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Almost hamiltonian groups 1)
by

Reinhold Baer

Urbana, 111.

The éléments in a group which transform every subgroup into
itself form the norm of the group. The theory of the groups
with cyclic norm quotient group has been developed completely
in a previous paper 2 ). This theory establishes pretty well the
relation between the norm of a given group and any element of
this group with two essential exceptions: this theory does not
give any information, if the norm and the element in question
generate together either an abelian group or a hamiltonian group.
It is the object of this note to deal with the second of these
alternatives under the additional hypothesis that the norm

quotient group is abelian. These apparently rather weak assump-
tions turn out to be very restrictive; and this makes it possible
to give a fairly complete theory of this class of groups.

1. The central Z(G) consists of all those elements z in a

group G which satisfy: zx = xz for every element x in G; and
similarly the norm N(G ) of a group G consists of all those elements
g in G which satisfy: gS = Sg for every subgroup S of G.

Z(G) and N(G) are both characteristic (and therefore normal
or self-eonjugate or invariant) subgroups of the group G and
Z(G) is a subgroup of N(G). If norm and central of the group
G are different, and if the norm quotient group of G is abelian,
then it has been proved 3) that G is the direct product of its
primary components, that 4) N(G) is the direct product of the

1) Presented to the American Math. Soc. November 25/26, 1938.

2) R. BAER, Der Kern, eine charakteristische Untergruppe [Comp. Math. 1

(1934), 254-283].

3) R. BAER, Gruppen mit vom Zentrum wesentlich verschiedenem Kern und
abelscher Faktorgruppe nach dem Kern [Comp. Math. 4 (1936), 1-77], Satz 1,
p. 3.

4) R. BAER [Comp. Math. 1 (1934)], Satz 4, p. 260.



383

norms of the primary components, and that consequently it is

no loss of generality to assume that the group G is a p-group.
Throughout this paper we shall denote by { ... } the group

which is generated by the enclosed elements and element-sets;
and we shall put

2. If the group G is a p-group, and if the subgroup N of G
is contained in the norm of G and is a normal subgroup of G,
then the elements of G may be divided into three classes according
to their relation to the distinguished subgroup N.

There are first those elements of G which permute with every
element of N. They form the centralizer Z(N  G) of N in G.
If N is abelian, then these elements z may be characterized by
the fact that {N, z} is an abelian group.

There are secondly those éléments h in G which generate
together with N a hamiltonian group. It is known that hamil-
tonian p-groups are direct products of a quaternion group and
of any number of (cyclic) groups of order 2, a quaternion group

, being generated by two elements u and v which are subject to
the relations:

u2 = v2 = C, c2 = y uvu-lv-1 - c.

The elements h so that {N, h} is a hamiltonian group form a
subset H(N  G) of G which may be void. It will be one of our
most fundamental hypotheses to assume that H(N  G) is not

vacuous.

If N is an abelian group, then the elements h in H(N  G)
have the property: h-lxh = x-1 for every x in N. The elements
with this last property are said to invert N. Since the product
of an element in Z(N  G) and of an element which inverts N
is itself an element that inverts N, and since the product of two
elements which both invert N is an element in Z(N  G), it follows
that the elements in G which either invèrt N or belong to Z(N G)
form a subgroup J(N  G) of G.

Since we are going to assume that H(NG) is not vacuous,
we may assume without loss of generality that G is a 2-group,
i.e. a group all or" whose elements are of order a power of 2.

It is known 5) that N is abelian, if G contains elements which
belong neither to Z(N  G) nor to H(N  G). If r is such an

5) R. BAER, Gruppen mit hamiltonschen Kem [Comp. Math. 2 (1935),241-246],
Zusatz 3, p. 246.
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element, then denote by 2n(x) its order and by 2a(x) = 2a(N;x) the
order of the automorphism which x induces in N. The following
properties of such an element x are known: 6)

(2.1) {N, x2a{ae)} is an abelian group and x2’(’) is an element of

maximum order in this group.

(2.2) If g is an element in N, then x-lgx - g x2n(x)-a{ae)h(g,x)
and there exist elements e in N with h(e, g) = 1.

(2.4) ) x 2n(x)-a(ae). IS an element in N. 

3. It will be convenient to introduce the following concept.
The subgroup N of the 2-group G is said to be zn hamiltonian
situation, if N and G satisfy the following conditions:

(3.a) N is a normal subgroup of G.
(3.b) N and G/N are both abelian.

If e.g. G itself is a hamiltonian 2-group, then G contains sub-

groups which are a direct product of one cyclic group of order 4
and of any (finite or infinite) number of (cyclic) groups of order
2. If N is any such subgroup of G, then N is in hamiltonian

situation in G. It is for this very reason that groups which contain

subgroups in hamiltonian situation may be called almost hamil-
tonian groups.

It has been proved elsewhere 7) that the norm of a 2-group
is hamiltonian if, and only if, the group is hamiltonian. The norm
of a hamiltonian 2-group is therefore not in hamiltonian situation.
We shall see later on 8) that the hamiltonian 2-groups are the
only almost hamiltonian groups whose norm is not in hamil-

tonian situation.

4. It is the object of this section to determine the structure
of the subgroups C (N C G) and J(N  G) for subgroups N which
are in hamiltonian situation.

LEMMA 4.1: If the subgroup N of the 2-group G is in hamiltoniau
situation in G, then

6) R. BAER [Comp. Math. 1 (1934)], Satz 7, p. 267/268.
7 ) Cp. footnote 5).

8) Theorem 4.4 below.
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consequently a direct product of one cyclic group of order
4 by any ( finite or infinite) number of (cyclic) groups of
order 2.

REMARK: There exists - by (VI) - one and only one element
different from the group-unit in N2 and this uniquely determined
element will be denoted throughout by c.

PROOF: Since N is in hamiltonian situation in G, N is abelian
and H(N  G) is not empty. N is consequently a direct product
of one cyclic group of order 4 and of groups of order 2 whose
number may be 0, positive finite or infinite. Let u be an element 
of order 4 in N and v an element in H(N  G). The elements u
and v generate a quaternion group and satisfy the relations:

where c is the uniquely determined élément 1 in N2. Note

in particular that v induces an inversion in N.
If zv is some element in C(N G), then v and uv induce the

same automorphism in N, namely an inversion. ze» is therefore
not an element in C(N  G). Since N  N(G), this involves that
there are only two possibilities:

Either {N, wv) is hamiltonian. This is the case if, and only if,
(WV)2 = C.
Or else {N, wv} is neither an abelian nor a hamiltonian group.

Since the commutators of v and zew with elements in N form the

group, generated by c, it follows in this case from (2.4) and (2.3)
that there exists a positive integer i so that

We are going to prove that this second case is void, i.e. that

zeav belongs always to H(NG).
To prove this, note firstly that for every element y in C(N  G)

there exists a positive number j so that (yv)2’ = c and that there-
fore in particular (YV)2 -=F 1. Note secondly that for elements y
in C(NG) and not negative integers i we have
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Since [v, y] is an element in N, it follows that y and [v, y] permute
with each other and therefore it follows by complete induction
that 

If finally is an élément in C(N  G) and i a positive integer so
that 

then

and since w2i is an element in C (N  G),

and this is impossible. Thus we have proved:

(4.1.1) If v is an element in H(NG) and w is an element in
C(N  G) then c = (WV)2. -

This last result is easily transformed into a more convenient
form. For, if v is an element in H(N  G) and an element in
C (N C G ), then

or w [v, w] w = 1 and consequently [v, w] = w-2 or VWV-1 = W-1.
Thus we have proved, since G/N is abelian:

(4.1.2) If v is an élément in H(N  G) and is an element in
C(N  G), then zew is an element in H(N  G), w2 = [w, v] is an
element in N and rozew-1 = ul-i.

This last fact shows that induces in C(N  G) an automor-
phism and that this automorphism is the inversion. Since an
inversion is an automorphism if, and only if, the inverted group
is abelian, it follows that C(N  G) is abelian. This proves (1),
and (II) is a consequence of the definition of J(N  G) and of
the fact the elements in H(N  G) - which exist by our hypothesis
- are in J(NG) but not in C(NG).

(III) is a consequence of (I ) and (4.1.2).

That the elements in H(N  G) are contained in J(N  G),
but not in C(N  G), has been remarked before. If conversely
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the element g in G induces an inversion in N, then g and any
element v in H(N  G) induce the same automorphism in N.
Hence there exists an element w in C(N  G) so that g = wv

and it follows from (4.1.1) that g2 = (WV)2 = c2 and that therefore
g is an element in H(N  G). This proves (IV). 

(V) is a consequence of (4.1.2) and (VI) is a consequence of

(4.1.1) and this completes the proof of the Lemma. 
COR,OLLARy 4.2: Assume that the subgroup N of the 2-group G

is in hamiltonian situation in G.

PROOF : If N(G ) is hamiltonian, then it is known 9 ) that G = N(G)
is hamiltonian, since G is a 2-group, and this proves (a).

If N(G) is abelian, then N(G)  C (N  G), since N  N(G)
and C(N G) is the centralizer of N in G. Consequently
N(G)  C[N(G)  G]  C(N G) and this implies C(N G) =
C[N(G) G], since C(N G) is abelian - by Lemma 4.1, (1).
Since by Lemma 4.1, (III) we have J(N G) = J[C(N G)  G],
it follows from N N(G)  C(N  G) that J(NG)=J(N(G)G).
COROLLARy 4.3: Suppose that the subgroup N of the 2-group G

is in hamiltonian situation in G. Then J(N G) is hamiltonian
if, and only if, C(N  G)2 is a cyclic group of order 2.
PROOF: If C(N  G)2 is a cyclic group of order 2, then it follows

from Lemma 4.1, (I ) that C(N  G) is a direct product of one
cyelie group of order 4 and of cyclic groups of order 2, and J(N  G)
is hamiltonian as a consequence of Lemma 4.1, (II) and of the
fact that J (N  G)2 = C (N  G)2 by Lemma 4.1, (VI). - That
C(N  G)2 is a cyclic group of order 2, if J(N  G) is hamiltonian,
is a consequence of Lemma 4.1 and the general structure pro-
perties of haniiltonian groups.
THEOR,FM 4.4: The 2-group G is almost hamiltonian if, and

only if, either G is hamiltonian or N(G) is in hamiltonian situation
in G.
PROOF: From previous remarks it suffices to show that the

norm of an almost hamiltonian, but not hamiltonian 2-group is
itself in hamiltonian situation. Since the 2-group G is not hamil-
tonian, it is known 1° ) that its norm N(G) is abelian. Since G

9) Cp. footnote 5).
10) Cp. footnote 5) and the fact that the norm is either abelian or hamiltonian.
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is almost hamiltonian, there exists a normal subgroup N of G
so that N  N(G), G/N is abelian and H(N  G) is not vacuous.
This implies that G/N(G) is abelian and it follows from Corollary
4.2 that

If g is any element in N(G) and v an element in H(NG), then
it follows from these inequalities and from Lemma 4.1 that

and as g is a norm-element, this implies that g2 is a power of v.
Since g is in C(N  G) and since the least power of v, contained
in C(N  G), is the second one - by Lemma 4.1 - it follows
that g2 is a power of v2 = c, i.e. that

or N(G)2 = N2 = H(NG)2 is a cyclic group of order 2. Now
it follows that {N(G), v} for v in H (N  G) is a hamiltonian group
and this shows that N(G) is in hamiltonian situation in G.

5. The results of section 4 enabie us to give a survey of the
almost hamiltonian groups with J[N(G)  G] = G.
THEOREM 5.1: Assume that the subgroup N of the 2-group G

is in hamiltonian situation in G. Then G is hamiltonian if, and
only if, 

PROOF: The necessity of the conditions is a consequence of

Corollary 4.3. - If (b) is satisfied, then it follows from Corollary
4.3 that J(N G) is hamiltonian. It follows from Corollary 4.2
that J(N G) = J[N(G)G] and now it follows from (a) that
G is hamiltonian.
THEOREM 5.2: The group C is the subgroup C[N(G) G] of a

suitable 2-group G which is almost hamiltonian, though not hamil-
tonian and zeahich .satisfies G = J[N(G)  GI if, and only if,

(a) C is abelian;

(b) C4 contains at most 2 elements;

(c) C2 contains at least four elements.

PROOF: Suppose first that the 2-group G is not hamiltonian,
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though almost hamiltonian and that G = J[N(G) G]. If the

subgroup N of G is in hamiltonian situation, then it follows from
Corollary 4.2 that C(NG) = C[N(G) G] and that J(N G) =
J[N(G) G] = G. It is now a consequence of Lemma 4.1 that

C[N(G)G] is abelian, that C[N(G)GJ2 N which proves
the necessity of (b); and the necessity of condition (c) is now a
consequence of Theorem 5.1.

If conversely the group C satisfies the conditions (a) to (c),
then there are two possibilities:

either C is the direct product of a cyclic group Z of order 8
and of an abelian group F so that F4 = 1; or else
C is the direct product of two cyclic groups Z’ and Z" of order

4 and of an abelian group F so that F4 = 1.
In both cases C is an abelian 2-group which contains a sub-

group N with the following properties:

( I ) N is a direct product of one cyclic group of order 4 and
of a group whose elements are of order 1 or 2;

(II) C2  N.

The uniquely determined élément 1 in N2 may be denoted
by c.

Let G be the group which is generated by adjoining to C an
element v, subject to the relations:

That such a group G exists is a consequence of the facts that C
is abelian and that c = c-1.
G is not hamiltonian, since G contains either elements of order

8 or more than 2 squares =1= 1.
G = J (N  G) is a consequence of the fact that C is abelian

and of the definitions of G.
The group {N, v) is hamiltonian, since it is the direct product

of a group whose elements are of order 1 or 2 and of a quaternion
group, generated by v and any element u of order 4 in N.

Finally it is possible to represent every element in G in the
form xvi where r is an element in C and i = 0 or 1. If y is any
element in N, then yxvi y-’ == Xvi y(-1)i -1, since both x and y
are elements in the abelian group C and since v induces an in-
version in C. If either i = 0, or i = 1 and y2 = 1, the above
formula implies:
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If i = 1 and y2 # 1, then y2 = c = v2 and consequently we find

and this proves that N  N(G). That N is a normal subgroup of
G, is obvious, and that GIN is abelian, follows from the fact that
C2  N, and that C2 is the commutator subgroup of G. Thus it
has been proved that N is in hamiltonian situation, and this
shows f inally that G meets all the requirements of the theorem.
THEOREM 5.3 : Suppose that the 2-group G is not hamiltonian,

though almost hamiltonian, and that G = J[N(G) G]. Then G
and the group H are isomorphic if, and only if,

(a ) H is not hamiltonian, though almost hamiltonian and satisfies:

PROOF: It suffices to prove the sufficiency of these conditions. 
This is a consequence of the fact that G may be generated in
adjoining to C[N(G) G] an element v, subject to the relations:

vxv-1 = x-1 for every x in C[N(G) G], v2 is an element of
order 2 in C[N(G) G]2, and that v2 is the only e]ement =F 1
in C[N(G)  GJ4, if there are such elements;

that H may be generated in adjoining to C[N(H)H] an
element z which satisfies analogous relations as v;

and that there exists by (b) an isomorphism of C[N(G)G]
upon C[N(H) H], mapping v2 upon Z2. This isomorphism may,
clearly be extended to an isomorphism of G upon H, mapping
v upon z.

6. The almost hamiltonian 2-groups G which satisfy
G = J[N(G)G] have been completely discussed in the preceding
section, and thus we shall assume that G # J[N(G) G]. The
situation of those elements in G which are not contained in

J[N(G) G] is determined by the following
LEMMA 6.1: If the subgroup N of the 2-group G is in hamiltonian

situ,ation in G, if G # J(N G) , and if u is an element in N, v
an element in C (N  G), w an element in H(N  G) and z an element
in G, though not in J(N  G), th.en
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PROOF: It is a consequence of Lemma 4.1 that induces an

inversion in C(N  G) and that W2 = c. Hence

If f is an element of order 4 in N, then f 2 = c by Lemma 4.1,
and therefore

since both f and [,f, z] are elements in the abelian group l’V. This
implies

If t is an element of order 2 in N, then ztz-1 is an element of order
2, and as N is abelian, this implies

since by Lemma 4.1 the orders of the elements in N divide 4.
Since z is not contained in J(N  G), and since N  N(G), it

follows therefore from (2.2) that z induces in N an automorphism
of the exact order 2, and this implies

as follows from Lemma 4.1.
Since the maximum order of the elements in N is 4, and since

the order of the automorphism, induced by z in N, is exactly 2,
it follows from (2.1) that the order of Z2 is divisible by 4 and
the order of z is therefore divisible by 8.
As W2 = c and z2 are both elements in the abelian group

C (N  G), and as w induces an inversion in C (N  G) - by Lemma
4.1 - it follows that

Since wz is not contained in J(N  G), everything that has been
proved for z, may be applied on wz, aid consequently we have

so that the order of z is exactly 8.
This last result implies in particular that the order of ze» is 8.

Since the order of the automorphism, induced by wz in N, is 2,
it follows from (2.2) that the group, generated by all the com-
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mutators [wz, x] for x in N, is just the cyclic group of order
2 which is generated by (WZ)4. As Z4 = [wz [w, z]] is an element
of order 2 in this group, it follows that

Since [w, z], (ZWZ-1)2, Z2 are in the abelian group C(NG), and
since both and zwz-l are of order 4, it follows that

or [w, Z]2 = 1. Since the commutator of wz and [w, z] is =f= 1,
[w, z] # 1 and this shows that the order of [w, z] is exactly 2.

If x is some element in N, then [wz, x] is a power of (WZ)4
and [z, x] is a power of Z4, as has been pointed out before. Since
z4 = (WZ)4, there exists therefore an integer r so that

As N contains elements of order 4, we may in particular choose
x as an element of order 4 in N. Since w induces an inversion in

N, and since w2 = c = x2 for elements x of order 4 in N, this

implies [w, x] = c; and since c as well as Z4 is an element of order
2, it follows now that

This completes the proof of (II) and (V), since z, [z, w] z[z, WJz-1
are of order 2, and inversions leave elements of order 2 invariant.

(III) is a consequence of (II) and (2.2).
As v is an element in C(N  G), the elements z and zv induce

the same automorphism in N. Since C(N G) is abelian, the
elements z and zv induce even the same automorphism in C(N  G).
Thus both z and zv are not contained in J(N  G) and all the
previous results may be applied on zv too. Thus

Since both z and zw are not contained in J(N  G), this last
result may be applied on zw too. Hence
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Hence 1 = ZV4Z-l and consequently

This completes the proof of (1). To complete the proof of (IV),
consider

since Z2 is an element of the abelian group C(N G) and since
[z, V]2 = 1. Thus the proof of the lemma is complete.

COROLLARY 6.2: I f G is an almost hamiltonian 2-group,
G =1= J(N(G)  G), and if the element z in G is not contained in
J[N(G )  G] , then 

( I ) z permutes with every element in C[N(G) G]2;
(II) N(G) is the direct product of the subgroup of those ele1nents

which permute with z and of the cyclic group of order 2
which is generated by [w, z] for any w in H(NG ).

REMARK : Throughout this statement it is possible to substitute
for N(G ) any subgroup N of G which is in hamiltonian situation
in G.

PROOF : If v is any element in C(N G), then

zv 2 = zv V = [z, v] vzv = [z, v] v [z, v] vz === [z, v] 2 v2z = V2Z,

since C(N G) is abelian, and Lemma 6.1, (IV) may be applied.
This proves the first of our statements and the second one is a

consequence of (2.2) and Lemma 6.1, (V) and Corollary 6.2, (I ). 
COROLLARY 6.3: If G is an almost hamiltonian 2-group,

G # J [N (G)  G ], and if the element z in G is not contained in
J[N(G) G], then Z2 is an element in the norm of the subgroup
{J[N(G) G ], z}. 
PROOF: Since z2 is an element in the abelian subgroup

C[N(G) G], it permutes with every element in {C[N(G) G], zl.
Consequently we need but consider the effect of transformation
with Z2 on elements not in {C[N(G)G], zl. Such an element is
either an element w in H[N(G)G] or it has the form wz. But
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and therefore

as follow from Lemma 6.1.

7. If G is a not-hamiltonian, almost hamiltonian 2-group,
then denote by A (G) the group of those automorphisms which
are induced in C[N(G) G] by the elements of G. It is a con-

sequence of Lemma 4.1, (1), (III), Corollary 4.2 and of Theorem
4.4 that A(G) is essentially the same as GIC[N(G)G]. The
group A ( G ) contains always the inversion, and in section 5 those
groups G have been surveyed where A(G) is generated by the
inversion. The results of section 6 will permit us to détermine
all those groups G for which A(G) is of order 4 or equivalent:
J(N(G) G) is of index 2 in G.
THEOREM 7.1 : Suppose that A is a group of four automorphisms

1of the group C. Then there exists an almost hamiltonian 2-group
G so that 

if, and only if, 

(a.1) A2 --- 1; 

(a.2) A contains the inversion (so that C is abelian);
(a.3) 1 = (x’-9)2 = (x1-$ )1- for every x in C and every g in A;
(b ) C contains an element f of order 4 and an element t of order

2 so that f g = f+1 for every g in A and so that t1-g = f2
for every g in A which is different from 1 and from the
inversion;

(c) C4 = 1.

PROOF : The necessity of the conditions (a) and (c) is a con-

sequence of Lemma 6.1, (1), (II) and (IV) and the necessity of
condition (b) follows from Lemma 6.1, (V) in putting f = z2,
t = [z, w] for some w in H[N(G)G] and some z in G whieh is
not contained in J[N(G)G.].

If the conditions (a) to (c) are satisfied, then choose an auto-
morphism k in A which is neither 1 nor the inversion, and elements
f and t in C so that fk =,f, t’ -k - f 2 and so that f is of order 4
and t of order 2. That this is possible is essentially a consequence
of condition (b) and (a.2).
Denote now by G the group which is generated by adjoining

to C two elements d and e, subject to the relations:
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That this is in fact an extension of the abelian group C by the
abelian group A which realizes the automorphisms in A, is a

consequence of a known theorem 11 ) on extensions of abelian
groups by abelian groups and of the equations:

An element of order 2 in C is left invariant by all the automor-
phisms in A if, and only if, it is left invariant by k, since the
inversion has exactly the elements of order 2 as fixed elements.
Denote by K the subgroup of those elements in C which are of
order (1 or) 2 and which are fixed elements for k. It is a con-
sequence of condition (a) that

and that K contains therefore all the elements ae1-g for g in A.
Denote now by N the subgroup of C, generated by K, f and t.

This subgroup N of C is a normal subgroup of G which contains
all the commutators of elements in G so that GIN is abelian.
Since d and f together generate a quaternion group, it follows

that {N, d} is a hamiltonian subgroup of G.
Since N = (K, f, tl, it is sufficient for the proof of N  N(G)

to show that f, t and every element x in K transform every
element in G into a power of itself. The elements in G are of

the form ydiei for y in C, i and i each either 0 or 1. Since the
elements in K are left invariant by every automorphism of A,
K is contained in the central of G and therefore in the norm of

G. Furthermore

This is equal ydiei, if i = o. If i = 1, then it is equal to ydf--ei.
This is equal to (dy)-l for j = 0. and for j = 1 it becomes

11 ) Cp. e.g. R. BAER, Erweiterung von Gruppen und ihren Isomorphismen
’ 

[Math. Zeitschr. 38 (1934), 375-416], Zusatz, S. 407.
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as follows from our conditions, and yde -3 is therefore (yde)5.
Thus f is contained in the norm of G. Finally

This is equal ydi for i = 0 and for i = 1 it follows again that
e4 = (ydie)4 and that our expression equals therefore (ydie)5. This
completes the proof of N ç N(G) and of the fact that N is in
hamiltonian situation in G. Hence G meets all the requirements.
For future reference the following fact whieh has been derived

during the proof of the theorem may be stated separately.
COROLLARY 7.2: If C and A satisfy the conditions (a) to (c) of

Theorem 7.1, if the automorphism k in A is different from the iden-
tity and from the inversion, and if f ant tare elements in C so that
f is of order 4, t of order 2, f = fk, t1-k = f2, then there exists an
extension G of C by A zeJhich realizes A and which is generated
in adjoining to C two elements d and e which are subject to the
relations :

I f K consists of those elements of order 2 in C which are left invariant
by k (and theref ore by A), then N = {K, f, t}  N(G) is in ha-

miltonian situation in G, C = C(N G) = C[N(G)  G], {C, d) =
J (N  G) = J[N(G) G].
THEOREM 7.3: Suppose that the 2-group G is al1nost hamiltonian

and that J[N(G) G] is of index 2 in G. Then G and the 2-group
G’ are isomorphic if, and only if,

(a) G’ is almost hamiltonian a1d J[N(G’)C’] is of index 2 in G;
(b) there exists an isomorphisn ofC[N(G)GJ upon C[N(G’)G’]

zvhich transforms A(G) into A(G’).

PROOF : The necessity of the conditions being obvious, let us
assume therefore that they are satisfied, and that in particular
p is an isomorphism of C[N(C) G] upon C[N(G’)G] which
transforms A(G) into A(G’).

Let zv be some element in H[N(G) GI and zv’ an element in



397

H[N(G’)G’]. Denote by z some element in G which is not

contained in J[lBT(G)G] and put zxz-1 == x’ for x in C[N(G)  G].
Then k’ = p-lkp is an automorphism of C[N(G’) G] which is
contained in A(G’) and there exists therefore an élément in
G’ so that z’yz’-1 = ’/" for y in C[N(G’) G’]. As k is different ’
from the identity and from the inversion, the same holds true
for k’ and z’ is consequently an element which is not contained
in J[N(G’)G’J. Since by condition (a)

and since G and G’ are completely determined by the above
relations, it will be sufficient to prove the following statement:
(7.3.1) There exists an automorphism q of C’ = C[N(G’)G’]
which maps w" = W2P upon W’2, z" = Z2P upon Z’2, t" = [w, z]P
upon t’ = [w’, z’] and satisfies qk’ = k’q.
For if such an automorphism q exists, then pq is an isomorphism

of C[N(G)G] upon C[N(G’)G’] which transforms k into k’
and therefore A(G) into A(G’) and which maps w2 upon ’lV’2,
Z2 upon z’2 and [w, zJ upon [w’, z’] so that it is possible to ex-
tend pq to an isomorphism of G upon G’ which maps w upon ro’
and z upon z’.

Since w2 = z4 = [w, Z ]l-k by Lemma 6.1, it follows that

and this fact will be used during the proof of (7.3.1).
Another consequence of Lemma 6.1 is that every yl-k’ for y

in C’ is an element of order 2 or 1 which is left invariant by k’.
Since Z2 is left invariant by k, it follows that z" is left invariant 
by k’. Z’2 is a fixed-element under k’ and [w’, Z’]l-k’ = W’2 =
Z’4 = c’.

Since both c’ and w" are elements of order 2, they are either
equal or independent and we have to distinguish two cases

accordingly. 
Case 1 : c’ = w".
Since c’ is an element of order 2, it follows that the subgroup

of the elements of order 2 in C’ is the direct product of {c’} and
of a suitable group L. The set of all those elements x in C’ so
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that ael-k’ is an element in L is a subgroup K of C’. If y is any
element in C’, then y1-k is an element of order 2 and has therefore
the form: 

Hence (yt"-i)l-k’ = (y[w’, Z’]-i)l-k’ = r is an element in L. Since
furtherniore c’ is not contained in L, it follows that neither t"
nor [w’, z’] is contained in K, and since these éléments are

of order 2, it follows finally that C’ is both the direct product
of K and {t"} as the direct product of K and of {t’} = {[w’, z’] ), i.e.

Both the elements z" and Z’2 are invariant under k’ and are

therefore contained in K. Since they are elements oi’ order four,
satisfying CI = Z"2 = (Z’2)2, and since - by Lemma 6.1 -

C’4 =K4 = l@ it follows that there exists a subgroup M of K
so that K is the direct product of M and of {z"} and so that K
is the direct product of M and of {Z’2}. Thus the following direct
décomposition of C’ has been derived:

"Bvhere Xl-k’ is for x in M an elememt of order 2 in L and where

consequently xl-k’ --A c’ for x in M.
Since both t" and t’are of order 2, and since both z" and Z’2

are of order 4, there exists therefore a uniquely determined auto-
morphism q of C’ so that

This automorphism satisfies:

and

If x is an element in 1VI, then X1-k’ is an element of order 2 and
has therefore the form:

where both i and i are 0 or 1 and where y is in M. Since X1-k’
is invariant under k’, it follows that
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and that therefore c’1 = y1-k’. Since y is an element in M, yl-k’
is an element in L and this implies

Thus we find finally:

since x, y are in 1V, since therefore x, y and c’ are invariant under
q, and since c’, y are of order 2. Hence k’q = qk’ and the auto-
morphism q meets all the requirements of (7.3.1).

Case 2 : c’ =1= w".
Since c’ = t’l-k’ and w" = t"1-k’ are two independent elements

in C/l-k’, and since all the elements in C1-k’ are of order 2,
there exists a subgroup L so that C1-k’ is the direct product
of {c’}, {w"} and L. The set K of all the éléments so tha.t Xi -k’
is contained in L forms a subgroup of C’. If y is any element in
C’, then yl-k’ has the form C’iW"1s where i and i are 0 or 1 and
where s is an element in L. Consequently

is an element in L and yt-’t"-i is an element in K. This proves
that 

If 1 = t"t"is where s is an element in K and i and i are 0 or 1,
then 1 = (t’Ít"is)l-k’ = c"w"’ s1 -k’ where Sl-k’ is in L. Hence

î = i = 0 and S1-k’ = 1 [= s] and this proves that C’ is the
direct product of (t’), (t") and K.

Since X1-k’ = 1 for every element x that is invariant under k’,
all the fixed elements of k’ are contained in K. Thus K contains
in particular z", Z’2 and all the elements in L, since L  C"-’k’
and since all the commutators X1-k’ are invariant under k’.
Since z"2 = w", Z’4 = c’ are independent elements of order 2,
and since the pair w", c’ is independent of L and L2 == 1, there
exists a subgroup M of K yvhieh contains L so that K is the direct
product of {Z’2}, {z"} and M. Thus the following direct decom-
position of C’ has been derived:

Since t’ and t" are of the same order 2, and since z’2 and z" are
of the same order 4, there exists a uniquely determined auto-
morphism q of C’ so that 

’



400

This automorphism q satisfies:

and

If x is any element in M, then X1-k" is an element in L, since
M Ç K; and since L :-M, this implies that Ml-k’  M. Hence
we find for elements x in M

and this shows finally that k’q = qk’ so that q meets all the
requirements of (7.3.1). After what has been remarked before,
this completes the proof of the theorem. 

8. If G is an almost hamiltonian 2-group, then it has been
proved that the elements :7-4 1 in G/J[N(G)G] are of order 2
and those groups G where G/J[N(G) G] is of order 1 or 2 have
been discussed completely in the sections 5 and 7.
LEMMA 8.1: If G is an almost hamiltonian 2-group, and if the

index of J[N(G) G] in G is greater than 2, then 

(b) there exists a "normal" basis z’, z" oj’ G mod
with the followinl properties:

where c is the uniquely determined element

PROOF : Suppose that is some element in H[N(G)G] and
that the elements r and s are independent mod J[N{G)G].
Then none of the three elements r, s and rs is contained in

J[N(G) G], and it follows therefore from Lemma 6.1, (II) that

and since all the three factors in the parenthesis are elements
in the abelian group C[N(G)G], it follows that
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and we note:

Assume now that the three elements r, s, t are independent
mod J[N(G )  G] . Then rand st are independent mod J[N(G )  G]
and it follows from (8.1.1) that 

and this being impossible, (a) is proved.
As r and s are independent mod J[N(G)G], and as w is an

element in H[N(G) G], the elemeiits w, r, s form a basis of G
mod C[N(G)G]. Thus G is an extension of the abelian group
C[N(G) G] by the direct product of the three cyclic groups of
order 2 which are generated mod c[N(G)G] by w, r and s
respectively and this extension realizes just the automorphisms
of C[N(G) G] which are induced by w, r and s. Thus it follows
from (8.1.1) and from the theorems on extensions of groups 12)
that

or

For the same reasons

or

It is a consequence of Lemma 4.1 that every commutator

[x, y], z] is a power of c. Hence it follows from (8.1.2) that
the notations may be chosen in such a way that

Since r4 = 84 == c, and since [r2, s] and [S2, r] are by (8.1.3)
powers of c, it follows that

12) Cp. footnote 11).
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and using these two results we find:

These formulae are not quite symmetric in r and s, since (8.1.2’)
has been used. But following the lines of the above argument,
one finds successively: 

Considering now the following bases of G mod 

one finds from the above formulae that exactly one of these four
bases meets the requirements (b.I) and (b.III) of a normal basis
zv, z’, z", and it follows from (8.1.1) and (8,1.3) that this basis
meets also the requirements (b.II ) and (b.IV) of a normal basis.
This completes the proof of the lemma.
COROLLARY 8.2: I f G is an almost hamiltonian 2-group so that

the index of J[N(G )  G] in G is greater than 2, then the commutator
group 0.1 G is in hamiltonian situation in G.

This is a consequence of Lemma 8.1, (b.II).
REMARK 8.3: Suppose that G is an almost hamiltonian 2-group

so that the index of J[N(G)  G] in G is greater than 2 and there-
fore 4. If p and q are any two automorphisms in A(G), then
pq = qp and therefore

for every x in the abelian group C[N(G)G]. Since all these

elements are powers of c, there are exactly two possibilities:

ments in A(G) which forms together with the inversion
a basis of A(G).
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GIC[N(G)G] and A(G) are essentially the same. A basis of
A (G) may be called admissible, if it contains the inversion; and
a basis of A(G) may be called normal, if it may be represented
by a normal basis of G mod C[N(G) G]. Every normal basis
of A(G) is admissible and there are 24 admissible bases of A(G).
If G is a group of the above type B, then each admissible basis
is normal. But if G is of the above type A, then there are exactly
three normal bases of A(G) and every basis of G mod J[N(G) G]
gives rise to exactly one normal basis of A(G). The proofs of these
facts may be omitted. They will be found by a checking procedure
similar to the one, used in the proof of the Lemma 8.1.

If finally p and q form a basis of A(G) mod the inversion,
then there exists a direct decomposition

where P and Q are cyclic groups of order 2, P X Q is a direct
factor of C[N(G)G]; and where p leaves aIl the elements in
F X P invariant, q leaves aH the céments in F X Q invariant;
and where 

The proof of this fact is readily derived from the results in section
6. and from the statements in the lemma.

THEOREM 8.4: I f G Ís an almost hamiltonian 2-group so that
G # J[N (G )  G], then

PROOF: (1) is a consequence of Lemma 6.1 and Lemma 4.1. -
The norm of G is abelian and therefore a subgroup of C[N(G)GJ.
(2) follows from the fact that w2 = Z4 = c for w in H[N(G) G]
and for z in G, though not in J[N(G)G]. (3) follows from (2)
and the fact that [w, z] is not an element in N(G)2, if w is in

H[N(G)G] and z is not in J[N(G)G], since under these as-
sumptions it follows from Lemma 6.1 that [z, [w, z]] = c. -
(4) is a conséquence of Corollary 6.3 and of (8.1.3).



404

9. In this section a construction scheme is presented for those
almost hamiltonian 2-groups G for which the index of J[N(G ) G]
in G is greater than 2 and is therefore 4.

THEOREM 9.1: Suppose that A is a group of automorphisrns of
the group C and that s, t’, t", q’, q" are elements in C. Then there
exists an almost hamiltonian 2-group G so that

(a) the index of J[N(G)G] in G is greater than 2; 

(c ) there exists a normal basis w. z’, z" of G mod
which satisfies: e

if, and only if,
(I ) A is a group of order 8 all of whose elements are of order 2

(so that A is abelian ) and the elements x1-k for k in A are of
order 2 and invariant under k; 

(II ) A contains the inversion (so that C is an abelian group); ’
(III) C4 = 1;

(V) there exists a basis k’, k" of A mod the inversion so that

(V.1) the elements q’, q" are invariant under both k’ and k",

PROOF: The necessity of the conditions follows from Lemma
6.1 and Lemma 8.1, if one chooses as k’ and k" those automor-

phisms of C[N(G)G] which are induced by z’ and z" respec-
tively.

If the conditions (I) to (V) are satisfied, then denote by G
the group which is generated in adjoining to C elements w, z’,
z" which are subject to the following relations:

We note first that the group G’ which is generated in adj oining
w and z’ only, as well as the group G" which is generated in
adjoining and z" only - both subject to the relevant relations
in the system (R) - are of the type discussed in Corollary 7.2.
That G is an extension of the abelian group C by the abelian
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group A which realizes the automorphisms of A, is a consequence
1 of the theorems on extensions of groups 13}, Corollary 7.2 and

of the following equations:

Denote now by K’ the set of all the fixed elements of order 2 of
k’ and by K" the set of all the fixed elements of order 2 of k".
The intersection K of K’ and K" contains all the elements of
order 2 in C which are fixed elements for every k in A. K contains
c and t’ is contained in K", t’t" in K’. Hence

st" is invariant under both k’ and k" and q’q", sq’ and sq" are
elements of order 2. Thus st"q’, st"q" and q’q" are elements
in K. Hence

contains s and N contains every element in C2, since C2 S K,
every element in Cl-k’  K’, every element in Cl-k"  K". This
implies that G/N is abelian.
N2 = (c) is a cyclic group of order 2, since c = q’2 = q"2.

Consequently

{N, zey is a hamiltonian group,

since {q’, w} is a quaternion group.
Each element of G is contained in at least one of the subgroups

G’, G" and G"= {C, z’z", zey of G. It is a consequence of Corol-

lary 7.2 that N  N(G’ ), N  N( G" ). In order to prove N N(G ),
it suffices therefore to prove:

every element in N transforms every element of the forms

into a power of itself.
To prove this statement, we note:

13) Cp. footnote 11).
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and

If now y is any element in N, then

and

This proves the above statement and N is consequently in hamil-
tonian situation in G. Since C = C(N G), it follows from

Corollary 4.2 that C = C [N (G)  G ], since G is certainly not
hamiltonian, and now it is readily verified that G meets all the
requirements of the theorem.

(Received September 19th, 1938.)


