COMPOSITIO MATHEMATICA

H. KOBER A theorem on Banach spaces

Compositio Mathematica, tome 7 (1940), p. 135-140 <http://www.numdam.org/item?id=CM_1940_7_135_0>

© Foundation Compositio Mathematica, 1940, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal N$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A theorem on Banach spaces

by

H. Kober

Birmingham

1. Let *E* be a normed complete linear vector space, that is to say a space (*B*) in the terminology of S. Banach¹), let $E_1, E_2, E_3, \ldots, E_k$ ($k \ge 1$) be linear subspaces of *E*, which are linearly independent.²) Let $E_1 \stackrel{\cdot}{+} E_2 \stackrel{\cdot}{+} E_3 \stackrel{\cdot}{+} \ldots \stackrel{\cdot}{+} E_k$ be the smallest linear subspace of *E*, which contains all of E_1, E_2, \ldots, E_k . Of course every element ψ of $E_1 \stackrel{\cdot}{+} E_2 \stackrel{\cdot}{+} \ldots \stackrel{\cdot}{+} E_k$ can be represented uniquely in the form $\psi = \varphi_1 + \varphi_2 + \ldots + \varphi_k$ $(\varphi_1 \in E_1, \varphi_2 \in E_2, \ldots, \varphi_k \in E_k)$.

THEOREM 1. Let E be a (B) space, E_1 and E_2 linear closed ³) subspaces of E and linearly independent, then the space $E_{12} = E_1 + E_2$ is closed if, and only if, there exists some constant A such that, for all elements φ_1 , φ_2 ($\varphi_1 \in E_1$, $\varphi_2 \in E_2$)

(1)
$$\|\varphi_1\| \leq A \|\varphi_1 + \varphi_2\|.^4$$

Of course both E_1 and E_2 are (B) spaces and, if the condition (1) is satisfied, so is E_{12} .

The proof of the sufficiency of (1) is quite trivial. Let $\{\psi^{(n)}\}\$ (n=1, 2, ...) be any convergent sequence ⁵) of E_{12} ; then we have to show only that it converges to an element ψ belonging to E_{12} . Since $\psi^{(j)} = \varphi_1^{(j)} + \varphi_2^{(j)}$ $(j=1, 2, ...), \varphi_i^{(m)} - \varphi_i^{(n)} \in E_i$ (i=1, 2), it follows from (1) that

$$\|\varphi_1^{(m)} - \varphi_1^{(n)}\| \leq A \|(\varphi_1^{(m)} - \varphi_1^{(n)}) + (\varphi_2^{(m)} - \varphi_2^{(n)})\| = A \|\psi^{(m)} - \psi^{(n)}\| \to 0,$$

¹) Théorie des opérations linéaires, Warszawa 1932, 53; the norm of φ is $||\varphi||$. ²) This means: If $\varphi_1 + \varphi_2 + \ldots + \varphi_k = 0$, $\varphi_i \in E_i$ $(i=1, 2, \ldots, k)$, then all elements φ_i must be zéro. If k = 2, E_1 and E_2 are linearly independent if, and only if, they have no common element except the element zéro.

⁸) "fermé", Banach l.c., 13.

⁴⁾ Connected problems: H. KOBER [Proc. London Math. Soc. (2), 44 (1938), 453-65], Satz VI'b; see also a forthcoming paper in the Annals of Mathem., Satz III β .

⁵) The sequence has to satisfy the condition of Cauchy $||\psi^{(m)}-\psi^{(n)}|| \to 0$ $(m \ge n \to \infty)$. Since $\psi^{(j)} \in E$ and E is complete, $\{\psi^{(n)}\}$ converges to an element $\psi \in E$, $||\psi^{(n)}-\psi|| \to 0$.

when $m \ge n \to \infty$. Now E_1 is closed, so that the sequence $\{\varphi_1^{(n)}\}$ converges to a limit point $\varphi_1 \in E_1$; so also the sequence $\{\varphi_2^{(m)}\}$ converges to a limit point $\varphi_2 \in E_2$, since

$$\begin{split} \|\varphi_2^{(m)} - \varphi_2^{(n)}\| &= \|(\psi^{(m)} - \psi^{(n)}) - (\varphi_1^{(m)} - \varphi_1^{(n)})\| \\ &\leq \|\psi^{(m)} - \psi^{(n)}\| + \|\varphi_1^{(m)} - \varphi_1^{(n)}\| \to 0 \quad (m \ge n \to \infty). \end{split}$$

Hence the sequence $\{\psi^{(n)}\} \equiv \{\varphi_1^{(n)} + \varphi_2^{(n)}\}$ converges to $\varphi_1 + \varphi_2 = \psi$ and plainly $\varphi_1 + \varphi_2 = \psi$ belongs to $E_1 + E_2 = E_{12}$.

The condition (1) is necessary. For to every element $\psi \in E_1 + E_2$ corresponds exactly one $\varphi_1 \in E_1$ since $\psi = \varphi_1 + \varphi_2$; hence $T\psi = \varphi_1$ is an operation, which evidently is additive (Banach, 23); now let the sequences $\{\psi^{(n)}\} \in E_1 + E_2$ and $\{\varphi_1^{(n)}\} \equiv \{T\psi^{(n)}\} \in E_1$ have the limits points ψ and φ_1 respectively, and then plainly $\psi \in E_1 + E_2$, $\varphi_1 \in E_1$, since $E_1 + E_2$ and E_1 are closed. We next show that $T\psi = \varphi_1$. Since $\psi^{(j)} = \varphi_1^{(j)} + \varphi_2^{(j)}$, $\varphi_1^{(j)} \in E_1$, $\varphi_2^{(j)} \in E_2$ $(j=1, 2, \ldots)$,

$$\|\varphi_2^{(m)} - \varphi_2^{(n)}\| \le \|\psi^{(m)} - \psi^{(n)}\| + \|\varphi_1^{(m)} - \varphi_2^{(n)}\| \to 0 \quad (m \ge n \to \infty)$$

in consequence of the convergence of $\{\psi^{(n)}\}\$ and $\{\varphi_1^{(n)}\}\$, so that $\{\varphi_2^{(n)}\}\$ also converges, $\varphi_2^{(n)} \to \varphi_2 \in E_2$. Since

$$\varphi_1^{(n)} \to \varphi_1, \ \varphi_2^{(n)} \to \varphi_2, \ \psi^{(n)} \to \psi \text{ and } \psi^{(n)} = \varphi_1^{(n)} + \varphi_2^{(n)},$$

we have $\psi = \varphi_1 + \varphi_2$, $\varphi_1 = T\psi$. Now an additive operation T is known to be linear and consequently bounded when it satisfies the condition that $\psi^{(n)} \to \psi$ and $T\psi^{(n)} \to \phi$ imply $\varphi = T\psi$ (Banach, 41 and 54). Then a number A exists with the property that

 $||T\psi|| \leq A ||\psi||$ for all admissible ψ .

Putting $\psi = \varphi_1 + \varphi_2$, $T\psi = \varphi_1$, we have (1), q.e.d.,

From theorem 1 we can easily prove

THEOREM 1a. Let E be a (B) space, let E_1, E_2, \ldots, E_k be linear closed and linearly independent subspaces of E. Then a necessary and sufficient condition for all spaces $E_1 + E_2 + \cdots + E_j$ $(j=2, 3, \ldots, k)$ to be closed, and therefore (B) spaces, is the existence of some number A such that, for all $\varphi_n \in E_n$ $(n=1, 2, \ldots, k)$

$$\|arphi_{j}\| \leq A \|arphi_{1} + arphi_{2} + \ldots + arphi_{k}\| \qquad (j = 1, 2, \ldots, k - 1).$$

2. Hilbert space.

THEOREM 2. Let \mathfrak{H} be a Hilbert space, let \mathfrak{H}_1 and \mathfrak{H}_2 be closed linear manifolds in \mathfrak{H} and linearly independent, and let $\mathfrak{H}_1 \stackrel{\cdot}{+} \mathfrak{H}_2$ be closed. The best possible value of A (Theorem 1) is equal to unity if, and only if, \mathfrak{H}_1 and \mathfrak{H}_2 are mutually orthogonal. Let (φ, f) be the "inner product" of $\varphi \in \mathfrak{H}$ and $f \in \mathfrak{H}$; \mathfrak{H}_1 and \mathfrak{H}_2 , are called orthogonal⁶) to each other, when $(\varphi_1, \varphi_2) = 0$ for all $\varphi_1 \in \mathfrak{H}_1$, $\varphi_2 \in \mathfrak{H}_2$. When this is the case we have

$$\|\varphi_1+\varphi_2\|^2 = (\varphi_1+\varphi_2, \varphi_1+\varphi_2) = (\varphi_1, \varphi_1) + (\varphi_2, \varphi_2) = \|\varphi_1\|^2 + \|\varphi_2\|^2,$$

so that the condition (1) is satisfied, and it is permissible to take A = 1; by theorem 1, $\mathfrak{H}_1 \stackrel{\cdot}{+} \mathfrak{H}_2$ is closed (cf. Stone, Theorem 1.22). Conversely, if $\|\varphi_1\| \leq \|\varphi_1 + \varphi_2\|$ for all $\varphi_1 \epsilon \mathfrak{H}_1$, $\varphi_2 \epsilon \mathfrak{H}_2$, then, for all numbers α , we plainly have $\|\varphi_1\| \leq \|\varphi_1 + \alpha \varphi_2\|$. If (φ_1, φ_2) were equal $Re^{i\vartheta}$, R > 0, take $\alpha = \delta \exp(i\pi + i\vartheta)$, $\delta > 0$. Then

$$egin{aligned} \|arphi_1\|^2 &\leq \|arphi_1+lphaarphi_2\|^2 = \|arphi_1\|^2 + 2\Reig\{lpha(arphi_2,arphi_1)ig\} + ig|lphaig|^2\|arphi_2\|^2 \ &= \|arphi_1\|^2 - 2R\delta + \delta^2\|arphi_2\|^2, \end{aligned}$$

and hence $2R \leq \delta \|\varphi_2\|^2$; if we now make $\delta \to 0$ we get the contradiction $2R \leq 0$.

As a special case of theorem 1a it now easily follows that, if E is a Hilbert space, then the best possible value of A is unity if, and only if, the spaces E_1, E_2, \ldots, E_k are mutually orthogonal; for instance, taking A = 1, j = 1, $\varphi_3 = \varphi_4 = \ldots = \varphi_k = 0$, we have $\|\varphi_1\| \leq \|\varphi_1 + \varphi_2\|$, so that E_1 is orthogonal to E_2 ; the converse is evident, since

$$\|\varphi_1 + \varphi_2 + \ldots + \varphi_k\|^2 = \|\varphi_1\|^2 + \ldots + \|\varphi_k\|^2 \ge \|\varphi_j\|^2 \quad (j = 1, 2, \ldots, k)$$

when the spaces E_1, \ldots, E_k are mutually orthogonal (cf. Stone, Theorem 1.22).

From the preceding theorems we can easily get a number of results such as the following:

If \mathfrak{H} is a Hilbert space, and \mathfrak{H}_1 , \mathfrak{H}_2 , \mathfrak{H}_3 are linear, closed and linearly independent manifolds in \mathfrak{H} , if \mathfrak{H}_3 is orthogonal to \mathfrak{H}_1 and to \mathfrak{H}_2 , and if $\mathfrak{H}_1 \stackrel{\cdot}{+} \mathfrak{H}_2$ is closed, then $\mathfrak{H}_1 \stackrel{\cdot}{+} \mathfrak{H}_2 \stackrel{\cdot}{+} \mathfrak{H}_3$ is closed.

If E_1 , E_2 , E_3 are linear, closed and linearly independent subspaces of a (B) space E, and if $E_1 + E_2$, $E_1 + E_2 + E_3$ are closed, then $E_1 + E_3$, $E_2 + E_3$ are also closed.

3. The space L_p $(p \ge 1)$.

Let $L_p(a, b)$ be the space of all functions f(t) such that $|f(t)|^p$

⁶) M. H. STONE, Linear transformations in Hilbert space and their applications to analysis [New York 1932], Chapter 1; J. v. NEUMANN [Mathem. Ann. 102 (1930), 49-131].

H. Kober.

is integrable over (a, b), $-\infty \leq a < b \leq \infty$, with the norm

$$||f|| = \left(\int_a^b |f(t)|^p dt\right)^{\frac{1}{p}} \qquad (\infty > p \ge 1).$$

Plainly $L_p(a, b)$ is a (B) space.

THEOREM 3. Let E_1 and E_2 be any subspaces of $L_p(a, b)$ such that, for all $\varphi_1 \in E_1$, $\varphi_2 \in E_2$

(2)
$$\int_a^b |\varphi_1(t)|^{p-2} \varphi_1(t) \overline{\varphi_2}(t) dt = 0.$$

Then, for all $\varphi_1 \in E_1$, $\varphi_2 \in E_2$ we have $\|\varphi_1\| \leq \|\varphi_1 + \varphi_2\|$. When p = 1, the interval (a, b) in (2) is to be replaced by the subset F of (a, b) in which φ_1 does not vanish.

Evidently (2) implies that no common element of E_1 and E_2 exists, which is different from zéro.

We have to prove that, for all $\varphi_1 \in E_1$, $\varphi_2 \in E_2$,

$$\Delta(\varphi_1, \varphi_2) = \int\limits_F |\varphi_1(t) + \varphi_2(t)|^p dt - \int\limits_F |\varphi_1(t)|^p dt \ge 0.$$

When we put

$$egin{aligned} |(arphi_1(t))| &= \xi, |arphi_2(t)| = \eta, \ arphi_1(t) \overline{arphi_2}(t) + \overline{arphi_1}(t) arphi_2(t) = u, \ G(u) &= G(u; \xi, \eta) = (u + \xi^2 + \eta^2)^{rac{p}{2}} - \xi^p - rac{1}{2} p u \ \xi^{p-2}, \end{aligned}$$

then

(3)
$$-2\xi\eta \leq u \leq 2\xi\eta,$$
$$\Delta - \frac{p}{2} \int_{F} |\varphi_1|^{p-2} \{\varphi_1\overline{\varphi_2} + \overline{\varphi_1}\varphi_2\} dt = \int_{F} G dt.$$

Now the function G takes no negative value:

When p>2, then, for any fixed $\xi \ge 0$, $\eta \ge 0$ and for $u \ge -\xi^2 - \eta^2$, the function has its minimum at $u = -\eta^2$ while $G(-\eta^2) = \frac{1}{2}p\xi^{p-2}\eta^2 \ge 0$. When p = 2, then $G = \eta^2 \ge 0$. When $1 \le p < 2$, we can easily see that

$$G \ge \min \left\{ G(2\xi\eta), G(-2\xi\eta) \right\} \ \ (-2\xi\eta \le u \le 2\xi\eta);$$

when we put $w = \frac{\eta}{\xi}$, $g(w) = |1 + w|^p - 1 - pw$, then $G(\pm 2\xi\eta) = \xi^p g(\pm w) \ge 0$,

since $g(z) \ge g(0) = 0$ $(-\infty < z < \infty)$. Hence in any case $G \ge 0$, and from (3) and (2) it now easily follows that $\Delta \ge 0$, q.e.d.

138

4. Examples.

I. Let a > 0, $p \ge 1$, let E_1 and E_2 be the subspaces of $L_p(-a, a)$ consisting of all functions of $L_p(-a, a)$ which are equivalent to any even or odd function respectively. It is evident that E_1 and E_2 are linear and linearly independent closed vector spaces, while $E_1 + E_2$ is L_p and therefore closed. Hence, by theorem 1,

$$\|\varphi_1\| \leq A \|\varphi_1 + \varphi_2\| \qquad (\varphi_1 \in E_1, \varphi_2 \in E_2).$$

This result is trivial, since for j = 1, 2

$$\begin{split} \|\varphi_{j}\| &= \left\|\frac{\varphi_{1}+\varphi}{2} \pm \frac{\varphi_{1}-\varphi_{2}}{2}\right\| \leq \frac{1}{2} \left\|\varphi_{1}+\varphi_{2}\right\| + \frac{1}{2} \left\|\varphi_{1}-\varphi_{2}\right\|,\\ &\left\|\varphi_{1}(t)-\varphi_{2}(t)\right\| = \left\|\varphi_{1}(-t)-\varphi_{2}(-t)\right\| = \left\|\varphi_{1}(t)+\varphi_{2}(t)\right\|, \end{split}$$

and hence

(4)
$$\|\varphi_1\| \leq \|\varphi_1 + \varphi_2\|, \ \|\varphi_2\| \leq \|\varphi_1 + \varphi_2\|;$$

we may therefore take A = 1. Since φ_1 is even and φ_2 odd, we evidently have

$$\int_{-a}^{a} |\varphi_1(t)|^{p-2} \varphi_1(t) \overline{\varphi_2}(t) dt = 0, \int_{-a}^{a} |\varphi_2(t)|^{p-2} \varphi_2(t) \overline{\varphi_1}(t) dt = 0,$$

and hence (4) also follows from theorem 3.

When we take $\varphi_1 = \alpha_0 + \alpha_1 \cos t + \cdots + \alpha_M \cos Mt$, $\varphi_2 = \beta_1 \sin t + \beta_2 \sin 2t + \cdots + \beta_N \sin Nt$, with M, N arbitrary integers, $M \ge 0$, $N \ge 1$, α_n , β_n arbitrary numbers, then (4) is also valid throughout the interval a, b, if $\pi^{-1}(a + b)$ or $\pi^{-1}(b-a)$ are even integers, as can easily be proved.

II. The following example, given by Stone⁷) without the condition (1), illustrates the necessity for the condition.

Let $\{g_n\}$ $(n=0,1,\ldots)$ be a complete orthonormal system in a Hilbert space \mathfrak{H} , let ϑ_n be any sequence of numbers which contains a subsequence with the limit point $\frac{1}{2}\pi$, let the Hilbert spaces \mathfrak{H}_1 and \mathfrak{H}_2 be determined by the orthonormal sets $\{\psi_n\}$ and $\{\chi_n\}$ respectively, $\psi_n = g_{2n}, \ \chi_n = g_{2n-1} \cos \vartheta_n + g_{2n} \sin \vartheta_n$. Stone has proved that $\mathfrak{H}_1 + \mathfrak{H}_2$ is not closed. In fact the condition (2) is not satisfied. To prove this, we put

 $\varphi_1 = - \varphi_n \sin \vartheta_n \epsilon \mathfrak{H}_1, \ \varphi_2 = \chi_n \epsilon \mathfrak{H}_2; \text{ then since } \|g_n\| = 1,$ we have

$$\frac{\|\varphi_1+\varphi_2\|}{\|\varphi_1\|} = \frac{\|g_{2n-1}\cos\vartheta_n\|}{\|g_{2n}\sin\vartheta_n\|} = |\cot\vartheta_n|,$$

⁷) Stone l.c., theorem 1.22.

and there exists no positive number A such that $|\cot \vartheta_n| \ge A^{-1}$. III. Let $L_n^{(\alpha)}(z)$ be the generalised Laguerre polynomial,

$$\Phi_n^{(\alpha)}(x) = \left\{\frac{2 \cdot n! e^{-x^2}}{\Gamma(n+\alpha+1)}\right\}^{\frac{1}{2}} x^{\alpha+\frac{1}{2}} L_n^{(\alpha)}(x^2), L_n^{(\alpha)}(z) = \sum_{r=0}^n \binom{n+\alpha}{n-r} \frac{(-z)^r}{r!},$$

 $\Re(\alpha) > -1$. When α is real, then $\{\Phi_n^{(\alpha)}\}$, $n = 0, 1, \ldots$ is a complete orthonormal set of $L_2(0, \infty)$; otherwise the set $\{\Phi_n^{(\alpha)}\}$ determines ⁸) the closed linear manifold $L_2(0, \infty)$. Now, for all numbers $a_0, a_1, \ldots, a_m, m \ge 0$, and all real r, in $L_2(0, \infty)$

$$\left\|\sum_{n=0}^{m} a_n \Phi_n^{(\alpha)}(x) e^{2i\pi rn}\right\| \leq A \left\|\sum_{n=0}^{m} a_n \Phi_n^{(\alpha)}(x)\right\|,$$

where A depends on α anly and $A \ge 1^9$). Take $r = \frac{1}{2}$,

$$\varphi_1 = \sum_{n=0}^{\left[\frac{1}{2}m\right]} a_{2n} \Phi_{2n}^{(\alpha)}, \qquad \varphi_2 = \sum_{n=0}^{\left[\frac{1}{2}m-\frac{1}{2}\right]} a_{2n+1} \Phi_{2n+1}^{(\alpha)},$$

then

$$\begin{aligned} \|\varphi_{1} - \varphi_{2}\| &\leq A \|\varphi_{1} + \varphi_{2}\|, \\ \|\varphi_{1}\| &\leq \frac{1}{2} \left\| (\varphi_{1} - \varphi_{2}) + (\varphi_{1} + \varphi_{2}) \right\| &\leq \frac{1}{2} (A+1) \|\varphi_{1} + \varphi_{2}\|, \\ (5) \qquad \qquad \|\varphi_{1}\| &\leq A \|\varphi_{1} + \varphi_{2}\|, \ \varphi_{2} &\leq A \|\varphi_{1} + \varphi_{2}\|. \end{aligned}$$

Let \mathfrak{H}_1 and \mathfrak{H}_2 be the closed linear manifolds determined by the sets $\{\Phi_{2n}^{(\alpha)}\}\$ and $\{\Phi_{2n+1}^{(\alpha)}\}\$ respectively, $n = 0, 1, \ldots$. Then, from (5) and theorem 1, it follows easily, that $\mathfrak{H}_1 \stackrel{\cdot}{+} \mathfrak{H}_2$ is closed; since $\mathfrak{H}_1 \stackrel{\cdot}{+} \mathfrak{H}_2$ contains the set $\{\Phi_n^{(\alpha)}\}\$, $n = 0, 1, \ldots$, it must be identical with $L_2(0, \infty)^{10}$). The result is self-evident, when α is real.

By the same reasoning we may see that, when $k \ge 2$, $0 \le a < k, 0 \le b < k, a \ne b$, and \mathfrak{H}_1 and \mathfrak{H}_2 are the closed linear manifolds determined by the sets $\{\Phi_{a+sk}^{(\alpha)}\}, \{\Phi_{b+sk}^{(\alpha)}\}$ respectively $(s=0, 1, \ldots)$, then $\mathfrak{H}_1 + \mathfrak{H}_2$ is also closed.

(Received May 22nd, 1939.)

⁹) H. KOBER [Quart. J. of Math. (Oxford) **10** (1939), 45–59], sections 7, 8, 9. ¹⁰) Added in proof, 14.7.39: This no longer holds in the space L_p , $1 \leq p < 2 \left[\Re(\alpha) > \frac{1}{p} - \frac{3}{2} \right]$, when $1 , <math>\Re(\alpha) \geq -\frac{1}{2}$, when p = 1].

⁸) This means: The smallest closed linear manifold which contains all $\Phi_n^{(\alpha)}$ is $L_2(0, \infty)$.