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Chapter 3. The first steps in surface theory 

5 . Intersection Theory on Surfaces 

I introduce the intersection product for divisors following [Beau], This is the same as the topological 
intersection product as given in the Appendix. Riemann-Roch for divisors is proven and as a 
consequence, the genus formula for an irreducible curve. This will be used a lot in what follows. 

In this section let S be an algebraic surface. For any line bundle C on S set 

h\C) = dim H\S,C) 

and 

X(C) = h°(C) - hl(C) + h2(C) (Euler-Poincare characteristic of £ ) . 

For a divisor D set 

h\D) = h\0{D)). 

The topological Euler-Poincare characteristic is the alternating sum 

e(S) = ^ ( - l ) ' d i m Hj(Cs). 
j 

Recall (see Appendix A2.7), that Hl(S,Cs) is finite-dimensional and zero for i > 4. 

Let C C 5 be an irreducible curve. Recall the notion of normalisation or desingulari-
sation 

u:C —>C. 

Here C is a non-singular curve (projective manifold of dimension 1) and v is a finite map 
which is an isomorphism outside the singularities of C. For existence and uniqueness let 
me refer to [G-H, p. 498] or [G, Chapter II]. One only needs to know that the construction 
is done locally (in the ordinary topology) and one can form the normalisation of any part 
of a curve in an open subset of 5. Suppose now that two distinct irreducible curves C and 
C meet in a point x. Suppose that at x one has local equations / = 0 for C and g = 0 
for C ; , where f,g 6 Ox the local ring of germs of holomorphic functions at x. Of course 
/ nor g need to be irreducible. Let me recall (see e.g. [G, p.83]) how one may define the 
intersection multiplicity of C and Cf at x denoted (C, C % . One first assumes that / is 
irreducible in the coordinate neighourhood U of x where it is defined. Choose coordinates 
in U such that x = (0 ,0) . Let A C C be a suitable small disk centered at 0 in the i-plane 
and let v : A - » U be a local normalisation for U Pi C and suppose that 

go u(t) = ait1 + higher order terms 

with a\ 7^ 0. This number / by definition is (C, C')x. In general one can write / = f [ . f™J 

with fj irreducible and defining locally an irreducible curve Cj. Let me extend the definition 
by linearity: ( C , C % = I^ra j (C j ,C%. 
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Remark 1. The intersection multiplicity of C and Cf at x can also be defined as the 
dimension of the C-vector-space Os,x/(f,g)- It is not difficult to show that this is the same 
as the preceding definition. See Problem 1. 

From the preceding remark it is clear that (C , C')x = ( C , C)x so, defining the intersec
tion number 

(C,C') = J2(C,C')X 

X 

one obtains a symmetric pairing on the set of irreducible curves. I want to extend this 
definition to all divisors. This is not at all obvious, since one doesn't know what for 
instance (C, C) should be. The idea now is that in forming the intersection product one 
should be allowed to move a curve in its linear equivalence class. Since in particular, any 
very ample divisor can be moved at will in its linear equivalence class, one can define (C, C) 
for these divisors. Then, remembering that any divisor is the difference of two very ample 
divisors, one can define the intersection product for any two divisors. But of course, there 
are many ways to write a divisor as a difference of two very ample divisors and it is not 
clear that this yields a well-defined intersection product. Although one in principle can 
carry out this program, it is a little faster to follow Beauville's route [Beau, Chapt. 1]. 

Theorem 2. For any two divisors D , Df one poses 

( D , D') = X(Os) - X(0(-D)) - X(0(-D')) + X(0(-D - D')). 

This defines a symmetric bilinear product on Pic S extending the intersection product on 
irreducible curves. This product is the unique product on Pic S which satisfies the following 
properties; 

l.IfC and C are two smooth curves which intersect transversally, (C, C") is exactly the 
number of intersection points, 

2. it is symmetric: (D,Df) = (D',D), 

3. it is linear: (D + D',D") = (D,D") + {D',D"). 

4. it depends on the linear equivalence classes of the divisors only 

Note that this theorem implies that the intersection product only depends on the sheaves 
defined by the divisors, i.e. one can move a divisor in its linear equivalence class without 
changing intersection products. 

Proof: 

Step 1. Uniqueness. Given two divisors C and D , one can write them as differences of 
very ample divisors (Serre's Theorem), say C = C\ — C2 and D = D i — D2. One can 
choose smooth curves C'k in |C*| , Df

k € \Dk\ (fc = 1,2) such that C'k meets Dr- transversally 
j , k = 1,2. This follows from Bertini. The four properties then totally determine (C, D ) , 
since (C, D) = (C[, D[) - {C[, D'2) - (C'2, D[) + (C2, Df

2) and each of the four terms is equal 
to the number of intersection points of the curves involved. 

Step 2. Let me prove that the definition for distinct irreducible curves C and C with 
coincides with (C, Cf) as defined by means of local intersection numbers. 
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Choose a non-trivial section s, resp s' of the line bundle 0(C), resp. 0{C) vanishing 
on C , resp. C. The sequence 

0 -> Os(-C - C) < ' ' - '> ) 0 5 ( - C ) 8 O s ( - C ' ) V 3 / ) O s - > O c n c - > o 

then is exact. This simply is a translation of the exactness of the Koszul sequence at any 
point x of S: 

(i) 
I leave it to the reader that this sequence is indeed exact. See Problem 2. From this exact 
sequence one immediately verifies the desired equality. 

Step 3. Let me show that for any irreducible smooth curve C on S and every divisor D on 
S one has 

(C,D) = deg(D\C). 

To show this you may employ the exact sequences 

0 -> Os(-C) ^ O s ^ O c ^ O 

and 
0 -> Os(-D - C) -* Os(-D) O c ( - - D ) 0. 

One finds that 
x(Os)-x(Os(-C)) = x(Oc) 

-x(Os(-D)) + X(0(-C - D)) = - X ( < 9 c ( - I ? ) ) 

and so (C, D ) = x(Oc)-x(Oc(-D)) = - deg (—I?|C) = deg (Z) |C) by the usual Riemann-
Roch theorem on the smooth curve C. 

Step 4. Completion of proof 

Let me introduce for any three divisors D\, D2, D$ the expression 

s(DuD2,D3) = (D!,D2 + D3) - (DUD2) - (DUD3). 

This is symmetric in the arguments as one readily verifies. It vanishes if D\ is a non-
singular curve (by Step 3.) and hence it also vanishes if D2 or D3 is a non-singular curve. 
One needs to see that it always vanishes. But as remarked before, one can write any divisor 
and hence also D2 as a difference D2 = A — B with A and B very ample. Moreover, by 
Remark 4.22 one can suppose that A and B are smooth and connected. Now you write out 
0 = s(DuD2,B) = (DUA) - {DUD2) - {DUB). From this it follows immediately that 
the product is bilinear. • 

Remark 3. Note that the latter coincides with the topological intersection product since 
this product also enjoys the preceding properties. This one sees as follows. Any divisor 
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D = ^rtid yields a cohomology class c(D) = X )njc(C t ) where the class c(Cj) G H2(S,Z) 
is defined as the Poincaré-dual of the fundamental class h(d) £ H2(S,Z) of Cj . Likewise 

one has h(D) = riih(Ci) € i?2 (M, Z ) , a class which is Poincaré dual to c(D). For any 

two homology classes c, cf € ^(S, 2 ) the intersection product (c, c ') is defined in Appendix 

A.2 where it is shown that this product is the same as evaluating the cup product of the 

Poincaré dual classes on the orientation class 0 5 G i?4(5, Z ) . Clearly, one gets a pairing 

on divisors by setting (D,Dr) = (h(D), h(Df)). This pairing only depends on the linear 

equivalence class. Indeed, by Proposition A3.8 the first Chern class of a divisor c\(D) 
coincides with the fundamental cohomology class c(D) and the first Chern class depends 

only on the isomorphism class OM{D) of the divisor D. This shows that the fourth property 

holds. The first property is Claim A2.17. The remaining ones are trivial. 

Examples 

1 . 5 = P 2 . Any divisor D is linearly equivalent to dL, with L a line. So, if D = dL and 

Df = d!L one finds that ( D , J D ' ) = dd' which is Bezout's theorem. 

2. S = P 1 x P 1 . One has the two fibres F = P 1 x a and F9 = b x P 1 and leaving these away 

one gets C 2 on which every divisor is the divisor of some rational function. It follows that all 

divisors on S are linearly equivalent to m F + m 'F ' . Clearly (F, Ff) = 1 and since on P 1 any 

two points are linearly equivalent any two fibres of the form P 1 x a are linearly equivalent 

and so (F,F) = 0 = (F',Ff). This completely determines the intersection pairing. 

Let me now show that one can derive a weak form of the Riemann-Roch theorem, using 

Serre-duality A3.3. 

Theorem 4 . (Riemann-Roch) For any divisor D on S one has 

x(Os(D)) = X(Os) + \({D,D) - (D,KS)). 

Proof: By definition (-D,D - Ks) = x(Os) - x(0(D)) - x(Os{Ks - D)) + x(0(Ks)). 

By Serre duality X{0{KS)) = x(Os) and X(Os(Ks - D)) = x(Os(D)). So -(D,D) + 

_ (D, KS) = ( - A D-KS) = 2(x(Os) - x(Os(D)). • 

Remark 5. Using Serre duality once more one can rewrite the Riemann-Roch theorem 

as follows. 

h°(D) - h^D) + h°(Ks -D) = X(Os) + \{{D,D) - (D,KS)). 

From this way of writing Riemann-Roch one derives an inequality which will be used a lot 

in the sequel 

h°(D) + h°(Ks -D)> x(Os) + \((D, D) - (D, Ks)). 
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Remark 6. The strong form of the Riemann-Roch theorem, also called Hirzebruch-
Riemann-Roch theorem, expresses x{@s) in topological invariants of 5 . For algebraic 
surfaces this goes back to Noether and therefore is called the Noether formula. It reads as 
follows 

x(Os)=^((Ks,Ks) + e(S)). 

That indeed the self intersection of Ks is a topological invariant follows since it equals 
the self-intersection of the first Chern class of the surface, which is a topological invariant. 
Let me refer to [G-H, Chapter 4.6] for a geometric proof of the Noether formula. For the 
general Riemann-Roch theorem for projective manifolds I refer to [Hir]. 

The Riemann-Roch theorem is also valid for line bundles C on any surface, even if these 
are not of the form O(D). Clearly, even to make sense of the Riemann-Roch formula, one 
needs to use here the topological definition of the intersection product. 

Next, let me give a formula for the genus of an irreducible curve on a surface. 

Lemma 7. 

1. For any effective divisor D on a surface S one has 

-x(OD) = \mD) + (D,Ks)). 

2. (Genus formula) For an irreducible curve C with genus g = dim i /" 1 ( (9c) one has 

2g-2 = (Ks,C) + (C,C). 

Proof: There is an exact sequence 

0 -> Os(-D) - > 0 S -> O D -> 0, 

which implies ~x(0D) = -x{Os) + x(Os(-D)) = ±((D,D) + (D,KS)) by Riemann-Roch. 
If D is irreducible, h0(OD) = 1 and hence 2g(D) - 2 = -2X(OD). U 

Remark 8. The genus g as defined above for a singular curve C is related to the genus 
g of its normalisation v : C —> C as follows. There is an exact sequence 

0 -+ O c -»• v*Oc - » A - » 0, 

where A = © A x is a sky-skraper sheaf concentrated in the singular points x of C. Taking 
the Euler-characteristics one gets 

g(C) = g(C) + Y,&™- Ax-

X 

The important consequence is that 

g{C) ^ 9(C) with equality if and only if C is smooth. 
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Let me finish this section by saying a few words about the dualising sheaf of an effective 
divisor D on a surface. One defines it by 

u D = 0D(Ks)®0D(D) 

which entails an exact sequence 

0 Os(Ks) -> Os{Ks) ® Os(D) UJD -> 0. 

For a divisor D — ^2,d where D is a curve with ordinary double points, this sequence 
leads to an explicit description of the dualising sheaf. 

Proposition 9. Let C be a curve with only ordinary double points { p i , . . . } , let 
v : C -> C be its normalisation and = { p'iiP'l }• The sheaf v~lwc consists of 
the germs of meromorphic differential forms a on C having at most poles of order 1 at the 
points { p'i,p" }, i = 1, . . . , d and such that res^ot + respnot = 0. 

Proof: The residue homomorphism res in the preceding exact sequence can be computed 
as follows. Let { u,v } be local coordinates around a point of C and let / be a local 

& f 
equation for C such that — is not identically zero on C. If 

dv 

ip = ~jdu A dv 

is a local holomorphic section of Os(Ks) ® Os(C) (so h holomorphic). Then res(h) = 

( h d u / a s is easily verified. Now around an ordinary double point one can take f = uv 

so that res(h) = h — \{ v = 0 } = — h — \{ u = 0 } . Taking the normalisation separates the 
u v 

two branches and v*(h) becomes meromorphic on each branch with pole of order at most 
one and with opposite residues. • 

Problems. 

5.1. Prove the equivalence of the two definitions of intersection index. (See Remark 1). Hint: 
Interpret the number / as the dimension of the vector space W := 0(A)o/(g o v(t)) and 
construct a surjection Ox -+W whose kernel is ( / , # ) . 

5.2. Prove that the Koszul sequence is exact. 

5.3. Let C C P 2 be a smooth curve of degree d. Using the adjunction formula, show that the 
genus of C is equal to \(d — l)(d — 2). 

5.4. Let C C P 1 X P 1 be a curve of bidegree (a, 6), i.e. (C ,F ; ) = a and (C,F) = 6. Derive a 
formula for the genus of C in terms of a and 6. 
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6. Birational geometry of surfaces 

Birational maps between surfaces can be described totally by blowing ups or sigma-processes. 

The resulting exceptional curves can be recognised by Castelnuovo's contraction criterion. As a 

result, minimal surfaces are the same as surfaces without — 1-curves. I finish this section with a 

reformulation of some of the results in 'Mori-terminology'. 

I start by recalling the notion of the cr-process. Let 5 be a surface and x £ S which 

serves as the origin in a coordinate chart (z,w) in a neighbourhood U of x. Now define 

Ù = { ((*, w), (Z, W)) e U x P 1 I zW"= wZ } 

where (Z,W) are the homogeneous coordinates of P 1 . Projection onto the first factor 

defines a holomorphic map 

p:Ù ->U 

which maps the curve E — p"1(x) = x xF1 onto x and U\E biholomorphically onto U\x. 

Note that onUnUx{Z^0} the coordinates u — z, v = W/Z can be used and the map 

p is given by v) = (ti, uv). A similar remark applies toUf)Ux{W^0}. 

Now glue S and U over the set U \ E = U \ x. This yields a new smooth surface S 

and a holomorphic map p : S -» S which maps E = P 1 to x and p : S \ E —> S \ x is 

biholomorphic. This is the a-process at x. The curve E is called the exceptional curve. 

The surface S is called the blow up of S at x. 

If S is algebraic then so is S. See Problem 1. 

If C is any curve through x one can form the closure C of the set p~l(C \ x) = C \ x 

in 5 . This curve is called the strict transform of the curve C. 

Lemma 1. If C is an irreducible curve passing with multiplicity m through x the total 

transform p*(C) is related to the strict transform by 

p*(C) = C + mE. 

Proof: Clearly p*(C) = C + kE with some integer k which one can determine by a local 

computation around x. Use coordinates (z,w) around x and (u,v) on part of U as before. 

The local equation at x for C can be written as 

f — fm(z,w) + higher order terms 

with fm homogeneous of degree m. So in (u, u)-coordinates one has 

fop = f(u,uv)=um(fm(liv) + ...) 

and so one must have k = m. • 

Proposition 2. Let S be an algebraic surface, p : S —> S the blow up at x and let E be 

the exceptional curve. 
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i. The homomorphism Pic 5 © Z —»• Pic 5 defined by (£>, n) i-» p*D+nE is an isomorphism. 
A similar assertion holds for the Neron-Severi groups. 

ii. For any two divisors D,D' on S one has (p*D,p*D') = (D,D'), (E,p*D) = 0 and 
(E,E) = -1 

Hi. One has K§ = p* + E. 

Proof: One can replace divisors by linearly equivalent divisors for which the components 
do not pass through x. Then the first two formulas in (ii). follow. Now choose a curve C 
passing through x with multiplicity 1 so that the strict transform C meets the exceptional 
curve transversally. So 1 = (C,E) = (p*C - E,E) = —(E,E). This completes the proof 
of (ii). 

To show £i), note that the given map is clearly surjective (every irreducible curve distinct 
from E on S is the strict transform of its image on S). To show injectivity, suppose that 
p*D + nE is linearly equivalent to 0. Intersecting with E and applying (ii) one finds that 
n = 0, but then D also must be linearly equivalent to zero. Replacing 'linearly equivalent' 
by 'homologically equivalent' yields an isomorphism on the level of the Neron-Severi groups. 

To prove (iii), observe that p*Ks and Kg coincide outside E. So K§ = Ks + rnE for 
some integer ra. The adjunction formula shows that —2 = (K§, E) + (J5, E) = —m — 1 and 
hence m = 1. • 

Let me now show how to 'eliminate the points of indeterminacy' of a rational map 
/ : S—->Pn. One has / = ( / o , . . . , fn) with fi polynomials, the map / is not defined at the 
set where all the fi simultaneously vanish on S. Since one can assume that the fi have no 
common factor this set F must be finite. Let f(S) be the Zariski-closure of f(S \ F) in P n . 

Proposition 3 . Let f : S—*Pn be a rational map. There is a sequence of blowings 
up Sm

 ( 7 m > Sm-i < T m ~ 1 ) . . . -^H So = S such that the rational map f o <7i o . . . o crm is 
everywhere defined. 

Proof: One may assume that f(S) is not contained in any hyperplane. But then the 
system of hyperplanes yields a linear system |Z?| of divisors which have the points in F 
as base points. If F — 0 you are ready. Otherwise, you blow up 5 at a point of F. Say 
G\ : Si —> S. Then you can write cr*D = D\ + miE with a certain multiplicity mi which 
can be chosen in such a way that \D\\ does not have E in its base locus. If |Z?i| does not 
have a base locus you are ready. Otherwise you can blow up in one of the base points of 
the new linear system. One must see that this process stops and it is here that one makes 
essential use of the intersection theory. Indeed, at the fc-th step one finds 

(Dk,Dk) = (£>*-! ,Dfc- i ) - m2

k < (Dk-uDk-x) 

but since \Dk\ has no curve in its base locus one has (Dk,Dk) > 0. So the self intersection 
numbers of the divisors in the linear systems constructed in this way must stabilise for 
some k < ( D , D) and then there are no more base points left. • 

Examples 1. Let S C P n be a surface and p a point of 5 . Projection from p is a rational 
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map S—->Pn 1 which is defined everywhere except at p. By blowing up S at p one obtains 
a morphism S - » P n - 1 , where S is the blow up of S at p. 

2. Let Q C P 3 be a smooth quadric and let Q—*P2 be projection from a point on the 
quadric maps. The two lines on Q passing through p are mapped to two distinct points, 
say p and q. Blowing up Q at p gives a surface Q and a morphism Q - » P 2 which is the 
blow up of P 2 at the points p and q. 

In the proof of the preceding proposition I used that the points at which a birational 
map is not defined is finite. This implies that for a birational morphism the number of 
curves which map to points must be finite since at these points the inverse birational map 
is not defined. Let me prove that these are the only points at which the inverse is not 
defined. 

Lemma 4. Let S be a projective variety of dimension two and Sf a projective surface. If 
a birational morphism f : S —»• S' has the property that f"1 is not defined at a certain 
point pf , the inverse image f~1(pf) is a curve. 

Proof: One may replace S by an affine variety, say j : S C C n (so that still / _ 1 ( p ' ) ^ 0). 
The rational map j o f"1 : S '—+C n is given by n rational functions of which the first may 

P 
be assumed to be not defined at p ' , is of the form — with Q a non-constant polynomial 

with Q(p') = 0. One may assume that P and Q have no common factors. Let D be the 
curve defined by f*Q = 0. On S one has 

with x\ the first coordinate function on C n . So on D both functions f*P and f*Q are zero 
and D = / " " 1 -D , with Df = {P = Q = 0}. Since P and Q have no common factor this 
must be a finite set containing pf. Restricting to a smaller Zariski-open neighbourhood of 
pf one may therefore assume that D' = { p' } and so / ^ 1 ( p / ) = D , a curve. • 

Corollary 5. If a birational map of surfaces is not defined at a certain point, the inverse 
map contracts a curve onto that point. 

Proof: Let / : S — b e a birational map which is defined on the Zariski-open U C S 
and let T C U x Sf be its graph and let Si be its closure in S x 5 ' . This is a variety 
(of dimension 2) possibly with singularities. Let q : Si - » S and qf : Si —> S' be the two 
projections. Suppose that / is not defined at p. Then q~x is likewise not defined at p. By 
the Lemma, q contracts a curve C onto p. But, since Si C S x S', the image of C in S by 
assumption is a curve which maps to p by f""1. • 

Proposition 6. (Universal property of the blowing up) Let f : S' —> S be a birational 
morphism between surfaces. Suppose that f"1 is not defined at p € S. Then f factors as 
f = a o g with g a birational morphism and a the blow up at p. 
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Proof: Let g = a"1 o f and h = g~l. One hase to show that g is a morphism. Let me 
assume that this is not the case. Then the previous lemma shows that h(C) = p' for some 
curve C C S and some point p1 6 5 ' . Since then cr(C) = f(p') the curve C must be the 
exceptional curve E and f(pf) = p. Let u be any local coordinate at p (this means that the 
curve { u = 0 } passes simply through p. I claim that f*u must be a local coordinate at p ' . 
If not, it would be in m 2, and hence also h* f*u = a*u would be in m 2 for any e G E where 
h is defined, which is at all but finitely many points. But the blowing up has the property 
that any coordinate function on S at p lifts to a coordinate function at all points of E but 
one. On the other hand, there does exist u with f*u G m 2,. To see this one chooses local 
coordinates # ,y at p and considers f*y. If this is in m2, one sets u = y. Otherwise f*y is 
a coordinate near p ' and it vanishes with multiplicity one along f~lp in a neighbourhood 
of p ' . So f*y gives a local equation for / _ 1 p and then f*x = v • f*y for some v 6 Op>. So 
then u = x — v(pr) • y has the property that m2, which completes the contradiction. 
• 

Remark 7. There is also a complementary universal property for the blowing up: if 
h : S -> P n is a morphism wich contracts JB, it factors as g oa with a morphism g : S P n . 

This is much easier to see. One may write h = (/io, - - . , hn) and consider hi/hj which is 
a regular function on Sj = S fl { / ij =j£ 0 } and, by assumption, on <r(Sj). So h also defines 
a morphism g : S —» P n with h = g o a. 

Theorem 8. Any birational morphism between surfaces is the composition of a sequence 
of blowings up and isomorphisms. 

Proof: Let / : S —• Sf be a birational morphism which is not an isomorphism. Then f~x 

is not defined at some point pi and by the previous proposition, / = <Ji o fi with <7\ the 
blowing up at pi and f\ a birational morphism. Observe that / contracts the curves which 
fi contracts but also at least one more curve, namely any curve which by fi is mapped 
to the exceptional curve for a. So the number of curves contracted by fi is strictly less 
than the number of curves contracted by / . If no curves are contracted by f\ the inverse 
map is a morphism and so f\ is an isomorphism. Otherwise one can continue and write 
fi=<72° / 2 with (72 a blowing up and / 2 a birational morphism contracting fewer curves 
than / 1 . After a finite number of steps this process terminates. • 

Corollary 9. Every birational map S—+S' between surfaces fits into a commutative 
diagram 

S" 

y X 
S S' 

with h and g a composition of blowings up and isomorphisms. 
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Proof: This follows immediately from Proposition 3 and Theorem 8. • 

For the purpose of reducing the birational classification to a biregular classification, 
the previous theorem is important. One introduces the following basic definition, which 
underlines this. 

Definition 10 . A surface S is minimal if every birational morphism S —> S* is an isomor
phism 

The previous theorem then shows that every surface can be mapped to a miminal 
surface by a birational morphism. Indeed, if S is not minimal, there is some surface Sf and 
a birational morphism S —> Sf which, by the previous theorem is a sequence of blowings up 
and isomorphisms. Since under a blowing up the rank of the Neron-Severi-group increases 
by one, this process must terminate. It follows moreover, that on a non-minimal surface 
there must be exceptional curves for some cr-process. These are smooth rational curves with 
self intersection (—1). Let me call such curves (—l)-curves. These are always exceptional 
curves for a blowing up by the following theorem. 

Theorem 1 1 . (Castelnuovo's contraction criterion). A smooth rational curve E on a 
surface S with (£", E) = — 1 is the exceptional curve for a cr-process S -» Sf. 

Proof: Choose a very ample divisor H on S such that Hl(S,O(H)) = 0, which is possible 
by Serre's Theorem (Theorem 4.13). Now E has a certain degree d = (H,E) with respect 
to the embedding given by \H\ and H' = H + dE now has the property that ( i f ' , E) = 0. 
I want to show that in fact \H'\ gives a morphism a : S —• S' of S onto a smooth surface 
S'. The fact that (Hf,E) = 0 then implies that H' is trivial on E and so this morphism 
contracts E to a point p. I shall show that a is an isomorphism from S \ E to S' \ p. It 
then follows from Remark 7 that this morphism is the (j-process at p. 

Let me construct a special basis for the sections of 0(H'). The long exact sequence 
associated to the sequences 

0 -+ 0(H + (i - 1)E) -+ G(H + iE) - » 0E(d - *) -> 0, i = 1 , . . . , d, 

successively shows that ^(OsiH + iE)) = 0 and that H°(Os(H + iE)) surjects onto 
H°(OE(d—i)). So I can take a basis for H0(O(H + dE)) by first taking a basis { so,..., sn } 
for the sections of O(H) and adding sections which come from sections { s^o, • • • 9 £ t , r f - t } 
of 0(H + iE) which restrict to a basis for H°(OE(d — i)). So, if s is a section of Os{E) 
defining E I get the following basis for H0(O{H')): 

{ SdS0, . . . ,SdSn,Sd~1Sifl, . . . . . . , 6 3 ^ - 1 , 0 , 5 5 ^ - 1 , 1 , 6 ^ 0 . } 

The rational map given by this basis is everywhere defined outside E and E is mapped 
entirely onto the point p = ( 0 , . . . , 1). Clearly it gives a biregular morphism of S \ E onto 
S' \ p. One only needs to show that p is smooth on Sf. 

Let U C S be an open neighbourhood of E where Sd,o ^ 0. Define the following sections 
ofOu{-E): 

x = , y = . 
6d ,0 S<f,0 
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These restrict to a basis for H°(OE{1)) and so I may assume that U is small enough so 

that x and y are not simultaneously zero on U and so one gets a morphism z2 : U —> P 1 . 

The functions sx, sy define a morphism z\ : U —> C 2 and together with z2 even a morphism 

( ¿ 1 , z2) : U - » C 2 x P 1 which in fact maps to the blow up C 2 of C 2 considered as submanifold 

of C 2 x P 1 . Summarising, one gets a morphism 

z:U—+0, 

which by construction, fits into the following commutative diagram 

u a 

a r 

a(U) C 2 

where r is the blowing up of C 2 in the origin. Note that c(U) is open in Sf. 

Let me show that, replacing U by a smaller open neighbourhood of E (in the com

plex topology) the map z is an isomorphism from cr(U) onto its image which is an open 

neighbourhood of the origin in C 2 and thus p is a smooth point. 

First of all, by construction z\E maps E isomorphically on E. Furthermore, z is a 

local isomorphism around each point of E (in the complex topology). Indeed, let (u,v) 

be coordinates on C 2 and let (?7, V) be homogeneous coordinates on P 1 . Then C 2 is the 

submanifold given by uV = vU. If q G one may assume that z(q) = ( (0 ,1) , (0,1)) € 

C 2 x P 1 . Now at z(q) the functions v,U/V are local coordinates on C 2 . One has 

z*v = sy, z*(U/V) = x/y. 

The first function vanishes with multiplicity 1 along E while the second function gives a 

local coordinate at q. This implies that in a neighbourhood of q where both functions are 

defined the map z is a local isomorphism. 

Now one invokes an easy lemma from topology. 

Lemma Let f : X -» Y be a continuous map between Hausdorff spaces which restricts to 

a homeomorphism f\K —• f(K) on a compact set K and which is a local homeomorphism 

in the neighbourhood of each point of K. Then there exists an open neighbourhood of K 

which is mapped homeomorphically by f onto an open subset ofY. 

The proof of this lemma is left to the reader. 

From the lemma one finds an open neigbourhood U of E which maps isomorphically to 

W C C n . Consider the morphism a o It contracts the exceptional curve in W and 

hence, by Remark 7 it factors as g o r, where g is a morphism which must be the inverse of 

z. So a(U) is isomorphic to the open neighbourhood r(W) of the origin in C 2 . 

• 

Corollary 12. A surface is minimal if and only if it does not contain (—l)-curves. 



52 CHAPTER 3 FIRST STEPS IN SURFACE THEORY 

I end this section with a few remarks which are intended to illustrate the point of view 
of birational geometry since Mori theory came into existence. 

As demonstrated previously, for surfaces there always exists some minimal model in the 
birational equivalence class of a given surface. In principle there could be many minimal 
models. It turns out that, with the exception of the ruled surfaces there is a unique 
minimal model up to isomorphism. By definition a ruled surface is any surface which 
admits a birational map onto C x P 1 with C a curve, so these are known from a birational 
point of view. However one still needs to know the distinct minimal ruled surfaces. This 
shall be done in the next sections. 

In higher dimensions there need not exist a smooth minimal model. When the concept 
of minimal model is suitably modified, in order to have such a model one necessarily has 
to allow singularities in codimension > 3. It turns out that you can only expect a minimal 
model if K, the canonical divisor is nef which means that K intersects non-negatively with 
any curve. Mori theory also shows that there is a basic distinction between the case K nef 
and K not nef. I shall illustrate this for surfaces. 

Proposition 13. If there exists a curve C on S with (Ks,C) < 0 and (C, C) > 0. all 
plurigenera of S are zero. If S is a surface with at least one non-vanishing plurigenus and 
C is a curve on S with (Ks, C) < 0, the curve C is an exceptional curve of the first kind, 
i.e. C is a smooth rational curve with (C,C) = — 1. 

Proof: Let D be an effective pluricanonical divisor. Write it like D = aC + R. Since 
(D, C) < 0 the divisor D actually contains C, i.e. a > 0. Then 0 > m(Ks, C) = (D, C) = 
a(C, C) + (R, C) > a(C, C ) . Since this is > 0 in the first case, one arrives at a contradiction: 
the plurigenera must all vanish. In the second case, if (If s , C) < —2 the adjunction formula 
gives (C, C) > 0 and we again have a contradiction. So (Ks,C) = —1 and the adjunction 
formula shows that C is an exceptional curve of the first kind. • 

Recall that the Kodaira-dimension K(S) of S is equal to — oc means that all plurigenera 
of 5 vanish. This is for instance the case for rational and ruled surfaces as will be shown 
in the next section. So using the notion of nef-ness and Kodaira-dimension there is a 
reformulation a la Mori for the previous Proposition. 

Reformulation 14. Suppose S is a surface whose canonical bundle is not nef. Then 
either S is not minimal or K(S) = — oo. 

Let me give a second illustration of the Mori-point of view with regards to the question 
of uniqueness of the minimal model. 

Proposition 15. Let S and Sf be two surfaces and let f : S—+S' be a birational map. If 
Ks' is nef, f is a morphism. If moreover Ks is nef, f is an isomorphism. 

Proof: Let a : X -> X be the blow up of any surface with exceptional curve E and let 
C C X an irreducible curve such that C := cr(C) is again a curve, one has 

{KfrC) = (a*Kx + E, a*C - mE) = (Kx>C) + m> (KX,C). 
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So if Kx is nef there can be no curve C on X mapping to a curve on X and for which 
(Kx)C) < — 1. Since any morphism is composed of blowings up this then also holds for an 
arbitrary morphism Xf X. 

Let me apply this in the present situation with X = S'. Resolve the points of inde
terminacy of / . Choose a resolution where you need the minimal number of blowings up. 
One may suppose that one needs at least one blow up. Then the image C = f(E) of the 
exceptional curve E of the last blow up must be a curve, which contradicts the preceding 
since (K,E) = - 1 on the last blown up surface. So / is a morphism. Similarly, if Ks is 
nef, Z""1 is a morphism and so / is an isomorphism. • 

Problems. 

6.1. Prove that the blow up of an algebraic surface is again algebraic. Hint: define the blow-up 
P n of the point p = ( 0 , . . . , 1) in P n as a subvariety of P n X P n _ 1 given by the bihomogeneous 
equations XiYj — YjXi = 0, i,j = 0 , . . . , n — 1. Next one shows that the Segre-embedding 
P n X P m -+ identifies P n x P m with a projective submanifold of f>nm+n+m. So 
pn x p>m j g a p r o j e c t i ve manifold. Next, every subset of P n x P m given by bihomogeneous 
equations can be seen to correspond to a projective subvariety of p n m + ^ + m

# Show that the 
blow-up of a surface S C P n in p is the Zariski-closure of S \ { p } in P n . 

7. Ruled and rational surfaces 

The minimal models of non-rational ruled surfaces are geometrically ruled. These are always 
projective bundles associated to rank 2 vector bundles. The minimal models for rational surfaces 
are the Hirzebruch surfaces F n , n ^ 1. 

Definition 1 . 

1. A surface S is called a ruled surface if it is birationally isomorphic to C x P 1 where C 
is a smooth curve. IfC = Fx one calls S rational 

2. A surface S is called geometrically ruled if there is a morphism p : S —> C of maximal 
rank onto a smooth curve with fibres P 1 . 

Two remarks are in order. First, a surface is rational if and only if it is isomorphic to 
P 2 since, as shown in section 7, P 1 x P 1 and P 2 are birationally isomorphic. Secondly, it is 
by no means clear that a geometrically ruled surface is actually ruled. This however is the 
case. In fact a little more is true. 

Proposition 2. If f : S -> C is a surjective morphism of a surface S onto a curve C for 
which c € C is a regular value and whose fibre at c is isomorphic to P 1 , then there is a 
Zariski-open neighbourhood U of c in C such that f~~lU is isomorphic toU x P 1 in a fibre 
preserving manner. 
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Proof: 
Step 1. H2(S,0) = 0. 

Serre-duality implies that H2(S,0) is dual to H°(S,Ks). Suppose that this would be 
non-zero, i.e. that there would be an effective canonical divisor K. Let F be the fibre over c. 
Since (F, F) = 0 (a nearby fibre F' is linearly equivalent to F and so (F, F) = (F, F') = 0) 
the genus formula yields 

-2 = (K,F) + (F,F) = (K,F). 

If however K is effective you can write it as K = nF + G where n > 0 and G is disjoint 
from F and so (K, F) = (G, F ) > 0. 

Step 2. Construction of a divisor i f with (H,F) = 1. 

Now observe that the exponential sequence and Step 1. yields a surjection 

P i c ( S ) - S H # 2 ( S , Z ) 

and therefore it is sufficient to produce a cohomology class h with h-f = l. Here / = C\{F) 
and the product on H2(S, Z ) is the one coming from cup-product. (Remark 5.3 ) . Now by 
Poincaré-duality the cup-product pairing is a perfect pairing on H := H2(S, Z)/Torsion. 
This means that the natural map 

M — > H o m ( H , Z ) , 

x i — > {y y x } 

is an isomorphism. The numbers x-f form an ideal in Z , say (d) and so the linear functional 
x H-> l/d(x • / ) must be of the form x H-> {x-f) for some / ' 6 i for which one then has 
f z= df. (The element / ' is called primitive and this shows that if one writes x = nxf with 

G H and n as large as possible, the resulting x' is primitive). 

I claim that in our case d = 1. Look at k = ci(K). Since / • k = —2 as shown before, 
one must have f'-k = —2/d. Now by the genus formula f(x) := x • x + x • k (mod 2) = 0 
for x the class of an irreducible curve and hence, since f(x) is linear, this is true for all of 
H. In particular —2/d must be even and so d = 1. But now / is primitive and so there 
exists some h G H with h • / = 1. 

Step 3. End of proof. 

Consider the exact sequence 

0 -> Os(H + (r - l)F) -> Os(H + rF) 0 F ( 1 ) - » 0, 

which in cohomology gives 

H°{Os(H + rF)) ff°(0F(l)) -> Hl(Os{H + (r - 1)F)) H\Os{H + rF)) -> 0. 

The map 6 r being surjective for all r means that the dimensions of Hl(Os{H + r F ) ) 
form a decreasing sequence which eventually must become stable and then br becomes 
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an isomorphism and hence ar will be a surjection. For such an r pick a plane inside 
H°(Os{H + rF)) which is mapped isomorphically onto H 0 ( 1 ) ) by ar and let P be the 
corresponding pencil. This pencil will separate points on F and so the possible fixed locus 
of P consists of points in fibres distinct from F or of curves in fibres disjoint from F. Let 
me take away all these fibres as well as the reducible fibres and look at the restriction Pf of 
the pencil on this part of the surface, which is of the form f~~lU with U C C Zariski open. 
Now a generic member Ct of the moving part P' of P meets F in exactly one point, so if it 
would be reducible, it would contain some fibers. This however is not possible since then 
C9 with s ^ t would meet Ct in the intersection points of these fibres and so they would 
be base points. It follows that Pf is a pencil entirely consisting of sections of the restricted 
fibration. The pencil P' defines a morphism g : f^U —> P 1 with fibres Ct meeting the 
fibres of / - 1 U —> U in exactly one point and so ( / , # ) : f~lU —> U x P 1 is the desired fibre 
preserving isomorphism. • 

Let me next relate the geometrically ruled surfaces S —> C to rank two vector bundles 
on C. If £" is such a bundle you can replace every fibre ET over x £ C by the corresponding 
projective line. In this way you obtain P( i? ) , a P^bun <^ over C. 

Proposition 3 . Every geometrically ruled surface S —• C is isomorphic to the F1-bundle 
associated to some rank two vector bundle E on C. Two bundles F(E) and F(Ef) are 
isomorphic if and only if Ef = E ® L for some line bundle L on C. 

Proof: Recall that isomorphism classes of line bundles on C are classified by the set 
H1 (O*). One can introduce the sheaf G/(2, Oc) of invertible 2 x 2-matrices with coefficients 
in Oc and the quotient sheaf PGl(2,Oc\ The set H1 (G / (2 ,O c ) ) classifies the rank 2-
bundles on C and Hl{PGl(2, Oc)) the P^bundles. The defining exact sequence 

\->0*c-+ G/(2, Oc) -> PG/(2, Oc) 1 

in cohomology gives an 'exact sequence of sets'. 

H\Oh)-*> i f 1 ( G / ( 2 , ( 9 c ) ) - £ > H\PGl{2,Oc)) -> H2(0*c). 

This means that p(e) = p(e') if and only if a(l) • e = ef for some / £ H 1 ( 0 ^ ) , where H1 (0*c) 
acts on the set of rank two bundles by the tensor product. The result follows if one can 
show that H2(0*) = O.This however follows immediately from the exponential sequence 
on C . • 

Let me now show that the minimal models of the non-rational ruled surfaces are exactly 
the geometrically ruled surfaces. First note a simple lemma from topology whose proof is 
left to the reader. 

Lemma 4. Let f : S —» C be a surjective morphism of a surface onto a smooth curve. 
Assume that the smooth fibres are all connected. Then all fibres are connected. 

Proposition 5. Let S be without (—l)-curves and let f : S -> C be a morphism onto 
a smooth curve C such that the generic curve of f is P 1 . Then / : S -> C gives S the 
structure of a geometrically ruled surface. 
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Proof: As in previous arguments, for every fibre F one has (F, K) = —2 and hence no 
fibre can be multiple, i.e. ci(F) is primitive. So all irreducible fibres have genus 0 which, 
by Lemma 5.7 implies that they are all P 1 . All you have to do now is to to rule out 
the possibility of reducible fibres, since then Proposition 2 can be applied. So suppose 
that F = J2iniCi l s a reducible fibre. Now compute riiCf = (Ci,F — Y^j^ini^i) = 

"~ Ylj^i nj(Cj-> C t ) < 0 since C{ meets at least one Cj (the fibre F is connected by the 
previous lemma). But then C{ has negative self intersection and since (if, C{) + (Cj , C t ) = 
2<7(C'i) — 2 one concludes that (K,C{) > — 1 with equality if and only if C{ is a smooth 
rational curve with self intersection —1, i.e. a ( - l ) -curve . But these don't exist on S and 
so (K,Ci) > 0 and (K,F) > 0 whereas (K,F) = —2. This contradiction shows that there 
are no reducible fibres present and therefore the proof is complete. • 

Corollary 6. A minimal model of a non-rational ruled surface is geometrically ruled. 

Proof: Let S be minimal and let S +C x P 1 be birational and consider the resulting 
rational map S —> C. It necessarily is a morphism, because otherwise one would have to 
blow up at least once to eliminate points of indeterminacy and such an exceptional curve 
would have to be mapped to a point on C (since C is not rational). But by the 'easy' 
universal property for blowing up (Remark 6.7) one can 'factor out' the a-process for the 
exceptional curve without creating points of indeterminacy. 

Since the generic fibre of S —> C is P 1 and since S does not contain (—l)-curves, the 
result follows from the preceding Proposition. 

• 

Next topic: the rational geometrically ruled surfaces. For this, one needs Grothendieck's 
result on the splitting of vector bundles on P 1 . 

Lemma 7. Every vector bundle on P 1 is the direct sum of line bundles. 

Proof: Let me first consider the question: 'when does an exact sequence of vector bundles 
(on any manifold) split?'. So let 

0 -> V V V" -> 0 

be an exact sequence of vector bundles. It splits by definition, if there is a subbundle 
of V which by b is mapped isomorphically onto V". Equivalently, there should exist a 
homomorphism c : V" —» V such that bo c = Idy//. To put this into the language of exact 
sequences, note that applying H o m ( y ; / , —) to the preceding exact sequence yields an exact 
sequence of vector bundles 

0 -> Hom(V" , V) Hom(V", V) Hom(V" , V") -> 0, 

with e.g. b*(c) = b • c. Now Idy is a global section of Hom(V", V") and the splitting is 
equivalent to the existence of a global section c of Hom(V", V ) with &*(c) = Idy / . Looking 
at the exact sequence in cohomology, one sees that it suffices that H 1 (Hom(V r " , V')) = 0. 
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In this case one applies this to the following situation. Consider a vector bundle E and 
fix k G Z such that the bundle E(k') has no sections for k' < k but does have a section for 
kf = k. This section has no zeroes, otherwise some E{kf) with kf < k would have had a 
section. But then the section defines a trivial sub line bundle of E(k) and hence an exact 
sequence 

0 -> 0 F -> E(k) -> F -> 0. 

Now you twist this sequence by O(-l) and consider the resulting exact sequence. Since 
H°(E(k - 1)) = 0, the space H°(F(-1)) goes injectively in ^ ( C V f - l ) ) = 0. So 
H°(F(—1)) and hence also H°(F(—2)) must vanish. Serre duality then gives that 0 = 
H1(FV) = f f 1 ( H o m ( F , O)). By the previous considerations, the preceding sequence splits 
and so by induction E splits as a direct sum of line bundles. 

• 

By twisting by (9pi (k) one can always normalize a P 1 -bundle on P 1 , say P(Ff 0 F") in 
such a way that Ff becomes trivial. Then, upon writing Fn = Opi (n) you arrive at the 
definition of the Hirzebruch surfaces 

F n = P ( ( 9 F ee> P i(n)) . 

(Miles Reid suggests that the 'F' might stand for 'Fritz', Hirzebruch's first name). 

Let me summarise the discussion so far in the form of a proposition. 

Proposition 8. A geometrically ruled surface over P 1 is a Hirzebruch surface. 

Let me conclude this chapter by computing the invariants for the geometrically ruled 
surfaces. Let me first recall that F(E) always admits a divisor H with (H,F) = 1 (cf. 
proof of Proposition 2). Let us set h = c\(H). 

Proposition 9 . Let <p : S -> C be a geometrically ruled surface and let g be the genus of 
C. Then 

1. i f 2 ( 5 , Z ) is generated by the class f of a fibre and the class h. In fact Pic(S) = 
/ * Pic(S) © Z • H. 

, 2. C!(Ks) = -2h + (2g - 2 + d)f, where d=h-h. In particular (if, K) = 8(1 - g). 

Proof: 

1. First look at the Picard group. It suffices to show that divisors D on S with (Z), F) = 0 
axe of the form <p*d with d 6 P i c C . If D would be effective this follows immediately, so it 
suffices to show that Dn := D + nF is effective for n sufficiently large. Now ( D n , D n ) = 
(D, D) while (Dnj Ks) = ( A K) - 2n, so h°(Os(Dn)) + h°{Os(Ks - Dn)) >n + constant 
by the Riemann-Roch inequality. Since h°(Os(Ks — Dn)) = 0 for large n (look at the 
degree of the divisor Ks — Dn with respect to some very ample divisor on S) one indeed 
gets a section in h°(Os(Dn)) for n large enough. 

For the cohomology group, simply look at the exponential sequence by which i ? 2 ( 5 , Z ) 
is a quotient of Pic(S) and so is generated by / (all fibres are cohomologically equivalent) 
and h which are independent since h • / = 1. 
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2. Write ci(Ks) = af + bh and intersect with / to get b = —2. Then one finds (Ks,H) = 
a — 2d while the genus formula gives 2g — 2 = ((-Ks, H)) + (if, H) = a — d. • 

To compute the other invariants one needs 

Proposition 10. q, pg and Pn := dim H°(Kfn) are birational invariants. 

Proof: Let me give the proof for holomorphic 2-forms. The other cases are similar. So 
let / : 5—+S f be a birational map. / is a morphism outside a finite set F. So, if a is a 
holomorphic 2-form, f*a is a rational 2-form and regular on 5 \ F. But then it is regular 
on 5 , since f*a has poles in divisors at most. It follows that pulling back gives an injection 

H°(S',KS,)^H°(S,KS). 

The inverse of / then yields an inverse to this map and so this is an isomorphism. • 

It follows that one can use the model C x P 1 to compute the invariants q,pg and Pn. 
One has f ^ x I P i = P*^c © <?*̂ jpi (here p and q denote the projections onto the factors) 
and hence KcxW1 — P*Kc ® q*K$>i. It then follows (see Problem 3.7) that / z ° ( f ^ x p l ) = 

+ h°(Q^) = g, the genus of C and that h°(KCx^) = h°(Kc) • h°(KFi) = 0 and 
similarly one finds that Pn = 0. Summarising, you get 

Lemma 11. For a ruied surface S birationally isomorphic to C x P 1 one has pg = Pn = 0 
and g = flf(C). 

Next, let me turn to the invariants of the Hirzebruch surfaces. Observe that there are 
two natural types of sections of P((9pi © Cpi (n)) , the unique section 5 which in each fibre 
assumes the value (0,1) and the sections S = Sp of the form s(x) = ( l , p ( x ) ) where p is a 
homogeneous polynomial of degree n. Clearly (5 , 5 ) = n and one would like to compute 
5 in terms of S and F. One hase 5 = 5 + aF since 5 is a section. Moreover ( 5 , 5 ) = 0 
since the two sections never meet. SoO = ( 5 , 5 ) = n + a and hence a = — n. It follows 
that ( 5 , 5 ) = —n. I claim that 5 is the unique curve with strictly negative self intersection. 
Indeed, if cF + dS = D ^ 5 one hase c = (D,S) > 0 and also d = (D,F) > 0 and so 
(D,D) = c?2n + 2cd > 0. It follows that the F n with n > 0 are mutually non-isomorphic; 
they are distinguished by the self intersection number of the unique curve on them with 
negative self intersection. Since Fo = P 1 x P 1 any curve on this surface has non-negative 
self intersection and so Fo is not isomorphic to F n with n > 0. Finally, Fi is non-minimal, 
since the section with negative self intersection is an exceptional curve. The other F n are 
minimal since they do not contain an exceptional curve. Summarizing one has 

Proposition 12. The Hirzebruch surfaces F n , n ^ 1 are minima] and pairwise non-
isomorphic. 

Using Proposition 7.8 one finds 

Corollary 13. The Hirzebruch surfaces F n , n ^ l are precisely the minimal geometrically 
ruled surfaces with q = 0. 
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Problems. 

7.1. Prove that Fi is the projective plane blown up in a point. 

7.2. Give a direct proof for the fact that every algebraic line bundle on an affine curve is trivial. 

7.3. The Hirzebruch surface F n is a non-singular model of the cone on the rational normal curve 
in P n + 1 . Prove this by considering the linear system |s| = (n)| on F n . 

7.4. With the linear system |5 + kF\ with k > 1 one embeds F n in p n + 2 f c + 1 as a surface of degree 
n + 2k. The fibres map to straight lines, the unique section with negative self intersection to 
a rational normal curve in P* C P n + 2 f c + 1 and the sections SD are mapped to rational normal 
curves in a linear subspace (depending on p) of dimension n + k. 
Conversely, if one starts with two disjunct subspaces of p n + 2 A ; + 1

 Q f dimensions k and n + 
take rational normal curves C and C1 in these spaces, choose an isomorphism u : C —> C 
and joint u G C and u' G C by a straight line. The resulting surface is isomorphic to F n 

embedded by means of |5 + kF\. 


