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The Cayley-Spottiswoode coordinates of a conic
in 3-space.

by

H. S. Ruse

Edinburgh

If a conic in a three-dimensional projective space is defined

by the quadratic complex of lines which meet it, the coefficients
in the equation of the complex may be regarded as coordinates
of the conic. The coordinates thus defined, analogous to the
Plücker coordinates of a line, are due essentially to Cayley 1), but
were defined independently and differently by Spottiswoode 2).
They were employed recently by J. A. Todd 3) to represent the
conics of 3-space by points of 19-space, for which purpose he
introduced a symmetrical and concise notation which, with
certain modifications, is used in the present paper. Each conic
has twenty-one distinct homogeneous coordinates which satisfy
certain identical relations; these are obtained below by a method
which shows that the symbolic calculus 4) employed by Todd
admits of a geometrical interpretation. A variety of other formulae
are also established, expressing the condition that two conics
should intersect, that they should be coplanar, and so on.

Todd’s notation is extended so as to be brought into confor-
mity with that of tensor, or rather of spinor, analysis. The theory
of four-component spinors 5) is really that of three-dimensional
projective geometry, and the associated calculus has a power and
conciseness which makes it a valuable instrument in the analy-
tical treatment of ordinary projective geometry. It may however
be added that the present paper is not concerned with the dif-

1) CAYLEY [Quart. J. of Math. 3 (1860), 225].
2) SPOTTISWOODE [Proc. London Math. Soc. (1) 10 (1879), 185].
3) TODD [Proc. London Math. Soc. 36 (1933), 172].
4) See GRACE and YOUNG, Algebra of Invariants (Cambridge 1903).
5 ) The theory of four-component spinors, and the notation adopted in this

paper, is outlined in a series of papers by VEBLEN and others in Proc. Nat. Acad.
Sci. 19 (1933) and 20 (1934).
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ferential aspects of the spinor theory, since it deals with a single
3-space and not with the infinity of such spaces (each associated
with a point of an "underlying space") which appear in spin-
geometry proper.

§ 1. Notation and preliminaries.

The points of the projective 3-space are represented, in a given
system of reference, by four homogeneous coordinates
XA == (Xl, X2, X3, X4). Capital letters A, B, C, ... used as suf-
fixes will always take the values 1, 2, 3, 4, and the summation
convention for repeated suffixes will be employed throughout.
A transformation of coordinates (or, alternatively, a collineation)
is given by a linear relation of the type.

where e is an arbitrary factor of homogeneity and T is a square
matrix of rank 4. e will be used generally to denote an arbitrary
factor, and will not necessarily be the same from formula to
formula.
A plane whose equation in the first system of coordinates is

99A XA = 0 transforms into gg’X’A = 0, where

tB being the matrix reciprocal to T B, so that

Hère 5 is the Kronecker symbol having the value unity when
A = C and zero when A -=1= C. The coordinates of a point are there-
fore represented by a central letter with a single upper (contra-
variant) suffix, and those of a plane by a central letter bearing
a single lower (covariant) suffix.

If X A, Y’ are two points of the space, the Plücker coordinates
p AB of the line joining them are defined by

If 99A’ VA are any two distinct planes through this line, the dual
set of Plücker coordinates is given by

Of course PAB = _ plA and PAB == - PBA. The two sets of
Plücker coordinates are connected by the relation
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where BABCD is defined to have the value 1 or - 1 if ABCD is

respectively an even or odd permutation of 1234, and to be
zero if two or more suffixes are equal; êABCD, used below, is defined
in the same way. Both c-symbols are therefore skew-symmetric
for an interchange of any pair of suffixes.
Under the transformation (1.1), pAB becomes p ,AB , where

ep,AB == T TpCD, and p., transforms into p’,, where ep’ =
tCtD In general the mode in which the various quantities
transform will be indicated by the position of their suffixes, the
matrix T A being used with contravariant and the matrix tA with
covariant. So for example EABCD transforms according to

where t is the determinant ] t£ ]. If the arbitrary factor e is

chosen 6) to be equal to t, we obtain £ÂBCD = êABCD’ so that EABCD
may be said to transform into itself; similarly BABCD transforms
into itself.

In the theory of spinors the two sets of Plücker coordinates
of a line are normalized in terms of one another (that is, a parti-
cular choice is made of their factors of proportionality) according
to the formula

from which it at once follows that

This normalization renders definite in any given coordinate system
the opérations of raising and lowering pairs of skew-symmetric
suffixes, these operations being in fact defined by (1.7) and (1.8)
respectively.
With this notation, the identical relation satisfied by the

Plücker coordinates of a line may be written in any of the forms 7)

6) This choice of the arbitrary factor e is equivalent to attaching a "weight"
to the "spinor" êABCD. For present purposes this, like the normalization defined

by (1.7) and (1.8), is not really necessary, but it seemed desirable that the notation
of this paper should be kept as consistent as possible with that of Veblen. The
normalizations introduced in §§ 2, 3 are however made for the purpose of adding
conciseness to the algebra. They do not affect the homogeneity of the formulae,
and therefore do not destroy the projective character of the geometry. {But see
Note 12 below.)

7) Small numbers to the left of formulae in this paper refer to the corresponding
formulae of TODD’S paper (Note 3 above. )
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The condition that two lines pA B, q AI should intersect is

The point where a plane q; A meets a line pAB has coordinates
pAB q;B’ and the plane through a point XA and a line pAB has
coordinates pABX B. The plane pA passes through the line pAB if

and the point XA lies on it if

and conversely.
The line whose Plücker coordinates are PAB (or pAB) will be

referred to as the lirte p. Also it will be convenient later to use

the notation ( pq ) for the inner product p,,q AB of the coordinates
of two lines. So

The following simple theorems will be of frequent use :

THEOREM 1. If hAB, k AB are any pair of square skew-symmetric
matrices of order 4, not necessarily satisfying (1.9) or (1.10), then 8)

The proof consists of writing the relations (1.14) in full, giving
the free suffixes A, C particular values.

If p, q are lines which intersect, (1.10) and (1.14) give

which is therefore an équivalent form of the condition (1.10).
Putting q = p in the last equation, we at once obtain the identity
(1.9) satisfied by the coordinates of a line, but in a slightly
different form, namely

THEOREM II. if p, q are two lines, and

the lines coincide.
For if (1.17) is true, then

for all planes CfJc. But qBC f/Jc is the point where the plane 99, meets

8) Cf WEITZE-li-BôcK, Komplex-Symbolik [Leipzig 1908], 8.
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the line q, and (1.18) states that this point lies on the line p
(Cf (1.12)). Since qqc is any plane, this means that all points on q
lie on p. Hence p, q are the same line.
THEOREM III. The necessary and sufficient conditions that three

lines p, q, r should be concurrent are

The conditions are necessary. For suppose that the lines meet
in the point XA. Then qBC is given by

where QA is any other point on the line q. Hence

since X’ lies on both lines p, r and consequently pABXB and
rcnXc are both zero. So the first of equations (1.19) is satisfied,
and similarly the others.
To establish the sufficiency of the conditions, suppose that

p, q, r are three lines satisfying (1.19), and assume for the moment
that q, r do not coincide. Let XA be any point. Then the first
of the equations (1.19) gives

But rCDXB is the plane through the point XA and the line r;

qBCrcDX D is the point where this plane meets q, and by (1.20)
this point lies on p. Since XA is any point, this means that p, q
meet on all planes through r. Hence either (I) p, q, r are con-

current; or (II) p, r coincide and q meets them; or (III) p, q
coincide but do not necessarily meet r. If (1) or (II) is true, the
theorem is proved. If (III) is true, it quickly follows from the
second of equations (1.19) (using ( 1.14 ) and ( 1.16 ) ) that the
coincident lines p, q do meet r. Similarly in the hitherto excluded
case when q, r coincide, the fact that p meets them is an almost
immediate consequence of the third equation (1.19).

COROLLARY a. If two lines pAB, qAB intersect, and ifpABqBCrcD= 0,
then the line q passes through their point of intersection.
COROLLARY b. If two lines p, q intersect, then PABQ BCPCD = 0,

qABpBCqCD = 0. Conversely, if either qf these relations is satisfied
by two lines, they Í1ttersect.
THEOREM IV. The necessary and sufficient conditions that three

lines p, q, r should be coplanar are
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This is the dual of Theorem III.
COROLLARY a. If the tu’o lines p, l’ intersect and p4BqBcr CD =- 0

then q lies in their plane.
COROLLARY b. If two lines p, q intersect, then pABqBCPCD == 0,

q AB pbcqc’ = 0. Conversely, if either of these relations is satisfied
by tzvo lines, then they intersect.

§ 2. The coordinates of a conic.

Let now

be the equation of the quadratic complex of lines which meet a
given conic. Since pAB is skew-symmetrical in its suffixes, the
coefficients dABCD may be defined as skew-symmetrical in A, B
and also in C, D. That is,

Also, since the left-hand side of (2.1) may be written dCDABpCDpAB,
we may take

So dABcD is skew-symmetrical in the first pair and in the last pair
of suffixes, but is symmetrical for an interchange of these pairs.
Todd indicates this by placing a comma between the pairs in
question, thus dA$, cD, but it is more convenient for present
purposes to omit the comma.
On account of (1.9) it may be assumed that dABCD satisfies

the linear identity

Further, from (2.2), (2.3), (2.4), we have

which may also be written

The coefficients DABCD thus defined are the Cayley-Spottis-
woode coordinates of the conic. Because of (2.2) and (2.3) only
twenty-one of them are distinct, and these satisfy the identity
(2.4). As remarked by Todd 9), dABCD has the properties of sym-

11) TODD, loc. cit., 205.
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metry and skew-symmetry with regard to its suffixes possessed
by the curvature tensor RABCD of Riemannian geometry.

Spottiswoode defined the conic as the intersection of a quadric

(2.31 )

and a plane
(2.32)

and defined the coordinates of the conic by formulae equivalent
to

or

where ôf§ is the generalised Kronecker symbol equal to

à£à§ - à§à£. The coefficients gAB are of course assumed to be
symmetrical in the suffixes, so gAB == gBA. The dABeD of (2.8)
are easily 1°) shown to be the same as those previously defined.
We shall in general suppose that the quadric gAB is non-dege-

nera.te, so that th e determinant g = I gA B | is not zero. Let gA B
be th e matrix reciprocal to gAB’ so that

Then of course gAB P A PB == 0 is the tangential equation of the
quadric.

If (PA is a plane, its pole with respect to the quadric has coor-
dinates

and if XA is a point, its polar plane with respect to the quadric
has coordinates

q;A and XA could of course be multipied by any factor, but it

is convenient to normalize them in relation to cP A and XA, and
also in relation to the coefficients gAB, according to the last two
formulae; these formulae then give a method of raising and
lowering single suffixes belonging to symbols representing planes
and points. It is perhaps not altogether desirable to introduce
a method of raising and lowering suffixes in addition to that
defined by (1.7) and (1.8), but the possibility of confusion to
which it leads is small, while the gain in conciseness is great.

1°) TODD, loc. cit., 183.
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It should be noted that a conic may be defined by its plane
(2.7) and any quadric (2.6) which passes through it. But in any
given problem it will be assumed that a definite quadric is chosen,
so that the process of raising and lowering suffixes is unambiguous.

If P AB is a line, its polar line with respect to the quadric has
coordinates gACgBDpCD. This may not be denoted by pAB, since
in accordance with (1.7) the latter symbol represents the dual
coordinates of the same line p,,, which does not in general
coincide with its polar. Similarly the dual coordinates gACgBDPCD
of the polar line may not be denoted by pAB.

§ 3. Special forms for the coordinates of a conic.

For the moment it will be assumed that the conic is non-

degenerate, and that it is defined as the intersection of a plane
ÀA and a non-degenerate quadric gAB.

Let htp) - (hA), hA), hA),hA» be the vertices of any tetrahedron
which is self-polar with respect to the quadric. The ordinal

(scalar) suffixes (P), (Q ), (R), ..., which are bracketed to

distinguish them from the coordinate (tensor) suffixes A, B,
C, ..., , take the values 1, .., 4 and, when repeated, imply a
summation. Then with a proper choice of the unit point, the
equation of the quadric with h1p) as tetrahedron of reference
is

or

where ô(P)(Q) is a Kronecker delta and the coordinates X(P) are
connected with the original system by the formula

if the h p are properly normalized. Hence

which mav be written

The matrices h1p), h(Q)A are therefore reciprocal to one another, so

(summation with respect to ( P ) . Lowering the suffix A, we get
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The coefficients h(P)A for ( P ) == 1, 2, 3, 4 are of course the (nor-
malized) coordinates of the faces of the tetrahedron, since h(P)A
is the polar plane of htp). The above analysis may be compared
with that belonging to the theory of orthogonal ennuples in
Riemannian geometry.
Equation (3.5) corresponds to the symbolic equation (2.41)

of Todd’s paper. Symbolically gA B = 1A 1B, so it is evident that,
in order to pass from the symbolic treatment of the subject to
one in which the algebraic operations admit of a geometrical
interpretation, it is merely necessary to replace 1 by h(P) and to
allow a repetition of the subscript (P) to imply a summation
from 1 to 4. So instead of writing gAB = lA lB = mA mB = ...
in the manner of Todd, 1 write gAB = h pA h pB = h(Q)Ah(Q)B = ....
That h-4) are the vertices of any self-polar tetrahedron means

that h1p) are replaceable by h’A where

the coefficients k(P)(Q) being such that

It is however convenient to limit the choice of the self-polar
tetrahedron by requiring that the plane of the conic shall be one
of its faces. So we write

and denote

becomes

Then (3.5)

The ordinal suffixes a, b, ... will run from 1 to 3 and, when
repeated, will sum over that range.

By (3.3) and (3.4) we get

Hence, raising the suffix B in the last equation,

The ha (a = 1, 2, 3), are the vertices of a triangle self-polar with
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respect to the conic, and (3.11) states that each of these lies in
the plane ÂA. The point ÂA is the pole of ÂA with respect to the
quadric, and (3.12) states that this lies on each of the planes
h,,,, which are planes through the respective sides of the self-

polar triangle. 
Substitute from (3.9) in (2.8). We get

(2.43)

where

(2.42)

The ÂaAB are the normalized coordinates of the sides of any

triangle self-polar with respect to the conic, and (3.16) is an

expression for the coordinates of the conic in terms of the sides
of such a triangle.
The line 4AB is the side of the triangle joining the points

where m is some number. Actually it can be shown that, with
the normalizations already adopted, m = Vg. The last relation
may therefore be written

where êabc = 1 or - 1 according as abc is an even or odd per-
mutation of 123, and is zero otherwise.
The following relations will be useful. By (3.17), (3.13) and (3.12),

By (3.17), (3.10) and (3.11),

ConseqUently, by (3.16),

Since the line ÂaAB lies in the plane A,,

By (3.18), (3.10),

whence
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We shall write im accordance with the notation described in § 1,

Obviously dABCV has properties of symmetry and skew-symmetry
similar to those defined by (2.2) and (2.3) for dABc,, and satisfies
the identity

similar to (2.5).
From (3.18) it follows that

by a well-known property of the s-symbols 11), so that

or by (3.15),

or, more concisely,

where

Now the equation of the cone having ÂA as vertex and touching
the quadric gAB where it is met by the plane Â, is, according to
the usual formula,

or by (3.13) and the fact that 9AIIÂ’ - AA’

that is,

The polar of this cone with respect to the quadric is the conic
itself; by (3.31) this has the tangential equation

11) See, e.g., VEBLEN, Invariants of Quadratic Differential Forms (Cambridge
Tract 24) Ch. I, equations (8.4) and (3.3).
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So (3.28) or (3.29) gives the coordinates of the conic in terms
of the coefficients of its tangential equation, and shows how the
conic, regarded as a degenerate quadric envelope, is related to

the conic defined in terms of the quadratic complex of lines
which meet it.

Until now the conic has been assumed to be non-degenerate.
The degenerate cases can be included in the formula (3.16) if
certain restrictions are made. Thus if the range of the subscript
a is limited to a = 1, 2 (that is, if we make Â3AB = 0 ), the conic
is a pair of lines harmonically conjugate with respect to the two
lines ÂaAB. If we also make Â2AB = 01 then dABCD = Â1AB Â1CD, and
the conic reduces to a repeated line. There are no other degene-
rate forms of the conic as defined by (2.1) or (2.8).

For a pair of distinct lines equations (3.19 ), (3.20 ) and (3.20a)
remain true (a = 1,2 ) ; in this case hlA, h2A are any planes through
the lines Â1AB’ a’2A B respectively, h A , hA are respectively any
points upon them, and ÂA is any point on the line of intersection
of hlA5 h2A (other than the point of intersection of this line with
the plane ÂA).
One other form of the coordinates dABCD will be of use. Let

the lines lAB’ mAB be two tangents to the conic, and let nAB be
the chord of contact. Through 1AB, MAB, nA B draw any three

planes lA, mA, nA respectively. Then the equation of any cone
touching lA, mA along the lines where they are met by nA is of
the form

where the parameter e/a defines the particular cone. That is,

or

where

Of course gAB is now of determinant zero, so there is no reciprocal
matrix gAg. The conic is the intersection of one such cone and the
plane ÂA; suppose that this is the cone e/cr. Substituting in (2.8),
we get

12) The non-homogeneous appearance of equations (3.28), {3.30) is due to the

normalization of îA (i.e., Î.A Î.A = 1). They may be rendered homogeneous in the
g’s and Î*s by writing ,AB = AB;.C).C_)«A«B.
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since of course 1A 1 = ÂAlB - Âl ’A , with similar formulae for

mAB and nAB. In dealing with any particular conic touching the
lines 1, m where they are met by n, we can absorb the factors é
and a in the coordinates lAB, mAB, nAB, so that (3.33) assumes
the simple normalized form

If the conic is the pair of lines 1, m, we may put nAB - 0, and
obtain

If the conic is a repeated line we may put MAI = lAB. Doing so,
and dividing by 2, we get

Other forms for the coordinates dABCD can easily be found. For
instance, they can be expressed in terms of the sides of triangles
inscribed or circumscribed to the conic. In all cases dABCD has
the form gablaABlbcD, where laAB (a = 1, 2, 3) are the sides of the
triangle and gab are coefficients depending on the nature of the
triangle and on the normalizations.

§ 4. Identities.

We take the coordinates of the conic in the form (3.16). Since
each of the lines Â,,AB meets the other two, we have by (1.15),

Putting C = B and summing, the two terms become the same.
Then putting a = b, we get

which is the linear identity (2.4) already given. Multiplying by
ÂE ÂbFG (and of course summing with respect to the repeated
indices), we obtain a quadratic identity:

If in this we put C = B, the two terms become the same, and
we obtain the quadratic identity in the form given by Todd, viz.

Since the lines ÀaAB are coplanar, it follows from Theorem IV
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of § 1 that

Multiplying by ÂF ÂbGHÂL, we get the cubic identity

Some of these equations must be independent of the linear and
quadratic identities, since the latter were deduced from the fact
that the lines ÂaAB meet two by two (which is true of concurrent
as well as of coplaner lines), while (4.6) was deduced from the
fact that the lines are coplanar. It may however be noticed that
if for example we put E = G, F = H in (4.6), we obtain an
identity which is a consequence of (4.4).

It is easy to show that, if in (4.6 ) we take only those equations for
which the suffixes C, D have equal values, we obtain the cubic
identities given by Todd (his formula (2.47)). The cubic

identities given by him do not therefore .by themselves form
a covariantive set, but are part of the larger set (4.6) which
is completely covariantive.

It may be remarked that the quadratic identity obtainable
from (4.5) by putting b = c and multiplying by ÂEF is deducible
from the linear identity (2.5a).
A set of quartic identities satisfied by dABCD may be obtained

by eliminating Â, in all possible ways from four of the equations
ÂA ÂB = o, which express the fact that the lines Â" all lie in

the plane ÂA. Since however we have already used the fact that
the lines are coplanar, it is to be expected that these quartic
identities will be deducible from the identities already obtained,
and so contain nothing essentially new (cf. Todd, loc. cit., page 186).

§ 5. Degenerate conics.

The present and subsequent sections of this paper contain a
series of theorems on conics as defined by their Cayley-Spottis-
woode coordinates, many of these theorems being interpretable
in terms of the 19-dimensional representation of Todd.
THEOREM 1. The necessary and sufficient condition that the

conic dABCD should be a pair of lines is

The condition is necessary. For if the conic is a pair of lines, then
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the summation ivith respect to a being from 1 to 2. New by
(1.16) and Theorem III (§ 1) Cor. b,

since the suffixes a, b, c, which take the values 1, 2 only, cannot
all be different. Multiply by ÀúEFÂgHÀCKL’ and we obtain (5.1).
To prove the sufficiency, we assume that (5.1) is true for d

given by (5.2), where the suffix a sums from 1 to 3; that is, we
assume that the conic may be of a general form. Lowering the
suffixes GH in (5.1), multiplying by hâ hb hl and using (3.20a),
we quickly get (5.3), (a, b, c = 1, 2, 3). So by Theorem III the
three lines Âal, are concurrent as well as coplanar. Consequently
À3AB is of the form pÀ1AB fl- q À2AB and d is of the form

It is easy to show that this is reducible to

where Â’A Il Â"2A B are linear combinations of Â1AB’ Â2A B. The conic
is therefore a pair of lines.
THEOREM 2. The necessary and sufficient condition that the

conic d should be a repeated line is

For, if the conic is a repeated line, say ÂA B. then

Since ÀABÂAE == 0 by (1.16), the necessity of (5.4) at once follows.
The condition is certainly not true if the conic is of a more

general form, as may be seen by substituting from (3.35) in

(5.4) and using (1.16) and (1.15); we get

which is not a true relation if 1 and m are different.

An equivalent form of the condition is 13)

§ 6. Relations between points, lines, planes and conics.

The condition that a line PAB should meet the conic d,,,, has
already been given in (2.1).

13) 1 owe to Dr. TODD the remark that (5.4a) is an alternative form of the

condition (5.4).
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THEOREM 3. The necessary and sufficient condition that a point
XA should lie in the plane of the conic d is 14)

Thé condition is necessary. For, if XA lies in the plane of the
conic, then ÂaABXB, which is the plane through the point XA and
thé line ÂaAB’ and is therefore itself the plane of the conic, contains
the line Ab . So /B’aAB Âb = 0. Multiplying by ÂaCDÂb , we get
(6.1).
To establish the sufficiency, assume the truth of (6.1). Lower

the suffixes FG, multiply by h)hj and use (3.20a). On dividing
by ÂCÂF we get ÂaABÂE XB == 0; that is, the plane ÂaABXA
through X A and any one of the lines Âa contains ail the lines Âa.
So XA is in the plane of the conic.
THEOREM 4. The necessary and sufficient condition that two

points XA, yA should be conjugate with respect to the conic is

Take the conic in the form (3.34), and let l, m be the tangents
from XA to the conic. Then if X’, yA are conjugate, n passes
through YA . The necessity of (6.2) follows at once from (1.12).
The condition is also sufficient. For (6.2) may be written

so, assuming for the moment that the conic is non-degenerate,
we get on multiplying by ÂB AD and using (3.19), (3.9),

so the points are conjugate with respect to the cone (3.31).
Multiply (6.3) by hEhD and use (3.20). We get

so either ÀAXA = 0 or Â. Y’ = 0, that is, either X A or Y’ lies
in the plane of the conic. Suppose XA does so. Multiplying (6.3)
by ÂBh, using (3.19) and (3.20), we obtain haAOabÂcXAyc == 0.
So either hbA XA == 0 or Â, Y’ - 0. The former equation would
require XA to lie in all three of planes haA and therefore coincide
with ÂA, which is not the case since it lies in the plane of the
conic. So the latter is true and yA also lies in the plane of the conic.

14) The condition (6.1) for a point to lie in the plane of a conic is due to I)r. TODD,
who derived it by use of the symbolic calculus and communicated it to me. 1 had

previously obtained the condition in the form dABCDdKLXD.yL=O, whieh,
though not linear in XA, appears to be equally correct.
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It is easy to show that the theorem is still true if the conic
is a pair of lines.
COROLLARY. The necessary and sufficient condition that a point

XA should lie on the conic is

THEOREM 5. The necessary and’ sufficient condition that the

point XA should be the pole with respect to the conic of the line pAB is

The proof is similar to that of Theorem 4.

THEOREM 6. If pAB is a line such that

then, if the conic d is non-degenerate, p lies in its plane; but if d
is a pair of lines, p either lies in their plane or passes through their
point of intersection, or both.
For multiplying (6.6) by h’, using (3.20a ) and dividing by ÀA,

we get ÀaCDpCD = 0. So p meets each of the lines Âa. Hence if
the conic is non-degenerate, (a = 1, 2, 3), p lies in its plane.
If the conic is a pair of lines, (a = 1, 2), the line p may be either
concurrent or coplanar with the lines Âa, and hence with the lines
which constitute the conic; or it may be both concurrent and

coplanar.
If d is a repeated line, p intersects it.

It is easy to see by the use of (1.15) and Theorem IV, Cor. b
that alternative forms of the condition are

THEOREM 7. The necessary and sufficient condition that the

line pAB should lie in the plane of the conic is

For, if pAB lies in the plane of the conic, the lines Âa’ p are
coplanar. Hence by Theorem IV, ÂBPAEÂ:F == o. Multiply by
ÂCD ÂGH, and the necessity of (6.9) follows at once.
To prove the sufficiency, assume the truth of (6.9). Lower the

suffixes C D and GH, multiply by hâ hb and use (3.20a). On
dividing by Â, Â, we get ÂBPAEÂ:F == o. Since ÂA " and ÂEF
intersect, p lies in their plane by Theorem IV, Cor. a. Hence p
lies in the plane of the conic.
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If the conic is a repeated line, p intersects it.
THEOREM 8. If p, q are lines such that

then one lies in the plane of the conic and the other passes through
its pole with respect to the conic.

Hence, if they both lie in the plane of the conic, they are
conjugate lines.

Suppose first that the conic is non-degenerate. By (6.10) and
(3.16) we have

where a, b sum from 1 to 3. Multiplying by h: ÂD Â Fh and using
’(3.19), (3.20), we quickly get ÂAhcchdEÂGpAEqCG == 0, whence
either ÂAhdEpAE = 0 or ÂGhccqCG = 0; that is, either Âd,4 EP AE = o
or ÂCGcqGC = 0. Hence either p or q meets all the lines Âa, so
that either p or q lies in the plane of the conic. Suppose that p
does so. Multiplying (6.11) by ÂBÂDÂFÂH and using (3.19) and

(3.9), we get

That is, the polar line of p with respect to the cone (3.31 ) (which
line is unique since p does not pass through the vertex), meets q.
So the pole of p with respect to the conic lies on q.

If the conic is a pair of lines, it is easily shown that (6.10)
means that either p or q passes through their point of inter-
section ; and if a repeated line, that either p or q meets it.
COROLLARY. The necessary and sufficient condition that the

line p should touch the conic d is

If d is a pair of lines, this means that p passes through their
point of intersection. If d is a repeated line, p meets it.
THEOREM 9. If lA is the plane of the conic d, then

and conversely.
The proof of this follows easily from (1.11), (3.16) and (3.20a ).
THEOREM 10. I f a plane cP A touches the conic d, then

and conversely.
Assume first that the conic is non-degenerate. Let (PA cut the
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plane of the conic in the line ZAB’ so that lAB is a tangent. Let
m,, be any other tangent, and let nAB be the chord of contact.
Then

whence

since 99A contains the line l. But nAB ffJ A is the point where the
plane 99A meets the line n, that is, it is the point of contact of
the line 1, and therefore lies on the conic. Using (6.4) we get (6.14).

If d is a line-pair, and 99A "touches" d, that is, if 99A passes

through the point of intersection of the lines d, it is easily shown
that (6.14) is satisfied. If d is a repeated line, (6.14) is an identity
by (5.4).
To prove the converse, assume (6.14) to be true for a plane 99A,

and suppose for the moment that d is non-degenerate. By (3.16 )
and (3.17) we may write (6.14) in the form

by (3.21). Dividing by ÂEÂF and using (3.22), we get

or, since BabcBubd = 2b,dl we get by (3.15) the equation

That is, the plane cp A touches the cone (3.32) and hence also
touches the conic.

If d is a pair of distinct lines 1, m, it may be expressed in the
form (3.35). Substituting in (6.14) and using (1.16) and (1.15),
we quickly deduce that either cpAlABmBE == 0 or cpcmcDlDF =::: o.
The former equation means that the point cp A lAB in which
meets 1 lies on m, and the latter that the point in whieh 99, meets
m lies on 1. So 99A passes through the point of intersection of l, m.

§ 7. Relations between tzvo conics.

In the present section certain invariant relations are found
between two conics d and d’. For d we take the general forms
(3.16), (3.33), and for d’ the corresponding formulae
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It is implicitly assumed in (7.1) that the triangle Â’ a self-polar
with respect to d’ is not the same as the triangle Âa self-polar
with respect to d. In dealing with coplanar conics it is of course
possible to refer them to a common self-polar triangle, in which
case, if (3.16) were taken for d, it would be necessary to take d’
in the form gabÂaABÂacD’ where the gab are numbers such that
gab = 0 when a # b.

Symbols such as hâ used below bear to d’ the same relation
as the corresponding unaccented symbols bear to d.
An identity.
If d, d’ are any two conics, then

For by (1.14),

for any two lines Âa, Âb. Multiplying by ÂaCDÂFG, the identity
follows at once.

THEOREM 11. I f d, d’ are two conics such that

then either they are coplanar or they are pairs of lines meeting in
the same point ; and conversely.

Suppose first that neither conic is a repeated line. Multiply
(7.4) by h§ h§ and use (3.20a), and we quickly obtain ÂDÂCD = 0;
so each of the lines Âa meets each of the lines À§. Hence, unless
both conics are degenerate, they are coplanar. If both are dege-
nerate, the four lines Âa’ À§ may be coplanar or concurrent, and
hence also the four lines which constitute the two conics.

If either conic is a repeated line, it follows at once from (6.1 ?
that the conics are coplanar.
The converse easily follows from (1.10) and (3.16).
For non-degenerate conics, (7.4) is evidently a necessary and

sufficient condition that they should be coplanar.
THEOREM 12. The necessary and sufficient condition that two

conics d, d’ should be coplanar is

or

If either of the relations (7.5), (7.5a) is true, then also is the
other. 

.

Condition (7.5) is necessary. For if d’ lies in thé plane of d, so
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does each of the lines À§ to which d’ is referred. Hence by
Theorem 7,

Multiplying by Â’ aKL we get (7.5).
To establish the sufficiency assume that (7.5) is true. If d’

is a repeated line, it follows at once from Theorem 7 that this
line lies in the plane of d. If d’ is not a repeated line, multiply
(7.5) by hâ and use (3.20a). We get (7.6), which means that
each line Â’ a lies in the plane of d. Hence the conics are coplanar.

Interchanging d, d’, it is evident that the condition (7.5a) is

equivalent to (7.5), and that the one relation must be deducible
from the other.
THEOREM 13. I f d, d’ are two conics such that 15)

then either (I ) they are coplanar, or (II) they are non-coplanar and
cut the line of intersection of their planes in harmonically conjugate
points, or (III) one conic is a pair of lines of which one lies in the
plane of the other conic.

Special cases of (II), for which the theorem is conventionally
true, are: (IV) one of the conics touching the line of intersection
of their planes and the other passing through the point of contact;
(V) one of the conics a pair of lines meeting on the other conic;
(VI) one of them a repeated line intersecting the other conic.

Possibility (I ) follows at once from (7.4) by raising the suffixes
A B and changing them into E F, which gives (7.7).
Suppose then that the conics are not coplanar. Assume for the

moment that neither touches the line of intersection of their

planes, that neither is a repeated line, and that, if either is a

pair of distinct lines, then neither of these lines lies in the plane
of the other conic. Then if nAB is the line of intersection of their

planes, we may take d in the form

with the last term absent if d is a line-pair. We refer d’ to a self-
polar triangle. Take n to be one of its sides, choose a second,
p say, to pass through the intersection of m and n, and let À
be the third side. Then by (3.16),

ls) Cf TODD, loc. cit., 190; also R. A. JoHNsoN [Trans. Amer. Math. Soc. 15

(1914), 354].
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with the last term absent if d’ is a line-pair. Now since n is com-
mon to both planes it meets all the other lines, and by supposition
u meets m. Hence by (1.10) and (7.7),

in the notation of (1.13). So either (Âl) - 0 or (Âm) - 0 or both;
that is, A meets either 1 or m or both. If A meets 1 but not m,
then, since the triangle (Àpn) is self-polar with respect to the
conic d’ (or since Â, ,u separate the lines d’ harmonically when
d’ is a line-pair), the conics cut n in harmonically conjugate
points; for it will be remembered that d passes through the inter-
sections of l, m with n. If however À meets m, then since y also
meets it, we obtain (V); and if À meets both 1 and m we get
(V) again.

It is easy to prove that the only remaining possibilities are
(III), (IV) and (VI), the last being indeed obvious from (2.1).
It is also easy to prove the converse, namely that conics satis-
fying any one of the conditions (l)-(VI) satisfy (7.7).

Before proceeding further, it will be convenient to introduce
an abbreviated notation for certain expressions which occur in
the following theorems. If d, d’ are two conics, we write

Since OEjf is introduced purely as an abbreviation, its lack of

symmetry as between the two conics is of no consequence. It

could be made symmetrical if desired by lowering the upper
pair of suffixes. The invariant defined by (7.9) is the well-known
invariant f1J of two quadrics (in this case degenerate).
With this notation, the conditions (7.4), (7.7) may be written

OEjf == 0, f/J = O.
THEOREM 14. T he necessary and sufficient condition that the

two conics d, d’ should intersect is

The necessity of the’ condition is easily proved: if the conics are
coplanar, (7.10) follows at once from (7.4). If they are not copla-
nar, but meet in a point P on the hne of intersection n of their
planes, then, provided that neither touches n, they may be taken
in the forms
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and we may assume that l, l’ meet in P. From this and the fact
that n meets all the other lines, (7.10) follows from (1.10). If

either conic touches n, a similar proof shows that (7.10) still

holds provided that the conics intersect.
To establish the sufficiency of the condition, we assume that

(7.10) is true. Then obviously d, d’ may be coplanar, and if so
intersect. Suppose however that they are not coplanar and that
neither touches the line of intersection n of their planes. Then
we may take d, d’ in the forms (7.11), (7.12), where n meets 1,
l’, m, m’. Using (1.10), we get

whence

and

so by (7.10),

Hence at least one of the following equations is true : o - 0, o’ = 0,
(ll’ ) = 0, (mm) = 0, (lm’ ) - 0, (l’m ) = 0. If it is remembered
that the vanishing of the inner product of the coordinates of
two lines means that the lines intersect, it is at once evident
that the conics d, d’ must meet in at least one point. A similar
proof holds if either conic touches the line of intersection of their
planes.
THEOREM 15. The necessary and sufficient condition that the

conics d, d’ should meet in at least two points is

This is easily proved by methods similar to those adopted
above. The two points of intersection may of course be coincident.
THEOREM 16. If 

then either the conics are coplanar or one at least touches the line
of intersection of their planes; and conversely 16).

16) That the condition (7.17) might have the meaning stated was suggested to
me by Dr. Todd.
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(A line-pair "touches" a given line if the three lines are con-

current. )
That the conics may be coplanar is obvious from (7.4). Suppose

that they lie in different planes, and that one, say d, meets the
line of intersection n of their planes in distinct points P, Q. Let
l, m be the tangents to it at these points. Then

with the last term absent if d is a line-pair. For d’ take

where l’, m’ meet in P and n’ is the polar of P with respect to d’.
Then n meets all the other lines and 1 meets l’, m’. Hence
0 - 2(lnl)(mn’) and q&#x3E;g 0" = 4(In’ )2[ (nm’ )2 + (mml)(l’m)J, so
(7.17) gives (lnl)2(mrnl)(l’m) = 0. Hence at least one of the

following statements is true: (I ) n’ meets 1, (II) m’ meets m,
(111) l’ meets m. If (I ) is true, d’ is a pair of lines meeting on n.
In case (II), m’ coincides with n so n touches d’, and similarly
in case (III).

Other cases not included in the above proof are : d’ a general
conic passing through P; d’ a line-pair meeting on n but not at P.
These may be treated separately.
The proof of the converse presents no difficulty.

§ 8. Conclusion.

Every theorem given above has a dual, so that a similar theory
of cones in 3-space is easily deducible. Both theories may be
included in a more general one, namely that of quadrics in 3-space,
a quadric being definable in terms of the quadratic complex of
lines which touch it.

This remark explains some peculiarities which appear in the
present paper. It might have been expected, for example, that
any covariantive relation expressing a geometrical relationship
between two non-degenerate conics would have the same meaning
for degenerate conics. This however is not always the case: thus
in Theorem 11 a condition that a pair of non-degenerate conics
should be coplanar means, when the conics are both degenerate,
that they are either coplanar or possess a common point of inter-
section. This is due to the fact that, from the point of view of
the present paper, a pair of lines is a degenerate cone as well
as a degenerate conic.
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Consideration of the present theory from the more general
standpoint will be deferred to a later paper. It seemed advisable
to begin with the special case of conics for two reasons: first,
that the generalised theory of quadrics is thereby rendered more
illuminating, and secondly, that conics (and cones) have many
properties not possessed by proper quadrics, so that it is desirable
to consider such special properties before treating conics and
cones merely as degenerate quadrics.
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