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16 CHAPTER 2 COHOMOLOGICAL TOOLS 

Chapter 2. Cohomological tools 

3. Sheaves and their cohomology 

A . Sheaves 

As stated in the preface, sheaves form an indispensable tool for algebraic geometers. For cohomol­
ogy theory fine and flasque sheaves turn out to be useful. 

Let me fix a principal ideal domain R and a topological space M . 

Definition 1. A presheaf T of R-modules over M consists of a collection of R-modules 
T(U), one for every open set U C M, and a collection of R-module homomorphisms 
Py : T(U) —> T(V) for pairs of open sets 17, V with V C U (the restriction homomor­
phisms) such that: 

a. p^j = Id^(t/) for all open U C M, 

b. p^opV = p^ for all W C V C U. 

If in addition the following property holds, T is called a sheaf: 

c. If U is a union of open sets U — |J Ui then 

1) if f,g£ F(U) and p%.(f) = p^(g) for all i € I , then f = g, 

2) if fi € jF{Ui) with Pi/inuj{fi) = Pu^nUjifj) f°r a^ ^ I 9 then there exists 
a, because of 1) unique element f £ F{U) with Pu^f) = fi for all i £ I . 

An element of F(U) is called a section of T over U. The module P(M) of sections over 
M is also denoted by T(M) or H°(M,~F). The latter notation will be justified later. 

Another useful concept is that of the stalks. To define it fix m € M and consider the 
collection of neighbourhoods of m. The stalk Tm at m is defined as the direct limit 

Tm •= dirlim ^-"(1/), £/ a neighbourhood of m, 

which by definition is obtained by taking the disjoint union of the modules TiU), U a 
neighbourhood of ra, and then identifying m £ F{U) with ra' G ^{Uf) if there is some 
neighbourhood U" C U C\ U' of m such that p\jt/m = /9^,,m'. 

If ^ is a presheaf, but not a sheaf, one may enlarge it to a sheaf, the sheaf associated 
to the presheaf T (see [Wa, p. 166]). This is sometimes useful since natural constructions 
which start on the level of the i2-modules ^(U) with T a sheaf do often give presheaves, 
but not always sheaves, as will be seen when homomorphisms between sheaves are treated. 
Although the explicit construction of the sheaf associated to a presheaf is not needed, let 
me give it for the sake of completeness. 

So let T be a presheaf and define for each open set U the module F(U) consisting of 
functions U 9 x H-> s(x) € Tx with the property that for each point x G U there is a 
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neigbourhood V C U and a section t £ F(V) such that the germ of t at y is equal to s(y) 
for all y £ F . Then the .F({7) form a sheaf which by definition is the sheaf associated to Jr. 

It should be clear what is meant by a sheaf homomorphism h : T —¥ T'\ one should have 
homomorphisms T{U) -* Tf(U) for each open set U C M commuting with the restriction 
maps. In particular there are induced homomorphisms hm : Tm -> T'm for the stalks. 
Observe that the modules of the kernels of T(U) —• T'{U) do form a sheaf ker / 1 , but the 
modules of the cokernels only form a presheaf. By definition coker h is the sheaf associated 
to this presheaf. 

A sequence of sheaf homomorphisms on M: 

... -> Ti-X -&=H ^ J^+i - > . . . 

is exact if for all m £ M the corresponding sequence of the stalks at m is exact. This does 
NOT mean that the corresponding sequence of the sections over all open U C M is exact, 
which is the definition of an exact sequence of presheaves. The reason is that, as noticed 
before, the cokernels on presheaf level do not always form a sheaf. 

Examples 

1. Let M be any topological space. Let G be any R-module. For any open U C M let 
G(U) = { locally constant functions / : U - » £ ? } . The restriction maps are the obvious 
ones. The properties a), b) and c) are immediate. This sheaf is called the constant sheaf 
GM-

2. Let / : M —> N be a continuous mapping between topological spaces and let T 
be a sheaf on M . The image sheaf f+T is the sheaf defined by /*J r ( t / ) = T{f~lU) 
(and the obvious restriction maps). It is easy to see that (g o f)*? = g*(f*jF) when 
g : iV —• P is a further continuous map between topological spaces. Note also that there 
is a canonical homomorphism / : ( / * ^ r ) / ( m ) ~* which associates to a germ # / ( m ) G 
{f*F)f(rn) represented by a section g € ^ r ( / ~ 1 i 7 ) , U a neighbourhood of / ( m ) , the germ 
of g at m. 

3. Let M be a differentiate manifold and for any open U C M let £(Z7) be the ring of 
differentiate functions (it is a module over the real numbers) and take the usual restriction 
maps. Again, one verifies that this defines a sheaf, the sheaf SM oi differentiate functions 

* on M . The elements of SM,m are called germs at m £ M of differentiate functions. 

Similarly, if M is a complex manifold, there is the sheaf 0 •JJ1 of holomorphic functions 
and on a projective manifold there is the sheaf O ^ 8 of regular functions. If no confusion 
arises the same notation OM for these sheaves will be used although the holomorphic sheaf 
is much bigger in general. 

4. If M is a complex manifold, for any open U C M one can form the ring of fractions 
Q(0(U)) of the ring 0(U) and the obvious restriction maps between them. These form 
only a presheaf, since Axiom C2) does not hold. To make it into a sheaf, let me define 
meromorphic functions over U so that this Axiom holds automatically. So, a meromorphic 
function over U should be given by a collection { Ui^fi } with { Ui } an open cover of 
Ui ft € Q(0(Ui)) such that in Ui 0 Uj one has ft = fj. Meromorphic functions on U 
form a complex vectorspace M(U) and in this way one does get a sheaf, the sheaf M of 
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germs of meromorphic functions on M. By definition, a meromorphic function on M is a 
global section of this sheaf. Denote by M*M the sheaf (of multiplicative groups) of non-zero 
elements in M M - The sheaf 0*M of germs of nowhere zero holomorphic functions on M 
forms a subsheaf of M*M. A Cartier divisor on M is a global section of the sheaf M*M/0*M. 
In concrete terms, a Cartier divisor consists of a collection of open sets { Ui } covering M 
and non-zero meromorphic functions fi on Ui such that in the overlaps fi = gij • / j with 

a nowhere vanishing holomorphic function on Ui f) Vj. Two sets { U%, fi } and { Uj, fj } 
define the same Cartier divisor if in overlaps Ui fl Uj one has fi/fj G 0*(Ui D Uj). 

For a projective manifold, working with O^f one obtains the algebraic Cartier divisors. 
On a variety any rational function is completely determined by knowing it on any non­
empty Zariski open subset U. So the sheaf of germs of rational functions, i.e. the sheaf of 
quotients of O^f is just the constant sheaf C ( M ) M - There is no need to do patchwork for 
defining rational functions. In particular the algebraic analogue of a meromorphic function 
on projective manifolds just is a rational function. Any irreducible hypersurface D defines 
a Cartier divisor by taking the local defining equations. A different choice of local defining 
equations yield the same Cartier divisor, more or less by definition. It follows that any 
divisor defines a unique Cartier divisor. Conversely, any Cartier divisor { Ui,fi } yields a 
divisor by taking ordi)(/i)Z). This indeed gives a well defined divisor since in 0(Uif)Uj) 
the function fi/fj is nowhere vanishing and hence ord£>(/j) = ord£>(/j). This shows that 
on a projective manifold one may identify divisors and Cartier divisors. For the case of 
general complex manifolds see Problem 3. 

The GAGA-principle tells us that there is no difference between the group of algebraic 
Cartier divisors and the group of Cartier divisors. 

5. A sheaf T of i2-modules on M is a fine sheaf, if for every locally finite cover {Ui} 
of M by open sets there are endomorphisms hi : T —> T with support in Ui such that 
^2i hi = Id;F. Here the support of a homomorphism h is the closure of the points m 6 M 
where hm is not zero. Examples include the sheaves £M of differentiable functions on a 
differentiable manifold M , since there are partitions of unity subordinate to any locally 
finite open cover of M. See [Wa, p. 170]. 

6. A sheaf T is called a flasque sheaf if for any pair of open subsets U C V the 
restriction map T(V) —> ^(U) is surjective. Any sheaf T embeds in a flasque sheaf C°(.7 r), 

"its sheaf of discontinuous sections which is defined by letting C°(.7 r)(?7) be the set of maps 
U 9 i 4 s(x) £ Tx. 

7. Let E be a vector bundle on a manifold M . For any U C M take T(U,E) and 
the obvious restriction maps. This gives the sheaf of sections associated to E. In the 
differentiable setting this sheaf is denoted by £(E), in the holomorphic (or algebraic) setting 
by O(E). Particular cases are the sheaves SV

M of differentiable p-forms on a differentiable 
manifold M and the sheaf £lp

M of holomorphic p-forms on a complex manifold. The sheaves 
SV

M are fine. This follows with partitions of unity. 

8. If M is a complex manifold, an affine or a projective variety one often uses sheaves 
of OM-modules, which by definition are sheaves T of complex vector spaces such that for 
every open U C M the vector space JF(U) in addition is an (9(i!7)-module and if V C U 
is open, the restriction F(U) —> F{V) is compatible with the module structures via the 
ring homomorphism 0(U) 0(V). It should be clear what is meant by a morphism of 
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OM-modules. 

Special cases of C?Af-niodules include ®UOM, the trivial 0M-niodule of rank n and the 
locally trivial OM-modules T of rank n, which by definition have the property that there 
is a cover of M by open sets U over which T is trivial of rank n. The sheaf O(E) of 
holomorphic sections of a vector bundle ise locally free and conversely. See Problem 1. 

Let E be a holomorphic vector bundle on a complex manifold M and let m G M. There 
is the following useful relation between the fibre of E and the stalk of O(E) at ra. 

0(E)m/mm • 0(E)m - 3 » Em 

where m m is the maximal ideal of the point ra in (OM)™ and where the isomorphism comes 
from evaluating germs of sections of E at ra. 

In the usual way, out of the two sheaves of 0M-niodules T and Q one produces T®oM G 
by forming the presheaf given over U by F(U)®o(U)(3{U) which in fact is a sheaf. The sheaf 
W o m o M ( J , 5 ) is constructed in an essentially different way by taking the 0(£7)-module 
Homjy{T\ £7, Q|U) of the OM\U-modu\e homomorphisms T\U —> Q\U and the obvious re­
strictions. One cannot take Hom0(£/)(,F(£7),(/(£7)) since then there would be no apparent 
way to define the restrictions. 

Finally, if / : M —> N is a holomorphic map between complex manifolds (or a mor-
phism between varieties) the image sheaf / * ( 9 M is a sheaf of C?7v-modules in a natural 
way (holomorphic (or regular) functions on U C N pull back to holomorphic (or regular) 
functions on f~1U). Thus you can view the image of any sheaf T of C?M-niodules as a 
sheaf of ON-modules. This is the (analytic or algebraic) direct image sheaf which is still 
denoted by f+T. 

8. The exponential sequence on a complex manifold M: 

where "exp" means the map / exp(27rz/). This sequence is a typical example of an 
exact sequence of sheaves which is not exact as sequence of presheaves. See Problem 2. 

B. Cohomology 

Cohomology for sheaves is introduced axiomatically. Not all proofs are presented here, but the 
reader can find them in the references given. De Rham's theorem, Dolbeault's theorem and Leray's 
theorem are explained in some more detail. An important application is given: the cohomological 
interpretation of the Picard group. 

Let me briefly and informally recall the axiomatic set-up for a cohomology theory. You 
start with a fixed topological manifold and a class of sheaves on the manifold. Of course, 
in order to ensure that the axioms that follow make sense, the manifold should have some 
good properties and the same holds for the sheaves on it. Let me not be precise about this 
now. Let it be sufficient to say that one may take for example an arbitrary topological 
space and sheaves of abelian groups on it. Another possibility is that you take a Hausdorff 
space with countable basis for the topology and any sheaf of i2-modules on it, where R is a 
fixed principal ideal domain. Lastly, there is the most widely used example of an algebraic 
variety X with sheaves of Ox-modules. 
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For a cohomology theory you want groups Hq(M^Jr)^ q G Z , for any allowable sheaf 
T and topological space M and for any allowable sheaf homomorphism h : T —> T1 there 
should be induced homomorphisms Hq(h) : Hq(M^Jr) - » Hq(M,F). These groups and 
homomorphisms should satisfy the following axioms. 

A. Hq(M,J:) — 0 for q < 0 and there are isomorphisms H0^) = F(M) commuting with 
any induced homomorphism H°(f), where / : T —> .F' is a homomorphism of sheaves 
of i2-modules. 

B. Hq(T) = 0 for all q > 0 if .T7 is a fine sheaf or a flasque sheaf. 

C. The correspondence which associates sheaves of i?-modules and homomorphisms to 
their g-th cohomology groups and induced homomorphisms is functorial: 

CI. Hq(ld :T-+T) = U m { T ) and 

C2. Hq(fog) = Hq(f)oHq(g). 

D. For any short exact sequence 

there exist coboundary homomorphisms Hq(M,F") —> Hq^1(M^Jrf) so that the se­
quence 

... ^Hq{M,T!) Hq{M,F)-Z^h Hq(M,T") — H q J r l { M , T f ) -> ... 

is exact. Furthermore, any homomorphism between short exact sequences of sheaves 
yields a homomorphism between the corresponding long exact sequences in cohomology. 

As to existence of cohomology theories let me only remark that on an arbitrary topo­
logical space M and any sheaf of i?-modules T on M , one can define Hq(M, T) as the q-th 
cohomology group of the complex T(M,C*(T)). Here C°(T) is the sheaf of discontinuous 
sections of T as introduced in Example 6. Setting Z1^) = C0(^)/^F one defines C 1 ( ^ r ) 
as the sheaf of discontinuous sections of the sheaf Z1. Next, one inductively introduces 
Zq = Cq~1(?r)/Zq~1 and Cq(T) as the sheaf of discontinuous sections of Zq. For the ver­
ification of the axioms see [Go]. More precisely, axiom A is clear, B is II, Theoreme 4.4.3 
(Fine sheaves on a Hausdorff space with countable basis for the topology satisfy (b) in this 
theorem by [Go II, 3.7]) , C and D are the content of [Go II, Theoreme 4.4.2.] 

From the preceding definition it is virtually impossible to compute cohomology groups. 
Now, a cohomology theory is essentially unique (I come back to this in a little while) and so 
one might try to find another theory which is more suitable for computations. Such a theory 
is Cech cohomology-theory with values in a sheaf T on a topological space M. Although 
it can be defined for any M , this does NOT yield a good cohomology theory unless M is a 
Hausdorff space with countable basis for the topology. The delicate point is the exactness 
of long exact cohomology sequences. For details of the following discussion see [Wa, p. 
200-204]. Since I shall be using Cech cohomology also on algebraic varieties X with the 
Zariski-topology, one has to be careful with long exact sequences. I shall apply them only 
for sheaves of Ox-modules and for these one can prove that there are no problems with 
long exact sequences. See Proposition 4.8. 
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To define Cech cohomology, you start with an open cover i l = { J7, } of M. A col­
lection (Uo,... ,Uq) of members of it with non-empty intersection is called a g-simplex 
a = { 0 , . . . , q } and its support |cr| is by definition UQ C\... fl UQ. The z-th face of a is the 
q — 1-simplex a1 = { 0 , . . . , i — 1, i + 1 , . . . , q } . A q-cochain is a function / which assigns to 
any g-simplex a an element f(a) 6 J c r(|cr|). This is the same as saying that / is an element 
of the free product of the R-modules <F(|<T|) where a runs over the g-simplices of il. This 
free product is again an R-module (with the obvious module-operations): 

II T(\o\) = C<{tt,T). 
<T a q—simplex of il 

There is the coboundary homomorphism 

defined by 

=E(-i)v|:;'/(^) 
i=0 

* which satisfies d o d = 0 and hence one obtains a cochain complex (see Appendix 2), the 
Cech cochain complex C # ( i l , .F)and it has cohomology groups i ? 9 ( i l , T ) . By definition, 

Hq(M, T) := d i r h m F 9 ( i l , ^ ) , 

where the direct limit is taken over the set of coverings, partially ordered under the refine­
ment relation. If i l r is a refinement of il , there are indeed natural homomorphisms Hq (il, J7) 
—> Hq(tt!,T) which are to be used in forming the direct limit. See Appendix 1. 

Clearly one has Hq(M, T) = 0 for q < 0 and H°(M,T) = T{M). For fine sheaves, one 
even has Hq(F) = 0 for all q > 0 (loc. cit.). 

For any sheaf homomorphism h : T —> T1 there are induced R-module homomorphisms 
Hq(h) : Hq(M,F) -> Hq(M,Jrf). Moreover, if for a short exact sequence 

0 -> T' -> T -> T" -> 0 

one can define a coboundary operator Hq(M,J-n) —> HqJt~l(M,Tf) which fits into a long 
cohomology sequence 

... -» Hq^1(M,T") -> Hq{M,T') -> Hq(M,T) -> Hq(M,T") if9+1 ( M , T 1 ) ->.... 

If M is Hausdorff and has a countable basis for the topology, this sequence is exact. (In 
taking a limit one might have problems with the exactness on more general spaces.) 

The modules Hq(M,!F) for the various sheaves of R-modules and induced homomor­
phisms Hq(f) taken together therefore constitute a cohomology theory. 

There is essentially only one cohomology theory up to natural isomorphism (loc. cit.). 
From the axioms it follows then for example that one can calculate Hq{M,T) using exact 
sequences of the form 

O - ^ J F ^ J F 0 - * ^ 1 - * . . . 
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with Hq(J7J) = 0, q > 0, j = 0,1, These are called cohomological resolutions. Examples 

arise when is fine, resp. flasque, since then Hq{T^) = 0. Such resolutions are called fine, 

resp. flasque resolutions. Observe that by functoriality the sections of T2 form a complex 

T(T*}. The g-th cohomology group of this complex Hq(T(Jr%)) is naturally isomorphic to 

H*(f). See [Wa, Theorem 5.25]. 

As an example, the De Rham complex 

is a fine resolution of the constant sheaf R M (by the Poincaré lemma) and hence one has 

Theorem 2. (De Rham) The sheaf cohomology group H9(M, R M ) is canonically isomor­

phic to the q-th De Rham group H^R(M). 

In a similar vein one has the Dolbeault complex 

0-+np

M-+ £P>° -S> S^1 -*> €p>2 - A • • •, 

which is a fine resolution of Slp

M (by the Dolbeault lemma) and so one obtains: 

Theorem 3. (Dolbeault) The sheaf cohomology group Hq(M,Q?M) is canonically iso­

morphic to the q-th Dolbeault group 

ker S***1) 

i m ^ ™ - 1 - A £P,Q) ' 

IN THE REST OF THE SECTION CECH COHOMOLOGY IS USED FOR A CLASS OF 
SHEAVES FOR WHICH CECH COHOMOLOGY IS A GOOD COHOMOLOGY THE­
ORY. 

A useful tool for computing cohomology directly from a so-called acyclic covering is 
Leray's theorem. By definition, given a sheaf T, a covering i l is T- acyclic if for every 
simplex a of the covering one has Hq(\a\, J7) = 0 for q > 0. 

Theorem 4. (Leray) Let J7 be a sheaf of abelian groups on a topological space M and 

i l an T-acyclic covering. Assume that either M is Hausdorff with countable basis for the 

topology or that M is Noetherian. The natural homomorphism Hq(iX^Jr) ~> Hq(M^Jr) is 

an isomorphism. 

Remark A topological space is said to be Noetherian if any descending chain of closed 

subsets becomes stationary, which is the case for instance for the Zariski-topology. The 

conditions in the theorem are used to ensure that one can interchange limits and cohomology 

groups. For a simple proof of this property see [Go, 11,4.12]. There are other proofs valid 

for any topological space and a sheaf of abelian groups on it, but these make use of spectral 

sequences (loc. cit. II, Théorème 5.4.1, Corollaire.) 
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Proof: Consider the sheaf Cp(tt,T) defined by U h> CP(U nil, J'). The reader may verify 
that this is indeed a sheaf There is a natural map j : T —> ^*) defined by sending 
/ G to the 0-cochain which associates to Ui G il the restriction of / to UHUi. This is 
an embedding by the sheaf axiom C l . So you get an embedding into a complex of sheaves 

0 - > ^ - > C # ( i l , ^ ) 

and I claim that this gives a cohomological resolution of T. So I have to show that the 
complex is exact and that Hq(Cp(Sl,Jr)) = 0 for q > 0. 

a. Exactness at C°(il, J7) is the sheaf axiom C2. For p > 0 let me consider the germ at 
x € M of a p-cocycle. I may assume that for some open neighbourhood U of x there 
is a representing cocycle a G C p ( ( 7 nil , J7). Moreover I may assume that U C Ui for 
some index i. Then, if a is a p — 1-simplex in il one has \ia\ f) U = |a| n U. So one may 
define a (p - l)-cochain /9 G C*~l{U nil, J") by setting 

= A(I<7). 

So then one computes for a p-simplex r = { jo • • • j p } of the covering 

d(P)(jo-~J,)= £ ( - l ) * a ( y o - - - i l - - - i , ) . 

Since d(a) = 0 one has in U 0 \ir\ = U 0 \r\ that 

0<k<p 

and hence = a. 

b . Next I have to show that Hq(Cp(ii^Jr)) = 0. For the moment, for any covering i l let 
JVp(il) be the collection of its p-simplices so that 

and so for any other covering il' one has 

c*(u\cp(ii,T))= n II ^(Hnk'l). 

and so 

Hq(il',Cp(!&,f)) = Hq( J[ C # ( i l ' n | < r | , ^ ) ) = J ] H*(Cm(il'n\*lF)). 

For any p-simplex a of il one has Hq(\cr\,T) = 0 if g > 0. So the direct limit of the 
groups Hq(C9(iif) n vanishes. But then also the free product 

J ] d i r l i m ^ ( C * ( i l , n | < r | , ^ ) ) 
<7€Np(ii) 
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vanishes. Interchanging product and limit, which is allowed thanks to the assumptions 
(see the remark preceding the proof), you find 

0 = dirlim J] Hq{C*{U' D \a\,T)) = Hq(M,Cp{^^))-
tr£Np(U) 

To complete the proof I have to verify that the isomorphism Hq(il,!F) —> Hq(M,!F) 
obtained in this way from the cohomological resolution is exactly the canonical map. 
This I leave to the reader. 

• 

As an example of the use of sheaf theory, let me come back to the group Pic M of isomor­
phism classes of line bundles on a projective manifold M . Let me recall that a line bundle C 
can be given by a trivialising open cover il = { U% } and nowhere zero transition functions 
fij G 0(Ui n Uj). The collection of transition functions defines a cochain / £ C 2 ( i l , 0*M) 
satisfying the cocycle relation fij • fjk • fu = 1, (written multiplicatively) i.e df = 0 and 
hence / defines an element in if^il, 0*M). If one chooses a different trivialisation over the 
same cover, the new transition functions are seen to give a cocycle differing by a cobound­
ary from / . So the class [/] 6 H 1 ^ 0*M) is well defined. If you look at trivialisations on 
a different open cover their union is a common refinement il'. The two cohomology classes 
associated to the two trivialisations coincide in i/^il', 0*M). So the isomorphism class of 
the line bundle C gives a well defined element in Hl(M, 0*M). Conversely, any element in 
i f 1 ( M , 0*M) gives a line bundle up to isomorphism. So one has 

Let me now come back to the exponential sequence 

and look at its induced cohomology sequence 

... H1 ( M , ZM) - * H1 ( M , 0M) ^ H1 ( M , 0*M) ^ H2(M, ZM) ->.... 

The coboundary map is called the First Chern Class map. Its kernel is a subgroup P ic 0 M C 
Pic M. The exact sequence shows that there is a natural isomorphism 

p i c ° ^ g ' ^ ; f / > 
im H^M.Z) 

The latter quotient group in fact is a torus, the Picard variety. See Corollary 11.2. For 
curves you get the jacobian of C in this way. 

The remaining part of the Picard group, the image under c i , by definition is the Neron-
Severi group N3 M of M which is the group of isomorphism classes of divisors modulo 
homological equivalence: two divisors are said to be homologically equivalent if they have 
the same first Chern class. There is an exact sequence which summarises this situation 
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0 - > P i c ° M - > P i c M - ^ > N S M -> 0. 

Since for a compact manifold the cohomology groups are finite-dimensional (see Appendix 
3) the Neron-Severi-group must be a finitely generated group, a fact which will be used 
several times later on. 

Problems. 

3.1. Prove that for any holomorphic vector bundle E of rank d on a complex manifold M the 
sheaf O(E) is locally free of rank d and that conversely any locally free sheaf of C?M-niodules 
of rank d is of the form O(E) with E a holomorphic vector bundle of rank d. 

3.2. Give an example of an open set U in C such that the sequence 

0 -+ Z(U) -> 0(U) 0*(U) -> 0 

is not exact. 

3.3. For a meromorphic function / and an irreducible hypersurface D C M one can define 
the order of vanishing of / along D ordr>(/) in the same way as for rational functions on a 
projective manifold and hence one can speak of divisors of meromorphic functions. Generalise 
the concepts Div M and P icM. See [G-H, Chapter 1.1]. 

3.4. Show that for a connected compact complex manifold M the sequence 

0 -> Z ( M ) - > 0{M) -> 0*(M) -+ 0 

is exact. Deduce that HL(M, Z M ) embeds naturally into H1 (M,OM)-
3.5. Show that Pic°(P n ) = 0. 

3.6. Show that for the quadric surface Q C P 3 , the Picard group is the free abelian group 
generated by the divisor classes corresponding to the two rulings. 

3.7. Let Q C C 3 be the singular quadric defined by xy — z2. The x-axis gives a subvariety L of Q 
of codimension one, which one may consider as a divisor. Prove that locally near the vertex, 
L cannot be given by an equation, while 2L is cut out by z = 0. 

4. Serre's Finiteness and Vanishing Theorems 

In this section C n and projective space equipped with the Zariski-topology and algebraic 
sheaves on them will be studied. 

A . Coherent sheaves 

Coherent and quasi-coherent sheaves form global objects which are defined algebraically over affine 
sets thus permitting to translate their geometric properties into algebra. 

Projective varieties M C P n are to be looked at first. Introduce the homogeneous 
coordinates X o , . . . , X n on P n . Let me recall that Uj = { Xj ^ 0 } = C n are the basic 
affine open sets. 
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By definition a sheaf T of OM-modules on a projective variety M is coherent if every 
point of M has a Zariski neighbourhood U over which there is an exact sequence of the 
form 

0®m -> 0®n -> T\V -> 0. 

In other words: there is a Zariski-open cover over which the sheaf is a quotient of a finitely 
generated locally free module by a finitely generated submodule. In particular, any locally 
free sheaf is coherent. More examples can be found upon proving: 

Proposition 1. Let U be Zariski-open in a projective variety. A sheaf T of OJJ-modules is 
coherent if and only if it is, locally in the Zariski-topology, the quotient of a free OJJ-module 
of finite rank. 

Proof: Any Zariski-open subset of C n is the union of the basic open sets 

ur.= <cn\v{f),fe<c[xu...,xn) 
and so any Zariski-open set in P n can also built up from such basic open sets by restricting 
to any of the affine open sets Uj = { Xj ^ 0 } . Let me for the moment fix such an affine 
open set and identify it with C n . Consider its intersection with M. This intersection is 
the zero-locus V(p) of some prime-ideal p C C[xi,... , z n ] . The ring of regular functions 
on V(p) is just the quotient ring C[Xi,... ,Xn]/p and hence Noetherian (see Appendix 
A l ) . Hence also the ring R of regular functions on V(p) D Uf is Noetherian since it is a 
localisation of a Noetherian ring. It follows that any submodule of an i2-module of finite 
rank again is of finite rank. • 

Example 2. 

The sheaf of ideals XM of any projective variety M C P n is coherent. The sheaf of 
ideals XM is defined in the usual way by letting XM(U) be the ideal of 0(U) generated 
by the equations of M. Since finitely many suffice (Hilbert's Basis Theorem) you get a 
surjection 0(U)®n —> XM(U). This even gives a surjective sheaf homomorphism, since the 
same equations for M are used over every open set. 

Remark 3 . Of course, one can likewise introduce the concept of coherent sheaf on any 
complex manifold. But the validity of the preceding proposition is much less trivial. This 
result is known as Oka's lemma a proof of which can be found in [Gu-Ro, Chapter IV B,C]. 
Note that the definition of coherent sheaf given there differs from ours and the results 
proved there essentially say that the definitions agree for sheaves of 0{y-modules where U 
is some open subset of C n (in the ordinary topology). 

B. Coherent sheaves on C n 

The central result here is the vanishing of higher cohomology groups for coherent sheaves on affine 
varieties. This is needed in the next section 

In this subsection put 
R:=C[Xu...,Xn}. 
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Note that the structure sheaf on C" is completely determined by the modules 

0(Uf) := Rf, 

the localisations of the ring R in / . 

Let me now study in detail the coherent sheaves on C n . 

Given any J?-module M define a sheaf M~ on C n by 

M~{Uf) = Mf = { m/fn I n e Z > 0 , m G M } . 

Such a sheaf by definition is called quasi-coherent This is motivated by the remark that 
M ~ i s coherent if M is a finitely-generated R-module. Indeed, M(Uf) is finitely generated 
and so a quotient of R®n by the submodule of the relations. So M(Uf) is of the desired 
shape and over Uf the sheaf M~ itself then is a quotient of the free sheaf 0 ® " by the 
subsheaf coming from the relations. 

The need for quasi-coherent sheaves originates from the following example. 

Example 4. Let / : X -* Y be a morphism between affine varieties and let T be 
quasi-coherent. Then f*!F is quasi-coherent. Indeed, one has T = M~for some R = O(X)-
module M. You can also consider M as an S = (9(F)-module using the natural pull-back 
of functions. The associated sheaf is just f+T. Note that even if T is coherent need 
not be coherent. 

Now the following proposition says that a coherent sheaf on C n is a quasi-coherent sheaf 
associated to a finitely generated 0(Cn) module. 

Proposition 5. If T is a coherent sheaf of O-modules on C n , the module of its global 
sections T(T) is a finitely generated R-module. The associated sheaf Т(Т)~ is naturally 
isomorphic to J7. 

Proof: Cover C n by finitely many Zariski-open sets Uf{, i = 1 , . . . , N over which р\и/t := 
Qi is the quotient of О®" by a free Ojjf. -submodule 

O f -> Qi -> 0. 

Observe that now for all д € R the module Gi(Uf{ C\U9) is the cokernel of the restriction 
of a i to Uf{ CiUg = Ufi9. Look at the diagram 

R9m д 0 п ^ g^ufi) = Gi -> 0 
i I I 

It follows that Qi{Ufi9) = (Gi)g. 

The natural restrictions M = T(Cn) - A f(Ug) induce a sheaf-homomorphism M~ -> T 
and I claim that it is an isomorphism. I must show that restriction 



28 CHAPTER 2 COHOMOLOGICAL TOOLS 

M~{Ug) = M , ? { U t ) 

gives isomorphisms over the basis for the topology { Ug \ g £ R } . 

1. pg is injective. Suppose that for some s £ Mg one has pg(s) — 0. Let S{ £ T(IJ/,.) = G{ 

be the restriction of s to Ufr Since restricts to zero in T{Ug Pi { 7 / J = (Gj)^ one 

gets 5j • gn = 0. Since there are only finitely many Uf. one can find an n which works 

simultaneously for all Uf.. So s • gn = 0 and hence 6 = 0 since it is an element of the 

localisation Mg. 

2. pg is surjective. This can be shown in a similar fashion. One considers t £ F{JJg) 

and its restriction to Uf. PI i7 y . Since ¿117/,. £ PI Uf{) = (Gi)^ one can write 

— si/9ni with Sj £ G,. Now take n = independent of z. Now the sections 

and ^ agree on 17/. Pi (7/. Pi (there they are equal to 5 • j n ) . So on Uf{ P) Ufj itself 

you must have gm(U — tj) = 0. Again you can assume that m is independent of i and 

j . So the sections gm*nti glue to a section, say s of ^ ( C 7 1 ) = M with the property that 

s/gm+n = t\Ug. 

Finally, to complete the proof one has to see that M is a finitely generated i2-module. 

The localisations M/ t. are known to be finitely generated Rf{ modules for a covering U/,. of 

C n . The fact that this is a covering means that the fi generate the ring R. 

FACT: Let N C M be a submodule and let loc^ : M —>• Mf. be the localisation map. 
Then 

JV = Qlocr1(loc I-(J\T).M / I.). 
i 

Assume this fact. To show that M is finitely generated one only has to show that 
an increasing sequence of submodules Ni C N2 -.. becomes stationary. The submodules 
Iocj(Ni)-Mf., Iocj(N2)• Mf.,... become stationary in M/ t. since these are finitely generated. 
But this is true for any of the finitely many i. So there is some index independent of i 
beyond which the sequences become stationary. But then the fact can be applied to see 
that N1 CJV2 . . . becomes stationary. 

So it remains to establish the fact. Only the inclusion D is non trivial. So suppose that 

m £ M with loc , (m) = n , - / w i t h rii £ N. You may assume that k = k{ independent of i 

and hence ffm — n%; = 0 in M/ t . . So /,-* ( / f m — m) = 0 in M. Again one may assume that 

/, = / independent of i and so 

/*+'m = f!m € N. 

Now the fi generate i2, and hence this is true for the powers / / + * , i.e. for some combination 

of i2-coefficients one has 1 = £V Cif*~*~l and it follows that 

m = Y,arf+lmeN 
i 

as required. • 

In the next subsection one needs that on affine varieties a short exact sequence of sheaves 

sometimes gives a short exact sequence for the sections. 
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Lemma 6. Let X C C n be an affine variety and let 

0 -> JF' -> JF" 0 

be an exact sequence of Ox-modules. Assume that T1 is quasi-coherent. Then there is an 
induced exact sequence for the global sections 

0 - » T(X,F) -> r(X,^) -> r(x,^") -> o. 

Proof: The only non-trivial point here is the fact that T ( X , jF) - » T ( X , .T7") is a surjection. 
So let s G Y{X^Jr") be a global section. Lift s locally, say over an open subset Uf to a 
section t of JF. I CLAIM that first of all for suitable natural number N the section fNs lifts 
to a global section of T. Indeed, cover X by finitely many sets Ui = Uf{ such that s lifts 
over Ui to ti G r({7j, J7). Over UfDUi the sections t and ^ both lift s and so their difference 
is a section of T1. Since T1 is quasi-coherent, Problem 4 shows that for suitable n G N the 
section fn(t — ti) extends to a section Ui G T(Ui^Jrf). One can take the same n for all Ui. 
Then Vi := / n t , + G r(^,^) is a lifting of f n s which coincides with fnt on 1/; n J7/. On 
Ui fl [7j the two sections Vi and VJ both lift fns and so Vi — t>j G r(J7z H Uj,?1). Since t;; 
and t;j coincide over (7, DUjOUf, again by Problem 4 for some m G N, which can be taken 
independent of i and j , you have fm(vi — Vj) = 0. Now the sections fmVi G J 7) agree 
on overlaps so define a global section lifting f n + m s . 

Now cover X by a finite number of open sets U[ = U9i over which g"s lifts to section ti 
of T. Since the sets U[ cover X , the ideal generated by the n-th powers of gi generate the 
unit ideal in the coordinate ring O(X) of X and one can write 

l = £ r ^ n , ri€0(X). 

The section t := G J") has image £ \ r ^ f s = s in .F") . • 

Let me now prove a fundamental result which is seemingly stronger (remember, I am 
working with Cech cohomology for which the exactness for the cohomology sequence has 
not been established; In 5C it will be shown for coherent sheaves on projective varieties): 

Proposition 7. Let X C Cn he an affine variety and T a quasi-coherent sheaf on X. 
Then for the Cech groups one has Hq(X,T) = 0 for q > 1. 

Proof: Extend T by zero outside of X. The resulting sheaf now is quasi-coherent as a 
sheaf of 0 o » -modules (see Problem 2.) So I may assume that X = C n . From the previous 
proposition it follows that T = M~fo r some i2-module M of finite rank. I show that for any 
finite affine covering i l of C n given by open sets of the form U/ the groups £T g(it, T) vanish 
for q > 0. Suppose i l = { Ufi } , i = l , . . . , i V . Let c G Cq{iX,F) and let a = { i0,...,iq } 
be a q-simplex of il . Then 

/ \ mio~'iq s- \ / T 
c(<?) = , n i 0 ,niq , mio...,-, € M . 
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There are polynomials Pj such that 

i 

This is the case because i l is a covering so that the fj and hence also the f"J generate R. 

Define g 6 C g _ 1 ( i l , J7) by setting for any (q — l)-simplex r = { i0 ... iq-i } 

»(r) = (-!)'Eft 
fc • ' ¿ 0 • ' • Q - L 

Suppose that <f(c) = 0. This implies 

9+1 

V ( - l ) f c m . ~ . / " ; h = 0 . 

Then I have 
* ( - l ) ' m . - . uPkf"

il 

<k»)w =(-D' E E "T.'X 
A: / = 0 7iq 

p mio'-iqfk
k 

k JLO JLQ 

_ mio...iq 

J LQ ' ' JLQ 

= c ( a ) . 

So every cocycle is a coboundary. • 

C. Coherent sheaves on P n 

Here, the explicit description, due to Serre, of the cohomology groups of the basic coherent sheaves 
0(k) on projective space is given. Using this, Serre's finiteness and vanishing results are proven for 
coherent sheaves on arbitrary projective varieties. A suitable relative version allows one to deduce 
that the higher direct images of coherent sheaves remain coherent (under a morphism between 
projective varieties). 

In this subsection, let me put 

S:= C[X0,...,Xn] 

and consider it as a graded ring, where you grade by degree. The rings S(d) are the same 

ring as S but you shift the grading up, i.e. the degree of a homogeneous polynomial of 

degree e is given degree e — d in S(d). It is a graded 5-module. 

Now follows a fundamental construction for coherent sheaves on P n . Let M be a graded 

5-module and define the associated sheaf M~ by 

M~(U) = { m/f | m 6 M , / e 5, deg / = deg m, f(x) ? 0, Vz eU}. 

If M is finitely generated this sheaf is coherent. 

Example S(d)~^ O(d). See Problem 3. 
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Before passing to the central result of this section let me briefly pause to look back at 
the Cech cohomology groups. These do not give a good cohomology theory: for a short 
exact sequence of sheaves, the induced sequence in cohomology need not be exact. Now I 
show that this is a good cohomology theory when restricted to quasi-coherent sheaves on 
(quasi- projective varieties: 

Proposition 8. Let X be any (quasi- ) projective variety and let 

0 -> T1 -> T -» T" -> 0 

be an exact sequence of quasi-coherent sheaves. The associated sequence in Cech cohomol­
ogy is exact. 

Proof: Use Lemma 4.6 to see that the induced sequence of groups of Cech cochains 

0 Cq{T') -» Cq(T) -> Cq(T") -> 0 

is exact. Now these are ordinary cochain complexes and thus there is a long exact sequence 
for the associated cohomology. Then one passes to the direct limit. • 

In view of the remarks made in §4 on the axiomatic aspect of cohomology theory, one 
can now unambiguously speak of THE cohomology groups for quasi-coherent sheaves on 
(quasi- )projective varieties. In particular one can apply Leray's theorem. 

Proposition 9. Let X be a projective variety, il an open affine cover and T be a coherent 
Ox-module. The natural map 

Hp{U,f)-+Hp(X,T) 

is an isomorphism. 

Proof: The intersection of two affine open sets is again affine. By Proposition 4.7, the 
higher cohomology groups of a coherent sheaf vanish on any affine set. One can then apply 
Leray's result, Theorem 3.4. • 

Concerning the sheaves O(d) there is the following fundamental result due to Serre: 

Theorem 10 . 

(i). The natural map S 0 n € z ^ ° ( ^ ( n ) ) J S a graded isomorphism, 

(ii). # l ( (9 ( fc ) ) =0for0<i<n. 

(Hi). Hn(0{-n - 1)) ^ C and Hn(0(k)) =0fork>-n-l. 

(iv). For k > 0 the natural map 

H°(0(k)) x Hn(0(-k - n - 1)) —+ Hn(0(-n - 1) a C 

is a perfect pairing. 
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Proof: Introduce the sheaf T = 0 n € ^^( n ) a n c ^ ̂ e t & *>e standard cover of P n by 
affines Xj ^ 0, j = 0 , . . . , n. Although this sheaf is not coherent, it is the direct sum of 
coherent sheaves and by the previous theorem Hq(\a\,T) — 0 for q > 0 and any simplex a 

of il. So Leray's theorem (see Theorem 3.4) then shows that the cohomology of T on P n 

can be computed as the Cech -cohomology with respect to it. First consider 

HW\) = {^\F,GeS,G^0on\a\ }. 

Now G 7̂  0 on | a | with a = { ¿ 0 , . . . , ip } means that G is a polynomial in X t 0 , . . . , X j p only. 

To compute H° one considers quotients Fi/Xf\ i = 0 , . . . , n so that F{/Xfi = Fj/X*J in 

the overlaps. But then Fj = FXf* for some F G 5. Hence (i). follows. 

Next, note that 

JT(0 n 17! n . . . n un) = 0 CX*° • • • xd

n«, 

and the Cech -coboundary C n _ 1 ( i l , J7) —» C n ( i l , T) is the natural inclusion 

0 0 cx*°---xt -> 0cxo

do---x .̂ 

It follows that # n ( i l , , F ) = 0 d t . < o C X ^ 0 and the part in degree - n - 1 which 

computes i f n ( i l , 0(—n — 1)) is one-dimensional with basis O T ^ 1 • • • X"1. This proves the 

first part of (iii). Furthermore, observe that there is nothing in the cokernel of degree 

> — n — 1, proving the remaining assertion of (iii). 

Now, continuing with the previous computation, the part in degree —k — n — 1 is the 
'C-vector space with basis consisting of the 'monomials' of the form XQ° • • • X„n with all 
degrees dj negative and with total degree — k — n — 1. Consider the multiplication 

H0{O(k)) x Hn(0(-k - n - 1)) — • Hn(0(-n - 1)) 

which translates into the natural multiplication 

0 CX*° • • • Xd

n" x 0 cxf>. •. x£-> cx?1. • • X?. 

d>>0 d'{<0 

X > = * £ < = -fc-n-l 

The product of X$° •••Xfr with X$ • • • Xnn is zero in Hn(!d, 0(-n - 1 ) ) if any dt + d'{ > 0. 
So one only gets a non-zero element if d\ = — d{ — 1 for all i = 0 , . . . n. So the pairing is 
perfect since the basis dual to the basis { XQ° • • • X„n \ di > 0; J2 di = k } is t n e basis 
{ X^0-1 • • -X-^-1 } . This proves (iv). 

I prove (ii) by induction on n. This is done in two steps: 
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Step 1. I show that multiplication by Xn induces a bijection on Hk{T). 

Consider the exact sequence 

0 -> ^ ( - 1 ) -> T -> F\{Xn = 0} -> 0. 

Let me put H = { Xn = 0 } . Part of the long exact sequence in cohomology reads as 
follows 

H{-\T\H) -+ H\F{-\)) H\F) -> H\?\H). 

Note that T\H = 0 f c € Z On(k) and so induction shows that for i = 2 , . . . , n — 2 multipli­
cation by Xn gives an isomorphism. When i = 1 you have a surjection and when i = n — 1 
you have an injection. Applying (i) one obtains an exact sequence 

0 - » H°{T(-1)) -> # ° ( ; F ) -> H°(f\H) -> 0 

which implies that the next map ff1(t7r( — 1)) H1^) in the sequence is injective in 
addition to being surjective. 

, . Similarly, applying (iii) one finds an exact sequence 

0 -+ Hn~l{F\H) Hn{T{-l)) _> Hn(F) -> 0 

and so multiplication by Xn is surjective on firn-1(jF) in addition to being injective. 

Step 2. I show that for a given u G Hk(Jr) one has = 0 for a suitable non-negative 
power of Xn. 

Note that Un is affine and so 0 = Hk(Un,T) = Hk(ilnUn,f) = Hk(C*(iln t / n , ^ ) ) . 
But the module C*(ilntf„, ^ ) is nothing but the localisation C^il, T)xn and so i f *(C #(itn 
Un,T)) = i f . F ) ) x n • This localisation vanishes precisely when for all u G Hk(J7) 
some power of X n kills u. • 

Let me derive an important consequence of this computation. First you need to know 
that any coherent sheaf on P n is the quotient of a direct sum of line bundles. 

Proposition 11. There is a short exact sequence 

k 

i= i 

Proof: I'll show that in fact for large enough N there is a surjection of the trivial sheaf 
Q®m onto Q = ^(N). This means that Q is generated by sections, i.e. there are sections 
6 j , j = 1, . . . m such that every stalk Qx is generated by the Sj(x). Indeed the standard 
generators of 0®m map to generators of Q. 

To prove this, consider the standard affine cover 17,, i = 0 , . . . , n. Now T\Ui = Mj~for 
some iZj-module Mi , where R{ = C[Xo/Xi,... ,Xn/Xi]. I shall make use of the following 
lemma. 
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Lemma 12. Let T be a coherent sheaf on P n and let f be a global section of O(d), i.e. 
a homogeneous polynomial of degree d. Let Uf = {x£F>n\ f(x) ^ 0 } and suppose that 
one has t £ T(?7/,.7 r). Then for some N £ N the section fNt of T(Nd) over Uf extends 
over P n . 

For a proof I refer to Problem 4. 

View X{ as a section of 0(1). It follows that for any s £ Mf- for large enough N 
the section X[*s £ MC(N) extends as a section of F(N) over P n . Let me take N large 
enough so that I can use it for all i = 0 , . . . ,n. Let me apply this simultaneously to the 
finitely many generators { Sij } of the module M,-. Now multiplication by xf induces an 
isomorphism MC —>- F(N)\Ui and so the sections Sijxf generate the latter sheaf. But 
these sections extend to sections of T, so together they generate ^F(N) everywhere. 

• 

Theorem 13. (Serre's Finiteness and Vanishing Theorem) Let X C P n be a projective 
variety and let J7 be a coherent Ox-module. Then 

(a) for each i > 0 the vector space Hl(X,T) is finite-dimensional. 

(b) there is an integer no depending only on T so that H^ffo)) = 0 for all i > 0 and all 
n>rtQ. 

Proof: One can reduce to the case X = P n since the sheaf obtained from T by extending 
it by zero on the complement of X is a coherent sheaf of CV» -modules (Problem 1.) It 
follows immediately from Theorem 4.10 that the theorem holds for any sheaf which is a 
direct sum of sheaves of the form 0(n). Now by the previous lemma, T is a quotient of 
such a direct sum £ and so there is an exact sequence 

with £ ' again coherent. From the resulting exact sequence one gets 

... -> H\£) -> H\F) -> i T + 1 ( £ ' ) 

The vector space on the left is finite-dimensional by the previous theorem. 

To prove the theorem I now use descending induction on i. For i > n one has 
Hl(Fn, T) = 0 since the standard affine covering of P n , which computes the cohomol­
ogy, consists of n + 1 elements. It follows that I may assume that i f l + 1 (£* / ) = 0 and so 
Hl(T) is finite-dimensional. This proves (a). 

To prove (b) let me twist the preceding sequence and consider the following piece of the 
resulting long exact sequence 

... -> H\E{n)) -> H^Tin)) -> H^\S\n)) 

Now again, by the previous theorem the vector space on the left vanishes for all n larger than 
a certain number mo which works for all i. By the induction hypothesis f f l + 1 ( 5 / ( n ) ) = 0 
for n > mi independent of i. Now take no = max(rao,rai). • 

Inspecting the proof of this theorem more closely one derives the following proposition. 



35 §4 SERRE'S FINITENESS AND VANISHING THEOREMS 

Proposition 14. Let X be a projective variety of dimension n and T a coherent sheaf on 
X. Then Hq(X,F) = 0 ifq > n. 

Proof: If X C P N a general linear subspace of codimension n + 1 is disjoint from X so 
that projecting from it yields a morphism of X onto P n . Now, the standard affine covering 
of P n consists of n + 1 elements. Since q is a projection, the inverse by q of an affine open 
set on P n gives an affine open set on X and so you get an acyclic cover of X by n + 1 open 
sets. Leray's theorem then implies that Hq(X^Jr) = 0 for q > n. • 

Note that the preceding finiteness theorem can be formulated in relative form. 

Proposition 15. Let U C C m be affine and let X be any irreducible Zariski-closed 
subset in P n x U. Let T be a coherent Ox-module. Then H^X^J7) is a finitely generated 
0{U)-module. 

For the proof let me refer to Problem 5. 

Corollary 16. Let f : X —> Y be a morphism between projective varieties and T any 
coherent sheaf of Ox-modules. The direct image sheaf f±T is coherent. 

Proof: Since the question is local one may assume that Y is affine. Take a covering of X 
by a finite number of affines Ui and let V C Y be affine. Giving a section of T over f^V 
is the same as giving sections over U{ D f~~lV which patch over the intersections, i.e there 
is an exact sequence 

o u? 0/.(*1tt) -> (BM?\Ui n Uj), 
i i}j 

and since the last two terms are quasi-coherent (Example 4.4) the first sheaf is quasi-
coherent as well (Problem 1). So it is the sheaf associated to f+jF{Y) = T{X) = H°(X,P) 
which however is a finitely generated (9(F)-module by the previous Proposition. 

• 

Next, let me introduce higher direct images. 

Definition 17. For any continuous map f : X -+ Y between topological spaces and 
any sheaf T of abelian groups on X let the q~the direct image sheaf Rq f*jF be the sheaf 
associated to the presheaf 

v^H*(rl{V),r\rlv). 

To compute higher direct images in the case of morphisms between projective manifolds 
let me first consider the case where the target space is an affine variety. 

Lemma 18. let X be a (quasi- projective variety, Y affine, <p : X ~> Y a morphism and T 
a quasi-coherent sheaf on X. The higher direct image Rqy*T is the sheaf on Y associated 
to the module Hq(X,F). 
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Proof: Choose an affine open cover i l of X. By proposition 4.7 this is an acyclic cover. 
Recall that in the proof of Leray's theorem, Theorem 3.4, the sheaf C p ( i l ,^") given by 
U H-> CP(U fl i l , .? 7 ) has been introduced. The complex C # ( i l , ,F) has been shown to be 
exact and to give a cohomological resolution for T since the covering is acyclic. So, if / 
is in the coordinate ring R(Y) of Y defining the open set [7/, one has Hq{y>~1Uf,F) = 
Hq(T(C*(il n Uf,F))). Now Cq(ll,F) is the quasi-coherent sheaf associated to the R(Y)-
module C 9 ( i l ,T) = \ \ a ^(Wl) where you take the product over all q-simplices. So one can 
write 

H^ip-'Uf,?) = H'{C*{U,f)~{Uf)) = H*(C'(!d,fnUf), 

and by Leray's theorem, this last module is isomorphic to Hq(X^J7)^(Uf). • 

Corollary 19. Let f : X —> Y be a morphism between projective varieties and T any 
coherent sheaf of Ox-modules. The higher direct image sheaves Rq f+J7 are coherent. 

Proof: The assertion is local on Y and so one can assume that Y is affine and then one 
can apply the previous result. Now, by Proposition 4.15, Hq(X,T) is a module of finite 
rank over the affine coordinate ring of Y and so the sheaf Rq f+J7 is not only quasi-coherent 
but even coherent. • 

D . Applications to very ampleness. 

I derive an ampleness criterion for line bundles which play a central role in the proof of Nakai's 
ampleness criterion for divisors on surfaces, to be treated later. 

Next, let me study line bundles L on compact complex manifolds X. To prove that L 
is very ample one has to show: 

1. The map <pi must be everywhere defined. So, for every point x 6 X there is a section 
of L which is non-zero in x. Let mx be the maximal ideal in the ring Ox, i.e. the set of 
germs of functions vanishing at x and let C = O(L). The exact sequence 

shows that it is sufficient to prove that i ? 1 ( m x • C) = 0. 

2. The map ipL must be injective, i.e. sections must separate pairs of points. So, for 
every two points x ,y € X there must be sections s,sf of L with s(x) = 0, s(y) ^ 0 and 
sf(x) 7 ^ 0,s ;(j/) = 0. The exact sequence 

0 mx • my • C -> C - » Lx 0 Ly - * 0 

shows that it is enough to show that H1(mx • my • C) = 0. 

3. Sections must separate tangent directions. This means the following. Locally sections 
of L are holomorphic functions on an open subset U of X and if x € U there must 
be enough sections vanishing at x so that their differentials span TX(X). So, for every 
cotangent direction v* G T^X there must be a section s of L vanishing at x and with 
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ds(x) = v*. This can be formulated more intrinsically as follows. There is a well-defined 
sheaf map 

dx : xnx - C —> Lx ® T% 

and it should be surjective on the level of sections. The exact sequence 

0 ml- C -> mx • C - ^ H Lx ® -> 0 

shows that it is enough to show the vanishing of f f 1 ( m ^ • C). 

Let me collect the results: 

Proposition 20. Let L be a line bundle on a compact complex manifold X. Let C = 
Ox{L) be the corresponding locally free sheaf The map y>i is defined at x if H2(X, mx • 
C) = 0. It separates x from y if Hl(X,mx • my • C) = 0 and it separates tangents at x if 
H1{X,m2

x-C)=0. 

Now, if <PL is defined at x this is true in a Zariski-open neigbourhood if x. Similarly, 
if (pi separates x and y it will separate points in a neigbourhood of x from points in a 
neighbourhood of y and if <PL is an immersion at x it will be so in a neighbourhood. By 
compactness, the previous remarks show that it sufficient to prove vanishing of H1 (mx • £), 
H1(mx • m y • C) and i f 1 ( m ^ • C) for a certain finite number of points x and y. Since this 
involves a finite number of coherent sheaves on X , by the previous theorem one can find 
some large integer iV so that the desired groups vanish provided you replace C by C(N). 
In other words, C(N) will be very ample. So 

Corollary 21 . Any line bundle L on a projective manifold is of the form V ® Ln~l with 
V and V very ample. In particular, every line bundle on X is of the form Ox(D) for 
some divisor D. 

From this Corollary it follows that the map 

D i v ( X ) ^ P i c X , 

introduced in Chapter 3, is surjective. 

Remark 22. Since a generic hyperplane section of a projective manifold is smooth (by 
Bertini, see 2.1) and connected by A2.21, it follows that one can assume D = D\ — D2 with 
D\ and D2 smooth and connected. 

Let me finish by proving a very useful criterion for ampleness which is used when proving 
the Nakai Ampleness Criterion 11.14 for surfaces. 

Proposition 23. (Criterion for Ampleness) Let M be a projective manifold and L a line 
bundle on M. The following are equivalent. 

1. L is ample, 

2. HV(T ® 0M(L®n)) = 0, p > 0, for all coherent sheaves T on M and n > n(F). 

3. ^ ® O M ( i 0 n ) ^ spanned by its sections for all coherent sheaves Ton M and n > m ( ^ r ) . 
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Proof: 
1. ==> 2. For very ample L this is Serre's Theorem. 4.13. Otherwise, if L®m is very ample, 
one has by loc. cit. EV[T ® GM(L®r ® L ® m 5 ) = 0, p > 0 for s > n r , r = 0 , . . . , m - 1. 
Take = ramaxnr. Then, writing n = ms + r with 0 < r < ra one has for n > n^) 
that iP(JF <g> £ 0 n ) = 0, p > 0. 

2. =4> 3. To prove that T ® O M ( i ^ n ) is spanned by sections at x € M it is sufficient 
to show that i J 1 ( m x • (F ® OM(L®71)) = 0 which by assumption is the case for n > nx. 
Spannedness then holds in a Zariski-open neighbourhood of x, say Ux. By compactness 
finitely many such sets cover M , say UXi, i = 1 , . . . , N. Now take n{T) = max(n x . ) . 

3. 1. Start with an affine neighbourhood U of x and let N C M be the complement. 
Then for some n > 0 the sheaf Z;v ® OM{L®U) is generated by sections and in particular 
there is a section s of L®n vanishing at x. By construction U3 = { y G M \ s(y) ^ 0 } C U 
and hence is an affine neighbourhood of x over which L®n is trivial. Finitely many such 
sets USl,..., U3k cover M , since M is compact. Let X j f , . . . , be affine coordinates in 
USj. By Problem 4 there is an integer m such that all of the functions s™XJ

k extend to 
global sections t* of I / 0 m n and one replaces L 0 n by L®mn and 6 ; by Already the 
sections s™ generate the bundle L®mn globally and so these sections together with the 
define a morphism X F N which is constructed in such a way that it gives an embedding 
when restricted to each USi. But points on USi separate from points in the complement, 
since s™ is not zero on U3i while this section vanishes on the complement. • 

Corollary 24. Let / : X —>• Y a morphism between projective varieties with finite fibres 
and let L be ample on Y. Then f*L is ample on X. 

Proof: The sheaf f+T is coherent on Y by 4.16. Furthermore, one has f*(T®Ox{f*L®n)) 
= f*T ® Oy(L®n) (see Problem 8). Now, since / has finite fibres, H?(f*(Ox(f*F ® 
Oy(L®n)) = HP(f*f®0Y((L®n)) by Problem 7. The result follows from the previous 
criterion. • 

Problems. 

4.1. Let T —V Q be a homomorphism between (quasi- ) coherent sheaves on a Zariski-open subset 
of a projective variety. Show that the kernel, the cokernel and the image are (quasi- ) 
coherent. Next, let 

0 -> T1 -> T -> T" -> 0 

be an exact sequence of sheaves. Show that if any two of the preceding sheaves is (quasi- ) 
coherent then so is the third. 

4.2. Let U be a Zariski-open subset of P n and let X C P n be a projective variety. If T is coherent 
on U fl X show that the sheaf T considered as a sheaf of (9t/-modules is also coherent. 

4.3. Prove that that S(d)~^ 0{d). 

4.4. Let X be a projective variety and T a quasi-coherent sheaf on X. Let L a line bundle on 
X , s a section of L and set Us = { y G X \ s(y) ^ 0 } . 
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a. If £ is a global section of T restricting to zero on t/5, there exists n > 0 such that fns = 0. 

b. Suppose that t now is a section of T over Us. Prove that there is an integer n > 0 such that 
snt extends to a global section of .Fig) Ox(L). 

4.5. Prove Lemma 4.12. Hint: use the previous Problem. 

4.6. Prove the relative version of Serre's finiteness theorem (Theorem 4.15). 

4.7. Let / : X —* Y be a continuous map between topological spaces and T a sheaf on X with 
the property that Rpf*T = 0, p > 0. Prove that Hq{X,T) £ Hq{Y,p*T), q > 0. Show that 
this can be applied to morphisms between projective varieties with finite fibres. (This is a 
special case of Leray's Spectral Sequence) 

4.8. Let / : X —• Y be a morphism between projective varieties. Let T be an (9x-module and E 
a locally free C?x-module of finite rank. Prove the projection formula 

Rpf*{T®ox f*E) 3 Rpf*T®oY E. 


