Compositio Mathematica

H. Kober

A theorem on Banach spaces

Compositio Mathematica, tome 7 (1940), p. 135-140
http://www.numdam.org/item?id=CM_1940__7__135_0
© Foundation Compositio Mathematica, 1940, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A theorem on Banach spaces

by
H. Kober
Birmingham

1. Let E be a normed complete linear vector space, that is to say a space (B) in the terminology of S. Banach ${ }^{1}$), let $E_{1}, E_{2}, E_{3}, \ldots, E_{k} \quad(k \geqq 1)$ be linear subspaces of E, which are linearly independent. ${ }^{2}$) Let $E_{1} \dot{+} E_{2} \dot{+} E_{3} \dot{+} \ldots \dot{+} E_{k}$ be the smallest linear subspace of E, which contains all of $E_{1}, E_{2}, \ldots, E_{k}$. Of course every element ψ of $E_{1} \dot{+} E_{2} \dot{+} \cdots \dot{+} E_{k}$ can be represented uniquely in the form $\psi=\varphi_{1}+\varphi_{2}+\ldots \varphi_{k}$ $\left(\varphi_{1} \in E_{1}, \varphi_{2} \in E_{2}, \ldots, \varphi_{k} \in E_{k}\right)$.

Theorem 1. Let E be a (B) space, E_{1} and E_{2} linear closed ${ }^{3}$) subspaces of E and linearly independent, then the space $E_{12}=E_{1}+E_{2}$ is closed if, and only if, there exists some constant A such that, for all elements $\varphi_{1}, \varphi_{2}\left(\varphi_{1} \in E_{1}, \varphi_{2} \in E_{2}\right)$

$$
\begin{equation*}
\left.\left\|\varphi_{1}\right\| \leqq A\left\|\varphi_{1}+\varphi_{2}\right\| \cdot{ }^{4}\right) \tag{1}
\end{equation*}
$$

Of course both E_{1} and E_{2} are (B) spaces and, if the condition (1) is satisfied, so is E_{12}.

The proof of the sufficiency of (1) is quite trivial. Let $\left\{\psi^{(n)}\right\}$ ($n=1,2, \ldots$) be any convergent sequence ${ }^{5}$) of E_{12}; then we have to show only that it converges to an element ψ belonging to E_{12}. Since $\psi^{(j)}=\varphi_{1}^{(j)}+\varphi_{2}^{(j)}(j=\mathbf{1}, \mathbf{2}, \ldots), \varphi_{i}^{(m)}-\varphi_{i}^{(n)} \in E_{i} \quad(i=1, \mathbf{2})$, it follows from (1) that

$$
\left\|\varphi_{1}^{(m)}-\varphi_{1}^{(n)}\right\| \leqq A\left\|\left(\varphi_{1}^{(m)}-\varphi_{1}^{(n)}\right)+\left(\varphi_{2}^{(m)}-\varphi_{2}^{(n)}\right)\right\|=A\left\|\psi^{(m)}-\psi^{(n)}\right\| \rightarrow 0,
$$

${ }^{1}$) Théorie des opérations linéaires, Warszawa 1932, 53; the norm of φ is $\|\varphi\|$.
$\left.{ }^{2}\right)$ This means: If $\varphi_{1}+\varphi_{2}+\ldots+\varphi_{k}=0, \varphi_{i} \in E_{i}(i=1,2, \ldots, k)$, then all elements φ_{i} must be zéro. If $k=2, E_{1}$ and E_{2} are linearly independent if, and only if, they have no common element except the element zéro.
${ }^{3}$) ,fermé", Banach l.c., 13.
${ }^{4}$) Connected problems: H. Kober [Proc. London Math. Soc. (2), 44 (1938), 453-65], Satz VI'b; see also a forthcoming paper in the Annals of Mathem., Satz III β.
$\left.{ }^{5}\right)$ The sequence has to satisfy the condition of Cauchy $\left\|\psi^{(m)}-\psi^{(n)}\right\| \rightarrow 0$ $(m \geqq n \rightarrow \infty)$. Since $\psi^{(j)} \in E$ and E is complete, $\left\{\psi^{(n)}\right\}$ converges to an element $\psi \in E,\left\|\psi^{(n)}-\psi\right\| \rightarrow \mathbf{0}$.
when $m \geqq n \rightarrow \infty$. Now E_{1} is closed, so that the sequence $\left\{\varphi_{1}^{(n)}\right\}$ converges to a limit point $\varphi_{1} \in E_{1}$; so also the sequence $\left\{\varphi_{2}^{(m)}\right\}$ converges to a limit point $\varphi_{2} \in E_{2}$, since

$$
\begin{aligned}
\left\|\varphi_{2}^{(m)}-\varphi_{2}^{(n)}\right\| & =\left\|\left(\psi^{(m)}-\psi^{(n)}\right)-\left(\varphi_{1}^{(m)}-\varphi_{1}^{(n)}\right)\right\| \\
& \leqq\left\|\psi^{(m)}-\psi^{(n)}\right\|+\left\|\varphi_{1}^{(m)}-\varphi_{1}^{(n)}\right\| \rightarrow 0 \quad(m \geqq n \rightarrow \infty) .
\end{aligned}
$$

Hence the sequence $\left\{\psi^{(n)}\right\} \equiv\left\{\varphi_{1}^{(n)}+\varphi_{2}^{(n)}\right\}$ converges to $\varphi_{1}+\varphi_{2}=\psi$ and plainly $\varphi_{1}+\varphi_{2}=\psi$ belongs to $E_{1} \dot{+} E_{2}=E_{12}$.

The condition (1) is necessary. For to every element $\psi \in E_{1} \dot{+} E_{2}$ corresponds exactly one $\varphi_{1} \in E_{1}$ since $\psi=\varphi_{1}+\varphi_{2}$; hence $T \psi=\varphi_{1}$ is an operation, which evidently is additive (Banach, 23); now let the sequences $\left\{\psi^{(n)}\right\} \in E_{1} \dot{+} E_{2}$ and $\left\{\varphi_{1}^{(n)}\right\} \equiv\left\{T \psi^{(n)}\right\} \in E_{1}$ have the limits points ψ and φ_{1} respectively, and then plainly $\psi \in E_{1} \dot{+} E_{2}, \varphi_{1} \in E_{1}$, since $E_{1} \dot{+} E_{2}$ and E_{1} are closed. We next show that $T \psi=\varphi_{1}$. Since $\psi^{(j)}=\varphi_{1}^{(j)}+\varphi_{2}^{(j)}, \varphi_{1}^{(j)} \in E_{1}, \varphi_{2}^{(j)} \in E_{2}$ ($j=1,2, \ldots$),

$$
\left\|\varphi_{2}^{(m)}-\varphi_{2}^{(n)}\right\| \leqq\left\|\psi^{(m)}-\psi^{(n)}\right\|+\left\|\varphi_{1}^{(m)}-\varphi_{2}^{(n)}\right\| \rightarrow \mathbf{0} \quad(m \geqq n \rightarrow \infty)
$$

in consequence of the convergence of $\left\{\psi^{(n)}\right\}$ and $\left\{\varphi_{1}^{(n)}\right\}$, so that $\left\{\varphi_{2}^{(n)}\right\}$ also converges, $\varphi_{2}^{(n)} \rightarrow \varphi_{2} \in E_{2}$. Since

$$
\varphi_{1}^{(n)} \rightarrow \varphi_{1}, \varphi_{2}^{(n)} \rightarrow \varphi_{2}, \psi^{(n)} \rightarrow \psi \text { and } \psi^{(n)}=\varphi_{1}^{(n)}+\varphi_{2}^{(n)},
$$

we have $\psi=\varphi_{1}+\varphi_{2}, \varphi_{1}=T \psi$. Now an additive operation T is known to be linear and consequently bounded when it satisfies the condition that $\psi^{(n)} \rightarrow \psi$ and $T \psi^{(n)} \rightarrow \varphi$ imply $\varphi=T \psi$ (Banach, 41 and 54). Then a number A exists with the property that

$$
\|T \psi\| \leqq A\|\psi\| \text { for all admissible } \psi
$$

Putting $\psi=\varphi_{1}+\varphi_{2}, T \psi=\varphi_{1}$, we have (1), q.e.d.,
From theorem 1 we can easily prove
Theorem 1a. Let E be a (B) space, let $E_{1}, E_{2}, \ldots, E_{k}$ be linear closed and linearly independent subspaces of E. Then a necessary and sufficient condition for all spaces $E_{1} \dot{+} E_{2} \dot{+} \ldots \dot{+} E_{j}$ ($j=2,3, \ldots, k$) to be closed, and therefore (B) spaces, is the existence of some number A such that, for all $\varphi_{n} \in E_{n} \quad(n=1,2, \ldots, k)$

$$
\left\|\varphi_{j}\right\| \leqq A\left\|\varphi_{1}+\varphi_{2}+\ldots+\varphi_{k}\right\| \quad(j=1,2, \ldots, k-1) .
$$

2. Hilbert space.

Theorem 2. Let \mathfrak{S} be a Hilbert space, let \mathfrak{S}_{1} and \mathfrak{K}_{2} be closed linear manifolds in \mathfrak{F} and linearly independent, and let $\mathfrak{S}_{1}+\mathfrak{S}_{2}$ be closed. The best possible value of A (Theorem 1) is equal to unity if, and only if, \mathfrak{S}_{1} and \mathfrak{S}_{2} are mutually orthogonal.

Let (φ, f) be the ,,inner product" of $\varphi \in \mathfrak{F}$ and $f \in \mathfrak{F}_{\mathrm{E}} ; \mathfrak{F}_{1}$ and \mathfrak{F}_{2}, are called orthogonal ${ }^{6}$) to each other, when $\left(\varphi_{1}, \varphi_{2}\right)=0$ for all $\varphi_{1} \in \mathfrak{S}_{1}, \varphi_{2} \in \mathfrak{S}_{2}$. When this is the case we have

$$
\left\|\varphi_{1}+\varphi_{2}\right\|^{2}=\left(\varphi_{1}+\varphi_{2}, \varphi_{1}+\varphi_{2}\right)=\left(\varphi_{1}, \varphi_{1}\right)+\left(\varphi_{2}, \varphi_{2}\right)=\left\|\varphi_{1}\right\|^{2}+\left\|\varphi_{2}\right\|^{2}
$$

so that the condition (1) is satisfied, and it is permissible to take $A=1$; by theorem 1, $\mathfrak{F}_{1}+\mathfrak{F}_{2}$ is closed (cf. Stone, Theorem 1.22). Conversely, if $\left\|\varphi_{1}\right\| \leqq\left\|\varphi_{1}+\varphi_{2}\right\|$ for all $\varphi_{1} \in \mathfrak{S}_{1}, \varphi_{2} \in \mathfrak{S}_{2}$, then, for all numbers α, we plainly have $\left\|\varphi_{1}\right\| \leqq\left\|\varphi_{1}+\alpha \varphi_{2}\right\|$. If $\left(\varphi_{1}, \varphi_{2}\right)$ were equal $R e^{i \vartheta}, R>0$, take $\alpha=\delta \exp (i \pi+i \vartheta), \delta>0$. Then

$$
\begin{gathered}
\left\|\varphi_{1}\right\|^{2} \leqq\left\|\varphi_{1}+\alpha \varphi_{2}\right\|^{2}=\left\|\varphi_{1}\right\|^{2}+2 \Re\left\{\alpha\left(\varphi_{2}, \varphi_{1}\right)\right\}+|\alpha|^{2}\left\|\varphi_{2}\right\|^{2} \\
=\left\|\varphi_{1}\right\|^{2}-2 R \delta+\delta^{2}\left\|\varphi_{2}\right\|^{2},
\end{gathered}
$$

and hence $2 R \leqq \delta\left\|\varphi_{2}\right\|^{2}$; if we now make $\delta \rightarrow 0$ we get the contradiction $2 R \leqq 0$.

As a special case of theorem la it now easily follows that, if E is a Hilbert space, then the best possible value of A is unity if, and only if, the spaces $E_{1}, E_{2}, \ldots, E_{k}$ are mutually orthogonal; for instance, taking $A=1, j=1, \varphi_{3}=\varphi_{4}=\ldots=\varphi_{k}=0$, we have $\left\|\varphi_{1}\right\| \leqq\left\|\varphi_{1}+\varphi_{2}\right\|$, so that E_{1} is orthogonal to E_{2}; the converse is evident, since

$$
\left\|\varphi_{1}+\varphi_{2}+\ldots+\varphi_{k}\right\|^{2}=\left\|\varphi_{1}\right\|^{2}+\ldots+\left\|\varphi_{k}\right\|^{2} \geqq\left\|\varphi_{j}\right\|^{2} \quad(j=1,2, \ldots, k)
$$

when the spaces E_{1}, \ldots, E_{k} are mutually orthogonal (cf. Stone, Theorem 1.22).

From the preceding theorems we can easily get a number of results such as the following:

If \mathfrak{F}_{2} is a Hilbert space, and $\mathfrak{F}_{1}, \mathfrak{F}_{2}, \mathfrak{F}_{3}$ are linear, closed and linearly independent manifolds in \mathfrak{F}, if \mathfrak{F}_{3} is orthogonal to \mathfrak{S}_{1} and to \mathfrak{S}_{2}, and if $\mathfrak{S}_{1} \dot{+} \mathfrak{F}_{2}$ is closed, then $\mathfrak{S}_{1}+\mathfrak{H}_{2}+\mathfrak{S}_{3}$ is closed.

If E_{1}, E_{2}, E_{3} are linear, closed and linearly independent subspaces of a (B) space E, and if $E_{1} \dot{+} E_{2}, E_{1} \dot{+} E_{2} \dot{+} E_{3}$ are closed, then $E_{1} \dot{+} E_{3}, E_{2} \dot{+} E_{3}$ are also closed.
3. The space $L_{p}(p \geqq 1)$.

Let $L_{p}(a, b)$ be the space of all functions $f(t)$ such that $|f(t)|^{p}$

[^0]is integrable over $(a, b),-\infty \leqq a<b \leqq \infty$, with the norm
$$
\|f\|=\left(\int_{a}^{b}|f(t)|^{p} d t\right)^{\frac{1}{p}} \quad(\infty>p \geqq 1) .
$$

Plainly $L_{p}(a, b)$ is a (B) space.
Theorem 3. Let E_{1} and E_{2} be any subspaces of $L_{p}(a, b)$ such that, for all $\varphi_{1} \in E_{1}, \varphi_{2} \in E_{2}$

$$
\begin{equation*}
\int_{a}^{b}\left|\varphi_{1}(t)\right|^{p-2} \varphi_{1}(t) \overline{\varphi_{2}}(t) d t=0 . \tag{2}
\end{equation*}
$$

Then, for all $\varphi_{1} \in E_{1}, \varphi_{2} \in E_{2}$ we have $\left\|\varphi_{1}\right\| \leqq\left\|\varphi_{1}+\varphi_{2}\right\|$. When $p=1$, the interval (a, b) in (2) is to be replaced by the subset F of (a, b) in which φ_{1} does not vanish.

Evidently (2) implies that no common element of E_{1} and E_{2} exists, which is different from zéro.

We have to prove that, for all $\varphi_{1} \in E_{1}, \varphi_{2} \in E_{2}$,

$$
\Delta\left(\varphi_{1}, \varphi_{2}\right)=\int_{F}\left|\varphi_{1}(t)+\varphi_{2}(t)\right|^{p} d t-\int_{F}\left|\varphi_{1}(t)\right|^{p} d t \geqq 0 .
$$

When we put

$$
\begin{aligned}
& \mid\left(\varphi _ { 1 } (t) \left|=\xi,\left|\varphi_{2}(t)\right|=\eta, \varphi_{1}(t) \overline{\varphi_{2}}(t)+\overline{\varphi_{1}}(t) \varphi_{2}(t)=u,\right.\right. \\
& G(u)=G(u ; \xi, \eta)=\left(u+\xi^{2}+\eta^{2}\right)^{\frac{p}{2}}-\xi^{p}-\frac{1}{2} p u \xi^{p-2},
\end{aligned}
$$

then

$$
\begin{gather*}
-\mathbf{2 \xi \eta} \leqq u \leqq \mathbf{2 \xi \eta} \\
\Delta-\frac{p}{2} \int_{F}\left|\varphi_{1}\right|^{p-2}\left\{\varphi_{1} \overline{\varphi_{2}}+\overline{\varphi_{1}} \varphi_{2}\right\} d t=\int_{F} G d t . \tag{3}
\end{gather*}
$$

Now the function G takes no negative value:
When $\boldsymbol{p}>\mathbf{2}$, then, for any fixed $\xi \geqq \mathbf{0}, \eta \geqq \mathbf{0}$ and for $u \geqq-\xi^{2}-\eta^{2}$, the function has its minimum at $u=-\eta^{2}$ while $G\left(-\eta^{2}\right)=\frac{1}{2} p \xi^{p-2} \eta^{2} \geqq 0$. When $p=2$, then $G=\eta^{2} \geqq 0$. When $1 \leqq p<2$, we can easily see that

$$
G \geqq \min \{G(2 \xi \eta), G(-2 \xi \eta)\} \quad(-2 \xi \eta \leqq u \leqq 2 \xi \eta) ;
$$

when we put $w=\frac{\eta}{\xi}, g(w)=|1+w|^{p}-1-p w$, then

$$
G(\pm \mathbf{2} \xi \eta)=\xi^{p} g(\pm w) \geqq 0,
$$

since $g(z) \geqq g(0)=0 \quad(-\infty<z<\infty)$. Hence in any case $G \geqq 0$, and from (3) and (2) it now easily follows that $\Delta \geqq 0$, q.e.d.
4. Examples.
I. Let $a>0, p \geqq \mathbf{1}$, let E_{1} and E_{2} be the subspaces of $L_{p}(-a, a)$ consisting of all functions of $L_{p}(-a, a)$ which are equivalent to any even or odd function respectively. It is evident that E_{1} and E_{2} are linear and linearly independent closed vector spaces, while $E_{1} \dot{+} E_{2}$ is L_{p} and therefore closed. Hence, by theorem 1,

$$
\left\|\varphi_{1}\right\| \leqq A\left\|\varphi_{1}+\varphi_{2}\right\| \quad\left(\varphi_{1} \in E_{1}, \varphi_{2} \in E_{2}\right)
$$

This result is trivial, since for $j=1,2$

$$
\begin{aligned}
& \left\|\varphi_{j}\right\|=\left\|\frac{\varphi_{1}+\varphi}{2} \pm \frac{\varphi_{1}-\varphi_{2}}{2}\right\| \leqq \frac{1}{2}\left\|\varphi_{1}+\varphi_{2}\right\|+\frac{1}{2}\left\|\varphi_{1}-\varphi_{2}\right\| \\
& \left\|\varphi_{1}(t)-\varphi_{2}(t)\right\|=\left\|\varphi_{1}(-t)-\varphi_{2}(-t)\right\|=\left\|\varphi_{1}(t)+\varphi_{2}(t)\right\|
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|\varphi_{1}\right\| \leqq\left\|\varphi_{1}+\varphi_{2}\right\|,\left\|\varphi_{2}\right\| \leqq\left\|\varphi_{1}+\varphi_{2}\right\| ; \tag{4}
\end{equation*}
$$

we may therefore take $A=1$. Since φ_{1} is even and φ_{2} odd, we evidently have

$$
\int_{-a}^{a}\left|\varphi_{1}(t)\right|^{p-2} \varphi_{1}(t) \overline{\varphi_{2}}(t) d t=0, \int_{-a}^{a}\left|\varphi_{2}(t)\right|^{p-2} \varphi_{2}(t) \overline{\varphi_{1}}(t) d t=0
$$

and hence (4) also follows from theorem 3.
When we take $\varphi_{1}=\alpha_{0}+\alpha_{1} \cos t+\cdots+\alpha_{M} \cos M t, \varphi_{2}=\beta_{1} \sin t+$ $\beta_{2} \sin 2 t+\cdots+\beta_{N} \sin N t$, with M, N arbritrary integers, $M \geqq 0, N \geqq 1, \alpha_{n}, \beta_{n}$ arbritrary numbers, then (4) is also valid throughout the interval a, b, if $\pi^{-1}(a+b)$ or $\pi^{-1}(b-a)$ are even integers, as can easily be proved.
II. The following example, given by Stone ${ }^{7}$) without the condition (1), illustrates the necessity for the condition.

Let $\left\{g_{n}\right\} \quad(n=0,1, \ldots)$ be a complete orthonormal system in a Hilbert space \mathfrak{F}, let ϑ_{n} be any sequence of numbers which contains a subsequence with the limit point $\frac{1}{2} \pi$, let the Hilbert spaces \mathfrak{K}_{1} and \mathfrak{S}_{2} be determined by the orthonormal sets $\left\{\psi_{n}\right\}$ and $\left\{\chi_{n}\right\}$ respectively, $\psi_{n}=g_{2 n}, \quad \chi_{n}=g_{2 n-1} \cos \vartheta_{n}+g_{2 n} \sin \vartheta_{n}$. Stone has proved that $\mathfrak{F}_{1}+\mathfrak{S}_{2}$ is not closed. In fact the condition (2) is not satisfied. To prove this, we put

$$
\varphi_{1}=-\psi_{n} \sin \vartheta_{n} \in \mathfrak{S}_{1}, \varphi_{2}=\chi_{n} \in \mathfrak{S}_{2} ; \text { then since }\left\|g_{n}\right\|=1
$$

we have

$$
\frac{\left\|\varphi_{1}+\varphi_{2}\right\|}{\left\|\varphi_{1}\right\|}=\frac{\left\|g_{2 n-1} \cos \vartheta_{n}\right\|}{\left\|g_{2 n} \sin \vartheta_{n}\right\|}=\left|\cot \vartheta_{n}\right|,
$$

[^1]and there exists no positive number A such that $\left|\cot \vartheta_{n}\right| \geqq A^{\mathbf{- 1}}$.
III. Let $L_{n}^{(\alpha)}(z)$ be the generalised Laguerre polynomial,
$$
\Phi_{n}^{(\alpha)}(x)=\left\{\frac{2 \cdot n!e^{-x^{2}}}{\Gamma(n+\alpha+1)}\right\}^{\frac{1}{2}} x^{\alpha+\frac{1}{2}} L_{n}^{(\alpha)}\left(x^{2}\right), L_{n}^{(\alpha)}(z)=\sum_{r=0}^{n} \cdot\binom{n+\alpha}{n-r} \frac{(-z)^{r}}{r!},
$$
$\Re(\alpha)>-1$. When α is real, then $\left\{\Phi_{n}^{(\alpha)}\right\}, n=0,1, \ldots$ is a complete orthonormal set of $L_{2}(0, \infty)$; otherwise the set $\left\{\Phi_{n}^{(\alpha)}\right\}$ determines ${ }^{8}$) the closed linear manifold $L_{2}(0, \infty)$. Now, for all numbers $a_{0}, a_{1}, \ldots, a_{m}, m \geqq 0$, and all real r, in $L_{2}(0, \infty)$
$$
\left\|\sum_{n=0}^{m} a_{n} \Phi_{n}^{(\alpha)}(x) e^{2 i \pi r n}\right\| \leqq A\left\|\sum_{n=0}^{m} a_{n} \Phi_{n}^{(\alpha)}(x)\right\|,
$$
where A depends on α anly and $A \geqq 1^{9}$). Take $r=\frac{1}{2}$,
$$
\varphi_{1}=\sum_{n=0}^{\left[\frac{1}{2} m\right]} a_{2 n} \Phi_{2 n}^{(\alpha)}, \quad \varphi_{2}=\sum_{n=0}^{\left[\frac{2}{2}-\frac{1}{2}\right]} a_{2 n+1} \Phi_{2 n+1}^{(\alpha)},
$$
then
\[

$$
\begin{gather*}
\left\|\varphi_{1}-\varphi_{2}\right\| \leqq A\left\|\varphi_{1}+\varphi_{2}\right\|, \\
\left\|\varphi_{1}\right\| \leqq \frac{1}{2}\left\|\left(\varphi_{1}-\varphi_{2}\right)+\left(\varphi_{1}+\varphi_{2}\right)\right\| \leqq \frac{1}{2}(A+1)\left\|\varphi_{1}+\varphi_{2}\right\|, \\
\left\|\varphi_{1}\right\| \leqq A\left\|\varphi_{1}+\varphi_{2}\right\|, \varphi_{2} \leqq A\left\|\varphi_{1}+\varphi_{2}\right\| . \tag{5}
\end{gather*}
$$
\]

Let \mathfrak{K}_{1} and \mathfrak{F}_{2} be the closed linear manifolds determined by the sets $\left\{\Phi_{2 n}^{(\alpha)}\right\}$ and $\left\{\Phi_{2 n+1}^{(\alpha)}\right\}$ respectively, $n=\mathbf{0}, \mathbf{1}, \ldots$ Then, from (5) and theorem 1, it follows easily, that $\mathfrak{K}_{1}+\mathfrak{K}_{2}$ is closed; since $\mathfrak{F}_{1} \dot{+} \mathfrak{F}_{2}$ contains the set $\left\{\Phi_{n}^{(\alpha)}\right\}, n=0,1, \ldots$, it must be identical with $L_{2}(0, \infty)^{10}$). The result is self-evident, when α is real.

By the same reasoning we may see that, when $k \geqq 2$, $0 \leqq a<k, 0 \leqq b<k, a \neq b$, and \mathfrak{S}_{1} and \mathfrak{S}_{2} are the closed linear manifolds determined by the sets $\left\{\Phi_{a+s k}^{(\alpha)}\right\},\left\{\Phi_{b+s k}^{(\alpha)}\right\}$ respectively ($s=\mathbf{0}, \mathbf{1}, \ldots$), then $\mathfrak{S}_{1}+\mathfrak{F}_{2}$ is also closed.
(Received May 22nd, 1939.)
${ }^{8}$) This means: The smallest closed linear manifold which contains all $\Phi_{n}^{(\alpha)}$ is $L_{2}(0, \infty)$.
${ }^{9}$) H. Kober [Quart. J. of Math. (Oxford) 10 (1939), 45-59], sections 7, 8, 9.
${ }^{10}$) Added in proof, 14.7.39: This no longer holds in the space L_{p}, $1 \leqq p<2\left[\Re(\alpha)>\frac{1}{p}-\frac{3}{2}\right.$, when $1<p<2, \Re(\alpha) \geqq-\frac{1}{2}$, when $\left.p=1\right]$.

[^0]: ${ }^{6}$) M. H. Stone, Linear transformations in Hilbert space and their applications to analysis [New York 1932], Chapter 1; J. v. Neumann [Mathem. Ann. 102 (1930), 49-131].

[^1]: ${ }^{7}$) Stone l.c., theorem 1.22.

