Compositio Mathematica

F. LOONSTRA
 The classes of partially ordered groups

Compositio Mathematica, tome 9 (1951), p. 130-140
http://www.numdam.org/item?id=CM_1951__9__130_0
© Foundation Compositio Mathematica, 1951, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques http://www.numdam.org/

The classes of partially ordered groups

by
F. Loonstra
The Hague

§ 1. In 1907 H. Hahn published a paper: Über die nichtarchimedischen Größensysteme ${ }^{1}$). It is a study of commutative simply ordered groups, especially concerning the non archimedean groups.

Hahn uses the additive notation for the group operation, and he defines the group G to be Archimedean, if the Archimedean postulate (A) is satisfied:
(A) For each pair of positive elements a and b of $G(a>0$, $b \geq 0$), there exists a natural multiple $n \cdot a$ of a with the property $n \cdot a>b$, and conversely there is a natural multiple $m \cdot b$ of b with the property $m \cdot b>a$.

If the postulate (A) is not satisfied for all pairs of positive elements, we call the ordering of G non-archimedean.

Suppose G is a commutative simply ordered group, a and b positive elements, then there are only four mutually exclusive possibilities:
I. For each natural multiple $n \cdot a$ of a there exists a natural multiple $m \cdot b$ of b, so that $m \cdot b>n \cdot a$, and conversely for each multiple ${ }^{2}$) $m^{\prime} \cdot b$ of b there exists a multiple $n^{\prime} \cdot a$ of a, so that $n^{\prime} \cdot a>m^{\prime} \cdot b$.
II. For each multiple $n \cdot a$ of a there exists a multiple $m \cdot b$ of b with $m \cdot b>n \cdot a$, but not conversely.
III. For each multiple $m^{\prime} \cdot b$ of b there exists a multiple $n^{\prime} \cdot a$ of a with $n^{\prime} \cdot a>m^{\prime} \cdot b$, but not conversely.
IV. Not for every multiple $n \cdot a$ of a does there exist a multiple $m \cdot b$ of b with $m \cdot b>n \cdot a$, nor for every multiple $m^{\prime} \cdot b$ of b does there exist a multiple $n^{\prime} \cdot a$ of a with $n^{\prime} \cdot a>m^{\prime} \cdot b$.

In case I we call a and b of the same rank, written $a \sim b$. In case II we call a of a lower rank than b, written $a<b$ or $b>a$.

[^0]Therefore in case III, $b<a$ or $a>b$. If $a<b$, it follows immediately that $n \cdot a<b$ for all natural n.

In the case of simply ordered groups the possibility IV cannot occur. For $a<0, b>0$ (resp. $a<0, b<0$) the relation between a and b is defined in the same way as for - a and b (resp. - a and $-b$).

Because of the fact that equality of rank is an equivalencerelation, it is possible to divide G into classes, each class consisting of those and only those elements having the same rank as a given one; therefore two classes either coincide or they are disjunct. If G is non-archimedean ordered, then G has at least two classes A and B different from the zero class (consisting only of the identity). If A and B are two different classes of G and if for $a \in A, b \in B$ the relation $a<b$ holds, then it is easily proved that this relation is valid for each pair of elements $a^{\prime} \in A, b^{\prime} \in B$.

Therefore Hahn defines the relation $A<B$ for the classes A and B by $a<b$ for $a \in A, b \in B$. For two different classes A and B of G there exists one and only one of the order relations $A<B$ and $B<A$. Moreover $A<B$ and $B<C$ implies $A<C$.

The classes of a commutative simply ordered group G form a simply ordered set Λ, the class-set of G, while the ordertype of Λ is called the class-type of G. Conversely Hahn proves: if Λ is a simply ordered set, then there exists always a commutative simply ordered group G such that the class-type of G is equal the ordertype of Λ.
§ 2. We shall try to find a similar partition into classes for partially ordered groups. Though we have later on to restrict ourselves to commutative lattice-ordered groups, for the present we omit this restriction.

Definition: A partially ordered group is a set G satisfying the following conditions:
a) G is a group with the additive notation for the groupoperation.
b) G is a partially ordered set.
c) $\quad a \leqq b$ implies $c+a+d \leqq c+b+d$ for each pair c and d of G.
G is called a directed group, if G is a partially ordered group with the property that for each pair $a, b \in G$ there exists an element $c \in G$ with $c \geqq a, c \geqq b$.
G is called a lattice-ordered group if G is a lattice instead of a
partially ordered set. Then each pair of elements a and b of G have a join $a \cup b$ and a meet $a \cap b$.

Let G be a partially ordered group and $G^{ \pm}$the set of all elements a, comparable with $0(a \gtreqless 0)$. If a and b are two positive elements, we have for a and b the four possibilities I, II, III and IV of § 1. Likewise we define a and b to be of the same rank ($a \sim b$) only if the case I occurs.

If there is a natural number m_{0}, so that $n \cdot a<m_{0} \cdot b$ for all natural n, we shall call a of a lower rank than $b(a<b$ or $b>a)$. If the positive elements a and b are such that neither $a \sim b, a<b$, nor $b<a$, we call a and b of incomparable rank. For $a<0, b>0$ (resp. $a<0, b<0$) the relation between a and b is defined in the same way as for - a and b (resp. - a and -b). It is easily proved, that for any two elements a and b of G at most one of the relations $a \sim b, a<b$, or $b>a$ holds. If none of these relations is satisfied, then a and b are of incomparable rank. Thus we obtain: For each pair of elements a and b of $G^{ \pm}$there exists exactly one of the four possibilities: $a \sim b, a<b, a>b$, or a and b of incomparable rank. If $a \in G^{ \pm}(a \neq 0)$ we define $0<a$ for each $a \epsilon G^{ \pm}$. We prove the following statement:

If $a<b, a \sim a^{\prime}, b \sim b^{\prime}$, then we have $a^{\prime}<b^{\prime}$. For the sake of convenience we suppose $a>0, b>0$ and moreover $m \cdot a<n_{0} \cdot b$ for all natural m.

For each multiple $m^{\prime} \cdot a^{\prime}$ of a^{\prime} there is a multiple $m \cdot a$ of a with

$$
m \cdot a>m^{\prime} \cdot a^{\prime}
$$

and for each multiple $r \cdot b$ of b there is a multiple $r^{\prime} \cdot b^{\prime}$ with

$$
r^{\prime} \cdot b^{\prime}>r \cdot b
$$

For every natural c we have

$$
c \cdot r \cdot b<c \cdot r^{\prime} \cdot b^{\prime} ;
$$

we choose c in such a manner, that $c \cdot r \geqq n_{0}$. Thus

$$
m \cdot a<c \cdot r^{\prime} \cdot b^{\prime}
$$

for all natural m we have: For all $m^{\prime} \cdot a^{\prime}$ we can find a multiple $m \cdot a$ with

$$
m^{\prime} \cdot a^{\prime}<m \cdot a
$$

therefore $m^{\prime} \cdot a^{\prime}<c \cdot r^{\prime} \cdot b^{\prime}$ for all m^{\prime} and so we have $a^{\prime}<b^{\prime}$. If a and b are of incomparable rank and $a \sim a^{\prime}, b \sim b^{\prime}$, then
a^{\prime} and b^{\prime} are of incomparable rank too; in fact, should a^{\prime} and b^{\prime} be of comparable rank, it follows from the preceding result, that a and b should be of comparable rank. The relation "equality of rank" enables us to divide the set $G^{ \pm}$into classes. A class A consists of those and only those elements which are of the same rank. The zero class O is the class consisting of the identity of G. It follows that two classes A and B either coincide or are disjunct. Just as for the simply ordered groups it is possible to define an order relation $A>B$ for the two classes A and B, if and only if $a>b$ for $a \in A, b \in B$. Two such classes A and B are called incomparable if two elements $a \epsilon A$ and $b \in B$ are of incomparable rank. Therefore each pair of different classes A and B defines one and only one of the three relations $A>B, B>A$, or A and B are incomparable. Moreover $A>B, B>C$ implies $A>C$. The classes of a partially ordered group G form a partially ordered set Λ, called the class-set of G. Λ possesses a least element O, the zero class. The Hasse-diagram of Λ is called the class-diagram of G.

§ 3. Examples.

1. The class-set Λ of a simply ordered group G is a chain.
2. Let G be the group of the pairs ($m ; n$), m and n integers with the operation: $\left(m_{1} ; n_{1}\right)+\left(m_{2} ; n_{2}\right)=\left(m_{1}+m_{2} ; n_{1}+n_{2}\right)$ while the ordering is defined by $\left(m_{1} ; n_{1}\right) \leqq\left(m_{2} ; n_{2}\right)$ if and only

Fig. 1. if $m_{1} \leqq m_{2}, n_{1} \leqq n_{2} \quad$ (cardinalordering of the group of pairs). G has four different classes: the zero class O, the class A of elements $(0 ; n)(n$ integer and $\neq 0)$, the class B of elements ($n ; 0$) with $n \neq 0$, and the class C of the elements ($m ; n$) with $m>0, n>0$, or $m<0, n<0$. Each pair of the classes A, B, and C is incomparable since the elements $a=(0 ; 1)$, $b=(\mathbf{1} ; \mathbf{0})$ and $c=(\mathbf{1} ; \mathbf{1})$ are incomparable. The class-diagram of G is given in fig. 1 .
3. G is the group of the triples $(m, n ; p)$, in which m, n and p are integers such that

$$
\left(m_{1}, n_{1} ; p_{1}\right)+\left(m_{2}, n_{2} ; p_{2}\right)=\left(m_{1}+m_{2}, n_{1}+n_{2} ; p_{1}+p_{2}\right) .
$$

The ordering is defined as follows: the pairs $\alpha=(m, n)$ of the first two components are cardinally ordered (as in ex. 2); on the other hand the pairs ($\alpha ; p$), in which (m, n) is replaced by α, are
ordinally ordered (e.g. lexicographically ordered). Contrary to

Fig. 2. the examples 1. and 2. this group is not a lattice-ordered group since the elements $(0,1 ; 0)$ and $(1,0 ; 0)$ have no join. Let A be the class containing the element $(0,0 ; 1), B$ the class containing $(0,1 ; 0), C$ the class containing $(1,0 ; 0)$ and D the class containing (1,$1 ; 0$). There exist no other classes, hence the classdiagram has a form like that in fig. 2.

These and other examples show that in general the class-set Λ is not a lattice. Moreover a question arises: Do there exist groups with a prescribed class-set Γ ? If we restrict ourselves to commutative lattice-ordered groups then it is possible to prove that the answer is negative. Since the class-set of a partially ordered group is not in general a lattice, we have a strong reason to ask whether it is possible to solve the problem of the division of classes of partially ordered groups in such a way, that we are able to find another sort of class-set with - at least - the properties of a lattice. This question can be answered affirmatively.
§ 4. Supposing now that G is a commutative lattice-ordered group we will proceed in the following paragraph to give some definitions and properties of these groups.

$$
\begin{gathered}
|a|=a \cup-a ; \text { if } a \neq 0, \text { we have } \\
|a|>0 ;|0|=0 ;|a \pm b| \leqq|a|+|b|
\end{gathered}
$$

Two lattice-ordered groups G and G^{\prime} are called isomorphic if there is a group-isomorphic relation between G and G^{\prime} such that $a \leqq b$ implies $a^{\prime} \leqq b^{\prime}$ and $a^{\prime} \leqq b^{\prime}$ implies $a \leqq b$. It is easily proved that in the case of isomorphism $p \cup q$ (resp. $p \cap q$) corresponds to $p^{\prime} \cup q^{\prime}$ (resp. $p^{\prime} \cap q^{\prime}$).

A lattice-ordered subgroup H of G is a lattice-ordered group, which is a subgroup of G while the lattice H is a sublattice of G. Now we need the following:

Theorem 4.1: If G is a commutative lattice-ordered group and n a natural number, then the correspondence $a \rightarrow n \cdot a$ is an isomorphism of G with a lattice-ordered subgroup of G^{3}).

[^1]Proof: From $a \rightarrow n \cdot a, b \rightarrow n \cdot b$, it follows that $a+b \rightarrow$ $n \cdot(a+b)$, and $n \cdot a=n \cdot b$ implies $a=b$. If $a \leqq b$, then also $n \cdot a \leqq n \cdot b$, and conversely $n \cdot a \leqq n \cdot b$ implies $a \leqq b$ (because of the commutative property of the groupoperation). It follows that $a \cup b \longleftrightarrow n \cdot(a \cup b)$, but also $a \cup b \longleftrightarrow \rightarrow n \cdot a \cup n \cdot b$; therefore $n \cdot(a \cup b)=n \cdot a \cup n \cdot b$, and in the same way $n \cdot(a \cap b)=$ $n \cdot a \cap n \cdot b$.

By an L-ideal of the lattice-ordered group G is meant a normal subgroup of G which contains with any a, also all x with $|x| \leqq|a|^{4}$). G and O are L-ideals of G, and are called improper L-ideals, whereas all other L-ideals of G are called proper L-ideals. If N is an L-ideal of G, then N contains with a and b also $a+b$, $a \cup b, a \cap b$, and all x with the property $a \cap b \leqq x \leqq a \cup b$. Now let a be some element of G. The set $I(a)$ of elements $x \in G$ which satisfy the relation $|x| \leqq n \cdot|a|$ for some natural n is an L-ideal. Because, if $|b| \leqq m \cdot|a|, \quad|c| \leqq n \cdot|a|$, then $|b \pm c| \leqq|b|+$ $|c| \leqq(m+n) \cdot|a|$; and if $b \in I(a)$ and $|x| \leqq|b|$, then $|x| \leqq m \cdot|a|$; hence $I(a)$ is an L-ideal. Moreover $I(a)$ is the smallest L-ideal which contains a. In fact, an L-ideal containing a contains also $n \cdot a$ (for all natural n) and therefore all b with $|b| \leqq|n \cdot a|=$ $n \cdot|a|$. In addition it is obvious, that $I(a)=I(-a)=I(|a|)$.

All L-ideals $I(a)$ of G will be called I-ideals.
For subsequent use we now give a theorem first proved by Birkhoff ${ }^{5}$): A commutative lattice-ordered group G has two proper disjunct L-ideals (e.g. two proper L-ideals with intersection $O)$ unless G is simply ordered. The proof of this theorem is based on the consideration that G contains an element a incomparable with O unless G is simply ordered. To prove the theorem Birkhoff constructs two disjunct L-ideals S and S^{\prime}, of which S^{\prime} contains the element $a^{+}=a \cup 0$ but not $a^{-}=a \cap 0$, while S contains a^{-}but not a^{+}. This enables us to prove the following.

Theorem 4.2: A commutative lattice-ordered group G is simply ordered if and only if the I-ideals of G form a chain.

Proof: Suppose that G is simply ordered and that $I(a)$ and $I(b)$ are two I-ideals, $a \neq 0, b \neq 0 . I(a)=I(-a)$, therefore we suppose $a>0, b>0$ and $a<b$. Then $I(a) \subseteq I(b)$, because $x \in I(a)$ implies $|x| \leqq n . a$ for some natural n. Therefore $|x|<n \cdot b$, whence $x \in I(b)$. Conversely, if the I-ideals of G form a chain, then G must be simply ordered. In fact should G not

[^2]be simply ordered, then G would contain two proper L-ideals S and S^{\prime} with intersection O. Following the construction of S^{\prime} we see that $I\left(a^{+}\right) \subseteq S^{\prime}$, while $I\left(a^{+}\right)$is the smallest L-ideal containing a^{+}. In the same way $I\left(a^{-}\right) \subseteq S$. The intersection of S and S^{\prime} consists only of the identity, therefore $I\left(a^{-}\right)$and $I\left(a^{+}\right)$have only the identity as a common element. Hence $I\left(a^{-}\right)$and $I\left(a^{+}\right)$ are incomparable (e.g. neither $I\left(a^{-}\right) \subseteq I\left(a^{+}\right)$, nor $I\left(a^{+}\right) \subseteq I\left(a^{-}\right)$).

Theorem 4.3: If G is a commutative lattice-ordered group the I-ideals of G form a distributive lattice S_{G}.

Proof: We prove that for two I-ideals, $I(a)$ and $I(b)$, there exist a join and a meet, which are also I-ideals. For $a=0$ of $b=\mathbf{0}$, a join and meet evidently exist. We now prove: $I(a) \cup I(b)=$ $I(|a| \cup|b|)$; since $I(a)=I(|a|)$ and $|a| \leqq|a| \cup|b|$, we have $I(|a|) \subseteq I(|a| \cup|b|)$ and $I(|b|) \subseteq I(|a| \cup|b|)$.
Conversely if $I(|a|) \subseteq I(c)$ and $I(|b|) \subseteq I(c)$, then $|a| \leqq n_{1} \cdot|c|$, $|b| \leqq n_{2} \cdot|c|$, therefore a and b both satisfy $|a| \leqq n \cdot|c|,|b| \leqq n \cdot|c|$ with $n=\max \left(n_{1}, n_{2}\right)$.

Hence $|a| \cup|b| \leqq n|c|$ and $I(|a| \cup|b| \subseteq I(c)$.
In the same way $I(|a| \cap|b|) \subseteq I(|a|)$ and $I(|a| \cap|b|) \subseteq I(|b|)$.
If $I(c) \subseteq I(|a|)$ and $I(c) \subseteq I|b|)$ then $|c| \leqq n|a|$ and $|c| \leqq n|b|$ for suitably closen n. Hence by Theorem $4.1|c| \leqq n \cdot|a| \cap n \cdot|b|=$ $n \cdot(|a| \cap|b|)$, and therefore $I(c) \subseteq I(|a| \cap|b|)$. Therefore: the I-ideals of G form a lattice S_{G}. It is now easy to prove that this lattice is distributive. To do this we need the property, that G itself is a distributive lattice:
$I(a) \cap(I(b) \cup I(c))=I(a) \cap(I(|b| \cup|c|)=I(|a| \cap(|b| \cup|c|))$ $=I((|a| \cap|b|) \cup(|a| \cap|c|))=I(|a| \cap|b|) \cup I(|a| \cap|c|)$ $=\{I(a) \cap I(b)\} \cup\{I(a) \cap I(c)\}$.
§ 5. Let G be a commutative simply ordered group. We prove
Theorem 5.1: The elements a and b are of the same rank (§ 1) if and only if $I(a)=I(b)$.

Proof: If $a=b=0$, then $I(a)=I(b)$; therefore we suppose $a \neq 0$; then $b \neq 0$.

Without restricting the generality we suppose $a>0, b>0$. If $x \in I(a)$, then $|x| \leqq n \cdot|a|=n \cdot a$. Now $a \sim b$ (§ 1), so we can find a natural m with $n \cdot a<m \cdot b$; hence $|x| \leqq n \cdot a<m \cdot b=$ $m \cdot|b|$. Therefore $I(a) \subseteq I(b)$ and in the same way $I(b) \subseteq I(a)$.

Hence it follows from $a \sim b$ that $I(a)=I(b)$. If conversely $I(a)=I(b)$, and we suppose $a>0, b>0$, then $a \in I(b)$. Therefore $a<n \cdot b$ and, in the same way $b<m \cdot a$ for proper natural m and n; hence $a \sim b$.

Theorem 5.2: For the elements a and b of $G, a<b$ if and only if $I(a)$ is a proper subset of $I(b)$.

Proof: Suppose $a<b(a>0, b>0)$, then for $x \in I(a)$ we have $|x| \leqq n \cdot|a|=n \cdot a$ and $n \cdot a<b$ (for all natural n). Therefore $|x|<|b|$, hence $x \in I(b)$. But not every element of $I(b)$ is contained in $I(a)$; for, if $b \in I(a)$, then $|b| \leqq n \cdot|a|$ or $b \leqq n \cdot a$, contrary to the supposition that $n \cdot a<b$ for all natural n. Hence $I(a)$ is a proper subset of $I(b)$.

Conversely, if $I(a)$ is a proper subset of $I(b)$ there is an element y of $I(b)$ and not in $F(a)$, such that no natural multiple $n \cdot a$ of a exists with $y \leqq n \cdot a$. Therefore $n \cdot a<y$ for all natural n, and since $y \in I(b)$, we have $y<m_{o} \cdot b$ for some natural m_{o}. It follows now $n \cdot a<n_{o} \cdot b$ for all natural n, therefore $n \cdot a<b$ for all natural n or $a<b$.

Therefore in a commutative simply ordered group G we have $a \sim b$ if and only if $I(a)=I(b)$ and $a<b$ if and only if $I(a) \subset I(b)$. If the element a is contained in the class A, then A corresponds to the I-ideal $I(a)$ of some arbitrary $a \in A$; and in addition, there are no other elements g in G, except the elements a of A, such that $I(g)=I(a)$. Furthermore $A<B$ implies $I(a) \subset I(b)$, if $a \in A, b \in B$.

Every I-ideal is generated by an element a, and therefore every I-ideal $I(a)$ corresponds to a class A, containing the element a. If $I(a)=I(b)$, then we have proved: $a \sim b$. If $I(a) \subset I(b)$, then $a<b$; hence for the corresponding classes A and B we have $A<B$. Therefore we have the following result:

Theorem 5.3: If G is a commutative simply ordered group, there is a one to one correspondence preserving the orderrelations between the class-set Λ of G and the set of the I-ideals of G.

While the intersection of the classes of G is always empty, the I-ideals form a chain. For example, if Λ is the chain $0<A<B<C<D$ and $a \in A, \quad b \in B, c \in C, d \in D$, we have $I(0) \subset I(a) \subset I(b) \subset I(c) \subset I(d)$.
§ 6. To generalize the preceding results for commutative lattice-ordered groups, we compare the I-ideals of G. Suppose that a and b are two elements of G which are not necessarily comparable with 0 . We now define a and b to be of the same I-rank if and only if $I(a)=I(b)$; and we define a to be of a lower I-rank than b, if $I(a)$ is a proper subset of $I(b)$. We only use the notation $a \sim b$ for the equality of rank as defined in § 2. That definition was only given for elements comparable with 0 . Like-
wise we use the notation $a<b$ only for the cases we specified in§ 2. However, it will appear that there is a close connection between the two types of relations of rank. First of all we give an example: G is the group of pairs ($m ; n$) (see ex. $2, \S 3$). $I(0 ; 0)=O, I(0 ; 1)$ $=A$, consisting of all elements $(0 ; n)$ with n an integer; $I(1 ; 0)=B$, consisting of all elements $(n ; 0)$ with n an integer; $I(\mathbf{1} ; \mathbf{1})=C$, consisting of all elements of G. The Hasse-diagram of the I-ideals is shown in fig. 3.

If G consists of all cardinally ordered triples (m, n, p), with m, n and p integers and $\left(m_{1}, n_{1}, p_{1}\right)+\left(m_{2}, n_{2}, p_{2}\right)=$ $\left(m_{1}+m_{2}, n_{1}+n_{2}, p_{1}+p_{2}\right)$

Fig. 3.

Fig. 4.
and we indicate $I(0,0,0)=0, I(0,0,1)=A, I(0,1,0)=B$, $I(\mathbf{1}, \mathbf{0}, \mathbf{0})=C, \quad I(\mathbf{0}, \mathbf{1}, \mathbf{1})=D, \quad I(\mathbf{1}, \mathbf{0}, \mathbf{1})=E, \quad I(\mathbf{1}, \mathbf{1}, \mathbf{0})=F$, and $I(1,1,1)=G$, then the Hasse-diagram of the I-ideals is given by fig. 4.
§ 7. Now we try to find the relation between the class-set Λ (of § 2) and the I-ideals of a commutative lattice-ordered group G.

Theorem 7.1: For $a, b \in G$ and $a>0, b>0$, we have $a \sim b$ if and only if $I(a)=I(b)$.

Proof: Suppose $a \sim b$ and $a>0, b>0$. If $x \in I(a)$, and therefore $|x| \leqq n \cdot a<m \cdot b$ for some natural m and n, then $I(a) \subseteq I(b)$, and in the same way $I(b) \subseteq I(a)$. Hence $I(a)=I(b)$. Conversely, we must show, if $I(a)=I(b)$, and $a>0, b>0$, then $a \sim b$. Indeed, since $|a|=a<n \cdot b$ and $b<m \cdot a$ for some natural m and n, we have $a \sim b$.
Theorem 7.2: From $a<b$ we conclude $I(a) \subset I(b)$, but not conversely.

Proof: If $a<b$, then $n \cdot a<m_{0} \cdot b$ for all natural $n(a>0$, $b>0)$. Thus we have for any $x \in I(a),|x| \leqq n \cdot a<m_{0} \cdot b$, therefore $x \in I(b)$. But we have not $I(b) \subseteq I(a)$ for if $b \in I(a)$, then we should have $b \leqq n \cdot a$ and $m_{0} \cdot b \leqq m_{0} n \cdot a$ contrary to our supposition. Therefore $I(a) \subset I(b)$. That the opposite of the theorem is not true, appears from the ex. $2, \S 3$; in fact, we have $I(\mathbf{0}, \mathbf{1}) \subset I(\mathbf{1}, \mathbf{1})$, but not $(\mathbf{0}, \mathbf{1})<(\mathbf{1}, \mathbf{1})$.

With every element a of a class of G there corresponds an I-ideal $I(a)$, and $I\left(a^{\prime}\right)=I(a)$ for all $a^{\prime} \in A$. Therefore, a. class A of G corresponds with an I-ideal $I(a)$, generated by a representing element a of A. Furthermore $A<B$ implies $I(a) \subset I(b)$ (proper subset), if $a \in A, b \in B$. Conversely an I-ideal, generated by an element a of G, corresponds to a class A of G, viz. the class A of which a is a member (we may suppose, that $a \geqq 0$, since $I(a)=I(|a|))$. The class A, corresponding to an I-ideal of G, does not depend on the choice of the generating element a of I (this follows from Theorem 8.1). Therefore we have:

Theorem 7.3; If G is a commutative lattice-ordered group, then the set of the classes (formed by the elements of $G^{ \pm}$) corresponds one to one with the set of the I-ideals of G. The correspondence preserves the order-relation in one direction, i.e. $A<B$ implies $I(a) \subset I(b)$, if $a \in A, b \in B$.

The last result enables us to decide whether or not there are

commutative lattice-ordered groups with a prescribed classdiagram. We prove that there is no commutative lattice-ordered group G with a class-diagram as shown in fig. 5. In fact, for such a group G the lattice of the I-ideals is a lattice consisting of three elements, e.g. this lattice is one the chains $O-I(a)-I(b)$ or $O-I(b)-I(a)$ (fig. 6). Other lattices of three elements do not
exist. If, however, the I-ideals from a chain. G must be a simply ordered group (theorem 4.2), and the class-set Λ must be a simply ordered set too. Therefore the diagram of fig. 5 cannot be the class-diagram of G. Finally we put two questions:

1. Is the commutative lattice-ordered group uniquely defined but for isomorphism by the lattice of the I-ideals?
2. What conditions must be satisfied by this lattice if a distributive lattice with smallest element is the lattice of the I-ideals of a commutative lattice-ordered group?

My thanks are duc to Prof. Birkhoff for his suggestions.

[^0]: ${ }^{1}$) Sitzungsberichte der Akademie der Wissenschaften, Math. Naturw. Kl. Band 116, 1907, Wien.
 ${ }^{2}$) In the following "multiple" will stand for "natural multiple".

[^1]: ${ }^{3}$) G. Birkhoff, Lattice Theory p. 221; Ex. 3.

[^2]: ${ }^{4}$) Lattice Theory p. 222.
 ${ }^{5}$) G. Birkhoff, Lattice-ordered groups, Ann. of Math. 43 (1942), p. 312.

