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The classes of partially ordered groups
by

F. Loonstra

The Hague

§ 1. In 1907 H. Hahn published a paper: Über die nicht-
archimedischen Größensysteme 1). It is a study of commutative
simply ordered groups, especially concerning the non -archimedean
groups.
Hahn uses the additive notation for the group operation, and

he de fines the group G to be Archimedean, if the Archiinedean

postulate (A) is satisfied:

(A) . For each pair of positive elements a and b of G (a &#x3E; 0,
b &#x3E; 0), there exists a natural multiple n - a of a with the property
n - a &#x3E; b, and conversely there is a natural multiple m · b of b
with the property m · b &#x3E; a.

If the postulate (A) is not satisfied for all pairs of positive
elements, we call the ordering of G non-archimedean.

Suppose G is a commutative simply ordered group, a and b
positive elements, then there are only four mutually exclusive
possibilities:

I. For each natural multiple n · a of a there exists a natural
multiple m · b of b, so that m - b &#x3E; n · a, and conversely for each
multiple 2) in’ - b of b there exists a multiple n’ - a of a, so that
n’ · a &#x3E; m’ · b.

II. For each multiple n - a of a there exists a multiple m - b
of b with m - b &#x3E; n - a, but not conversely.

III. For each multiple m’ · b of b there exists a multiple
l’/;’ . a of a with n’ · a &#x3E; m’ · b, but not conversely.

IV. Not for every multiple n - a of a docs there exist a multiple
in - b of b with m - b &#x3E; n - a, nor for every multiple m’ · b of b
does there exist a multiple n’ . a of a with n’ · a &#x3E; m’ · b.

In case I we call a and b of the same rank, written a N b. In
case II we call a of a lower rank than b, written a  b or b  a.

1) Sitzungsberichte der Akademie der wissenschaften, Math. Naturw. KI.

Band 116, 1907, Wien.

2) In the following "multiple" will stand for "natural multiple".
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Therefore in case III, b  a or a  b. If a  b, it follows immediately
that n · a  b for all natural n.

In the case of simply ordered groups the possibility IV cannot
occur. For a  0, b &#x3E; 0 (resp. a  0, b  0) the relation between
a and b is defined in the same way as for -a and b (resp. - a
and -- b).
Because of the fact that equality of rank is an equivalence-

relation, it is possible to divide G into classes, each class consisting
of those and only those elements having the same rank as a
given one; therefore two classes either coincide or they are disjunct.
If G is non-archimedean ordered, then G has at least two classes A
and B different from the zero class (consisting only of the identity).
If A and B are two different classes of G and if for a E A, b E B
the relation a  b holds, then it is easily proved that this relation
is valid for each pair of elements a’ E A, b’ E B.

Therefore Hahn defines the relation A  B for the classes A
and B by a  b for a E A, b E B. For two different classes A and B
of G there exists one and only one of the order relations A  B
and B  A. Moreover A  B and B  C implies A  C.
The classes of a commutative simply ordered group G form a

simply ordered set A, the class-set of G, while the ordertype
of  is called the class-type of G. Conversely Hahn proves: if  is
a simply ordered set, then there exists always a commutative
simply ordered group G such that the class-type of G is equal the
ordertype of A.

§ 2. We shall try to find a similar partition into classes for
partially ordered groups. Though we bave later on to restrict
ourselves to commutative lattice-ordered groups, for the present
we omit this restriction.

Definition: A partially ordered group is a set G satisfying the
following conditions:

a ) G is a group with the additive notation for the group-
operation.

b) G is a partially ordered set.
c) a ~ b implies c + a + d ~ c + b + d for each pair c and

d of G.

G is called a directed group, if G is a partially ordered group
with the property that for each pair a, b E G there exists an

element c E G with c &#x3E; a, c &#x3E; b.
G is called a lattice-ordered group if G is a lattice instead of a
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partially ordered set. Then each pair of elements a and b of G
bave a j oin a U b and a meet a r1 b.

Let G be a partially ordered group and G::1: the set of all elements

a, comparable with 0(a  0). If a and b are two positive elements,
we have for a and b the four possibilities I, II, III and IV of § 1.
Likewise we define a and b to be of the same rank (a ce b ) only
if the case 1 occurs.

If there is a natural number mo, so that n - a  mo - b for all
natural n, we shall call a of a lower rank than b(a  b or b  a).
If the positive elements a and b are such that neither a ~ b, a  b,
nor b  a, we call a and b of incomparable rank. For a  0, b &#x3E; 0

(resp. a  0, b  0) the relation between a and b is defined in

the same way as for -a and b (resp. -a and - b). It is easily
proved, that for any two elements a and b of G at most one of
the relations a N b, a  b, or b &#x3E; a holds. If none of these relations
is satisfied, then a and b àre of incomparable rank. Thus we
obtain: For each pair of elements a and b of G± there exists
exactly one of the four possibilities : a N b, a ] b, a &#x3E; b, or a and b
of incomparable rank. If a e G± (a ~ 0 ) we define 0  a for each
a E G::1:. We prove the following statement:

If a  b, a N a’, b N b’, then we have a’  b’. For the sake of
convenience we suppose a &#x3E; 0, b &#x3E; 0 and moreover m - a  n0 · b
for all natural m.

For each multiple m’ · a’ of a’ there is a multiple m - a of a with

,and for each multiple r · b of b there is a multiple r’ · b’ with

For every natural c we have

we choose c in such a manner, that c · r &#x3E; no. Thus

for all natural m we have: For all m’ · a’ we can find a multiple
m - a with

therefore m’ · a’  c - r’ · b’ for all m’ and so we have a’  b’.
If a and b are of incomparable rank and a C’-1 a’, b C’-1 b’, then
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a’ and b’ are of incomparable rank too; in fact, should a’ and b’
be of comparable rank, it follows from the preceding result, that
a and b should be of comparable rank. The relation "equality of
rank" enables us to divide the set G± into classes. A class A
consists of those and only those elements which are of the same
rank. The zero class 0 is the class consisting of the identity of G.
It follows that two classes A and B either coincide or are disjunct.
Just as for the simply ordered groups it is possible to define an
order relation A  B for the two classes A and B, if and only
if a  b for a E A, b E B. Two such classes A and B are called in-

comparable if two elements a E A and b E B are of incomparable
rank. Therefore each pair of different classes A and B defines
one and only one of the three relations A  B, B  A, or A and B
are incomparable. Moreover A  B, B  C implies A  C. The
classes of a partially ordered group G form a partially ordered
set A, called the class-set of G.  possesses a least element 0, the
zero class. The Hasse-diagram of  is called the class-diagram of G.

§ 3. Examples.
1. The class-set A of a simply ordered group G is a chain.
2. Let G be the group of the pairs (m; n), m and n integers

with the operation: (Ml; ni) + (m2; n2 ) = (mi + M2; nl + n2 )
while the ordering is defined by (m1; n1) ~ (m2; n2 ) if and only

Fig. 1.

if m1 ~ M2, nl  n2 (cardinal-
ordering of the group of pairs).
G has four different classes: the zero

class 0, the class A of elements

(0 ; n ) (n integer and e 0), the

class B of elements (n ; 0) with
n ~ 0, and the class C of the

elements (m; n ) with m &#x3E; 0, n &#x3E; 0,
or m  0, n  0. Each pair of the

classes A, B, and C is incomparable since the elements a = (0; 1),
b = (1; 0) and c = (1; 1) are incomparable. The class-diagram
of G is given in f ig. 1.

3. G is the group of the triples (m, n ; p), in which m, n and p
are integers such that

(ml, n1; p1) + (m2, n2; p2) = (ml + m2’ nI + n2; Pi + p2).
The ordering is defined as follows: the pairs ce = (m, n ) of the

first two components are cardinally ordered (as in ex. 2); on the
other hand the pairs (oc; p), in which (m, n ) is replaced by ce, are
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ordinally ordered (e.g. lexicographically ordered). Contrary to

Fig. 2.

the examples 1. and 2. this group
is not a lattice-ordered group since
the elements (0,1; 0) and (1,0; 0)
have no join. Let A be the class

containing the element (0,0; 1), B
the class containing (0,1; 0), C the
class containing (1,0; 0) and D the
class containing (1,1 ; 0). There exist
no other classes, hence the class-

diagram has a form like that in fig. 2.
These and other examples show

that in general the class-set  is not
a lattice. Moreover a question arises:

Do there exist groups with a prescribed class-set 0393? If we restrict
ourselves to commutative lattice-ordered groups then it is possible
to prove that the answer is negative. Since the class-set of a par-
tially ordered group is not in general a lattice, we have a strong
reason to ask whether it is possible to solve the problem of the divi-
sion of classes of partially ordered groups in such a way, that we
are able to find another sort of class-set with - at least - the pro-

perties of a lattice. This question can be answered affirmatively.

§ 4. Supposing now that G is a commutative lattice-ordered
group we will proceed in the following paragraph to give some
definitions and properties of these groups.

Two lattice-ordered groups G and G’ are called isomorphic if
there is a group-isomorphic relation between G and G’ such

that a ~ b implies a’  b’ and a’  b’ implies a  b. It is easily
proved that in the case of isomorphism p U q (resp. p r1 q) corres-
ponds to p’ U q’ (resp. p’ n q’ ).
A lattice-ordered subgroup H of G is a lattice-ordered group,

which is a subgroup of G while the lattice H is a sublattice of G.
Now we need the following:
THEOREM 4.1: If G is a commutative lattice-ordered group

and n a natural number, then the correspondence a ~ n · a is

an isomorphism of G with a lattice-ordered subgroup of G 3).

3) G. BIRKHOFF, Lattice Theory p. 221; Ex. 3.
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PROOF: From a ~ n · a, b ~ n · b, it follows that a + b ~
n - (a + b), and n ’ a = n ’ b implies a = b. If a ~ b, then also
n - a ~ n · b, and conversely n · a ~ n · b implies a  b (because
of the commutative property of the groupoperation). It follows
that a U b ~~ n · (a U b ), but also a U b ~~ n · a U n - b ; there-
fore n - (a U b ) = n - a U n - b, and in the same way n ’ (a ~ b) =
n · a ~ n · b.

By an L-ideal of the lattice-ordered group G is meant a normal
subgroup of G which contains with any a, also all x with

|x| ~ lai 4). G and 0 are L-ideals of G, and are called improper
L-ideals, whereas all other L-ideals of G are called proper L-ideals.
If N is an L-ideal of G, then N contains with a and b also a + b,
aU b, a ~b, and all x with the property a ~b ~ x ~ a ~ b. Now
let a be some element of G. The set I(a) of elements x E G which
satisfy the relation |x| ~ n · lai for some natural n is an L-ideal.
Because, if |b| ~ m ’ |a|, Ici ~ n · |a|, then |b ± cl ~ bl +
|c| ~ (m + n) · |a|; and if b ~ I(a) and |x| ~ |b|, then |x| ~ m · |a|;
hence I(a) is an L-ideal. Moreover I(a) is the smallest L-ideal

which contains a. In fact, an L-ideal containing a contains also
n - a (for all natural n ) and therefore all b with |b| ~ |n · a| -
n jal. In addition it is obvious, that I(a) = I(-a) = I(|a|).

All L-ideals I(a) of G will be called I-ideals.
For subsequent use we now give a theorem first proved by

Birkhoff 5) : A commutative lattice-ordered group G has two

proper disjunct L-ideals (e.g. two proper L-ideals with intersection
0) unless G is simply ordered. The proof of this theorem is based
on the consideration that G contains an element a incomparable
with 0 unless G is simply ordered. To prove the theorem Birkhoff
constructs two disjunct L-ideals S and S’, of which S’ contains
the element a+ = a U 0 but not a- - a n 0, while S contains
a- but not a+. This enables us to prove the following.
THEOREM 4.2: A commutative lattice-ordered group G is simply

ordered if and only if the I-ideals of G form a chain.
PROOF: Suppose that G is simply ordered and that I(a) and I(b)

are two I-ideals, a ~ 0, b ~ 0. I(a) = I(- a), therefore we

suppose a &#x3E; 0, b &#x3E; 0 and a  b. Then I(a) ~ I(b), because
x E I(a) implies I x |  n. a for some natural n. Therefore

I x 1  n · b, whence x ~ I(b). Conversely, if the I-ideals of G
form a chain, then G must be simply ordered. In fact should G not

4) Lattice Theory p. 222.
5) G. BIRKHOFF, Lattice-ordered groups, Ann. of Math. 43 (1942), p. 312.
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be simply ordered, then G would contain two proper L-ideals S
and S’ with intersection 0. Following the construction of S’ we
see that I(a+) Ç S’, while I(a+) is the smallest L-ideal contain-

ing a+. In the same way I(a-) C S. The intersection of S and
S’ consists only of the identity, therefore I(a-) and I(a+) have
only the identity as a common element. Hence I(a-) and I(a+)
are incomparable (e.g. neither I(a-) Ç I(a+), nor I(a+) ~ I(a-)).
THEOREM 4.3: If G is a commutative lattice-ordered group the

I-ideals of G form a distributive lattice S..
PROOF: We prove that for two i-ideals, I(a) and I(b), there

exist a join and a meet, which are also I-ideals. For a = 0 of b = 0,
a join and meet evidently exist. We now prove: I(a) U 7(&#x26;) =
I(|a| ~ |b|); since I(a) = I(|a|) and |a| ~ |a| ~ |b|, we have

Conversely if I(|a|) ÇI(c) and I(|b|) C7(c), then |a| ~ ni Icl,
Ibl  n2 . Icl, therefore a and b both satisfy |a| ~ n · Icl, |b| ~ n · Icl
with n = max (ni, n2).

Hence Ial U |b| ~ nlcl and I(|a| U Ibl C7(c).
In the same way I(|a| ~ |b|) ~ I(|a|) and I(|a| ~ |b|) ~ I(|b|).
If I(c) ~ I(|a|) and I(c) ~ I|b|) then Icl ~ n|a| and Ici  nibi

for suitably clos en n. Hence by Theorem 4.1 |c| ~ n · |a| ~ n · Ibl =
n · (lai n |b|), and therefore I(c) ~ I(|a| n |b|). Therefore: the

I-ideals of G form a lattice SG. It is now easy to prove that this
lattice is distributive. To do this we need the property, that G
itself is a distributive lattice:

§ 5. Let G be a commutative simply ordered group. We prove
THEOREM 5.1: The elements a and b are of the same rank

(§ 1) if and only if I(a) = I(b).
PROOF: If a = b = 0, then I(a) = I(b); therefore we suppose

a ~ 0; then b ~ 0.
Without restricting the generality we suppose a &#x3E; 0, b &#x3E; 0.

If XE I(a), then |x| ~ n · |a| = n. a. Now a ci b (§ 1), so we can
find a natural m with n . a  m - b ; hence Ixl  n - a  m - b =

m - 1 b 1. Therefore I(a) ÇI(b) and in the same way I(b) ÇI(a).
Hence it follows from a oo b that I(a) = I(b). If conversely

I(a) = I(b), and we suppose a &#x3E; 0, b &#x3E; 0, then a ~ I(b). There-
fore a  n . b and, in the same way b  m - a for proper natural
m and n ; hence a oo b.
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TIIEOREM 5.2: For the elements a and b of G, a  b if and only
if 1(a) is a proper subset of 1(b).

PROOF : Suppose a  b (a &#x3E; 0, b &#x3E; 0), then for x e I(a) we have
Ixl ~ n · l al = n · a and n - a  b (for all natural n). Therefore
lxi  |b|, hence x e I(b). But not every element of I(b) is contained
in I (a); for, if b eI(a), then |b| ~ n · |a| or b ~ n · a, contrary to
the supposition that n - a  b for all natural n. Hence I(a) is a
proper subset of 1(b).

Conversely, if I(a) is a proper subset of I(b) there is an element
y of 1(b) and not in 1(a), such that no natural multiple n · a of a
exists with y n - a. Therefore n - a  y for all natural n, and
since y s I(b), we have y  m0 · b for some natural m,,. It follows

now n · a  rno . b for all natural n, therefore n · a  b for all

natural n or a  b.
Therefore in a commutative simply ordered group G we have

acB3 b if and only if7(a) = I(b) and a  b if and only if I (a ) C I(b).
If the element a is contained in the class A, then A corresponds
to the I-ideal I(a) of some arbitrary a e A; and in addition, there
are no other elements g in G, except the elements a of A, such
that 1(g) = 1(a). Furthermore A  B implies I(a) C I(b), if

aeA, beB.
Every I-ideal is generated by an element a, and therefore every

I-ideal 7 (a) corresponds to a class A, containing the element a.
If I(a) = I(b), then we have proved: a  b. If I(a) C I(b), then
a  b ; hence for the corresponding classes A and B we have A  B.
Therefore we have the following result:
THEOREM 5.3: If G is a commutative simply ordered group,

there is a one to one correspondence preserving the orderrelations
between the class-set  of G and the set of the I-ideals of G.
While the intersection of the classes of G is always empty,

the I-ideals form a chain. For example, if  is the chain

O  A  B  C  D and aeA, beB, c c C, deD, we have
I(0) CI(a) CI(b) CI(c) CI(d).

§ 6. To generalize the preceding results for commutative
lattice-ordered groups, we compare the I-ideals of G. Suppose
that a and b are two elements of G which are not necessarily
comparable with 0. We now define a and b to be of the same
I-rank if and only if 1(a) = 1(b); and we define a to be of a lower
I-rank than b, if I(a) is a proper subset of I(b). We only use the
notation a c,., b for the equality of rank as defined in § 2. That
definition was only given for elements comparable with 0. Like-
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wise we use the notation a  b only for the cases we specified in § 2.
However, it will appear that there is a close connection between
the two types of relations of rank. First of all we give an example:
G is tlie group of pairs (m ; n) (see ex. 2, § 3). I (0; 0 ) = O, I(0; 1)
= A, consisting of all elements (0; n ) with n an integer;
I(1; 0 ) = B, consisting of all elements (n ; 0) with n an integer;
I(1; 1) = C, consisting of all elements of G. The Hasse-diagram
of the I-ideals is shown in fig. 3.

If G consists of all cardin-

ally ordered triples (m, n, p),
with m, n and p integers and
(ml, nm p1) + (m2, n2l p2) -

(m1 + M2, nI + n2’ Pi + p2)

Fig. 3. Fig. 4.

and we indicate I(0, 0, 0) = 0, I(0, 0, 1) = A, I(0, 1, 0) = B,
I(l, 0, 0) = C, I(o, 1, 1) = D, 7(1, 0, 1) = E, I(i, 1, 0) = F,
and I(1, 1, 1) = G, then the Hasse-diagram of the I-ideals is

given by fig. 4.

§ 7. Now we try to find the relation between the class-set A
(of § 2) and the I-ideals of a commutative lattice-ordered group G.
THEOREM 7.1: For a, b E G and a &#x3E; 0, b &#x3E; 0, we have a ce b

if and only if I(a) = I(b).
PROOF: Suppose a N b and a &#x3E; 0, b &#x3E; 0. If x E I(a), and there-

fore |x| ~ n · a  m - b for some natural m and n, then I(a) C I(b),
and in the same way I(b) ~ I(a). Hence I(a) = I(b). Conversely,
we must show, if I(a) = I(b), and a &#x3E; 0, b &#x3E; 0, then a N b.

Indeed, since |a| - a  n · b and b  m - a for some natural
m and n, we have a  b.
THEOREM 7.2: From a  b we conclude I(a) ~ I(b), but not

conversely.
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PROOF: If a  b, then n · a  mo - b for all natural n(a &#x3E; 0,
b &#x3E; 0). Thus we have for any XE 1(a), |x| ~ n · a  mo - b,
therefore x E 1(b). But we have not 1(b) Ç 1(a) for if b E 1(a), then
we should have b ~ n · a and ma. b  man. a contrary to our
supposition. Therefore I(a) ~ I(b). That the opposite of the

theorem is not true, appears from the ex. 2, § 3; in fact, we have
I(o, 1) C I(1, 1), but not (0, 1)  (1,1 ).
With every element a of a class of G there corresponds an

I -ideal 1(a), and 1(a’) = I(a) for all a’E A. Therefore, a. class
A of G corresponds with an I -ideal 1(a), generated by a repre-
senting element a of A. Furthermore A  B implies 1(a) ~ I(b)
(proper subset), if a E A, b E B. Conversely an I-ideal, generated
by an element a of G, corresponds to a class A of G, viz. the class
A of whieh a is a member (we may suppose, that a &#x3E; 0, since

1(a) = 1(lal )). The class A, corresponding to an I-ideal of G,
does not depend on the choice of the generating element a of I
(this follows from Theorem 8.1). Therefore we have:
THEOREM 7.3; If G is a commutative lattice-ordered group,

then the set of the classes (formed by the elements of G±) corres-
ponds one to one with the set of the I-ideals of G. The corres-
pondence preserves the order-relation in one direction, i.e. A  B
implies I(a) C 1(b), if a E A, b E B.
The last result enables us to decide whether or not there are

Fig. 5. Fig. 6.

commutative lattice-ordered groups with a prescribed class-

diagram. We prove that there is no commutative lattice-ordered
group G with a class-diagram as shown in fig. 5. In fact, for such a
group G the lattice of the I-ideals is a lattice consisting of three
elements, e.g. this lattice is one the chains O-I(a)-I(b) or
O-I(b) -I(a) (fig. 6). Other lattices of three elements do not
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exist. If, however, the I-ideals from a chain. G must be a simply
ordered group (theorem 4.2), and the class-set  must be a simply
ordered set too. Therefore the diagram of fig. 5 cannot be the
class-diagram of G. Finally we put two questions:

1. Is the commutative lattice-ordered group uniquely defined
but for isomorphism by the lattice of the I-ideals?

2. What conditions must be satisfied by this lattice if a

distributive lattice with smallest element is the lattice of the
I-ideals of a commutative lattice-ordered group?
My thanks are duc to Prof. Birkhoff for his suggestions.

(Oblatum 13-11-50).


