 7o)
in which

p(ya 77) = (U + G(S, 2, C) + ’Lb(s7 2, C))€0(y7 77)
where a, b are real-valued positively homogeneous of degree &, is homoge-
neous of degree 0, elliptic neariy, 7o), (s,2;0,{) € R x R" x R x R" a choice
of symplectic coordinates in T#(RN) (N = n+ 1), with yo = (0,0),n9 =
(0,...,0,1). Noting that the Poisson bracket

{o+a,s}=1

we see that there exists an homogeneous canonical transfoation % !, from
a (conic) neighborhood of {j,n9) to a conic neighborhood of (0;0...0,1) in
RN x RN such that

po% = (7+ iq(t,x,8))(e o %)
Note in particular that, setting 7 = o+ a,t = s, (which preserves the coordinate
s) yields

_a/qz {ﬁaq} = {Sab}oxzo'
We see now that there exists some elliptic Fourier integral perators A, B and
FE a pseudodilerential operator of order 0, elliptic at (yo, 79) such that

AEP*B = Dy + i(f(t, 2, &) x0(m. )" + R,
BA=Id+ S, (y()7 7]()) S #()(conic neighborhood of (yo,'r}g)) C (WFS)C,

where f satisbes (2.1.2),R is a pseudodilerential operator of order 0, and
is a nonnegative homogeneous localization near = 0. Using the fact that the

coordinate s is preserved by the canonical transformation, we can assumghat
A, B are local operators in thet variable, i.e., are such that

ue C, ,suppu C {(t,r) € Rx R",[t| <r}
== suppBu C {(s,2z) e Rx R",|s] <r}.

Using the fact that the operator P is polyhomogeneous, one can iterate the use
of the Malgrange-Weierstrass theorem to reduce our case telEP*B = L of
the type given in (4.3.2). We can apply the theorem 4.3.1, giing the existence
of a pseudodilerential operator & of order 0, elliptic at % *(yo, 70), essentially
supported in % *(#,) such that for all v € C. (RN),suppu C {|t| <},

/
[ &0AEP Bullg + "2 [lull 1y + fulle 55 = ) ol 1/
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We may assume thatA and B are properly supported and apply the previous
inequality to u = Av, whose support in the s variable is unchanged. We get

r &0 AEP? BA]ly+ 2 | Av]l 1+ [AV]. 55 > 1) 0Aolls .,

so that
r|&oAEP vy + CrY 2 |[u]l. 3y 5+ Cr[[ofl 4,
> ) oAv]. w2 =0 ! |1B) oAv][. 12>
which gives, for allv € C! (RN),suppv C {y € RN ||y — yo| < 7},
(4.4.2) 1P ollg + 72 ol gy g+ 0l g0 = 1) Ol gy

where ) = ¢B) gA is a pseudodilerential operator of order 0, elliptic near
(yo,m0). By compactness of the cosphere bundle, one gets, using (423.
or (4.4.1),

4.4.3) ol 2 <C Y0 D) osvll gy * Clloll
1838 |

< Cur|[PPollg+ Cort' 2 ol yy 5+ Callo]l

which entails, by shrinking r, the existence ofry > 0,Cy > 0, such that for
veC, (RV), suppv C {y € RN, |y —yo| <70} = By,

(4.4.4) 0]l 15 < Co|[P¥ol|,.

Let s be a real number andP be an operator of orderm, satisfying the assump-
tions of Theorem 1.2.2. LetEx be a properly supported operator with symbol
(¢)*. Then the operator E1» - s PEs is of brst order, satisPes condition )
and from the previous discussion, there exist€y > 0,y > 0 such that

V]l 19 < Co | EsP*Er m sv]ly, v e Cy (RV), suppv C By,.
We get, with x, supported in B, and x; =1 on By, 5, with supp u C By 4,

HXrgEers" 1Xr0/2u||u 1o S Co HESP#EI" m" sXroEm+s 1Xr0/2UHO
< COHESP#EI" m"s [erEers" 1]Xr0/2UHO

SfOC
+ Co||EsP* E1* m» sEm s 1 Xror 2t |0

=1d +§ - —u
< Co | P*ulls + || Rully ,

where R is of order —oo. Since we have

XroEm+s" 1Xr o/ 2u = [Xranm+S" 1]Xr0/2U+ Em 15" 1 XroXrof 2Us
——
S—oo =u
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we get [[uflg,m 3 < Co [ P#ul|g + Ct ||ullg,m- » and, shrinking the support of
u, we obtain the estimate

(445) ||uHs+m" 2 <y HP#UHS,

for v € C. with support in a neighborhood of y,. This implies the local
solvability of P, with the loss of derivatives claimed by the theorem 1.2.2,
whose proof is now complete.

Appendix A

A.1. Wick quantization. N We recall here some facts on the so-called Wick
guantization, as used in [21, 22, 23].

DEFINITION A.1.1. N Let Y = (y,n) be a point in R?". The operator , v is
debned as[2"e" 2 ¥ Y|2]W. This is a rank-one orthogonal projection: , yu =
(Wu)(Y)7y o with (Wu)(Y) = (u, Ty @)L 2(rn), Where p(z) = 2" 4" XI* and
(1y. )(z) = @z —y)e* ™" 2+ * Let abein L' (R?"). The Wick quantization
of a is dePned as

(A.1.1) aVick = / a(Y), ydY.
]RQn

The following proposition is classical and easy (see e.g. &@n 5 in [22]).

PROPOSITION A.1.2

1. Let a be in L' (R®™). Then aVik = W#aMW and 1WVick = [4, 2(rn) where
W is the isometric mapping from L*(R") to L?(R?") given above, and a* the
operator of multiplication by a in L>(R?"). The operator my = WW? is the
orthogonal projection on a closed proper subspace H of L2(R®). Moreover, we
have

(A].Z) HaWiCkHL(L2(Rn)) < ||aHL°°(R2")7

(A.13) a(X) > 0 for all X implies V' > 0.

2. Let m be a real number,and p € S($™M,$" #). Then pVick = pV + r(p)",
with r(p) € S($™" 1,$" ) so that the mapping p — r(p) is continuous. More
precisely, one has

1
r(p)(X) = / / 1 - 0)p (X + 0Y)Y?2e 2’ T2y de.
0 ]RZ”

Note that r(p) =0 if p is affine.
3. Fora € L' (R™), the Weyl symbol of a™Vik is
(A.1.4)
a* 2" exp—2n#t which belongs to S(1,#) with k™ -seminorm c(k) llall, -
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4. Let R >t — a(t, X) € R such that, fort < s, a(t,X) < a(s,X). Then, for
u € C{(Ry, L*(R")), assuming a(t,-) € L' (R*"),

(A.1.5) /}R Re(Dyu(t), ia(t)Vi%u(t)) 2gnydt > 0.

5. With the operator , v given in definition A.1.1, we have the estimate
(A.16) vzl @y < e’ 3T 2,

6. More precisely, the Weyl symbol of , v, z is, as a function of the variable
X € R setting #(T) = |T|?

(Al?) 6" Zly" Z|2e" 2" X" Y, X" Z]Zne" 2" X" #F

Since for the Weyl quantization, one has|[a” || ( 2gny < 2" [lall 1 (geny

we get the result (A.1.7) from (A.1.6). Note that (A.1.5) is simply a way of

writing that & (a(t)Vi<k) > 0, which is a consequence of (A.1.3) and of the

non-decreasing assumption made oh+— a(t, X).

LEMMA A.1.3. N Let M be a #-weight, i.e., a positive function such that
M(X)MY) ' < CA+#( X - Y)N (see definition 1.3.1). Then if a mea-
surable function a defined on R®" satisfies for all X, |a(X)| < C1M(X), the

symbol a x exp—2n# belongs to S(M,#) with semi-norms depending only on
C1. More generally, for a polynomial p the symbol A defined by

A(X) = /a(Y)p(X —Y)exp—-2r#(X — Y)dY
belongs to to S(M,#).
Proof. N We check brst
(A.1.8) (ax2" exp—2n#) ¥ (X) = / a(Y)P (X —Y)2" exp—27#(X — Y)dY
with a polynomial By, which gives
M(X)" *(a* 2" exp—2n#) ¥ (X)]|
M(Y)

_ J— n J— J—
<Cy M(X)'PK(X Y)|2" exp—27#(X — Y)dY

< cl/c(1+#( X))V [P(X V) [2" exp—2r#( X —Y)dY = C,C(k, N, n).

Let us examine A®): it is a sum of terms of type (A.1.8) and thus the above
argument works. O
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LeEMMA A.1.4. N Let g be an admissible metric on R®" (see definition 1.3.1)
such that, with # a given symplectic norm, there exists Cy > 0, ng > 0 such
that

(A19)  VX,Y,T, gx (T) < Cot(T), ?" g; < Co(1+#( X —Y))™.
Y
Let m be a weight for g (definition 1.58.1) such that
m(Y) No
(A.1.10) (2) <Co(L+#(Z-Y))".

Then, if A € Op(S(m, g)), there exists a semi-norm 7 of the symbol of A such
that

(4.111) (A0} <3 mv0) =y [ (v | vl ay.

Proof. N Theorem 6.9 in [2] shows that the space H(m!2,g) is equal to
H(mY 2, #) provided that m'? is regular. In fact we may assume thatm
is regular since it is anyhow always equivalent to a regular wight. Using dep-
nition 7.1 in [2], we check that g is dominated by a strongly temperate metric,
namely the constant metric #. Moreover the corollary 6.7 andtheorem 7.8
in [2] imply

[{Av, v)] < | Avlln 172 ) 101 m1r2,g) < VIVIE mi/2g)
= I iz =7 [ mY) [0l dY,
! R2n
where (fy) is a partition of unity related to the metric #. We have, usin g

the results of this section, (A.1.10) and (A.1.6), with (T)2 = 1+ #( T), for
all Nl,NQ,

Jmyleyul® ay
= /// m(Y)<9VYV, Z1s ZIU,GVYV, Zos Zzu>deZ1dZ2
]RZn

s//TmaW%M@WﬂLwazwmy—zﬁ“w%—ZMNz
dY dZ1dZsCn, N,

S/ m(Z0)"2m(Z) Y2 ||, z,ull |y 2wl (22 — Z0) N2dZidZsCn,
< [m@)], zul*az.
which completes the proof of the lemma. O
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LEMMA A.1.5. N Let mi,ma be two #-weights (see definition 1.3.1) and
ay,as be two locally Lipschitz continuous functions such that |ai(X)]
mi(X), |aS(X)| < mao(X). Then the operator

(A.1.12) aVikaVik € (a1a) Wik + Op(S(myma, #)).

Proof. N We use the debnition A.1.1 and TaylorOs formula to write

1
ay ikqyVick = / / a1 (Y) <a2(Y)+ / ab (Y + G(Z—Y))dH(ZfY)), v, zdYdZ
0
- (a1a2)Wick+ ]%W7
with
(A.1.13) R(X)= /// a1 (Y)al (Y + e(z )N(Z — Y)e EIANEIRY
w e 2ATIXTYXT Z)on S 2n X Y+z)2 dY dZd6.

We have, using (5) in debnition 1.3.1,

|R(X)|<// m1(Y)m2(Y)m2(Y+29((YZ) ) gy #ve 2

2" 2" = gy dzde

<0m1(X)m2(X)/// (L ¥ = XPY @ =z 21°
C2SE XA 1y dZde

Cma(X)ma(X) //(1+ IT/2+ SN L+ (TN TV 2" 31T 218 gy s

Clny (X)ma(X).

Moreover taking derivatives of R in its debning formula (A.1.13) above leads
to the same estimate forR*)(X). The proof of the lemma is complete. O

LEMMA A.1.6. N Let (xx) be a partition of unity and (1x) be a sequence as in
lemma 1.4.1 for an admissible metric of type X" *(X)#, where X is a #-weight
and # = #%. Let w be a locally bounded function such that |w(X)| < M(X)
where M is a #-weight. Assume that, for each k, there exist a bounded function
wi such that w(X) = w(X) for all X € suppxk and such that for all X € R?",
|l (X)| < M(X)MX)Ne. Then with (X)) = [w(Y)2" exp—2r#(X — Y)dY,
we have

(A.1.14) X (X)B(X) = n(X)T(X) + me(X), Y mc e SO L#).
k
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Proof. N We already know from the lemma A.1.3 that X — &(X) =
Jw(Y)2" exp—271#(X — Y)dY belongs to S(M,#). We check now

(A1.15) (X)B(X) = (X) / w(Y)2" exp—2m#(X — Y)dY

Xk (X) /7/)k(Y)uJ(Y)2n exp—2m#(X — Y)dY

+ xk(X) (1 - (V) w(Y)2" exp—2r#(X — Y)dY
Y,0 & (Y )%1

e(X) / DY) (V)2" exp—2n#(X — Y)Y + ry (X).

We have #(Uk - (Uf)c) = inf I(T)< 1&p(3)#(Xk + To)\(Xk)1/2T - Xk —
MXK)Y22rS) and thus #(Ux — (Uf)€) > MXk)rg. Sincex is equal to 1 on
U¥ (notations of section 1.4) we obtain from (A.1.15)

() Ir < G e (X) exp—a#( Uk — (UF)°) < G ot (X)AX)" N
and thus >, 7 € S(\" ,#). We obtain
Xk‘; = Xk (’l/)kwk % 2" exp727r#) + g
= i (wi * 2" exp—27#) + xic (we (ke — 1) * 2" exp—2m#) + 7y,

and applying again the same reasoning to the penultimate tem above, we get
for Y € (U)® and X € Uy, that #( X — Y) > A\(X)r? the following estimate
for the integrand

exp—mH#( X — Y)exp —mA(Xk)ra x M(Y)ANY)Ne
S CMXMX)No(@L+# X —Y))Noexp—a#(X — Y) exp —m M Xk)re
< COMXOMXON (L +#( X — Xi))No expfg#(X — V) exp —mA(Xy)r2
< CCOAL(X)N(Xy)*No expfg#(X — V) exp —mA(Xy)r2
< CCQLX)N(XK )N exp—g#(X — V) exp —mA(Xy)r2
which yields the result. O

DEFINITION A.1.7. N Let # be a symplectic quadratic form on R" x R", i.e.,
a positive debnite quadratic form such that # = #%(see dePnition 1.3.2(2)).
There exists a unique linear symplectic mappingA such that for all X = ( z, ),
#H(AX) = Y igjen 2 *+ & Let U be a metaplectic transformation in the Pber

of A. Then for a € L' (R?"), we dePne

(A.1.16) o"Vik®) = /G(Y)Zn (exp—2r#(- — Y))WdY = U(a o A)Wiky*,
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REMARK A.1.8. N Note that since U is uniquely determined up to a factor
of modulus one, that debnition is consistent. We remark alsahat, debning for
X eR™M ) X)=2"exp—2r#(X), we have )(AX — AY) = 2" exp—27|X —
Y'|?, which is the Weyl symbol of , y (dePnition A.1.1). From the Segal formula,
we have, with a metaplecticU in the bber of A

WX —2)" = U) AX — 2)"U*

and thus we can justify the equality in formula (A.1.16) since
/a(Y)Z” (exp—2r#(X — Y))"dy = /a(AY))( X — AY)VdY =
/ aW(AY)U)( AX — AY)VU* = / W(AY)U, yU*dY = U(a o A)Viky#,

REMARK A.1.9. N We can also notice that the debnition above is consistent
with the fact that Wick and Weyl quantization coincide for li near forms: if a
is a linear form, we have

(All?) aWick(F) — U(a o A)WickU# — U(a o A)WU# - UU#aWUU# = gV,

Also, it is easy with the formula (A.1.16) to check that the results of section A.1
on the Wick quantization can be extended, mutatis mutandis, to the Wick(#)
quantization.

A.2. Properties of some metrics. Proof of the remark followi ng def-
inition 1.3.1. N Using a partition of unity related to the slowly varying g,
as in [3], we dePneVy(X) = [o.. M(Y)py (X)[gy | 2dY. Itis a simple matter
left to the reader to check that My belongs to S(M, g) and satisbes (1.3.3).

LEMMA A.2.1. N Let# be a positive definite quadratic form on R®™ such that
#=#% and let gx = MX) ¥ be a metric conformal to # such that g is
slowly varying and infx M(X) > 1. Then the metric g satisfies gx (T) <
Cov (T)(L+#( X - Y)), ie.,

AY)

(A.2.1) 3 S C1+#(X -Y)),

implying that g is admissible.
Proof. N Since g is slowly varying, we may assume, with a positiverg, gy (Y —

X) > r2, which means #Y — X) > r2\(Y) and using A\(X) > 1 we get
MY)/MX) < ry (Y — X). O
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LEMMA A.2.2. N Let# be a positive definite quadratic form on R®™ such that
#=#% and let gx = MX)" '# be a metric conformal to #. Assume that
MX) = d(X)?+ M\ (X) with a function d uniformly Lipschitz continuous (with
respect to #) and )\"1 Y4 slowly varying with A\; > 1. Then the metric g is slowly
Varying.

Proof. N Let us assume that | X — V|2 < 72(d(X)? + M(X)). If d(X)? <
A1(X), using the fact that )\"1 4 is slowly varying, we can choose small enough
so that \;(X) < C1A1(Y) and thus

MX) <2010 (Y) <2C10(Y).
If d(X)? > \(X), we have, with L standing for the Lipschitz constant of d,
2" 2N(X)V2 < d(X) <d(Y)+ LIX — Y| < XY)Y2+ LrA(X)Y2

so that, for r < we get A(X) < 8A(Y).

23/2L +1
REMARK A.2.3. N It is a simple exercise left to the reader to show that (1)
in Debnition 1.3.1 is satisped whenever there exists, > 0,y > 0 such that
forall X,Y,T € R™, gx (Y — X) < rZ implies gy (T) < Cogx (T).

Taking this remark into account, we complete the proof of thelemma. O

A.3. Proof of Lemma 2.1.5 on the proper class. N All norms in this
proof are taken with respect to the constant quadratic form #, so we omit the
index everywhere and denote||-||. by |- |. Since for allj e N, [fO)(X)] <

e 2 7, we get 1< M(X) <1+ 3$max o<j<am % T =1+ 4% < (1+9)$

and (2. 1 12). For 0< j < 2m, we have from the debnition of A, the estimate
IFON(X)| < MX)™ 2, and for j > 2m, we can use

(J'*;m) S - )\u (]*;WL) (1 + ’y) (1*22"7)

so that f € S(Am X 1#) with a j-th semi-norm less than 1 forj < 2m and less

than ~; (1 + 7) > for j>2m.

Let us now prove that \" '# is slowly varying. Let us assume that|X —Y|? <
r2\(X). Using TaylorOs formula, we get for the smallest integetN > 2m
(N=—[-2m])and 0 < j < 2m,

OO <y8™ 3 = 48

N j

JACS TN SNl Colin A(X)”w R TEAC O A

Ij +l< 2m
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Lyl N—j

_ N
sothat [fU)(X)| < D\ i om MY N (N o
and
()
|fY(X)] .
m J I TN "
< 3 0TI ET X)) mT e s T |
a T
|J +l< 2m
2m —j — 2m r' !
< —_ —+
- Z 2m — (Y) 2m —
lj +I< 2m
PN
(N =)
implying
= p(r) a polynomial in r
2m —j — 17
| D T
lj +l< 2m
l TI N—2m er " ]
2 mmju’ TN )l)
1&1] +< 2m Ju J

= %r ) goes to zero with r.

Assuming then that j was chosen so that\(X) =1+ |f0)(X)|=7, we get

e(r)) g

so that there exist ro > 0,Cy > 1, depending only on the N Prst semi-norms
of f, such that for » < ry, we have

m—j

AX) <1+ ()\(Y)2 ;

X — Y% < r2A(X) == A(X) < CoA(Y),

and thus r < 7, |X — Y2 < 72C, 'AN(X) == Cy "A(X) < MY) < CoA(X),
which is the property (1) in Debnition 1.3.1. The property (2) in that dePnition
is obviously satisbped since\(X) > 1. Moreover, we get a stronger property
than (3) from the Lemma A.2.1 above in this appendix.

A.4. Some apriori estimates and loss of derivatives. N In this section,
we prove that when a factorization occurs in an abstract seting, it is possible
to limit the loss of derivatives to 3/2 (the loss is always cownted with respect
to the elliptic case). Let us study the model-case

L= D+ iAgB1, Ay Op(S°), B € Op(S')

TOME 134 — 2006 — N°© 4



LOSS OF DERIVATIVES FOR SOLVABILITY UNDER CONDITION (V) 621

with real-valued Weyl symbols such that Ay > c¢$" !, B > 0. We compute,
using the notation

1/ 2
full= ( fluPa) . lol= Dol WE PR il =sup fuo)
2Re(Lu,iByu) = (BL(H)u(t), u(t)) + 2Re(AgBiu, Biu) > 2¢o$" || Byul” .
As a consequence, for supp C [-T,T],
2 Re(Lu, iByu) + 2Re(Lu, iH(t — To)u)
> co$” V| Buul* + |ul? + |AY?Byu|? + 2Re(AY 2 Byu, iHr, A *u)

> co$" || Bru|® + [ulf (1— sup [[Ao(8)]|T)
[t|l& T
" 1
(for T small enough) > CQ$ 1 HBlu||2 + §|u|.2 s

so that ¢y '$ || Lul” + co$" ' || Brul|” +2 || Lu| |ul] > co$" ' || Brul*+ 3|ul? and
thus

. 1
(co'$+1) |[Lul®+ Tlul? > Slul?

entailing for 7 < 1/4, (cy'$+ 1) ||Lul® > L|u|? , which gives |Lu| >
$" Y2 |u|, an estimate with loss of 3/2 derivatives.

The next question is obviously: how do we manage to get the eshate
Ag >$" 1?2 Assuming 4, > —C$" !, we can always consider insteadi + ( C +
1)$" ' >$" ! now this modibes the operatorL and although our estimate is
too weak to absorb a zeroth order perturbation, it is enough b check that the
energy method is stable by zeroth order perturbation. We cosider then

D+ iAgB+ S+ iR, Ay>$"1 S ReO0p(s).

Inspecting the method above, we see that will not produce any trouble, since
we shall commute it with By, producing an operator of order 0. The term
produced by R are more delicate to handle: we shall have to deal with

2(Ru, Byu) + 2 (Ru, Hr,u).

The second term is L? bounded and can be absorbed. There is no simple
way to absorb the brst term, which is of size||B;ju||||«| which is too large
with respect to the terms that we dominate. However we can cosider the
L%-bounded invertible operator U(t) (which is in Op( 59) and self-adjoint) such
that U(0) =Id and M(t) = —U(t)R(t) so that
L= D+ iR+ iAgBi+ S= U(t) 'DiU(t)+ iAgB, + S

=U@t) Y(Dy+ idoB + S)U(t) —U®) '[idoBy + S,U(t)]

= U@ (Do+ idoBi+ S+ [U),i40Br + SJUW 1)U,
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Now the term [U(t),iAoB1]U(t)" ! has a real-valued principal symbol in S°
and amounts to a modibcation of S, up to unimportant terms of ader —1. The
term [U(t), S]U(t)" ! is of order —1 and can be absorbed. We have proven the
following lemma.

LEMMA A.4.1. N Let $ > 1 be given. We consider the metric G = |dz|? +
$" 2|d¢|? on R™ x R". Let ag(t,z,€) be in S(1,G) such that ao(t,x,£) > 0. Let
bi(t, z, &) be real-valued and in S($,G) such that

(bl(t,x,f) — b(s,x,f))(t —s)>0.
Let r(t,z,&) be a complex-valued symbol in S(1,G). Assuming that ag,b1,rg
are continuous functions, there exists a constant C > 0 depending only on the
semi-norms of the symbols ag, b1,70, such that, for allu € CI([—T,T], L>(R™))
with CT <1,
¢ ”LUJHLZ(]R"+1) > Vet ||U||L2(]Rn+1)-

A.5. Some lemmas on symbolic calculus. N Let g be an admissible
metric on R?" and m be a g-weight (see debnition 1.3.1). Then, at each point
X € R?", we can debne a metricyi by taking the geometric mean of gx , g
so that in particular

(A.5.1) gx <gx = (gx)" <dk.

We debne

(A5.2) MX)= sup gx(T)
gk (T)=1

and we note that wheneverg? = )\2g we get from the debnition 1.3.1 that

DEeFINITION A.5.1. N Let [ be a nonnegative integer. We debne the set
Si(m, g) as the set of smooth functionsa dePned onR?" such that a satis-
Pes the estimates ofS(m, g) for derivatives of order < [, and the estimates of
S(m, g*) for derivatives of order > [ + 1, which means

ax (D)2 it k<1,

O (X)T*| < Cem(X) x { 9% (MY 2(X) 5 if k> 1+1,
with h(X)= sup gx (T).
ok (T)=1
Note that since h < 1 and g < hg', we get S(m,g) C S(m,g). If g =
A(X)" #x , where \(X) is positive (scalar) and #¢x =#%, then gx =#x and
a belongs to S| (m, A" '#) means

e (X)|r, < Cem(X) x

AX) K2 k<,
AX) V2 i E>1+1.

Moreover, if g = g%, then for all I, S(m, g) = S|(m, g).
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LEMMA A.5.2. N Let# be a positive definite quadratic form on R®™ such that
#=#% and \ be a #-weight. Let b be a symbol in S1(A\™, X" #), where m is a
real number. Then bib — b% € S(A\2™" 1 #)

Proof. N ' We have (b#b)(X) = exp in[Dx,, Dx,](b(X1) ® b(XQ))lexe so

that using TaylorOs formula with integral remainder fors — €3 yields
1
(bﬂb)(X) = b(X)2+/ eXpiﬂo[Dx s Dx Z]dGiW[Dx 1, Dx 2]b(X1)®b(X2)|X 1 =X 9=X -
0

Sincebl € S(A™" V2 #) and

expimt[Dx ,, Dx ,](a1(X1) ® az(X2))

= exp in[Dy 5-1/2, Dy o-12](a1(0" V2 X10" ) @ as (6" Y2 X207 %)) x| =x ,=x

= exp in[Dy,, Dy,J(a1 (0" *¥1) ® a2(0"*Y2)) v, —y,=0-1/2x
- ((al o 91/ 2)ﬂ(a2 o 91/ 2))(9" 1/2)()7
we get that, if ¢ € S(\M7,#), we have q; o 02 € S(A\™i,0#) so that the
symbolic calculus for the metric 0# (observe that it is admissible for # bounded)
gives
(a1 00" )(az 0 6"'%) € SA™ M2, 038)

which implies ((a1 0 6Y2)4(az 0 6Y2)) 0 6" 12 € S(AM: M2 _#). Applying this
to the integral above gives the result of the lemma. O

LEMMA A.5.3. N Let # be a positive definite quadratic form on R* such that
#=#% and X\ be a #-weight. Let | € N, € R and a be a locally bounded
function defined on R?" such that

VJE{O,,Z}, |a(])(X)|SC>\(X)“" %
Then the function a * eXp—2n# belongs to Sj(A\*, X" 1#).

Proof. N We use the formula (axexp—2r#)( X) = [a(X—Y)exp—2r#(Y)dY
to obtain the estimate for the derivatives of order < [: we get fork <1

k

|(a * exp—2x#) ¥ (X)| < CAX)H 5/M

k

Rk exp—27#(Y)dY

k

< CAXM 2 /(1 +#( V)N 5l exp—2n#(Y)dY = CO(X)M 3,

and for k£ > [ we have @ x exp—2r#)®) = (a() % (exp —27#) K" V) yielding
immediately the result. O
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Let us recall the composition formula in the Weyl quantization, with the
symplectic form [,] given in (1.3.2). We havea"b" = (afb)" and, for X € R?",

(A5.3) (ath)(X)=22" / /R 2 a(Y)b(Z) exp —4ir[X — Y, X — Z1dYdZ

n. R2n
—o2n // a(Y + X)b(Z + X)exp—4ir[Y, Z]dYdZ.
R2n- R2n

We note also that
(A.5.4) (atb) = aldb + afbl.

Moreover, if a is a function only of £, we have
(ab)(x,€) = 27" / a(mb(z, Qe I DA CENC D dydydzdg
R4n
=20 [ a9 OO D
R2n

=2 [ @+ DA )b L+ o= =) N s

=2 / ((1+ D2/aN )L+ |€ —n?) N @+ D2/a)
e (b(z,f)(l + |z — z|2) N )e" ar ()" Z)dndz

so that with N > E(n/2)+1
(A.5.5)
< (DT M, o _ "N/ 2 .
[(agb)(x, )| < rnax [l 7L~ max [ [l (1 + £ — suppal) ™ “c(n, N)

A.6. The Beals-Fe"erman reduction
LEMMA A.6.1. N Let F: R — R be a C? function such that
(A.6.1) 16/F(0)| < FY(0)%, [IF( ) < 1.

We set p = |F(0)|/4. Then there exists to € [-p/2,p/2] and e € C*(R) such
that

(A82) for|t| <p, F(t)=(t—to)e(t), 8p>e(t)>p, [e{Lem <1
Proof. N Assume brst that F(0) =0 and F{(0) = 4 p. Then, for [t] < 2p,
F(t)= te(t), 6p>e(t)>4p—2p=2p, €|l <1

Now if F(0) > 0 and F{(0) = 4p, F(—2%) < p2 — 24p+ % < 0, so that, for

somety €] — p/2,0[ we have F(ty) = 0. Using what was done above, we have
for |s| < [F{(to)|/2,

F(s+ to) = (s+ to)eo(s), 3|F(to)]/2> eo(s) = [FU(to)]/2, lehl=(m) < 1.
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But since

Sp

[Fl(t)| _ 1 py_ Tp
—_ > — =)= — —_— ——= — >
> 2(4p 2) 2 and 72

2
74 74 . .
we have on {o — 7, to + ] which contains [-p, o],

27,
F(t) = (t—to)e(®), ltol < p/2,8p > 8 > e(t) = Tp/4 > p, | elflL@y <1 O

LEMMA A.6.2. N Let F:RY — R be a C? function such that
(A.6.3) PO < [IVFO)?,  [[FL @ < 1.

We set p = | VF(0)||2' . There exists two C' functions o : RY 1 —
[<5p,50] and e : RY — [7p,70p], a set of orthonormal coordinates
(z1,20) € R x RY" 1 such that for maX(|J:1|, |JI(|) < p,

(A64)  F(x)= (z1+ a@))e@), [llLe@y <1 [lo|Lw@i) <1
Proof. N We can choose the coordinates so thatv F(0) = g‘—;(O)él. Then for
|2(| < p, we have|F(0,2()| < 2" 6102+ p2°p + 1p? = p?(2°+24+2" 1) and
oF OF

——(0,2)| > |z—(0,0)| —p=(2° - 1)p
(9%1 81‘1

so that

16|F (0, z1)| _ 16x485
&F o> - 31 <
(0,29

Applying the lemma A.6.1, we get for all |z{] < p the existence ofa(z() such
that, when |z1| < 31p/4

1.

33
Flay,2) = (a1 + a(@)e(a), |ala) < ZF <5p,
70p > 8 x 33p/4 > |e(z)| > 31p/4 > Tp.

The implicit function theorem guarantees the C! regularity of the function «o
and the Taylor-Lagrange formula with integral remainder provides the regular-
ity of e. O

REMARK A.6.3. N If the function F in the lemma A.6.2 is C' , since the
function « is obtained by the implicit function theorem, and e by TaylorOs
formula with integral remainder, both function «,e are C' . Moreover, the
identity F(—a(z(), z() = 0 implies that

|a(k)(x()| < Ckpl“ k, |e(k)(z()| < Ckp" K

where Cy are semi-norms of the functionF in max(|z|, |z{|) < p. In particular,
if we apply this result to the function (2.1.21)

F(T)=$ "2q(t, Y + v(t, V)T u(t,Y) Y 2u(t,Y)" !

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



626 LERNER (N.)

we get that || is bounded above by (¢) and 1/2 < p < v1(q) as debned
in (2.1.1). We get then from the lemma A.6.2

$2(t,Y + v(t, V) 2T)u(t, Y) 20t Y) ' = eo(T) (T + ao(T1)
so that e, oy are smooth with bxed bounds and thus
$1/ 2q(t, X)H(t, Y)" 1/2

= eo((X = Y)u(t,Y) Y2)u(t, Y)Y 2x
x (X1 =Y+ ao(XC=YOut, Y) V3w, Y)V?)

which corresponds exactly to (2.1.22-23-24).

A.7. On tensor products of homogeneous functions. N Let n > 1 be
an integer and N = n+ 1. Let (yo;10) € RN x SV" ! such that
(yo;10) = (to, 203 70,&0) € R x R" x Rx R", with 7=0, & € " L.

Let r €]0,1/4] be given. There exists a functiony, € C' (RN ;[0, 1]) such that
for A > 1 andn € RN with || > 1, we havexo(An) = xo(n) (Ohomogeneity of
degree zero outside the unit ballO) and

1 if72+ |2 > 1and|7| < 7€),

XO(T;S): {0 if 7.2.,. |€|2§1/4 or |T| 22T|€|

There exists a functionyy € C' (R";[0,1]) such that for A > 1 and ¢ € R"
with |¢] > 1, we havey(AE) = 1o (€) and,

_ 1 il =1 and | &l <
Yo(8) = {o if |6 < 1/2 0r 7 — &l > 2r .

We debne the function ), by

(A.7.1) ) o(7,€) = xo(7, )0 (8)-

LeEMMA A.7.1. N The function ) o is such that for X > 1 and n € RN with
[n| > 2, we have ) o(An) =) o(n). Moreover, with ng = (0,&), we have

) o) =1 for n| > 2 and ‘%n <2
) o() =0 Jor | > 2 and ‘ﬁm > 4.
n

Proof. N The function ) ¢ is such that for A > 1 andn € RN with |n| > 2,
we have )o(A\n) =) o(n): in fact, if 72+ |¢]> > 4 and |7] < 2r[¢], we get
|62 > 41 +47r2)" T > 1, so that 9o(\E) = ¥p(€) and since we have also in that
casexo(An) = xo(n), we get the sought property. Now if 72 + |£]? > 4 and
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IT| > 2r|], we see thatyo(A7, X&) = xo(7,€) =0 so that, ) o(An) =0=) o(n).
Moreover, if 72 + |£|?> > 4 and

2
<r?/4,

7_2

e

§

(7 + )T

— o

we get that |7| < r[¢|(4 —r?)" V2 < r[¢] and thus xo(T, €) = 1; also this implies
€] > 21+ r2)" V2 > 1, so that ¢(&) = o(€/]€]). We have then

PR §

2 i~ e i <

4 —y2 =7

£
’|§| S

r 2 "3 T
< -+ < -+
< o+ [elirPlel * < 5

which implies (&) = %o(&/]€]) = 1, so that ) ¢ is equal to 1 on a conic
neighborhood of (Q &) in RN minus a ball. Similarly, if 72+ [£|?> > 4 and

2
> 16r?,

7_2

e

§

(= + Py

— o

either |7| > 2r|¢| and xo(7, &) = 0, entailing ) o(7,&) = 0 or |r| < 2r|¢| and
2

then | s — 6| > 122 and [¢] > 2(1+4:%)" ¥ > 1 50 that ¢(€) =

Po(&/1€])- In this case, we have

£
’|§| S

¢ 3 ’

implying (&) =0 and thus ) (7, &) = 0. Eventually, we have proven that) o
is also supported in a conic neighborhood of (&) in RN . O

A.8. Composition of symbols

LEMMA A.8.1. N Let G,g be the metrics on RN defined in (4.3.8) and let
s1, 82 be two real numbers. Let a be a symbol in S({€)3,g) and b be a symbol in
S((€,7)%2,G) such that suppb C Zc = {(t,z,7,&) € RN | |7| <1+ C|¢|}. Then
the symbols afb,bfa,a o b,b o a belong to S((&,7)%1 752, G) and are essentially
supported in Zc , i.e., are the sum of a symbol of S((&, 7)%1 752, G) supported in
Zc and of a symbol in S({¢,7)" | G)= Ny ST N, G).

Proof. N We have
(A.8.1) (aob)(t,x,T,&)

- / ¢ A CERY ) gt r 4 0,6+ mb(E+ 5,2+ y, 7, )dsdodydy,
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so that, using the standard expansion of the symbols and thedkct that b is
supported in Z¢,

TS Il G)

1 —"=— [t@a-0U".,
aob = Z o Dy a Oy b +/0 We A (s#+y. )D}‘! a(t, z, 7+ 0o, £+ On) x

X 8t(,x b(t+ s,x+ y,7,&)dsdodydndo.
We debne

(A8.2) Ix(7,§)= /6" W HEYIDE L alt,z, T+ 00,&+ On) X
X 3t(,x b(t+ s,z + y,7,8)dsdodydn

and integrating by parts, we obtain for all nonnegative evenintegers m that

I(7,6) = /6" AEEH)(6) ™ (D)™ (5)" M (D)™ (y)" ™ (D)™ ()" ™ (Dy)"
Df’! a(t,z, 7+ 00,& + en)a{X b(t+ s,z + y,7,&)dsdodydn,
and consequently

12(7,6)| < / ()" ™) My) ™) M@+ [€+ on)* Cdsdodydy

@+ 1¢+ (D> 1(7| < €D
In the integrand, when |n| < |£]/2, we get, sinced € [0, 1], [€+ On| > €] — |n| >
|€]/2. As a result, we get for this part of the integral the estimate
L+ (gD (@ g+ 7> 1(I7| < J€) S @+ [¢l+|7))" ¢ 2, for v large enough.
When |n| > |¢]/2, we use the term(n)" ™ and the estimate
(L+ )" ™ 2@+ €[+ [7)>=1(Ir| S €] S @+ €+ 7" ™ *,  for m large enough.

To check that the derivatives of I, will satisfy the expected estimates, we dif-
ferentiate the expression (A.8.2) and repeat the previous pof. We know now
that, for v large enough,

1 . N .
aob= > =Dl adbt e e S(nE) 2. @).
[* 1<(
Using the standard Borel argument, we bndc € S({(r,£)%1752 @), essentially
supported in Z¢ such that, for all v

1 * * "
c= D> =D adcbeS(rnet 0,
[*1<(
entailing that, for all v > Ny,
- . (" .
wob—c= —c+ Z aD/'! aat,xb*' r € S(<T,€> ax(" (/ 2,81+s2 (),G),
[*1<(
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implying that aob —c € S({7,¢)" ,G), which gives the result of the lemma
for aob. To get the result for bo a is somewhat easier by looking at (A.8.2), to
obtain the estimate

B 15 [0 ™) ™) ™) @ [+ onl+ 7+ o) ¢
|7 + bl S [+ Ondsdodydn(d + ¢

When |7| < [€] the discussion is the same as fot o b. When |7| > [¢], we
split the integral in two parts: the region where |o| < |7|/2, in which we get
negative powers of (1 +|7|) from the term with the exponent s, — v, and the
region where |o| > |7|/2 in which we use the term (¢)" M. The last part of
the discussion is the same. To obtain the result forafb (which will give also
bia since afb = Bi@), we use the groupJ! = exp2intDyD, and the formula
afb= J Y2(JY2q 0 JV2b). Using the assumptions of the lemma, we see that
JY2q satisbes the same hypothesis as and JV 2b is essentially supported in
Zc . The proofs above give thus thatJ" 2¢0.J' 2p satisPes the conclusion of the
lemma, which is OstableO by the action of " /2. The proof of the lemma A.8.1
is complete. O
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