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On multiplicative systems
by

Jakob Levitzki

Jerusalem

It has been recently proved 1 ) that each nil-ring in a ring which
satisfies the minimum condition for the right ideals, is nilpotent.
In the present note it is shown that this result holds for the wider
class of rings in which merely a certain maximum condition is
satisfied (see § 2, III and IV). In particular follows the theorem
(which solves a problem raised by Kôthe 2 ) ) : Each right or left nil-
ideal of a ring which satisfies the minimum or the maximum
condition for right (left) ideals is nilpotent. The results obtained
are based upon two general theorems (which are possibly of
independent interest) on multiplicative nil-systems.

§ 1. On multiplicative nil-systems.

DEFINITION 1. A set A is called a multiplicative system, in
short: M-system if in A an operation, called multiplication, is

defined satisfying the conditions:
a) If a E A, b E A, then the product ab is a uniquely defined

element of A.

P) If a E A, b E A, c E A, then (ab)c = a(bc).
DEFINITION 2. The set of all products a1a2 ... a n, where the

ai are arbitrary elements of a M-system A, and n is a fixed posi-
tive integer, is denoted by A n. Obviously Anis also a M-system.
If n  m then clearly An 1) Am.

1) CH. HOPKINS, Nil-rings with minimal condition for admissible left ideals
[Duke Math. Journal 4 (1938), 6642013667]. Referred to as H. Also J. LEVITZKI, On

rings which satisfy the minimum condition for the right hand ideals [Compositio
Math. 7 (1939), 214-222]. Referred to as L.

2) G. KôTHE, Die Struktur der Ringe, deren Restklassenring nach dem Radikal
voustândig reduzibel ist [Math. Zeitschrift 32 (1930), 161-186]. Referred to
as K. In H and in L the first part of the problem (concerning the minimum con-
dition) was already solved.
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DEFINITION 3. The M-system A is called a nil-M-system if

oc) A contains a zero 0 (i.e. a0 = Oa = 0 for each a E A. As
easily seen, 0 is uniquely defined).

P) Each element of A is nilpotent.
DEFINITION 4. A M-system A is called nilpotent, if for a

certain positive integer n the relation A n = 0 holds (here 0 denotes
the M-system containing the zero only ). Otherwise A is said to
be potent. 

1

DEFINITION 5. The M-system A is said to be generated by
the finite set of elements a,, a2, ..., an if each element a of A
has the form a = b1b2 ... bm, where each bi is a certain aj and
m depends on a.

DEFINITION 6. If A * is an arbitrary subset of a M-system A,
then we denote by Z(A*) the right annihilator of A * in A, i.e.
the set of ail elements a of A satisfying the relation a*a = 0 for
each a* of A*. Evidently Z(A*) is also a M-system. Similarly
the left annihilator is defined (see H, 665).

THEOREM 1. I f A is a potent nil-M-system generated by the
finite set a,, a2, ..., an then A contains a proper potent nil-M-

subsystem A * which is generated by a finite set bl, b2, .. :, b m having
the form bi = a§; c,, where s is suitabely f ixed, ri is a positive integer
smaller than the index o f the nilpotent element as, and the Ci are

elements o f the M-subsystem of A generated by the set a,, a2’ ..., 
as-1, as+1, ... a n.

Proof. Let a1, à2, ..., à, be a subset of the ai so that the M-
system generated by the à, is still potent, and t is of the least
possible value. By the definition of t it is clear that t &#x3E; 2 and
that the M-systeni Ai generated by a2, ..., at is nilpotent. Let
now u be the index of the nilpotent element à1 and v the index
of the nilpotent M-system A1. Let further bl, b2, ..., b m denote
the finite set of all elements of the form

(1 ) à,àjlàj.... à i where ij, # 1, j = 1, ..., p ; i  r  u ; 1 5 s  v.

Finally let A * denote the M-system generated by the bi. The
theorem will be proved if we show that A* is a proper potent
M-subsystem of A. Now, since À is potent, it follows that for

each positieve integer x, the elements d1, d2, ..., dx can be found
so that d1d2 ... da: i= 0, where each di is a certain ai. From the
definition of u and v it follows that if x &#x3E; u, x &#x3E; v then at least
one of the d, is different from àl, and at least one of the d, is
equal to à,. Hence by choosing an arbitrary integer y and fixing x
so that x &#x3E; (u + v ) ( y + 2) we have d1d2 ... dx = f glg2 ’ ’ ’ gvh,
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where f and h are either certain powers of âl or certain elements
of A 1, while the gz are elements of A *. Since glg2 · · gll =1= 0 it
follows that A * is potent. Since further A * C à,A C A (otherwise
à, would be potent ), we have A * C A, which completes the proof
of the theorem.

COROLLARY. As a consequence follows the existence of an
infinite chain

where each term of the chain is a potent nil-M-system, standing
to the preceding term in the similar relation as A * to A.
Remark.’ The preceding theorem and corollary remain true,

if the elements bi = ari c, are replaced by bi = Ci a:t.

THEOREM 2. Let A and A * be the same as in theorem 1. Let

further B be a M -syste1n containing both A and A *. Finally let

Z(A) and Z(A*) denote the left annihilators (see delinition 6) of
A, resp. A* in B. Then Z(A) C Z(A*).

Proof. Let àl, à2l ...., à, and À be the same as in the proof
of theorem 1, and let Z(Ã) be the left annihilator of Ã in B.
Since A ~ Ã, we obviously have Z(A) C Z(À), and hence it
remains to prove that Z(Â) C Z(A*). Now, since u is the index
of â1, it follows that àu-lbi = 0, i = 1, ..., m,, i.e. âi -1 E Z(A* ).
Now two cases are possible: either àu -1 e Z(Ã), i. e. Z(Ã) C Z(A*)
in which case the theorem is proved; or âÎ-1 e Z(À ), i.e. âÎ-lâ; = 0,
i = 1, ..., t, then obviously u - 1 &#x3E; 1 and au1-2bi = 0 for

i = 1, ..., m; hence âÎ-2 E Z(A*). Since on the other hand

a:-2 1. Z(Ã) on account of 6:-2 al =f-: 0, we have also in this case
Z(Ã) C Z(A * ), q.e.d.
COROLLARY Applying theorem 2 to the infinite descending

chain (2), we obtain the following infinite ascending chain.

(3) Z(A) C Z(A*) C Z(A**) C ...
REMARK. The preceding theorem and corollary remain true

if the elements bi = a;i Ci are replaced by bi = c!a:i, and the

left annihilators by the right annihilators.

§ 2. Applications.
I. Rings 7vith minimum condition for potent right ideals. If S

is a ring3) which satisfies the minimum condition for the potent
.right ideals, then we have

3) To avoid confusion we recall that if K is a subset of S than KS denotes

the right ideal generated by the totality of products ks, k E K, s E S.
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THEOREM 3. Each nil-M-system (in particular: each nil-ring)
of S which is generated by a finite set is nilpotent.

Proof. In fact, suppose S contains a potent nil-M-system A
which is generated by the finite set al, a2, ..., an. If now al,
â2, ..., â n and À are the same as in the proof of theorem 1, then
the potent right ideals A S and A *S evidently satisfy the relation
A * S C à,A S CAS ( otherwise we would have alAS = A S, and
hence à’ A S = A S fôr each positive integer 1, which is not true
since à, is nilpotent). Applying this result to (2) we obtain tlie
infinite chain of potent right ideals

which contradicts the minimum assumption.
REMARK. If the minimum condition is assumed for all the

right ideals of the ring, then the above theorem can be extended
as follows: Each nil M-system of S (in particular: Each nil-

subring) is nilpotent (see L, theorem 11 ).

II. Rings with maximum condition for right ideals. If S is a
ring which satisfies the maximum condition for the right ideals,
then we prove
THEOREM 4. Each nil-M-system A in S (in particular, each

nil-subring) which is generated by a finite set is nilpotent.
Proof. In fact, suppose S contains a potent nil-M-system A

which is generated by the finite set a,, a2, ..., a n. Let A * be

the M-system defined as in theorem 1 where the bi are replaced
by the 5, (see remark to theorem 1). If the infinite chain

A DA* DA** D ... is defined according to the corollary to

theorem 1, and if Z(A ), Z(A* ) etc, are right annihilators in S,
then these annihilators are obviously right ideals in S, forming
according to theorem 2 the infinite chain Z(A) C Z(A*)
C Z(A**) C ... which contradiéts the maximum assumption.
THEOREM 5. Each right nil-ideal R in S is nilpotent.
Proof. From the maximum condition follows the existence

of a finite set of elements al, a2, ..., an in R so that

R2 = (a,R, a2R, ..., anR); if then A is the ring generated by the
ai, we have R2 = A R, hence R3 = A R2 = A2R, and in general:
R8 = A 8-1 R for each positive integer s. Since (by theorem 4)
A is nilpotent, it follows that a.lso R is nilpotent.

REbiARK. It follows noyv easily that also each left nil-ideal in S
is nilpotent, and hence that the generalized radical (see K, 169)
of .S coincides with the nilpotent radical.
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III. Rings with maximum condition f or right as well as f or left
ideals. If S is a ring which satisfies the maximum condition for
the right as well as for the left ideals, then theorems 4 and 5
can be extended as follows:
THEOREM 6. Each nil-M-system A (in particular each nil-

subring) in S is nilpotent.
Proof. From the maximum condition for left ideals follows

for an arbitrary positive integer 1 the existence of the finite sets
a,, a2l ..., an and a1, a2 ..., â m in A’ so that (A’, , SAl) = (...,
a ..., Sa ’, ... ) and ( A 2l SA21) = (..., aiak, ..., Sa à ... ). If now
À denotes the M-system generated by the ai and the aj, then
clearly (SAl , Al) = (SA, À) and (SA 21, A 2l) = (SA2, À2). Now
either À2 = 0 for a certain l, in which case the theorem is proved,
since then A 2l = 0; or À2 -1- 0 for each l. In this case we considçr
the right annihilators-Z(Al, SA 1) = Z(A, SA) and Z(A2l, SA2l) =
= Z(À2@ SÀ2). Since by theorem 4 the 31-system À is nilpotent
for each 1, it follows easily that Z(À, SA) C Z(À2, SÃ2) 4). Hence
supposing that A is potent we obtain the infinité chain of right
ideals

which contradicts the maximum condition for right ideals.

IV. A generalisation. In H and L it was proved that a
ring S which satisfies the minimum condition for the right ideals
possesses a nilpotent radical R, that the ring S/R is semi simple,
and that theorem 6 holds in S. Since S/R satisfies the minimum
and the maximum condition for the right as well as for the
left ideals, we easily obtain by theorem 6 the following genera-
lisation :

THEOREM 7. I f S is a ring which contains a nilpotent ideal T
so tltat the ring S/T satisfies the maximum condition for the right
as well as f or the left ideals, then each nil-M-system (in particular,
each nil-ring) in S is nil potent.

(Received August 30th, 1939.)

4) If namely Àt = 0, Àt-1 zA 0, then t &#x3E; 2 and À A’-2 :f::. 0, while À2À’-2 = 0,
i.e. Z(SA, Ã) does not contain Àt-2 while À4-2 -C Z(SÀ2, À2).


