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The Cayley-Spottiswoode coordinates of a conic
in 3-space.

by

H. S. Ruse

Edinburgh

If a conic in a three-dimensional projective space is defined

by the quadratic complex of lines which meet it, the coefficients
in the equation of the complex may be regarded as coordinates
of the conic. The coordinates thus defined, analogous to the
Plücker coordinates of a line, are due essentially to Cayley 1), but
were defined independently and differently by Spottiswoode 2).
They were employed recently by J. A. Todd 3) to represent the
conics of 3-space by points of 19-space, for which purpose he
introduced a symmetrical and concise notation which, with
certain modifications, is used in the present paper. Each conic
has twenty-one distinct homogeneous coordinates which satisfy
certain identical relations; these are obtained below by a method
which shows that the symbolic calculus 4) employed by Todd
admits of a geometrical interpretation. A variety of other formulae
are also established, expressing the condition that two conics
should intersect, that they should be coplanar, and so on.

Todd’s notation is extended so as to be brought into confor-
mity with that of tensor, or rather of spinor, analysis. The theory
of four-component spinors 5) is really that of three-dimensional
projective geometry, and the associated calculus has a power and
conciseness which makes it a valuable instrument in the analy-
tical treatment of ordinary projective geometry. It may however
be added that the present paper is not concerned with the dif-

1) CAYLEY [Quart. J. of Math. 3 (1860), 225].
2) SPOTTISWOODE [Proc. London Math. Soc. (1) 10 (1879), 185].
3) TODD [Proc. London Math. Soc. 36 (1933), 172].
4) See GRACE and YOUNG, Algebra of Invariants (Cambridge 1903).
5 ) The theory of four-component spinors, and the notation adopted in this

paper, is outlined in a series of papers by VEBLEN and others in Proc. Nat. Acad.
Sci. 19 (1933) and 20 (1934).
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ferential aspects of the spinor theory, since it deals with a single
3-space and not with the infinity of such spaces (each associated
with a point of an "underlying space") which appear in spin-
geometry proper.

§ 1. Notation and preliminaries.

The points of the projective 3-space are represented, in a given
system of reference, by four homogeneous coordinates
XA == (Xl, X2, X3, X4). Capital letters A, B, C, ... used as suf-
fixes will always take the values 1, 2, 3, 4, and the summation
convention for repeated suffixes will be employed throughout.
A transformation of coordinates (or, alternatively, a collineation)
is given by a linear relation of the type.

where e is an arbitrary factor of homogeneity and T is a square
matrix of rank 4. e will be used generally to denote an arbitrary
factor, and will not necessarily be the same from formula to
formula.
A plane whose equation in the first system of coordinates is

99A XA = 0 transforms into gg’X’A = 0, where

tB being the matrix reciprocal to T B, so that

Hère 5 is the Kronecker symbol having the value unity when
A = C and zero when A -=1= C. The coordinates of a point are there-
fore represented by a central letter with a single upper (contra-
variant) suffix, and those of a plane by a central letter bearing
a single lower (covariant) suffix.

If X A, Y’ are two points of the space, the Plücker coordinates
p AB of the line joining them are defined by

If 99A’ VA are any two distinct planes through this line, the dual
set of Plücker coordinates is given by

Of course PAB = _ plA and PAB == - PBA. The two sets of
Plücker coordinates are connected by the relation
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where BABCD is defined to have the value 1 or - 1 if ABCD is

respectively an even or odd permutation of 1234, and to be
zero if two or more suffixes are equal; êABCD, used below, is defined
in the same way. Both c-symbols are therefore skew-symmetric
for an interchange of any pair of suffixes.
Under the transformation (1.1), pAB becomes p ,AB , where

ep,AB == T TpCD, and p., transforms into p’,, where ep’ =
tCtD In general the mode in which the various quantities
transform will be indicated by the position of their suffixes, the
matrix T A being used with contravariant and the matrix tA with
covariant. So for example EABCD transforms according to

where t is the determinant ] t£ ]. If the arbitrary factor e is

chosen 6) to be equal to t, we obtain £ÂBCD = êABCD’ so that EABCD
may be said to transform into itself; similarly BABCD transforms
into itself.

In the theory of spinors the two sets of Plücker coordinates
of a line are normalized in terms of one another (that is, a parti-
cular choice is made of their factors of proportionality) according
to the formula

from which it at once follows that

This normalization renders definite in any given coordinate system
the opérations of raising and lowering pairs of skew-symmetric
suffixes, these operations being in fact defined by (1.7) and (1.8)
respectively.
With this notation, the identical relation satisfied by the

Plücker coordinates of a line may be written in any of the forms 7)

6) This choice of the arbitrary factor e is equivalent to attaching a "weight"
to the "spinor" êABCD. For present purposes this, like the normalization defined

by (1.7) and (1.8), is not really necessary, but it seemed desirable that the notation
of this paper should be kept as consistent as possible with that of Veblen. The
normalizations introduced in §§ 2, 3 are however made for the purpose of adding
conciseness to the algebra. They do not affect the homogeneity of the formulae,
and therefore do not destroy the projective character of the geometry. {But see
Note 12 below.)

7) Small numbers to the left of formulae in this paper refer to the corresponding
formulae of TODD’S paper (Note 3 above. )
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The condition that two lines pA B, q AI should intersect is

The point where a plane q; A meets a line pAB has coordinates
pAB q;B’ and the plane through a point XA and a line pAB has
coordinates pABX B. The plane pA passes through the line pAB if

and the point XA lies on it if

and conversely.
The line whose Plücker coordinates are PAB (or pAB) will be

referred to as the lirte p. Also it will be convenient later to use

the notation ( pq ) for the inner product p,,q AB of the coordinates
of two lines. So

The following simple theorems will be of frequent use :

THEOREM 1. If hAB, k AB are any pair of square skew-symmetric
matrices of order 4, not necessarily satisfying (1.9) or (1.10), then 8)

The proof consists of writing the relations (1.14) in full, giving
the free suffixes A, C particular values.

If p, q are lines which intersect, (1.10) and (1.14) give

which is therefore an équivalent form of the condition (1.10).
Putting q = p in the last equation, we at once obtain the identity
(1.9) satisfied by the coordinates of a line, but in a slightly
different form, namely

THEOREM II. if p, q are two lines, and

the lines coincide.
For if (1.17) is true, then

for all planes CfJc. But qBC f/Jc is the point where the plane 99, meets

8) Cf WEITZE-li-BôcK, Komplex-Symbolik [Leipzig 1908], 8.
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the line q, and (1.18) states that this point lies on the line p
(Cf (1.12)). Since qqc is any plane, this means that all points on q
lie on p. Hence p, q are the same line.
THEOREM III. The necessary and sufficient conditions that three

lines p, q, r should be concurrent are

The conditions are necessary. For suppose that the lines meet
in the point XA. Then qBC is given by

where QA is any other point on the line q. Hence

since X’ lies on both lines p, r and consequently pABXB and
rcnXc are both zero. So the first of equations (1.19) is satisfied,
and similarly the others.
To establish the sufficiency of the conditions, suppose that

p, q, r are three lines satisfying (1.19), and assume for the moment
that q, r do not coincide. Let XA be any point. Then the first
of the equations (1.19) gives

But rCDXB is the plane through the point XA and the line r;

qBCrcDX D is the point where this plane meets q, and by (1.20)
this point lies on p. Since XA is any point, this means that p, q
meet on all planes through r. Hence either (I) p, q, r are con-

current; or (II) p, r coincide and q meets them; or (III) p, q
coincide but do not necessarily meet r. If (1) or (II) is true, the
theorem is proved. If (III) is true, it quickly follows from the
second of equations (1.19) (using ( 1.14 ) and ( 1.16 ) ) that the
coincident lines p, q do meet r. Similarly in the hitherto excluded
case when q, r coincide, the fact that p meets them is an almost
immediate consequence of the third equation (1.19).

COROLLARY a. If two lines pAB, qAB intersect, and ifpABqBCrcD= 0,
then the line q passes through their point of intersection.
COROLLARY b. If two lines p, q intersect, then PABQ BCPCD = 0,

qABpBCqCD = 0. Conversely, if either qf these relations is satisfied
by two lines, they Í1ttersect.
THEOREM IV. The necessary and sufficient conditions that three

lines p, q, r should be coplanar are
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This is the dual of Theorem III.
COROLLARY a. If the tu’o lines p, l’ intersect and p4BqBcr CD =- 0

then q lies in their plane.
COROLLARY b. If two lines p, q intersect, then pABqBCPCD == 0,

q AB pbcqc’ = 0. Conversely, if either of these relations is satisfied
by tzvo lines, then they intersect.

§ 2. The coordinates of a conic.

Let now

be the equation of the quadratic complex of lines which meet a
given conic. Since pAB is skew-symmetrical in its suffixes, the
coefficients dABCD may be defined as skew-symmetrical in A, B
and also in C, D. That is,

Also, since the left-hand side of (2.1) may be written dCDABpCDpAB,
we may take

So dABcD is skew-symmetrical in the first pair and in the last pair
of suffixes, but is symmetrical for an interchange of these pairs.
Todd indicates this by placing a comma between the pairs in
question, thus dA$, cD, but it is more convenient for present
purposes to omit the comma.
On account of (1.9) it may be assumed that dABCD satisfies

the linear identity

Further, from (2.2), (2.3), (2.4), we have

which may also be written

The coefficients DABCD thus defined are the Cayley-Spottis-
woode coordinates of the conic. Because of (2.2) and (2.3) only
twenty-one of them are distinct, and these satisfy the identity
(2.4). As remarked by Todd 9), dABCD has the properties of sym-

11) TODD, loc. cit., 205.
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metry and skew-symmetry with regard to its suffixes possessed
by the curvature tensor RABCD of Riemannian geometry.

Spottiswoode defined the conic as the intersection of a quadric

(2.31 )

and a plane
(2.32)

and defined the coordinates of the conic by formulae equivalent
to

or

where ôf§ is the generalised Kronecker symbol equal to

à£à§ - à§à£. The coefficients gAB are of course assumed to be
symmetrical in the suffixes, so gAB == gBA. The dABeD of (2.8)
are easily 1°) shown to be the same as those previously defined.
We shall in general suppose that the quadric gAB is non-dege-

nera.te, so that th e determinant g = I gA B | is not zero. Let gA B
be th e matrix reciprocal to gAB’ so that

Then of course gAB P A PB == 0 is the tangential equation of the
quadric.

If (PA is a plane, its pole with respect to the quadric has coor-
dinates

and if XA is a point, its polar plane with respect to the quadric
has coordinates

q;A and XA could of course be multipied by any factor, but it

is convenient to normalize them in relation to cP A and XA, and
also in relation to the coefficients gAB, according to the last two
formulae; these formulae then give a method of raising and
lowering single suffixes belonging to symbols representing planes
and points. It is perhaps not altogether desirable to introduce
a method of raising and lowering suffixes in addition to that
defined by (1.7) and (1.8), but the possibility of confusion to
which it leads is small, while the gain in conciseness is great.

1°) TODD, loc. cit., 183.
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It should be noted that a conic may be defined by its plane
(2.7) and any quadric (2.6) which passes through it. But in any
given problem it will be assumed that a definite quadric is chosen,
so that the process of raising and lowering suffixes is unambiguous.

If P AB is a line, its polar line with respect to the quadric has
coordinates gACgBDpCD. This may not be denoted by pAB, since
in accordance with (1.7) the latter symbol represents the dual
coordinates of the same line p,,, which does not in general
coincide with its polar. Similarly the dual coordinates gACgBDPCD
of the polar line may not be denoted by pAB.

§ 3. Special forms for the coordinates of a conic.

For the moment it will be assumed that the conic is non-

degenerate, and that it is defined as the intersection of a plane
ÀA and a non-degenerate quadric gAB.

Let htp) - (hA), hA), hA),hA» be the vertices of any tetrahedron
which is self-polar with respect to the quadric. The ordinal

(scalar) suffixes (P), (Q ), (R), ..., which are bracketed to

distinguish them from the coordinate (tensor) suffixes A, B,
C, ..., , take the values 1, .., 4 and, when repeated, imply a
summation. Then with a proper choice of the unit point, the
equation of the quadric with h1p) as tetrahedron of reference
is

or

where ô(P)(Q) is a Kronecker delta and the coordinates X(P) are
connected with the original system by the formula

if the h p are properly normalized. Hence

which mav be written

The matrices h1p), h(Q)A are therefore reciprocal to one another, so

(summation with respect to ( P ) . Lowering the suffix A, we get
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The coefficients h(P)A for ( P ) == 1, 2, 3, 4 are of course the (nor-
malized) coordinates of the faces of the tetrahedron, since h(P)A
is the polar plane of htp). The above analysis may be compared
with that belonging to the theory of orthogonal ennuples in
Riemannian geometry.
Equation (3.5) corresponds to the symbolic equation (2.41)

of Todd’s paper. Symbolically gA B = 1A 1B, so it is evident that,
in order to pass from the symbolic treatment of the subject to
one in which the algebraic operations admit of a geometrical
interpretation, it is merely necessary to replace 1 by h(P) and to
allow a repetition of the subscript (P) to imply a summation
from 1 to 4. So instead of writing gAB = lA lB = mA mB = ...
in the manner of Todd, 1 write gAB = h pA h pB = h(Q)Ah(Q)B = ....
That h-4) are the vertices of any self-polar tetrahedron means

that h1p) are replaceable by h’A where

the coefficients k(P)(Q) being such that

It is however convenient to limit the choice of the self-polar
tetrahedron by requiring that the plane of the conic shall be one
of its faces. So we write

and denote

becomes

Then (3.5)

The ordinal suffixes a, b, ... will run from 1 to 3 and, when
repeated, will sum over that range.

By (3.3) and (3.4) we get

Hence, raising the suffix B in the last equation,

The ha (a = 1, 2, 3), are the vertices of a triangle self-polar with
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respect to the conic, and (3.11) states that each of these lies in
the plane ÂA. The point ÂA is the pole of ÂA with respect to the
quadric, and (3.12) states that this lies on each of the planes
h,,,, which are planes through the respective sides of the self-

polar triangle. 
Substitute from (3.9) in (2.8). We get

(2.43)

where

(2.42)

The ÂaAB are the normalized coordinates of the sides of any

triangle self-polar with respect to the conic, and (3.16) is an

expression for the coordinates of the conic in terms of the sides
of such a triangle.
The line 4AB is the side of the triangle joining the points

where m is some number. Actually it can be shown that, with
the normalizations already adopted, m = Vg. The last relation
may therefore be written

where êabc = 1 or - 1 according as abc is an even or odd per-
mutation of 123, and is zero otherwise.
The following relations will be useful. By (3.17), (3.13) and (3.12),

By (3.17), (3.10) and (3.11),

ConseqUently, by (3.16),

Since the line ÂaAB lies in the plane A,,

By (3.18), (3.10),

whence
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We shall write im accordance with the notation described in § 1,

Obviously dABCV has properties of symmetry and skew-symmetry
similar to those defined by (2.2) and (2.3) for dABc,, and satisfies
the identity

similar to (2.5).
From (3.18) it follows that

by a well-known property of the s-symbols 11), so that

or by (3.15),

or, more concisely,

where

Now the equation of the cone having ÂA as vertex and touching
the quadric gAB where it is met by the plane Â, is, according to
the usual formula,

or by (3.13) and the fact that 9AIIÂ’ - AA’

that is,

The polar of this cone with respect to the quadric is the conic
itself; by (3.31) this has the tangential equation

11) See, e.g., VEBLEN, Invariants of Quadratic Differential Forms (Cambridge
Tract 24) Ch. I, equations (8.4) and (3.3).
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So (3.28) or (3.29) gives the coordinates of the conic in terms
of the coefficients of its tangential equation, and shows how the
conic, regarded as a degenerate quadric envelope, is related to

the conic defined in terms of the quadratic complex of lines
which meet it.

Until now the conic has been assumed to be non-degenerate.
The degenerate cases can be included in the formula (3.16) if
certain restrictions are made. Thus if the range of the subscript
a is limited to a = 1, 2 (that is, if we make Â3AB = 0 ), the conic
is a pair of lines harmonically conjugate with respect to the two
lines ÂaAB. If we also make Â2AB = 01 then dABCD = Â1AB Â1CD, and
the conic reduces to a repeated line. There are no other degene-
rate forms of the conic as defined by (2.1) or (2.8).

For a pair of distinct lines equations (3.19 ), (3.20 ) and (3.20a)
remain true (a = 1,2 ) ; in this case hlA, h2A are any planes through
the lines Â1AB’ a’2A B respectively, h A , hA are respectively any
points upon them, and ÂA is any point on the line of intersection
of hlA5 h2A (other than the point of intersection of this line with
the plane ÂA).
One other form of the coordinates dABCD will be of use. Let

the lines lAB’ mAB be two tangents to the conic, and let nAB be
the chord of contact. Through 1AB, MAB, nA B draw any three

planes lA, mA, nA respectively. Then the equation of any cone
touching lA, mA along the lines where they are met by nA is of
the form

where the parameter e/a defines the particular cone. That is,

or

where

Of course gAB is now of determinant zero, so there is no reciprocal
matrix gAg. The conic is the intersection of one such cone and the
plane ÂA; suppose that this is the cone e/cr. Substituting in (2.8),
we get

12) The non-homogeneous appearance of equations (3.28), {3.30) is due to the

normalization of îA (i.e., Î.A Î.A = 1). They may be rendered homogeneous in the
g’s and Î*s by writing ,AB = AB;.C).C_)«A«B.
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since of course 1A 1 = ÂAlB - Âl ’A , with similar formulae for

mAB and nAB. In dealing with any particular conic touching the
lines 1, m where they are met by n, we can absorb the factors é
and a in the coordinates lAB, mAB, nAB, so that (3.33) assumes
the simple normalized form

If the conic is the pair of lines 1, m, we may put nAB - 0, and
obtain

If the conic is a repeated line we may put MAI = lAB. Doing so,
and dividing by 2, we get

Other forms for the coordinates dABCD can easily be found. For
instance, they can be expressed in terms of the sides of triangles
inscribed or circumscribed to the conic. In all cases dABCD has
the form gablaABlbcD, where laAB (a = 1, 2, 3) are the sides of the
triangle and gab are coefficients depending on the nature of the
triangle and on the normalizations.

§ 4. Identities.

We take the coordinates of the conic in the form (3.16). Since
each of the lines Â,,AB meets the other two, we have by (1.15),

Putting C = B and summing, the two terms become the same.
Then putting a = b, we get

which is the linear identity (2.4) already given. Multiplying by
ÂE ÂbFG (and of course summing with respect to the repeated
indices), we obtain a quadratic identity:

If in this we put C = B, the two terms become the same, and
we obtain the quadratic identity in the form given by Todd, viz.

Since the lines ÀaAB are coplanar, it follows from Theorem IV


