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Abstract. — We first prove a strengthening of Miyaoka’s generic semi-positivity
theorem: the quotients of the tensor powers of the cotangent bundle of a non-uniruled
complex projective manifold X have a pseudo-effective (instead of generically nef)
determinant. A first consequence is that X is of general type if its cotangent bundle
contains a subsheaf with ‘big’ determinant. Among other applications, we deduce that
if the universal cover of X is not covered by compact positive-dimensional analytic
subsets, then X is of general type if χ(OX) 6= 0. We finally show that if L is a
numerically trivial line bundle on X, and if KX +L is Q-effective, then so is KX itself.
The proof of this result rests on Simpson’s work on jumping loci of numerically trivial
line bundles, and Viehweg’s cyclic covers. This last result is central, and has been
recently extended, using the very same ingredients, to the case of log-canonical pairs.

Résumé (Stabilité géométrique du fibré cotangent et du recouvrement universel d’une
variété projective)

Nous établissons tout d’abord un renforcement du théorème de semi-positivité de
Miyaoka: le déterminant de tout quotient de toute puissance tensorielle du fibré co-
tangent d’une variété projective X non-uniréglée est pseudo-effectif (au lieu de: géné-
riquement nef). Une première conséquence est que X est de type général si son fibré
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42 F. CAMPANA & T. PETERNELL

cotangent a un sous-faisceau dont le déterminant est ‘big’. Parmi diverses applications,
nous montrons que si le revêtement universel de X n’est pas recouvert par des sous-
ensembles analytiques compacts de dimension strictement positive, alors X est de type
général si χ(OX) 6= 0.Nous montrons enfin que KX est Q-effectif si KX +L l’est, pour
un fibré en droites numériqiuement effectif L sur X. La démonstration de ce résultat
central repose sur les travaux de C. Simpson sur les lieux de Green-Lazarsfeld, et sur
les revêtements cycliques de Viehweg. Ce résultat a été récemment étendu aux paires
’Log-canoniques’ en utilisant les mêmes ingrédients.

Introduction

The aim of the present paper is to investigate birational positivity properties
of the cotangent bundle of complex projective manifolds.

Our first result is the following sharpening of Miyaoka’s uniruledness crite-
rion:

Theorem 0.1. — Let X be a projective manifold, (Ω1
X)⊗m → S a torsion free

coherent quotient for some m ∈ N. Then det S is pseudo-effective if X is not
uniruled.

Miyaoka’s theorem asserts that the cotangent bundle of a projective man-
ifold is “generically nef” unless the manifold is uniruled. A vector bundle E
is generically nef if E|C is nef on the general curve cut out by very ample
linear systems of sufficiently high degree. A line bundle L is pseudo-effective
if c1(L) lies in the closure of the Kähler cone. To sharpen generic nefness to
pseudo-effectivity in the theorem , we use the characterization [2] of pseudo-
effective line bundles by moving curves which are images of very ample curves
above by birational morphisms. Our proof here is not entirely algebro-geometric
(Mehta-Ramanathan no longer applies), and rests on analytic methods (see the
appendix due to M. Toma).

A first consequence is:

Theorem 0.2. — Let X be a projective manifold. Suppose that ΩpX contains
for some p a subsheaf whose determinant is big (i.e., has Kodaira dimension
n = dimX). Then KX is big, i.e., κ(X) = n.

This uniruledness criterion has also other applications, e.g. one can prove
that a variety admitting a section in a tensor power of the tangent bundle with
a zero, must be uniruled.

Theorem 0.2 is actually a piece in a larger framework. To explain this, we
consider subsheaves F ⊂ ΩpX for some p > 0. Then one can form κ(det F ) and
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GEOMETRIC STABILITY OF THE COTANGENT BUNDLE 43

take the supremum over all F . This gives a refined Kodaira dimension κ+(X),
introduced in [3]. Conjecturally

κ+(X) = κ(X) (∗)

unless X is uniruled. Theorem 0.2 is nothing but this conjecture in case
κ+(X) = dimX.

We shall prove the conjecture (∗) in several other cases. It is actually a
consequence of the following more general conjecture, which moreover deals
only with line bundles:

Conjecture. — Suppose X is a projective manifold, and suppose a decom-
position

NKX = A+B

with some positive integer N , an effective divisor A (one may assume A

spanned) and a pseudo-effective line bundle B. Then

κ(X) ≥ κ(A).

The special case A = OX implies that κ(X) ≥ 0 if X is not uniruled,
using the preceeding result, and the pseudo-effectiveness of KX when X is not
uniruled ([2]).

In another direction we establish the special case in which B is numerically
trivial:

Theorem 0.3. — Let X be a projective complex manifold, and L ∈ Pic(X) be
numerically trivial. Then:

1. κ(X,KX + L) ≤ κ(X).
2. If κ(X) = 0, and if κ(X,KX + L) = κ(X), then L is a torsion element

in the group Pic0(X).

In particular, if mKX is numerically equivalent to an effective divisor, then
κ(X) ≥ 0.

This result permits, in particular, to handle numerically trivial line bundles
in the study of the conjecture Cn,m on irregular manifolds.

Another application of Theorem 0.2 is to the study of universal covers X̃
of complex projective n-dimensional manifolds X. The Shafarevich conjecture
asserts that X̃ is holomorphically convex, i.e., admits a proper holomorphic
map onto a Stein space. There are two extremal cases:

– either X̃ is compact and so π1(X) is finite or
– X̃ is a modification of a Stein space, hence through the general point of
X̃ there is no positive-dimensional compact subvariety.
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44 F. CAMPANA & T. PETERNELL

This latter case happens in particular forX a modification of an Abelian variety
or a quotient of a bounded domain. It is conjectured (see [13], and [5] for the
Kähler case) thatX should then admit a holomorphic submersion onto a variety
of general type with Abelian varieties as fibres, after a suitable finite étale cover
and birational modification. This follows up to dimension 3 from the solutions
of the conjectures of the Minimal Model Program. We prove here a special case
and a weaker statement in every dimension:

Theorem 0.4. — Let X be a normal n-dimensional projective variety with at
most rational singularities.

(1) Suppose that the universal cover of X is not covered by its positive-
dimensional compact subvarieties. Then X is of general type if χ( OX) 6= 0.

(2) If X has at most terminal singularities and X̃ does not contain any
compact subvariety of positive dimension (eg. X is Stein), then either KX is
ample, or KX is nef, Kn

X = 0, and χ( OX) = 0.

This theorem is deduced from Theorem 0.2 above via the comparison theo-
rem [3], which relates the geometric positivity of subsheaves in the cotangent
bundle to the geometry of X̃.

Acknowledgement. — Our collaboration has been made possible by the priority
program “Global methods in complex geometry” of the Deutsche Forschungs-
gemeinschaft, which we gratefully acknowledge.

We thank P. Eyssidieux, T. Eckl, J. Stix for pointing out a gap in the first
version, and also C. Mourougane for his interesting observation on our previous
Remark 3.6. We also thank the referee for his careful reading and for pointing
out several inacuracies and mistakes in previous versions.

1. Uniruledness Criteria

Our main tool which is of independent interest, is a generalisation 1.4 of
Miyaoka’s uniruledness Criterion 1.2, which we recall first.

Definition 1.1. — Let X be a complex projective n-dimensional manifold.
A vector bundle E over X is generically nef, if for all ample line bundles
H1, . . . ,Hn−1, for all mi sufficiently large and for general curves C cut out by
m1H1, . . . ,mn−1Hn−1, the bundle E|C is nef.

Miyaoka’s criterion [17], with a short proof in [23], is now the following

Theorem 1.2. — The cotangent bundle of a projective manifold is generically
nef if X is not uniruled.
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GEOMETRIC STABILITY OF THE COTANGENT BUNDLE 45

Via the theorem of Mehta-Ramanathan [16] and the uniruledness criterion of
Miyaoka-Mori [19]. Theorem 1.2 is easily seen to be equivalent to the following
statement:

If the n-dimensional projective manifold X is not uniruled and Ω1
X → Q→ 0

a torsion free quotient, then

c1(Q) ·H1 · · · · ·Hn−1 ≥ 0

for all ample divisors Hi on X.
Before stating the first generalization in 1.4 below, we need to introduce the

notion of movable class of curves, generalising complete intersections curves.
We will denote by ME(X) the closed cone of (classes of) movable curves,

as defined in [2]. This is the smallest closed cone containing all the classes of
movable curves: a curve C is movable if it belongs to a covering family (Ct)t∈T
of curves which is to say that T is irreducible and projective, the general Ct is
irreducible and the Ct covers X.

One of the main results of [2] is that ME(X) is the closed convex cone
generated by classes α of the form α = π∗(H1 ∩ · · · ∩Hn−1), with π : X ′ → X

a modification and Hj very ample on X ′, see (1.8) below.

Let α ∈ME(X). The slope of a torsion free sheaf E of rank r with respect
to α is defined by

µα( E) =
c1( E) · α

r
.

A torsion free sheaf is α-semi-stable, if for all proper non-zero coherent sub-
sheaves F ⊂ E :

µα( F ) ≤ µα( E).

The general properties of α-slopes are very much parallel to the classical
polarized case α = H1 · · · · ·Hn−1 with ample line bundles Hi.

Proposition 1.3. — Let X be a projective manifold and α ∈ME(X). Let E
be a non-zero coherent torsion free sheaf on X. Then:

1. When F ranges over all nonzero proper coherent subsheaves of E, the
slope µα( F ) is bounded from above.

Let µmax
α ( E) be the maximum value, which is attained if α is a rational

class.
2. If α is a rational class, there exists a unique largest subsheaf Emax ⊂ E

such that
µα( Emax) = µmax

α ( E).

The quotient E/ Emax is torsion free.
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46 F. CAMPANA & T. PETERNELL

3. Define inductively

E0 = {0} ⊂ E1 = Emax ⊂ · · · ⊂ Es+1 = E

such that ( Ej+1/ Ej) = ( E/ Ej)max, for j = 0, . . . , s. This sequence is
called the Harder-Narasimhan filtration of E relative to α. We write

µmin
α ( E) := µ( E/ Es).

The quotients E/ Ej are the α-semistable pieces of the HN-filtration of E
relative to α.

4. µα( Ej+1/ Ej) = µmax
α ( E/ Ej) > µα( E/ Ej+1), for j ≥ 0.

5. Hom( Ej , E/ Ej) = 0 for all j ≥ 0, once µα( Ej) ≥ 0.

6. Let α ∈ ME(X) ∩ H2n−2(X,Q) with n = dimX, and let E and F be
α-semi-stable torsion free sheaves on X. Then E⊗̂ F := ( E ⊗ F )/tor is
again α-semi-stable.

7. Hom(∧2 Ej , E/ Ej) = 0 for all j ≥ 0, if µα( Ek) ≥ 0 for all k ≤ j.

Proof. — The proof of the first four statements is essentially the same as in
the classical case of polarised varieties, see e.g. [20, p. 62]. Let us give a hint for
the proof of (1): expressing E as a quotient of VN := O(mH)⊕N for arbitrary
ample H and suitable integers m,N > 0, we are reduced to the case of VN
for the first statement. This case is easily dealt with by induction on N , for
fixed m,H. The second statement, for α rational, follows immediately from
the fact that the α-slopes are then rational numbers with uniformly bounded
denominators.

The last two properties follow from property (4), and the fact (see also [23])
that Hom( E, F ) = 0 if µmin

α ( E) > µmax
α ( F ). Property (6) is more delicate, and

proved in the appendix. For property (7), we proceed in the usual way (see
[23]), using (6).

The first generalization of Theorem 1.2 is

Theorem 1.4. — Let X be a connected projective manifold and α ∈ME(X)

of the form
α = π∗(H1 ∩ · · · ∩Hn−1)

with π : X ′ → X a modification and Hj very ample on X ′. If there exists a
torsion free quotient sheaf

Ω1
X → Q→ 0

such that c1(Q) · α < 0, then X is uniruled.
In other words, if (Ct) is a covering family of curves which is the birational

image of hyperplane sections with c1(Q) · Ct < 0, then X is uniruled.
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GEOMETRIC STABILITY OF THE COTANGENT BUNDLE 47

Remark 1.1. — 1. We recall some notation used in (1.4). Let F be a co-
herent sheaf of rank r on the connected manifold X. We define its deter-
minant - a line bundle since X is smooth - to be

det F = (
r∧

F )∗∗.

We also set c1( F ) = c1(det F ).

2. The last assumption in Theorem 1.4 cannot be weakened to assuming
that, for generic t ∈ T , the bundle Ω1

X|Ct
is not nef (i.e., Ω1

X |Ct has a
quotient Qt such that deg(Qt) < 0). See [2], Theorem 7.7.

3. The last assumption is however satisfied if, for generic t ∈ T , Ω1
X|Ct

is
not nef, provided Ct is an ample curve obtained as intersection of (n− 1)

generic members of a sufficiently high multiple of some polarisation H on
X. This is a consequence of [16]. See [23].

Question 1.5. — Let X be a projective manifold and π : X ′ → X be a
modification from another projective manifold X ′. Is π∗(Ω1

X) generically nef if
X is not uniruled?

The problem is to show that the last assumption of 1.4 is satisfied, if Ct =

π∗(C
′
t), where C ′t is a sufficiently ample curve on X ′, as in the preceding Re-

mark 1.1.

Proof of 1.4. — The proof follows the line of argumentation in [23], using the
notion of Harder-Narasimhan filtration for α ∈ME(X). Observe that we can-
not use [16] in our context.

So assume that X is not uniruled. Then

KX · α ≥ 0

by [2], stated as Theorem 1.8 below. Hence Ω1
X is not α-semi-stable, since the

kernel of
Ω1
X → Q→ 0

destabilizes Ω1
X . Thus also its dual TX is not α-semi-stable.

We now define
F ⊂ TX

to be the maximal destabilising subsheaf of TX relative to α. Then Proposi-
tion 1.3(7) applies and we conclude that F is Lie closed.

We furthermore introduce G = TX/ F and also fix an ample divisor H on X
such that TX(H) is spanned.

Following the arguments in [23], we now reduce to char p and want to prove
that F p is p-closed. To make the notations not too clumsy, the reduction mod
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48 F. CAMPANA & T. PETERNELL

p will carry the same notation. So let F : Xp → Xp denote the absolute
Frobenius; we need to prove that

Hom(F ∗( F p), Gp) = 0.

Instead of restricting to curves as in [23]—which will not work in our situation—
we first observe that [24, Prop.1] remains true with exactly the same proof in our
situation (i.e., with α instead of an ample polarisation), since F is α-semistable.
By Theorem 5.7, the reduction mod p, F = F p remains αp-semistable for large
p.

This gives the following. If

0 = G1 ⊂ G2 ⊂ · · · ⊂ Gm = F ∗( F )

is the HN-filtration of F ∗( F ) relative to α, then there are non-zero homomor-
phisms

TX → Hom( Gi, F
∗( F )/ Gi). (∗)

From this we derive for any index i the existence of some index j ≥ i and a
non-zero homomorphism

TX → Hom( Gi, Gj+1/ Gj). (+)

Consequently

µmin
α ( Gi) ≤ µ

max
α (( Gj+1/ Gj)⊗ Ω1

X) ≤ µmax
α ((F ∗( F )/ Gi)⊗ Ω1

X). (++)

We now follow the arguments of the first few lines of [14, 2.5] practically ver-
batim to show that

µmax
α (F ∗( F ))− µmin

α (F ∗( F ))

is bounded independently of p. Indeed we show

µmax
α (F ∗( F ))− µmin

α (F ∗( F )) ≤ (rk( F )− 1)H · α. (∗∗)

Indeed, by the choice of H, the bundle Ω1
X embeds into OX(X)⊕N for some

positive N. Recalling the inequality (++)

µmin
α ( Gi) ≤ µ

max
α ((F ∗( F )/ Gi)⊗ Ω1

X),

we obtain

µmax
α ((F ∗( F )/ Gi)⊗ Ω1

X) ≤ µmax
α ((F ∗( F )/ Gi)⊗ OX(H)).

Summing up the inequalities as in [14, 2.5],

µα( Gi/ Gi−1) ≤ µα( Gi+1/ Gi) +H · α

gives (∗∗).
This implies the p-closedness of F by [23, 9.1.3.5]
Thus F is Lie closed and p-closed (and therefore F is a 1-foliation in the

terminology of [23]).
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Following further the argumentation in [23], we get a quotient map

ρ : X → Y = X/ F .

We are now going to apply [18]. For this, we take the normalization f : C → X

of some member Ct (a covering family of curves representing the class α —
these curves arise as images of complete intersection curves on some birational
model). Consider the subspace HomY (C,X) of Hom(C,X) consisting of maps
g : C → X such that ρ ◦ g = ρ ◦ f . Then we have the basic inequality, proved
in [18], Theorem 1:

dim[f ] HomY (C,X) ≥ χ(f∗∗( F )).

Here

f∗∗( F ) = f∗( F )/torsion = Ker(f∗(dρ) : f∗(TX)→ g∗(TY )).

Combining f with the geometric Frobenius on C, Riemann-Roch gives

χ(f∗∗( F )) = p(c1( F ) · C) + (1− g(C))rk( F ).

Now we can proceed as in the classical case in [19] to obtain the claimed uni-
ruledness.

We shall need the following generalization

Theorem 1.6. — Let X be a connected projective manifold, and α ∈ME(X)

of the form
α = π∗(H1 ∩ · · · ∩Hn−1)

with π : X ′ → X a modification and Hj very ample on X ′. If there exists a
torsion free quotient sheaf

(Ω1
X)⊗m → Q→ 0

for some m ∈ N, such that c1(Q) · α < 0, then X is uniruled.

Proof. — As in the proof of Theorem 1.4, (Ω1
X)⊗m is not α-semi-stable; let Sm

be the maximal destabilizing subsheaf. From our assumption

µmax
α ((Ω1

X)⊗m) = µα( Sm) > µα((Ω1
X)⊗m) > 0.

Hence by Theorem 5.1 Ω1
X itself is not α-semi-stable. Let S1 ⊂ Ω1

X be the
maximal destabilizing subsheaf with torsion free quotient Q1. By Corollary 5.4,
we obtain

µmax
α (Ω1

X) = µα( S1) > 0.

Hence
c1(Q1) · α < 0,

and X is uniruled by Theorem 1.4.
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Now we can strengthen the preceeding result, using [2] (and answering a
question asked in that paper).

First recall that a line bundle L on a projective manifold is called pseudo-
effective iff c1(L) is in the closure of the cone generated by the (numerical
equivalence classes of the) effective divisors on X.

We will need the following result from [2] which will also be crucial for
Theorem 2.3.

Theorem 1.7. — Let Xn be a projective manifold of dimension n and L a line
bundle on X. Then L is pseudo-effective if and only if the following holds. Let
π : X̂ → X be a birational map from a projective manifold X. Let H1, . . . ,Hn−1

be very ample line bundles on X̂. Then

L · π∗(H1 ∩ · · · ∩Hn−1) ≥ 0.

Together with Theorem 1.7, this implies:

Theorem 1.8. — Let X be a projective manifold and suppose that X is not
uniruled. Let Q be a torsion free quotient of (Ω1

X)⊗m for some m > 0. Then
detQ is pseudo-effective.

Proof. — In order to show the pseudo-effectivity of detQ, it suffices by (1.8)
to verify the following.

Let π : X̃ → X be birational from the projective manifold X̃. Let
H1, . . . ,Hn−1 be (very) ample on X̃. Then

detQ · π∗(H1 ∩ · · · ∩Hn−1) ≥ 0.

This is however verified by (1.7).

Now a pseudo-effective line bundle is nef on moving curves; here “moving”
means that the deformations of the curve cover the variety. Actually by [2]
the closed cone generated by numerical equivalence classes of movable curves
coincides with the cone generated by classes of “strongly movable” curves. These
are just the curves of the form π(Ĉ), where π : X̂ → X is a modification, and
Ĉ ⊂ X̂ is a generic intersection of very ample divisors miHi, 1 ≤ i ≤ n− 1 on
X̂. So we can state:

Corollary 1.9. — Let X be a projective manifold and suppose that X is
not uniruled. Let (Ct)t∈T be an algebraic family of curves, parametrised by the
irreducible projective variety T . Assume this family is covering (i.e.: the union
of the Ct’s is X, and its generic member is irreducible).

Let F be a torsion free quotient of (Ω1
X)⊗m for some m > 0. Then

c1( F ).Ct ≥ 0.
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Corollary 1.10. — Let X be a projective manifold and L a topologically
trivial line bundle on X. Let m be a positive integer and

v ∈ H0(T⊗mX ⊗ L)

a section with zeroes in codimension 1. Then X is uniruled.

More generally, suppose that F ⊂ T⊗mX is a coherent subsheaf of rank r
such that det F is pseudo-effective and that det F →

∧r(T⊗rX ) has zeroes in
codimension 1. Then X is uniruled.

Proof. — Choose p ∈ X such that v(p) = 0. Let π : X̂ → X be the blow-up
of X at p. Assume that X is not uniruled. Then, supposing that (1.6) has a
positive answer, π∗(Ω1

X) is generically nef. Hence if Ĉ is the curve cut out by
sufficiently general very ample divisors, then π∗(Ω1

X)|Ĉ is nef. Thus Ω1
X |C is

nef, where C = π(Ĉ). Now Ĉ meets the exceptional divisor of π in a finite set,
hence p ∈ C. In total, (Ω1

X)⊗m ⊗ L∗|C is nef, but its dual has a section with
zeroes. This is impossible. So X is uniruled.

Remark 1.2. — A classical result in group actions on a projective manifold X
says that if X carries a holomorphic vector field with zeroes, then X is uniruled.
If Question 1.6 had a positive answer, then we would be able to generalize this
result to arbitrary tensor powers of the tangent bundle, and we may also allow
a twist with a topologically trivial line bundle. In other words, we would be able
to generalize (1.12) by assuming there only the existence of some zero without
saying anything on the dimension of the zero locus.

Although the methods of this section basically fail in the Kähler case, it
seems reasonable to make the following

Conjecture 1.11. — Let X be an n-dimensional compact Kähler manifold,

(Ω1
X)⊗m → Q→ 0

a torsion free quotient. If X is not uniruled, then

c1(Q) · π∗(ω1 · · · · · ωn−1) ≥ 0

for all bimeromorphic maps π : X ′ → X from any compact Kähler manifold
X ′ and all Kähler forms ωj on X ′.
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2. A characterization of varieties of general type

2.1. Refined Kodaira Dimension. — The following “refined Kodaira dimension”
was introduced in [3]. It measures the geometric positivity of the cotangent
bundle, and not only that of the canonical bundle. Its definition will be justified
in the next subsection.

Definition 2.1. — Let X be a compact (or projective ) manifold. Then κ+(X)

is the maximal number κ(det F ), where F ⊂ ΩpX for 1 ≤ p ≤ dimX is a
(saturated) coherent subsheaf.

Obviously we have κ+(X) ≥ κ(X) for any X.
Assuming the standard conjectures of the Minimal Model Program, one

can easily describe κ+(X) as follows (see [3] for details, where the following
conjecture was formulated):

Conjecture 2.2. — Let X be a projective manifold. If X is not uniruled (or
if κ(X) ≥ 0), then κ+(X) = κ(X).

When X is uniruled, one has

κ+(X) = κ+(R(X)),

where R(X) is the so-called “rational quotient” of X; see [3]. This rational
quotient is not uniruled, and so should be either one point or have κ+(R(X)) =

κ(R(X)) ≥ 0. Thus ifX is uniruled, one has κ(X) = −∞ but κ+(X) ≥ 0, unless
R(X) is one point, which means that X is rationally connected. In this latter
case κ+(X) = −∞. Conversely, if κ+(X) = −∞, then X should be rationally
connected.

Notice that χ( OX) = 1 if κ+(X) = −∞, because h0(X,ΩpX) = 0 for p > 0.
In [3] it is shown that X is simply connected if κ+(X) = −∞ which of course
is also true for X rationally connected.

The above conjecture is a geometric version of the stability of the cotangent
bundle of X when X is not uniruled. It is a version in which positivity of
subsheaves is measured by the Kodaira dimension of the determinant bundle,
and not by the slope after restricting to “strongly movable curves”.

2.2. A Characterisation of Varieties of General Type. — As a consequence of the
preceeding criteria for uniruledness, we first solve the above conjecture in the
extremal case when κ+(X) = n (we shall study in the next section below the
intermediate cases):

Theorem 2.3. — Let X be an n-dimensional projective manifold and suppose
κ+(X) = n, i.e., some ΩpX contains a subsheaf F with κ(det F ) = n. Then
κ(X) = n.
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Proof. — First let us see that X is not uniruled. In fact, otherwise take a
covering family of rational curves and select a general member C so that TX |C
is nef. Hence the dual of ΩpX |C is nef and therefore F |C cannot have ample
determinant. So X cannot be uniruled.

Of course, we may assume that F saturated, hence Q = ΩpX/ F is torsion
free. By taking determinants we get

mKX = det F + detQ

for some positive integer m. We learn from (1.6) above that detQ is pseudo-
effective. Thus KX is big, as a sum of a big and a pseudo-effective divisor.

2.3. The intermediate case. — In this section we want to study the above Con-
jecture 2.2 in the intermediate case n > κ(Xn) ≥ 0.

We shall reduce Conjecture 2.2 to (special cases of) a seemingly considerably
simpler:

Conjecture 2.4. — Let X be a projective manifold. Let NKX = A + B

with some positive integer N > 0, A effective and B pseudo-effective. Then
κ(X) ≥ κ(A).

Remark 2.1. — (1) By suitably blowing up, it is easily seen that Conjec-
ture 2.4 is equivalent to the analogous conjecture with A spanned.

(2) If ν(L) denotes the numerical dimension of an arbitrary pseudo-effective
line bundle as introduced by Boucksom [1], then the generalised abundance
conjecture states

κ(KX) = ν(KX).

If this generalised abundance conjecture holds, then Conjecture 2.4 holds when
κ(X) = 0, a case sufficient to imply Conjecture 2.2 (see below). In fact, if
κ(KX) = 0 and NKX = A + B with A spanned and B pseudo-effective, then
ν(A+B) = 0, hence ν(A) = 0 and therefore A = 0, A being spanned.

We start with an immediate observation:

Proposition 2.5. — Conjecture 2.4 implies Conjecture 2.2, when X is not
uniruled (in particular when κ(X) ≥ 0 ).

Proof. — Let F be a saturated subsheaf of ΩpX such that κ(X,det( F )) =
κ+(X) ≥ 0, then Q = ΩpX/ F is torsion free. By taking determinants we get

mKX = det F + detQ

for some positive integer m. We know that detQ is pseudo-effective, because
X is not uniruled. By Conjecture 2.4, we get the claim, since A := det( F ) is
Q-effective.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



54 F. CAMPANA & T. PETERNELL

We now show that Conjecture 2.4 (in case κ(X) ≥ 0)—and thus also 2.2—is
a consequence of the special case κ(X) = 0 of Conjecture 2.4. More precisely:

Proposition 2.6. — Let X be a projective n-dimensional manifold with
κ(X) ≥ 0. Let d = n − κ(X) ≥ 0. If Conjecture 2.4 holds for all manifolds
G of dimension d and with κ(G) = 0, then Conjecture 2.4 (and thus also
Conjecture 2.2) holds for X.

Proof. — By blowing up we may assume that the Iitaka fibration g : X → W

is holomorphic. Let G be a general fiber of g. Thus κ(G) = 0. Let A be effective
and B pseudo-effective on X such that

NKX = A+B

for some positive integer N. Then AG is effective, BG is pseudo-effective and

NKG = AG +BG.

Thus by Conjecture 2.4 applied to G, we conclude that κ(G,A|G ≤ 0. By the
easy additivity theorem for the Kodaira dimension, we obtain that

κ(X,A) ≤ dim(W ) + κ(G,A|G) ≤ dim(W ) = κ(X).

The preceeding observation shows that the only two crucial cases of Conjec-
ture 2.4 are κ(X) = 0 and κ(X) = −∞.

We now present some circumstances in which Conjecture 2.4 can be solved,
so that 2.6 can be applied.

We first recall a notion from Mori theory. Let X be a projective manifold. A
varietyX ′ with at most terminal singularities is said to be a good minimal model
for X, if X ′ is birational to X and some mKX′ is (locally free and) spanned.
Good minimal models are predicted to exist for every X with κ(X) ≥ 0 but
this known only in dimension up to 3.

Proposition 2.7. — Let G be a projective manifold with κ(G) = 0. Suppose
G has a good minimal model and that

NKG = A+B

with A effective and B pseudo-effective. Then κ(A) = 0.

Proof. — Let G′ be a good minimal model for G. Then KG′ ≡ 0 and actually
KG′ is torsion. Choose a smooth model Ĝ with holomorphic maps π : Ĝ → G

and λ : Ĝ → G′. There is an effective divisor E supported on the exceptional
locus of π such that KĜ = π∗(KG) + E. Then we can write

NKĜ = Â+ B̂
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with Â = π∗(A) +NE effective and B̂ = π∗(B) pseudo-effective. Now consider
A′ = λ∗(Â) and B′ = λ∗(B̂). Then A′ is effective, B′ is pseudo-effective and

NKG′ = A′ +B′.

It follows A′ = B′ = 0 so that κ(A) = 0.

Since good minimal models exist in dimension up to 3, Prop. 2.6 gives in
particular:

Theorem 2.8. — Let X be a projective n-dimensional manifold, κ(X) ≥ 0.

Suppose κ(X) ≥ n− 3. Then κ+(X) = κ(X).

For some other result towards (2.4) we state

Proposition 2.9. — Let X be a projective n-dimensional manifold, NKX =

A+B with A spanned and B pseudo-effective. Let f : X → Y be the fibration
determined by |A|. Let F be the general fiber of f. If B|F is big, then KX is
big, i.e., κ(X) = n.

Proof. — This is proved in [4, 2.5].

Corollary 2.10. — Let Xn be a projective manifold, NKX = A+B with A
spanned and B pseudo-effective. If κ(A) = n− 1, then κ(X) ≥ n− 1.

Proof. — Let f : X → Y be the fibration associated with A and let F denote
the general fiber. Since dimF = 1, either BF is ample or BF ≡ 0.

In the first case we simply apply (2.10). In the second we notice NKF =

BF ≡ 0 so that F is elliptic and BF = 0. Then we can write

mB = f∗(L) +
∑

diDi

with L a line bundle on Y, with di integers, not necessarily positive, and with
Di irreducible divisors with dim f(Di) ≤ n − 3. We want to show that L is
pseudo-effective.

Restricting to an irreducible curve C ⊂ Y going through a fixed, but general
point of Y , we see that B|XC

is still pseudo-effective, where XC is the main
component of f−1(C). Blowing-up XC if necessary, we may assume that C,XC

are smooth. We are then reduced to the case where Y = C is a curve. But then
there are no exceptional divisors Di, and the degree of L|C is nonnegative, as
desired.

Writing A = f∗(A′), it follows that A′ + L is big since A′ is big, and L is
pseudo-effective. Hence

κ(NmKX +
∑

(−d′iDi)) = n− 1,
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where d′i are just the negative di. Then however

κ(X) ≥ n− 1,

too.

3. Numerical maximality of the Kodaira dimension

We solve here Conjecture 2.4 in the special case where B is numerically
trivial.

Theorem 3.1. — Let X be a projective complex manifold, and L ∈ Pic0(X)

be numerically trivial. Then:
1. κ(X,mKX ⊗ L) ≤ κ(X).
2. If κ(X) = 0, and if κ(X,mKX ⊗L) = κ(X), then L is a torsion element

in the group Pic0(X).

Remark 3.1. — The conclusion of (2) above does no longer hold when κ(X) ≥
1, as shown by curves (or even arbitrary manifolds) of general type.

Another point not shown by our arguments is the behaviour of the modified
plurigenera

p+
m(X) := sup{h0(X,mKX ⊗ L), L ≡ 0},

as m is large and divisible. One may expect that then p+
m(X) = pm(X), and

that the maximum is attained at a torsion point, for every m > 0 (this is true
for m = 1, by the arguments below).

Proof. — We first reduce the general case where κ(X) > 0 to the special case
κ(X) = 0, as in 2.6 above.

Observe first that the statements involved are preserved by birational trans-
formations of X. We can thus assume that both f, g are holomorphic, where
g : X → W is the Iitaka-Moishezon fibration of X defined by some |mKX |,
and f : X → Y is the Iitaka fibration defined by some |m(KX ⊗ L)|. If G is a
general fibre of g, then it is sufficient to show that f(G) is a single point of Y .
But then f|G is nothing but the Iitaka fibration on G defined by (KX ⊗ L)|G.
Because κ(G) = 0, we obtain the conclusion from the special case κ = 0.

Remark 3.2. — We see moreover that, in order to have equality κ(KX⊗L) =

κ(X), it is necessary that L|G be torsion, by claim (2) for κ = 0.

To conclude the proof of the preceeding theorem, we need to solve the case
κ(X) ≤ 0. This is the content of the next two propositions.

We first deal with the case m = 1.

Proposition 3.2. — Let X be a projective manifold, L ∈ Pic0(X). If
h0(KX ⊗ L) ≥ r > 0, then the following holds.
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1. There exists a finite étale abelian cover f : X̃ → X such that:

h0(f∗(KX ⊗ t · L)) = h0(KX̃ ⊗ f
∗(t · L)) ≥ r

for all t ∈ R.
(here t · L denotes any element Lt in any one-parameter subgroup of

Pic0(X) containing L)
2. h0(KX̃) ≥ r.
3. In particular, κ(X) ≥ r − 1 ≥ 0, if r = 1 or r = 2.
4. If κ(X) = 0 and if h0(KX ⊗ L) = 1, then L is a torsion element in the

group Pic0(X).

Proof. — Assuming (1) for the moment, we choose t = 0 and obtain (2) and
therefore also (3).

We next prove (1). Let

SmX := {L ∈ Pic0(X)|Hm(X,L) 6= 0}.

By Simpson [25]:
SmX =

⋃
{Ai + Ti}

with Ai torsion elements and Ti subtori of Pic0(X).

Choose a finite abelian étale cover f : X̃ → X such that f∗(Ai) = OX̃ for
all i. Applying Simpson’s result with m = dimX and using Serre duality, we
conclude

h0(KX̃ ⊗ f
∗(t · L)) ≥ r

for all t ∈ R.
Indeed:

f∗(t · L) ∈ f∗(Ti) = f∗(Ai + Ti)

for some i such that L ∈ Ai + Ti. Since f∗(Ai + Ti) ⊂ f∗(SrX) ⊂ Sr
X̃
, we are

done for assertion (1).
(Notice that if L is unitary flat, then by Hodge theory it is obvious that

h0(KX ⊗ L) = h0(KX ⊗ L∗), without using [25]).
Let us finally prove statement (4). We show by contradiction that Ti is the

trivial group. ReplacingX by X̃ as above and setting r = 1, we get a non-trivial
one-parameter subgroup Lt, t ∈ R, contained in Ti ⊂ SnX , where n = dimX.

The canonical morphisms

H0(KX̃ ⊗ Lt)⊗H
0(KX̃ ⊗ L

∗
t )→ H0(2KX̃)

show that h0(2KX̃) ≥ 2, contradicting our assumption that κ(X) = 0.

We shall now reduce the general case of m ≥ 2 to the special case m = 1,
by means of cyclic covers.
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Theorem 3.3. — Let X be a projective manifold and L a line bundle with
c1(L) = 0 in H2(X,Z).

1. Suppose that there is a positive integer m such that h0(mKX ⊗ L) ≥ 2.

Then κ(X) ≥ 1.

2. Suppose that there is a positive integer m such that h0(mKX ⊗ L) 6= 0.

Then κ(X) ≥ 0.

3. Suppose that κ(X) = 0, and that h0(mKX ⊗ L) 6= 0. Then L is torsion
in Pic0(X).

Proof. — We first prove (1), the proof of (2) being identical, simply omitting
the divisor D in the arguments below. Since our claim is invariant by finite étale
covers, we can pass to such covers as we like. In particular, we may assume that
L ∈ Pic0(X). Ifm = 1, then our claim is Proposition 3.4, hence we shall assume
m ≥ 2. Furthermore we may assume that L = mL′, so that

h0(m(KX ⊗ L′)) ≥ 2.

Let
∑
biBi be the fixed part of |m(KX ⊗ L′)|, so that we can write

m(KX ⊗ L′) =
∑

biBi +D

with D reduced and movable. By possibly blowing up we may assume that the
support of

∑
biBi+D has normal crossings. Now take them-th root, normalize

and desingularize to obtain f : Y → X. We have to compute f∗(KY ), following
[8, 26]. In fact, introduce the line bundles

Hj = j(KX ⊗ L′)−
∑

[jbim
−1]Bi.

Here [x] denotes the integral part of x. Then:

f∗(KY ) = KX ⊗
m−1⊕
j=0

Hj .

Hence the direct summand of f∗(KY )⊗ L′ corresponding to j = m− 1 is just

D +
∑
i

(bi − [bi(m− 1)m−1])Bi.

Since D moves, we obtain

h0(f∗(KY )⊗ L′) ≥ 2,

hence
h0(KY ⊗ f∗(L′)) ≥ 2

so that κ(Y ) ≥ 1.

We still need to prove κ(X) ≥ 1. As already indicated above, the map
f : Y → X decomposes as

f = h2 ◦ h1 ◦ h0,
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in the following way: we first take the cyclic covering h0 : Y0 → X determined
by m(KX ⊗ L′) = OX(D). Then we take the normalisation h1 : Y1 → Y0, and
finally take h2 : Y → Y1 to be a desingularisation. Then Y0 is Gorenstein and

KY0
= h∗0(mKX ⊗ (m− 1)L′);

furthermore
KY1 ⊂ h∗(KY0)

via the trace map (h1)∗(KY1
) → I ⊗ KY0

(with I the conductor ideal) and
finally

(h2)∗(KY ) = KY1
(+)

since Y1 has rational singularities [8, 26].
In total

KY ⊂ f∗(mKX ⊗ (m− 1)L′))⊗ OY (
∑

aiEi)

where Ei are the exceptional components for h2, and the a′is are integers.
Hence:

(h2)∗( OY (
∑

aiEi)) = OY1

by (+). Thus

KY ⊗ f∗((1−m)L′) ⊂ f∗(mKX)⊗ OY (
∑

aiEi).

From the assertion (2) of Proposition 3.2, we conclude that, for some abelian
étale cover g : Ỹ → Y , we have h0(KỸ ) ≥ 2. Thus κ(X) = κ(Ỹ ) ≥ 1, as
claimed.

The proof of (3) is then the same as the proof of (4) in 3.2.

Remark 3.3. — The preceeding result makes plausible the expectation that
the generalised Green-Lazarsfeld sets

Sm,p,r = {L ∈ Pic0(X) | hp(mKX ⊗ L) ≥ r}

might have the same structure as in [25] (finite union of translates of subtori
by torsion elements).

In fact, up to the word “torsion” above, this is a consequence of the Abun-
dance Conjecture, as C. Mourougane observed. Indeed he showed in [21], thm.
5.3, that the Green-Lazarsfeld cohomological loci have this structure for “good”
divisors.

Corollary 3.4. — Let X be a projective manifold, A effective and B pseudo-
effective divisors on X. Assume that mKX = A+ B for some positive integer
m. Suppose also that ν(B) = 0, in the sense of [1]. Then κ(X) ≥ 0.

Proof. — By [1], we can write B ≡
∑
biBi with positive rational numbers bi.

Now apply (3.1).
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4. The Universal Cover

Another invariant ofX is defined via the universal cover X̃ of a compact Käh-
ler or projective manifold X. By identifying points in X̃ which can be joined by
a compact connected analytic set, one obtains an almost holomorphic meromor-
phic map X̃ ⇀ Γ(X̃). Here “almost holomorphic” is to say that the degeneracy
locus does not project onto the image. If X̃ is holomorphically convex (which
is expected to be always true by the so-called Shafarevitch conjecture), then
this map is holomorphic and is just the usual Remmert holomorphic reduction.
In any case it induces the so-called Shafarevich map

γX : X ⇀ Γ(X) = Γ(X̃)/π1(X̃).

Definition 4.1. — γd(X) = dim Γ(X) is the Γ-dimension of X.

Notice that γd(X) = 0 iff π1(X) is finite and that γd(X) = dimX iff through
the general point of X̃ there is no positive dimensional compact subvariety, i.e.,
X̃ geometrically seems as a modification of a Stein space.

The following result [3, (4.1)] gives a relation between κ+(X) and γd(X).

Theorem 4.2. — Let X be a compact Kähler manifold. If χ(X, OX) 6= 0, then
either

1. κ+(X) ≥ γd(X), or
2. κ+(X) = −∞, and so X is simply connected.

By (2.9) we then obtain

Corollary 4.3. — Let Xn be a projective manifold. Suppose that κ(X) ≥
n− 3 and χ( OX) 6= 0. Then κ(X) = κ+(X) ≥ γd(X).

In particular, if n = 4, κ(X) ≥ 1, π1(X) is infinite and χ( OX) 6= 0, then
κ(X) ≥ γd(X) ≥ 1. In other words, if X is a projective 4-fold with κ(X) = 0

and π1(X) is not finite, then either χ( OX) = 0; so there is either a holomorphic
1-form, or a holomorphic 3-form, or: κ+(X) ∈ {1, 2, 3}.

Hence as in [3, 5.9], we conclude:

Corollary 4.4. — Let X be a projective manifold of dimension 4 such that
κ(X) = 0, and χ( OX) 6= 0. Then either π1(X) is finite and has at most 8

elements, or κ+(X) ∈ {1, 2, 3}.

This result should hold in arbitrary dimension n, with 8 replaced by 2n−1, as
a consequence of the standard conjecture that π1(X) should be almost abelian
if κ(X) = 0.

From Theorem 2.3 we deduce
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Corollary 4.5. — Let X be a normal projective variety with at most rational
singularities and suppose that its universal cover is not covered by its positive-
dimensional compact subvarieties. Then X is of general type if χ( OX) 6= 0.

Proof. — If X is smooth, then by our assumption and (4.2), we have κ+(X) =

dimX or χ( OX) = 0. Now theorem (2.3) gives the claim.
So it remains to reduce the general case to the smooth. Note that X̃ is

irreducible since X is normal. Consider a projective desingularisation π : Y →
X and let π̃ : Ỹ → X̃ be the induced maps on the level of universal covers.
Then π̃ is onto with discrete fibers over the smooth locus of X̃. Hence Ỹ is
not covered by positive-dimensional compact subvarieties, too, because their
π̃-images would again be compact. By the solution of the smooth case, we either
have χ(X, OY ) = 0-–hence χ( OX) = 0 by the rationality of the singularities of
X-–or Y , hence X, is of general type.

Corollary 4.6. — Let Xn be a projective manifold or a normal projective
variety with at most terminal singularities whose universal cover is Stein (or
has no positive-dimensional subvariety). Then either KX is ample or χ( OX) =

0, KX is nef and Kn
X = 0.

Proof. — This is immediate from (4.5) by observing that X does not have any
rational curve, so that KX must be nef by Mori theory. Moreover if KX is big,
then KX is ample by Kawamata [12].

We are lead to ask for the structure of projective manifolds Xn whose uni-
versal cover is Stein and with Kn

X = 0.

Conjecture 4.7. — Let Xn be a projective manifold whose universal cover
X̃ is Stein. Assume Kn

X = 0. Then up to finite étale cover of X, the manifold
X has a torus submersion over a projective manifold Y with KY ample and
universal cover again Stein.

If the universal cover is only assumed not to admit a positive-dimensional
subvariety through the general point, then one expects a birational version of
4.7, which is actually proved in [13, 5.8]. Here is the “Stein version” of this
result which does not follow immediately from Kollár’s result since we make a
biholomorphic statement. The main point is to explain that we must have a
holomorphic Iitaka fibration which is “almost smooth” and then apply Kollár’s
techniques to make it smooth.

Proposition 4.8. — Conjecture 4.7 holds if κ(X) ≥ n− 3.
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Proof. — (1) Since the case κ(X) = n− 1 is the simplest, we do it first. Here
the numerical dimension ν(X) = κ(X), so that KX is good, i.e., some multiple
is spanned [11]. Therefore we have a holomorphic Iitaka fibration f : X → Y.

The general fiber is an elliptic curve. Since X does not contain rational curves,
it follows easily that all fibers are elliptic, sometimes multiple. Now [13, sect.6]
yields a finite étale cover such that the induced map is smooth; see below for
some details.

(2) In the other case we consider the normalized graph p : C → X of the
family determined by the general fibers of the meromorphic Iitaka fibration.
Let q : C → T denote the parameter space. All irreducible fibers of q have
dimension 2 (resp. 3) and every such fiber is an étale quotient of a torus by
Lemma 4.9 below. Now we have a formula (via the trace map)

K C = p∗(KX) + E

with an effective (Weil) divisor E. Restricting to a general (normal, hence
smooth by (4.8) below) fiber F of q, we get

0 ≡ p∗(KX)|F + E|F.

Hence p∗(KX)|F ≡ 0 = E|F. Now consider the reduction F0 of a component
of a singular fiber (or rather its normalization) and use the conservation law
(and the nefness of p∗(KX)) to deduce p∗(KX)|F0 ≡ 0. Thus p∗(KX) is “q-nu-
merically trivial”. This proves immediately ν(X) = n− 2 (resp. ν(X) = n− 3)
and again mKX is spanned for a suitable m.

Now let again F0 be the reduction of a component of a singular fiber F , this
time of the Iitaka fibration f : X → Y.

We claim that actually F = aF0 for some integer a > 0, and that f is
equidimensional.

If dimT = 2, this is easy and well-known of course (take a general curve
through f(F0) and observe that singular non-multiple fibers produce rational
curves).

So suppose dimT = 1. Take µ maximal such that µF0 ⊂ F. Then N∗µF0

has a section which has a zero, since F is reducible. Hence KF0
= −D with

D a Q-effective divisor by the adjunction formula. Now normalize and then
desingularize. The result F̂0 has κ(F̂0)) = −∞ (use formula (∗) below), so
that F0 is uniruled. Since this is forbidden by the universal cover, we obtain
F = aF0.

Then KF0
≡ 0, so that its normalization F̃0 has

KF̃0
= ν∗(KF0)− Ñ (∗)

with Ñ the preimage of the non-normal locus. Since KF̃0
≡ 0 by (2.9), we

conclude that F0 must have been normal, hence smooth.
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Now we apply [13, 5.8] to obtain a finite étale cover X ′ of X which is bi-
rational to a torus submersion. But since X ′ does not contain rational curves,
we obtain a holomorphic birational map from a torus submersion to X ′. Since
multiple fibers cannot be resolved by birational transformations on the base,
we conclude that X ′ is a torus submersion itself.

It remains to prove the following lemma of independent interest.

Lemma 4.9. — Let X be an irreducible reduced variety of dimension at most
3. Assume that the universal cover of X is Stein (or does not contain com-
pact subvarieties). Let X̃ → X be the normalization and π : X̂ → X̃ be a
desingularization. Suppose κ(X̂) = 0. Then X̃ is an étale quotient of a torus.

Proof. — We only treat the case dimX = 3, the surface case being easier and
left to the reader. By [22], X̂ admits a finite étale cover h : X ′ → X̂ which is
birational to a product of a simply connected manifold and an abelian variety.
By our assumption on the universal cover, the simply connected part does
not appear. It follows that the Albanese map α : X ′ → A is birational. Now
all irreducible components of all non-trivial fibers α are filled up by rational
curves (α factors via Mori contractions). Since X̃ does not contain rational
curves, the map X ′ → X̂ → X̃ therefore factors over α, i.e., we obtain a finite
map g : A→ X̃.

This map is étale in codimension 1. In fact otherwise by the ramification
formula KA = g∗(KX̃) +R (as Weil divisors). Thus −KX̃ is non-zero effective
and therefore κ(X̂) = −∞, contradiction.

We want to see that X̃ is actually smooth and an étale quotient of A. First
notice that X̃ is Q-Gorenstein (if g has degree d, then dKX̃ = O on the regular
part of X̃, hence everywhere). Now we can compare the formulas

KX′ = h∗π∗(KX̃) +
∑

aiEi

and
KX′ =

∑
bjFj

where Ei are the preimages of the π-exceptional components and Fj are the
α-exceptional components; notice bj > 0. Then both sets of exceptional divisors
are equal, and thus all ai > 0. Therefore X̃ has only terminal singularities.
We also notice that π1(X̃) is almost abelian, i.e., abelian up to finite index.
Therefore π1(X̃) is abelian after finite étale cover. Then [10] applies and X̃ is
an étale quotient of an abelian threefold. Here of course we use again that the
universal cover of X̃ is Stein.
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5. Stability and tensor products

Recall that ME(X) denotes the movable cone of the n-dimensional pro-
jective manifold X. We say that α ∈ ME(X) is geometric, if there exists a
modification π : X̃ → X from the projective manifold X̃ and ample line bun-
dles Hi such that

α = λπ∗(H1 ∩ · · · ∩Hn−1)

with a positive multiple λ. By definition, ME(X) is the closed cone generated
by the geometric classes.

A class α ∈ME(X)∩H2(X,Q) which is in the interior ofME(X) is called an
rational ample class. Notice that a rational ample class is a linear combination
of geometric classes.

If E and F are torsion free sheaves, then we put

E⊗̂ F = ( E⊗ F )/tor.

The first main result is well-known in case of an ample polarization
(H1, . . . ,Hn−1.

Theorem 5.1. — Let α ∈ME(X) be a rational ample class and let E and F
be α-semi-stable torsion free sheaves on X. Then E⊗̂ F is again α-semi-stable.

The key to Theorem 5.1 is the following

Proposition 5.2. — Assume in the setup of (5.1) that E and F are locally
free and α-stable, where α ∈ME(X) be a rational ample class. Then E⊗ F is
α-semi-stable.

Proof. — An analytic proof is given below in §6 by M. Toma.

An algebraic proof in case α is geometric is as follows, even for E and F
only semi-stable. Since α is geometric, there is a modification π : X̃ → X and
ample line bundles Hi on X̃ such that

λα = π∗(H1 ∩ . . . Hn−1) =: π∗(h),

we may of course assume λ = 1 and all Hi very ample. Since E is α-stable,
so does π∗( E w.r.t. π∗(α). By the projection formula the slope of π∗( E) w.r.t.
π∗(α) agrees with the h-slope (see Lemma 5.3), so that π∗( E) is also h-stable.
The same applies to π∗( F ). Now a well-known result (see e.g. [9, 3.1.4] says
that π∗( E ⊗ F ) is h-stable, and therefore π∗(α)-stable. Hence we conclude by
Lemma 5.3 again.
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Let σ : X̂ → X be a modification from the projective manifold X̂. Let
α ∈ME(X) and α̂ = σ∗(α) be the unique 1-cycle up to numerical equivalence
in X̂ such that

σ∗(α).L̂ = α.σ∗(L̂)

for any line bundle L̂ on X̂. Here σ∗(L̂) denotes the class of the line bundle
σ∗(L̂)∗∗. Alternatively, α defines a class in H2n−2(X,R), where n = dimX.

Then σ∗(α) is the pull-back class in H2n−2(X̂,R).

We have in particular

σ∗(σ∗(β)).L̂ = σ∗(β).(σ∗(σ
∗(L)) = σ∗(β).L

for any line bundle L on X and 1-cycle β on X̂. Our main interest is in applying
this to the geometric class α = σ∗(H

n−1) as follows.
In order to deduce (5.1) from (5.2), we use the following lemma.

Lemma 5.3. — Let σ : X̂ → X be a modification from the projective manifold
X̂. Let α ∈ME(X) and α̂ = σ∗(α). Then

1. α̂ ∈ME(X̂)

2. If S is a torsion free sheaf on X and Ŝ = σ∗( S)/tor, then µα( S) = µα̂( Ŝ).

3. If Ŝ is torsion free on X̂ and S = σ∗( Ŝ), then µα( S) = µα̂( Ŝ).

4. A torsion free sheaf E on X is α-semi-stable if and only if σ∗( E)/tor is
α̂-semi-stable.

Proof. — (1) We need to prove that D̂ · α̂ ≥ 0 for all pseudo-effective divisors
D̂ on X̂. Now the divisor D = σ∗(D̂) is again pseudo-effective, see Lemma 5.4.
Hence

D̂ · α̂ ≥ 0 = D · α ≥ 0

proving (1).
(2) and (3) are simple calculations and (4) follows from (2) and (3).
More precisely, (2) is proved by

µα̂( Ŝ) = α̂.c1( Ŝ) = α̂.σ∗(c1( S)) = α.σ∗(σ
∗(c1( S)) = α.c1( S) = µα( S),

whereas (3) is established by

µα̂( Ŝ) = α̂.c1( Ŝ) = α.σ∗(c1( Ŝ)) = α.c1(σ∗( Ŝ)) = α.c1( S) = µα( S).

Lemma 5.4. — Let σ : X̂ → X be a birational morphism of compact Kähler
manifolds. Let L̂ be a pseudo-effective line bundle on X̂. Then L = (π∗(L̂))∗∗

is pseudo-effective, too.

Proof. — The proof is very easy: since L̂ is pseudo-effective, there exists a
positive closed current T̂ on X̂ such that c1(L̂) = [T̂ ]. Now T = π∗(T̂ ) is
trivially again a positive closed current and c1(L) = [T ]. Therefore L is pseudo-
effective.
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Proof of Theorem 5.1. — We proceed by induction on rk( E) + rk( F ). We
choose a birational morphism

σ : X̂ → X

from a projective manifold Ŝ such that both Ê = σ∗( E)/tor and F̂ = σ∗( F )/tor

are locally free. We may moreover assume that σ∗( E ⊗ F )/tor is locally free,
which implies

Ê⊗ F̂ = σ∗( E⊗ F )/tor. (∗)
We consider

α̂ = σ∗(α) ∈ME(X̂),

which is of course no longer an ample class (if σ is not an isomorphism), i.e., it
is not in the interior of ME(X). In order to be able to apply (5.2), we choose
a sequence (αk) of ample classes converging to α (in N1(X) or in H2(X)); we
can arrange αt = α+ t(ω1 ∧ · · · ∧ ωn−1) with Kähler classes ωi.

Suppose first that E and F are α-stable, not just semi-stable. Hence Ê and
F̂ are α̂-stable. By Lemma 5.6 the bundles Ê and F̂ are αk-semi-stable for
sufficiently large k. Then by (5.2) Ê ⊗ F̂ is αk-semi-stable for large k. Thus
Ê⊗ F̂ is α̂-semi-stable and we conclude again by Lemma 5.3 and (∗).

If E and F are α-semi-stable but not both stable, we proceed by induction
on rk( E) + rk( F ). In case E is not stable, consider a stable subsheaf S ⊂ E
of strictly smaller rank and same slope as E and let T = F (resp. in case F
is not stable, let T be a stable subsheaf with the same slope and S = E). By
induction hypothesis S ⊗ T and S′ ⊗ T ′ are semi-stable. Since

µα( S) = µα( S′) = µα( E) (1)

and
µα( T ) = µα( T ′) = µα( F ) (2)

it follows easily that E⊗ F is α-semi-stable. Namely, tensor the exact sequence

0→ T → F → T ′ → 0

by S and S′ to deduce the semi-stability of S⊗̂ F and S′⊗̂ F and then tensor
the the exact sequence

0→ S → E→ S′ → 0

by F to deduce the semi-stability of E⊗̂ F . Here of course we need (1) and
(2).

Corollary 5.5. — Let α ∈ ME(X) be a rational ample class and E and F
torsion free sheaves on X. Then µmax

α ( E⊗̂ F ) = µmax
α ( E) + µmax

α ( F ).
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Proof. — Let S ⊂ E and T ⊂ F be the maximal destabilizing sheaves. Since
S⊗̂ T is α-semi-stable by Theorem 5.1, we obtain

µmax
α ( E⊗̂ F ) ≥ µα( S⊗̂ T ).

Since µmax
α ( E) = µα( S), and analogously for F and T , we conclude for one

inequality. To establish the other, we must show that S⊗̂ T is maximal destab-
lisizing for E⊗̂ F . This is an easy exercise using the exact sequences already
used in the proof of (5.1) and the HN-filtration.

To deduce (5.1) from (5.2), we used the following:

Lemma 5.6. — Let X be a projective manifold of dimension n and E a reflex-
ive sheaf over X. Let α ∈ME(X) ∩H2n−2(X,Q) be a rational movable class.
Choose rational Kähler classes ωi and set

αt = α+ t(ω1 ∧ · · · ∧ ωn−1)

for t ∈ R+. Assume that E is α-stable. Then E is αt-semi-stable if |t| is suffi-
ciently small.

Proof. — We assume to the contrary that E is αtj -unstable for a sequence tj
converging to 0. Let St denote the maximal destabilizing subsheaf with respect
to αt, t = tj . Let r be the rank (assumed to be constant, as we can) of St. We
shall use the shorthand

β = ω1 ∧ · · · ∧ ωn−1

and denote the slope w.r.t a classe γ by µγ , with the additional convention
µt = µαt .

(1) We first show that
lim
t→0

tµβ( St) = 0. (∗)

In fact by taking
∧rt we are reduced to the following stronger statement.

Let F be a torsion free sheaf on a projective manifold. Let ωj be rational
Kähler classes. Then there is a positive constant M such that for all locally free
subsheaves L ⊂ F of rank 1 the following inequality holds.

c1( L) · β ≤M.

This claim is clear: first reduce to the case that F is locally free by choosing
a complete intersection curve C of very ample divisors of large degree which
are cohomologically multiples of the given Kähler classes. This curve will then
avoid the non-free locus of E. The claim is then obvious (by considering a
filtration of E on C by locally free sheaves of increasing ranks).

Since µβ( Stj ) is also bounded from below by µβ( E) (use (∗∗)), the claim (∗)
is proved.
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(2) Using (∗) we proceed as follows. The destabilizing property reads

µt( Stj )) > µt( E).

Thus
µα( Stj ) + tj .µβ( St) > µα( E) + tj .µβ( E). (∗∗)

When j tends to +∞, the inequality (∗) implies

limµα( Stj ) ≥ µα( E).

In fact, limµα( Stj ) exists (after possibly passing to “subsequences”), since
µα( Stj ) < µα( E) and since µα( Stj ) is also bounded from below.

So we have
limµα( Stj ) = limµtj ( Stj ) ≥ µα( E).

We will obtain a contradiction to the α-stability of E, if we can show that
µα( Stj ) takes only finitely many values. To verify that, notice that we already
saw the existence of a positive constant C such that

0 < µα( Stj ) ≤ C

for j sufficiently large (we may assume µα( E) > 0).
Then we obtain—possibly after passing to a sequence converging to 0-–a

decomposition
c1( Stj ) = A+Btj (+)

with A and Bt real classes such that Bt · α = 0.

This decompostion comes from the following easy fact.
Let f : Rn → R be linear and non-zero be defined over Q. Let C > 0 and

consider
M = {x ∈ Rn | 0 ≤ f(x) ≤ C}.

Let (aj) be an infinite sequence in M ∩ Zn. Then after passing possibly to a
subsequence we have a decomposition

aj = b+ cj

with b, cj ∈M and f(cj) = 0.

Indeed: the map f , being defined over Q, takes only finitely many values
(depending on the denominators of the coefficients of f) on M ∩ Zn.

From (+) we obtain:
µα( Stj ) = µα(A),

and the conclusion.

In Theorem 1.4 we made use of the following result of independent interest.
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Theorem 5.7. — Let X be a projective manifold of dimension n and π : X̃ →
X a birational map from a projective manifold X̃. Let H1, . . . ,Hn−1 be ample
divisors on X̃ and set α = π∗(H1 · · · · · Hn−1). Let F be an α-semi-stable
torsion-free sheaf on X. Let the suffix p always denote reduction mod p. Then
the sheaf F p is αp-semi-stable for large p.

This result is well-known when π is isomorphic, see e.g. [20], p.65.

Proof. — Suppose to the contrary that F p is not αp-stable for infinitely many
primes p and let Sp ⊂ F p be αp-destabilizing. The proof consists in bounding
the Hilbert polynomials of the sheaves Sp, so that there exists a sheaf S in
characteristic 0 inducing the sheaves Sp. Since the slope with respect to α and
αp is always the same, S destabilizes F , a contradiction.

Let Qp = F p/ Sp. By Proposition 5.8 below, we may assume rk(Qp) = 1,

hence we can write Qp = IZp⊗Gp with a line bundle Gp and Zp of codimension
at least 2. Since G∗p destabilizes F ∗p, it suffices to bound Gp instead of Sp. For
this, it suffices to bound π∗(Gp) =: G̃p.

Indeed: if F̃ p := π∗( F )/torsion, then G̃p might not be saturated in F̃
∗
p any

more. Thus our arguments below only show that IDp
⊗ G̃p is bounded for

some effective divisor Dp; hence we obtain a line bundle Ĝ in char 0 such that
Ĝp = IDp

⊗ G̃p. But since dimπ(Dp) ≤ n− 2, we simply set G = π∗(Ĝ)∗∗ and
we are thus done. Hence we may, and shall assume from the beginning that G̃p
is saturated in F̃p.

To establish the boundedness of G̃p we shall show that the set of possible
Hilbert polynomials

P (m) = χ(X̃, G̃p +mH)

is finite. Here we assume for simplicity thatH = Hj for all j (in general consider
the Hilbert polynomials for the various Hj). We may also assume that H is
very ample. Once this is done a relative Picard scheme argument finishes the
proof.

Step 1. We bound |c1(G̃p) · hp|, where hp = Hn−1
p .

Observe that, by the remarks before Lemma 5.3, we have:

c1(G̃p) · hp = c1(Gp) · αp.

Therefore one part of the bound follows from the bound

c1(Gp) · αp ≤ Cc1( F p) · αp,

with a constant C, using the fact that G∗p destabilizes F ∗p. The other bound can
be seen as follows: we may assume from the beginning that F is ample, hence
F p is ample, and therefore the generic quotient Gp is big. Hence c1(Gp) ·α > 0.
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Step 2. We now argue by induction on the dimension of X. We show that it
suffices to bound χ(G̃p). Choose Y ∈ |H| general. By the induction hypothesis,
G̃p|Yp is bounded. Now

χ(G̃p(mHp)) = χ(G̃p) +
m∑
k=1

χ(S, G̃p(mHp)),

from which our claim already follows.

Step 3. We finally bound χ(G̃p). We choose a positive integer N such that

(G̃p −NHp)|Yp

is negative for all G̃p. This N can be choosen independently on G̃, since the
G̃p|Yp are bounded, by the induction hypothesis. Then we obtain for all N ′ ≥ N
and all q ≤ n− 1 an embedding:

Hq(X̃p, G̃p −N ′Hp)→ Hq(X̃p, Gp −NHp),

and for q ≤ n− 2 the vanishing

Hq(X̃p, G̃p −N ′Hp) = 0.

Since

hq(X̃p, G̃p) ≤
N∑
i=1

hq(Yp, (G̃p − iHp)|Yp) + hq(X̃p, G̃p −NHp),

we deduce the boundedness of hq(X̃p, G̃p) already for q ≤ n− 2.

In case q = n, we have

hn(X̃p, G̃p) = h0(X̃p, G̃
∗
p ⊗KX̃p

) ≤ h0(X̃p, F
∗
p ⊗KX̃p

).

It remains to consider the case q = n− 1. We have an exact sequence

0→ S̃p → F̃ p → I Z̃ ⊗ G̃p → 0

where Z̃ has codimension at least 2. To bound hn−1(X̃p, G̃p) it suffices of course
to bound hn−1(X̃p, Ĩ Z̃ ⊗ G̃p) and therefore to bound hn(X̃p, S̃p) by taking
cohomology of the last exact sequence. Dually, we need to bound h0(X̃p, S̃

∗
⊗

KX̃p
). We substitute F̃ by F̃ ⊗ mH, where m is so large that ( S̃p ⊗ mHp ⊗

(−KX̃p
))|Yp is ample for all p. This is possible since by induction we already

have boundedness when restricting to Yp. Therefore after the substitution, the
sheaf ( S̃

∗
⊗KX̃p

)|Yp is negative, the same being true for generic deformations

of Yp. Hence H0(X̃p, S̃
∗
⊗KX̃p

) = 0, and we are done.
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Proposition 5.8. — Let X be a smooth projective variety over an alge-
braically closed field. Let F be a torsion free sheaf which is unstable w.r.t
some movable class α. Then

∧r F (modulo torsion ) is also α-unstable for all
r < rk F .

Proof. — Let S ⊂ F be maximally destabilizing, introducing a sequence

0→ S → F → Q→ 0

with a torsion free sheaf Q. Since all computations will only invoke c1, we
may assume all three sheaves to be locally free. By arguing with Q-bundles or
by passing to symmetric powers, we may furthermore assume c1( F ) = 0, in
particular c1( F ) · α = 0 and hence c1(Q) · α < 0.

Let m be the rank of F .
If r ≤ m, we obtain an epimorphism

r∧
F →

r∧
Q→ 0.

Since c1(
∧r F ) ·α = 0 and since c1(

∧r Q) ·α < 0, the bundle
∧r F is unstable

in this case, too.
If r > m, we obtain an epimorphism

r∧
F →

m∧
Q⊗

r−m∧
S → 0.

Now an elementary calculation shows that

c1(
m∧
Q⊗

r−m∧
S) = ac1(Q) · α,

where

a =

Ç
s−m
r −m

å
−

Ç
s−m− 1

r −m− 1

å
> 0.

Hence the conclusion is as before.

6. Appendix: an analytic proof of Theorem 5.1 (by Matei Toma)

We give here an analytic proof of Theorem 5.1. This proof needs no
adaptation of the Grauert-Mülich Theorem. The main ingredient will be the
Kobayashi-Hitchin correspondence for non-Kähler polarizations which was
established by J. Li and S.T. Yau.

We shall use the notations and the definitions of the main paper. In particular
X will be a complex projective manifold of dimension n ≥ 2. Following [7] we
shall denote by Namp the interior of the closed cone ME(X) generated by
movable curves, see also [2]. It is easy to check using [2] that geometric classes
of curves belong to Namp.
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The following proposition replaces Proposition 5.2.

Proposition 6.1. — Let α be a class in Namp and E and F two α-polystable
locally free sheaves. Then E⊗ F is again α-polystable.

Proof. — We start by a Hahn-Banach argument and show the existence of a
smooth positive definite form u of bidegree (n−1, n−1) with ∂∂u = 0 and such
that the slope of a holomorphic vector bundle with respect to α is computed
by

µα(E) =

∫
c1(E, h) ∧ u

rankE
,

where c1(E, h) is the first Chern form of E computed with respect to some
hermitian metric h in the fibers of E, cf. [7] Theorem 4.1.

Let indeed D+
1,1 be the cone of positive currents inside the space D′1,1 of cur-

rents of bidegree (1, 1). For any choice of a positive definite smooth (1, 1)-form
η the set

D+
(1,1),η = {T ∈ D+

1,1 |
∫
X

T ∧ ηn−1 = 1}

is compact for the weak topology on D′1,1, see [6], III.1.23. The vector subspace

V = {T ∈ D′1,1 | dT = 0, [T ] · α = 0}

is closed and disjoint from D+
(1,1),η by the duality Theorem 2.4 in [2].

(Notice that α belongs also to the interior of the cone of movable classes
M ⊂ Hn−1,n−1

R (X)).
Thus there exists a continuous linear functional which is positive on D+

(1,1),η

and vanishes on V . This is given by a smooth positive definite form u of bidegree
(n− 1, n− 1) which is also ∂∂-closed since ∂∂ D′0,0 ⊂ V . Moreover a renormal-
ization of u by a positive factor makes α and u to be equal as linear functionals
on H1,1(X)R since they have the same kernel and are both positive on Kähler
classes.

Next we take a (n− 1)-st root ω of u in the following way. First notice that

(1) (i
∑

1≤i,j≤n
aijdzi ∧ dzj)

n−1 = (n− 1)!i(n−1)2
∑

1≤i,j≤n
(−1)i+jcjid̂zi ∧ ˆdzj ,

where cij denotes the cofactor of aij in the matrix A = (aij)1≤i,j≤n, d̂zi =

dz1∧ ...∧dzi−1∧dzi+1∧ ...∧dzn and ˆdzj = dz1∧ ...∧dzj−1∧dzj+1∧ ...∧dzn.
The relation Ct A = det(A)In for the cofactor matrix C = (cij)1≤i,j≤n implies

A = n−1

»
det(C) Ct −1

in case A is positive definite. Moreover, given a positive definite matrix C, one
obtains a unique positive definite solution A of the equation (1).
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Then ω is the (1, 1)-form associated to a Gauduchon metric on X and

µα(E) = µω(E) =

∫
c1(E, h) ∧ ωn−1

rankE
,

for E and h as before. By [15] the Kobayashi-Hitchin correspondence holds in
this case, thus the polystability of a holomorphic vector bundle E with respect
to ω is equivalent to the existence of a Hermite-Einstein metric with respect
to the polarization ω again. But the tensor product of Hermite-Einstein vector
bundles is also Hermite-Einstein and the proposition is proved.

BIBLIOGRAPHY

[1] S. Boucksom – “Cônes positifs des variétés complexes compactes”, thèse
de doctorat, Université de Grenoble, 2002.

[2] S. Boucksom, J.-P. Demailly, M. Paun & T. Peternell – “The
pseudo-effective cone of a compact Kähler manifold and varieties of nega-
tive Kodaira dimension”, to appear in J. Alg. Geom., 2011.

[3] F. Campana – “Fundamental group and positivity of cotangent bundles
of compact Kähler manifolds”, J. Algebraic Geom. 4 (1995), p. 487–502.

[4] F. Campana, J. A. Chen & T. Peternell – “Strictly nef divisors”,
Math. Ann. 342 (2008), p. 565–585.

[5] F. Campana & Q. Zhang – “Compact Kähler threefolds of π1-general
type”, in Recent progress in arithmetic and algebraic geometry, Contemp.
Math., vol. 386, Amer. Math. Soc., 2005, p. 1–12.

[6] J.-P. Demailly – “Complex analytic and algebraic geometry”, http://
www-fourier.ujf-grenoble.fr/~demailly/books.html.

[7] J.-P. Demailly, T. Peternell & M. Schneider – “Holomorphic line
bundles with partially vanishing cohomology”, in Proceedings of the Hirze-
bruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel
Math. Conf. Proc., vol. 9, Bar-Ilan Univ., 1996, p. 165–198.

[8] H. Esnault – “Fibre de Milnor d’un cône sur une courbe plane singulière”,
Invent. Math. 68 (1982), p. 477–496.

[9] D. Huybrechts & M. Lehn – The geometry of moduli spaces of sheaves,
Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, 1997.

[10] Y. Kawamata – “Minimal models and the Kodaira dimension of algebraic
fiber spaces”, J. reine angew. Math. 363 (1985), p. 1–46.

[11] , “Pluricanonical systems on minimal algebraic varieties”, Invent.
Math. 79 (1985), p. 567–588.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#1
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#2
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#3
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#4
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#5
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#6
http://www-fourier.ujf-grenoble.fr/~demailly/books.html
http://www-fourier.ujf-grenoble.fr/~demailly/books.html
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#7
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#8
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#9
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#10
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#11


74 F. CAMPANA & T. PETERNELL

[12] , “Moderate degenerations of algebraic surfaces”, in Complex al-
gebraic varieties (Bayreuth, 1990), Lecture Notes in Math., vol. 1507,
Springer, 1992, p. 113–132.

[13] J. Kollár – “Shafarevich maps and plurigenera of algebraic varieties”,
Invent. Math. 113 (1993), p. 177–215.

[14] A. Langer – “Semistable sheaves in positive characteristic”, Ann. of
Math. 159 (2004), p. 251–276.

[15] J. Li & S.-T. Yau – “Hermitian-Yang-Mills connection on non-Kähler
manifolds”, in Mathematical aspects of string theory (San Diego, Calif.,
1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, 1987, p. 560–
573.

[16] V. B. Mehta & A. Ramanathan – “Semistable sheaves on projective va-
rieties and their restriction to curves”, Math. Ann. 258 (1981/82), p. 213–
224.

[17] Y. Miyaoka – “Deformations of a morphism along a foliation and applica-
tions”, in Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985),
Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., 1987, p. 245–268.

[18] , “Relative deformations of morphisms and applications to fibre
spaces”, Comment. Math. Univ. St. Paul. 42 (1993), p. 1–7.

[19] Y. Miyaoka & S. Mori – “A numerical criterion for uniruledness”, Ann.
of Math. 124 (1986), p. 65–69.

[20] Y. Miyaoka & T. Peternell – Geometry of higher-dimensional alge-
braic varieties, DMV Seminar, vol. 26, Birkhäuser, 1997.

[21] C. Mourougane – “Théorèmes d’annulation générique pour les fibrés
vectoriels semi-négatifs”, Bull. Soc. Math. France 127 (1999), p. 115–133.

[22] Y. Namikawa & J. H. M. Steenbrink – “Global smoothing of Calabi-
Yau threefolds”, Invent. Math. 122 (1995), p. 403–419.

[23] N. I. Shepherd-Barron – “Miyaoka’s theorem on the seminegativity of
TX ”, Astérisque 211 (1992), p. 103–114.

[24] , “Semi-stability and reduction mod p”, Topology 37 (1998), p. 659–
664.

[25] C. Simpson – “Subspaces of moduli spaces of rank one local systems”,
Ann. Sci. École Norm. Sup. 26 (1993), p. 361–401.

[26] E. Viehweg – “Weak positivity and the additivity of the Kodaira di-
mension for certain fibre spaces”, in Algebraic varieties and analytic vari-
eties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, 1983,
p. 329–353.

tome 139 – 2011 – no 1

http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#12
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#13
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#14
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#15
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#16
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#17
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#18
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#19
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#20
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#21
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#22
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#23
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#24
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#25
http://smf.emath.fr/Publications/Bulletin/139/html/smf_bull_139_41-74.html#26

	Introduction
	1. Uniruledness Criteria
	2. A characterization of varieties of general type
	3. Numerical maximality of the Kodaira dimension
	4. The Universal Cover
	5. Stability and tensor products
	6. Appendix: an analytic proof of Theorem 5.1 (by Matei Toma)
	Bibliography

