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A theorem on polygons in n dimensions with applic-
ations to variation-diminishing and cyclic variation-

diminishing linear transformations
by

I. J. Schoenberg and Anne Whitney
Philadelphia, Pa

Introduction and statement of results.

1. Let

be a general real linear transformation which, in terms of its
matrix A, may also be written as (y) = A(x). Throughout this
paper we denote the rank of A by r. Let v (y ) denote the number
of variations of sign in the sequence of the numbers Yll y2, ..., YM.
If we pick a set of r linearly independent y’s, and call them
yl’, y2’, ..., yr’, it is clear that we may assign to them arbitrary
values alternating in sign; for such a set of x’s and corresponding
y’s we now have that v ( y ) ~ v(y’) = r-1. This proves the
inequality

We now inquire as to when the equality sign holds in (2). In
other words: When do we always have the inequality

f or arbitrary x’s ?

The answer is conveniently described in terms of the following
concepts. We say that a real matrix is definite if it has no two
elements of opposite signs. We say that a matrix has definite
columns, if each one of its columns is a definite one-column
matrix. Let r be the rank of A ; if 1  i  r, we denote by A (i)
the matrix, of (7) rows and () columns, whose elements are the
ith order minors of A, where all minors formed from the same set
of i rows of A appear in the same row of A (i) and the same rule
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holds regarding cotumns. It is well known that A(r) has rank

unity so that its columns are proportional. The answer to the
question raised above may now be described as follows:

THEOREM 1. The inequality (3) always holds i f and only i f the
matrix A (r) has de f inite columns.
A proof is given in § 1.

2. As mentioned in the title, our result may be interpreted
geometrically. Let us interpret the rows of A as points Pi =

(ail, ..., ain), (’i = 1, ..., ?n), in the space En, the vectors OPi
spanning an r - flat. Now v(y) represents the number of times
the hyperplane alxl +... + anxn = 0 (of coefficients xi, ..., xn)
is crosscd by the polygonal line lI = P1P2 ... P m. The inequality
(2) shows that appropriate hyperplanes through the origin are

crossed by II at least r - 1 times, while (3) requires that there
be no such hyperplanes which are crossed by II more than r - 1
times. By Theôrem 1 we have a configuration satisfying (3) if
and only if the matrix A(r) has definite columns.

Let us apply our result to the following related situation. Let
Qi = (bi1, ..., bin), (i = 1, ..., m), be na points in En and let r
be the dimension of tlie least flat manifold containing them; the
dimension r is determined hv the rank of the matrix

which must be r + 1. As before we find that appropriate (un-
restricted) hyperplanes will be crossed by the polygonal line

n* == Q1Q2 ... Qm at least r times, since for appropriate values
of the variables (x) the m linear forms

will show a number of variations of signs v(y) &#x3E; r. Applying
Theorem 1, we may state the following.

COROLLARY. Let the polygonal line II* = Q1Q2 ... Q rn in En
be such that the matrix (4) is o f rank r + 1. Then H* crosses îto
hyperplane o f E n more than r tinies il and only il the matrix B(r+1)
has de f inite columns. In the particular case when r = n, the

requirement reduces to the condition that all non-singular minors o f
B, of order n + 1, be o f the same sign.
Such polygonal lines 03A0* are said to be of order r. If r = 2,

H* is an ordinary plane convex poly gonal line. This geometric
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interpretation of Theorem 1 will not be referred to in the sequel;
it was mentioned explicitly because of its possible usefulness in
the theory of arcs of order r in the sense of Juel, Haupt, and
Scherk (See [4]).

3. Let us return to the transformation (1) and let us denote
by v(x), and v(y), the number of variations of sign in the sequence
of the variables (x), and ( y ), respectively. In a number of analyti-
cal investigations those transformations (1) are of importance
which have the property that we always have the inequality
(5) v(y) ~ v(x),
for arbitrary values of the x’s. Special instances of such trans-
formations were found by Laguerre, A. Hurwitz, Polya and
Fekete (See [2]); Polya called them variation-diminishing trans-
formations. The problem of characterizing such transformations
was attacked by Schoenberg in 1930 with only partial success
(See [5]); it was solved in 1933 by Th. Motzkin (See [3]) as
follows.

THEOREM 2 (Motzkin). The transformation (1) is variation-

diminishing il and only i f its matrix A, o f rank r, enjoys the

following two properties:
A. The matrices A, A(2), ..., A (r-1) are definite.
B. The matrix A(r) has definite columns.
In § 2 we show as a first application of Theorem 1 how Motzkin’s

Theorem 2 may be readily derived from it.

4. As a second application of Theorem 1 we solve in § 3 the
related problem of cyclic variation-diminishing transformations.
By the number vc(x) of the cyclic variations of sign of the numbers
xl, ..., xn, we mean the following: Place the numbers xi, ..., xn in
order, at the vertices of a regular n-gon and let vc(x) denote
the number of variations of signs counted along the circum-
scribed circle. Clearly vc(x) is always an even number; more
exactly

Thus v,(x) is the least even number ~ v(x). We call the transfor-
mation (1) cyclic variation-diminishing if and only if we always
have the inequality

for arbitrary x’’s.
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Since (5) implies (7), in view of (6), it is seen that a variation-
diminishing transformation is also cyclic variation-diminishing;
the converse, however, is not true. A convenient formulation of

the main result requires the following.
DEFINITION 1. Let r = 2s be an even positive integer. We say

that the 1natrÍx B = Ilbapll, o f r + 2 rows and r columns, is a

separable matrix, or an S-matrix, or B E S, i f and only il its
r -F 2 consecutive cyclic block-minors o f order r

alternate strictly in sign.
Cyclic variation-diminishing transformations are described by

the following theorem.

THEOREM 3. The transformation (1) is cyclic variation-dimi-
nishing, i. e. the inequality (7) always holds, i f and only i f its

matrix A, of rank r, enjoys the following three properties:
a. For every odd i, 1 ~ i  r, the matrix A(i) is definite.
b. Il r is odd, then A(r) has definite columns.
c. Il r is even, then A should have no submatrix B, of r + 2

1’OWS and r columns, which is an S-matrix (See Definition 1).
The conditions of Theorem 3 are better understood if we realize

that they must be invariant with respect to cyclic permutations
of rows, or of columns, performed on A. This remark explains
the role played by the parity of the orders of minors of A : Notice
the obvious fact that an odd order determinant never changes
sign if we permute its rows cyclically and that this is no longer
true for even orders.
The conditions of Theorem 3 simplify considerably in the

special case when m = 1’; then only condition (a) remains to be
required since conditions (b) and (c) are vacuously satisfied.
A final remark concerns the purpose of a study of cyclic varia-

tion-diminishing transformations. One of the authors has studied
the convolution transformation

where (x) is a given summable function, and has found the
necessary and sufficient conditions which (x) is to satisfy in
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order that the transformation (8) should be variation-diminishing.
By this we mean that for every bounded f(t) the transformed
function g(x) should have no more variations in sign than the
original function f(t) (See [6]). Motzkin’s Theorem 2 was one
of the tools used in the solution of this problem. Let now 0(x)
be a given function of periode 203C0 which is summable over a period.
If f(t) is a bounded function of period 2n then

is a continuous fuiletion of period 203C0. The following periodic
analogue of the previous problem was proposed orally by H.
Cartan: For which functions 0(x) will (9) be cyclic variation-
diminishing in the sense that we shall always have the inequality

For this problem, to which we hope to return at a future date,
Theorem 3 should prove to be an important tool.

§ 1. A proof of Theorem 1.

5. PROOF OF NECESSITY. We assume that the system
(y) = A(x) always implies tv.at

and we are to show that the columns of the matrix A(r) are

definite. We first dispose of the special case when
r = n = m - 1,

in which case our transformation becomes

with a matrix of rank n. Since we always have that v(y)  n - 1,
we see that v(y) = n is impossible so that the y’s will never

strictly alternate in sign. However, with an obvious notation for
minors, the relation

is the only constraint among the y’s. Hence no two among the
minors of order n A i, A 2, ..., An+1 can be of opposite signs, for
otherwise we could clearly satisfy the relation (1.2) with values
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such that (-1)v-1yv &#x3E; 0, for all v, which we know to be im-

possible.
We pass now to the general case. Take a set of r linearly in-

dependent columns of A, say Cl, C2, ... Cr. Setting

we obtain the system

which inherits the property that v(y) ~ r-1, for arbitrary
values of xl, ..., xr. We are to show that all minors of order r,
of its matrix, are of the same sign. More precisely: All the non-
singular among them are positive, or all are negative. Let us
denote by A r a generic non-singular minor of order r and let
A’r and A r bc- any two such distinct minors. By a known theorem
(See [3], page 64) these two minors may be made to be the first
and last of a finite sequence of A’r’s such that two adjacent
members of the sequence have precisely r - 1 rows in common.
Let A(1)r, A(2)rr be adjacent members of the sequence. The system
formed only of those r + 1 equations corresponding to rows of
A(1)r or A(2)r also enjoys the property (1.1); by the previous
case already settled we conclude that A(1)r . A(2)r &#x3E; &#x3E; 0. Applying
this to all pairs of adjacent elements of the sequence, we conclude
that A’r · A"r &#x3E; 0 and the necessity proof is completed.

6. PROOF OF SUFFICIENCY. Let us assume that

(1.3) A(r) has definite columns,

and let us show that ( y ) = A (x ) always implies (1.1). We start
by adding a number of additional assumptions without thereby
losing generality.

A. Without loss o f generality we may assume that r = n.

Indeed, in view of the relation ( y ) - A (x), the column of y’s is a
linear combination of the columns of A. Therefore the column
of y’s may also be expressed as a linear combination of a set of r
linearly independent columns, ail’ ..., air, say. With appropriate
x’1, ..., xr we therefore have that

Now (1.4) is a linear transformation with r = n, whose matrix



147

has minors of order r of one sign only. Hence if our theorem is
already established for this particular case, then (1.1) holds and
everything is settled. Let us therefore assume that A is o f rank n
and we are to prove that

(1.5) v(y) ~ n-1.
B. Without loss o f generality we may and do assume that none

o f the rows of A has only zero elements. Indeed, any such rows, if
present, may simply be struck out without impairing the assump-
tions on A.

C. Without loss o f generality we may and do assume that none
o f the y’s vanish. Indeed, if some of the y’s vanish, we may so
slightly alter the x’s as to make those y’s non-vanishing, without
changing the signs of the non-vanishing y’s. This operation can
only increase v(y) so that if (1.5) is true after the change, it

certainly was true before.
7. At this point it is more convenient to invert the argument

and to show that our assumptions are incompatible with the
additional assumption that

To this end we first prove the very simple
LEMMA 1. The quantities y,, ..., y,,, having f -ixed non-vanishing

values we de f ine the new quantities Zv by

concerning which ule claim the following:
1. Il

we can always find positive coefficients av, w, (v = 1, ..., m -1),
such that

2. If

we can always find positive coefficients oc,,, 03B2v, such that
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The first statement is clearly true, for (1.8) means that the
y’s alternate in sign; if we choose all w = 1 and all oc,, = N, then

sgn zv = sgn y, (v = 1, ..., m 1), provided N is large enough,
and (1.9) follows.
The second statement is proved by induction with respect to m.

Being trivially true for m = 2, let us assume the statement true
for 1n - 1 rather than m. Let us strike out the last equation (1.7).
There are two cases:

OE) yl, y2, . ..., y m-1’ alternate in sign. By the first part of
Lemma 1 we may choose av, f3v positive (11 = 1, ..., rrz 2) such
that sgn zv = sgn yv, (v = 1, ..., m - 2) obtaining v(z1, ...,

zm-2) = v(y1, ..., ym-1)- 1. However, by (1.10) we must have
y m-1 y m &#x3E; 0, hence also sgn zm-1 = sgn ym-1 = - sgn ym-2 =
- sgn zm-2. Hence in the end we have v(z) = v(y) no matter
how the positive 03B1m-1, 03B2m-1 are chosen.

03B2) Yll y2, ..., ym-, do not alternate in signe By our induction
assumption we can choose zl, ..., z m-2 so that

If we now consider y 1n there are two possibilities:
If ym-1ym  0, we can arrange to have Zm-1 of either sign and

we choose it so as to produce a variation of sign in the z’s.
If Ym-1 ym &#x3E; 0, we cannot help achieving the desired inequality

(1.11).
8. We now return to the assumptions of Article 6 and we are

to show that they are incompatible with the additional assumption
(1.6). Clearly (1.6) implies that m ~ n + 1. We proceed by in-
duction in m.

If ni = n + 1, then (1.6) implies
v(y) = n,

so that the y’s alternate in sign. However, the y’s again satisfy
the relation (1.2), which again turns out to be impossible and for
the same reason as in Article 5.

Let us assume now that m &#x3E; n + 1 and that the impossibility
of (1.6) has already been established for lesser values of m. In
order to prove its impossibility for m, we determine the positive
coefficients oc,,, 03B2v, in (1.7) so as to satisfy the conditions (1.9),
or (1.11), of Lemma 1. In terms of the matrix
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the transformation (1.7) may be written as (z) = M(y) and
combining it with (y) = A(x) we obtain the linear transformation

(1.13) (z) = MA (x).

Let us assume for the moment that the matrix MA, of dimensions
(m - 1) by n, has all the properties enjoyed by A, namely:

1. MA is of rank n.
2. All non-singular minors of order n o f MA have the same sign.

If these properties are granted for the moment, we may easily
complete the induction argument by operation with the trans-
formation (1.13) instead of (y) = A(x). Indeed, if (1.8) holds,
then also (1.9) is true. Hence

against our induction assumption, for (1.13) has only m-1
equations, However, if (1.10) holds, then (1.11) follows, so that
by (1.6) we find

again in contradiction to our induction assumption.
Finally, a proof of the properties 1 and 2 of MA will follow

from the following properties of the matrix M:
(i) A ll minors o f M, 01 all orders, are &#x3E; 0.

(ii) The columns of every set of n columns of M are linearly
independent.
The property (i) is easily shown by induction in m. As to the

second, we remark that n  m - 1 and that the columns of every
set of m - 1 columns of M are linearly independent, because the
corresponding determinant of order m - 1 is positive (it either
reduces to the product of its positive diagonal terms or else it

splits into the product of two minors having this property).
The properties 1 and 2 of the matrix MA are now established

as follows:
1. MA is of rank n ; indeed let

be a positive minor of A formed from the rows il, ..., j.. Consider
in M the set of columns j1, ..., jn; these being independent, by (ii),
we can select in M rows i1, ..., i n, such that
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We may now identify a positive minor, of order n, of MA, since

(non-négative terms) &#x3E; 0.

2. All non-singular minors of order n of MA have the sante sign,
since both factors M and A have this property which is preserved
by multiplication. This concludes a proof of Theorem 1.

§ 2. A proôf of Theorem 2 concerning
variation-diminishing transformations.

9. PROOF oF NECESSITY. Let us assume that (1) (y) = A(x)
always implies that

We show first that

(2.2) A (i) (1 ~ i ~ r) has definite columns.

Indeed, let Cl, C2, ..., Ci, say, be a set of i linearly independent
columns of A. Setting xi+1 = ... = xn = 0 we obtain the trans-
formation

of rank i, which is also variation-diminishing, so that we always
have the inequalities

By Theorem 1 we learn that all non-singular minors of order i, of
the matrix of (2.3), have the same sign; this proves (2.2).

There remains to show that if 1  i  r, then not only are the
columns of A(i) definite, but that A(i) itself is definite. For this

purpose we consider the special case wlen

(2.4) m = n = r, i = n - 1,

and show that A(n-1) is definite. It is clear that the y’s may now
by chosen arbitrarily; let them have alternating values such that

Our transformation being variation-diminishing, we have

v(y) = n - 1 ~ v(x), hence v(x) = n - 1, so that the corres-

ponding x’s also alternate in sign. On solving for the x’s, we
find by Cramer’s rule the relations
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Since (-1)vyv &#x3E; 0, and because we know already that all AV1’
have the same sign, that all Av2 also have the same sign and so
forth, the alternation in sign of the x’s implies that all non-vanish-
ing among the A,i have the same sign, i. e. A(n-1) is definite.
We return now to "the general case to show that A(i) is definite

if 1 ~ i  r. Let 0393, 0393’ be two sets of i independent columns
of A such that they have i - 1 columns in common, differing in
the last columns, and such that the combined set of i + 1 columns
(0393 + 0393’) are linearly independent. Let Ai+1 be a non-singular
minor of h -E- F’ of order i + 1. By setting the x’s = 0 which
correspond to columns other than those of h + 0393’ and by ignoring
the equations corresponding to rows other than those of Ai+1,
we obtain a variation-diminishing transformation

(y) - Ai+1 (x).
Here we have the special case corresponding to (2.4). We conclude
that the minors of rand those of F" must have the same sign, for
Ai+1 must contain non-singular minors of order i of rand also
such of F’. If the two sets 0393, 0393’ do not satisfy the additional
conditions assumed above, then by a theorem of Motzkin we
know that they can be joined by a chain of sets of i independent
columns, two adjacent members of which do satisfy those con-
ditions (See [3], page 64). The above argument, applied con-
secutively to adjacent members of the chain, shows that A (i) is

indeed definite.
10. PROOF OF SUFFICIENCY. We need the following
LEMMA 2. Il the matrix A satisfies the conditions o f Theorem 2,

then so does the matrix B obtained from A by striking out a column,
and also the matrix A * obtained from A by replacing two adjacent
columns o f A by their linear combination with positive coefficients.
PROOF: The statement concerning B is clear, for if s is the

rank of B and i ~ s ~ r, then B(i) is a submatrix of A(i). To

prove the second part let us assume that

and let r and r* (~ r) be their ranks.
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1. r* = r. If i  r* = r, it is clear that A*(i) is definite, for a
minor of order i of A * is either one of A or else a positive linear
combination of two such, hence all are of the same sign. Also the
minors of order r, in r independent columns of A *, are of the same
sign because they are either identical with similar minors of A,
or else they are the elements of a linear combination of two
columns ôf A(r) which are definite and proportional.

2. r*  r. In this case A*(i) is obviously definite if i ~ r*,
since i  r. This completes a proof.

Let us now assume that A satisfies the conditions of Theorem 2

and let us show that the inequality (2.1) must hold for an arbi-
trary but fixed set of x’s. Without losing generality we may
assume that not all x’s are zero. We now perform on the matrix
A the following operations:

1. We strike out those columns of A corresponding to vanish-
ing x’s.

2. We replace two adjacent columns, corresponding to x’s of
the same sign, by their positive linear combination according to
the equation

By repeating the second operation sufficiently often, we reach
a stage where the,x’s alternate in sign. By Lemma 2, the conditions
of Theorem 2 are thereby preserved; thus without loss of generality
we may assume that

v(x) - n - 1,

i. e. that the x’s alternate in sign to start with. Since A(r) has
definite columns, by Theorem 1 we now conclude that

§ 3. A proof of Theorem 3 concerning cyclic
variation-diminishing transformations.

Il. T he conditions of Theorern 3 will be more conveniently
handled in terms of the following definitions.

DEFINITIONS 2. We say that A o f rank r, is a F-matrix, or

A E F, il and only i f the following two conditions are satisfied :
1. For every odd i, i  r. the matrix A (i) is definite.
2. Il r is odd, then A (r) has definite col1trnns.



153

DEFINITION 3. We say that A is a 0394-matrix, or A ~ 0394, if and
only i f the following two conditions are satisfied :

1. A E F (See Definition 2).
2. If r is even, we require that A should have no sub-matrix B,

o f r + 2 rows and r columns, which is an S-matrix (See Definition 1,
Article 4).
We may now restate Theorem 3 as

THEOREM 3’. The transformation (y) = A (x) is cyclic variation-
diminishing, i. e. we always have

i f and only i f its matrix A is a 0394-matrix.

12. We need a number of auxiliary theorems. The role played
by S-matrices is revealed by the following
LEMMA 3. Let r be a positive even number and let A = ~ aij ~

be an S-matrix o f r + 2 rows and r columns. The linear trans-
f ormation (y) = A(x) has the property

In other words : For appropriate values o f xl, x,,, the quantities
Yll - - " yr+2 will alternate in sign.
The statement (3.2) has a simple geometric interpretation: If

we consider in the space Er the r + 2 points

Pi = (ail, ai2, ..., air), (i = 1, ..., r + 2),

and if we denote by II the closed polygon Pl P 2 ... Pr+2P1, then
(3.2) means that some appropriate hyperplane through the origin
0, of Er, will be crossed (strictly) by 77 r + 2 times. Such a
hyperplane will separate strictly the points, Pl, P3, ..., Pr+1’
from the points P2, P4, ..., P,.+2; this remark explains why A is
called a "separable matrix" (Definition 1). The proof will be
geometric and free use will be made of fundamental notions

concerning convex polyhedral domains. We shall denote by
K(V1, V2, ..., Tls ) the convex extension of the points Vl, ..., VS.
PxooF OF LEMMA 3: 1. The assumptions of Lemma 3 imply

that the origin 0 is not a point o f the polyhedron

where -- Pl = (- ail, - - ., -air).
Indeed, suppose that 0 E K ; then it follows by a known theorem

(See [1 ], page 607) that 0 is already a point of the convex exten-
sion of some r + 1 among the r + 2 points spanning K. This



154

will be shown to be impossible by considering simultanously the
matrices

where thé symbols indicate rows. Notice now the following facts:
a. Since A is an S-matrix, also B is an S-matrix, because all

cyclic block-minors of A either agrée in value, or agree with

changed sign, with the corresponding cyclic block-minors of B.
Let Q, = Pl, Q2 = -P2, ..., Qr+2 = -Pr+2’ so that we may

write

There now remains to prove the following statement.
b. ivo Jnatter what gi-ottp o f r + 1 among the points Qv we

i-hoose, their convex extension never contains the origine Indeed, we
get such a group by striking out one of the r + 2 points Q,. The
property of B of being an S-matrix is clearly invariant by cyclic
permutations of thé points Qv and so is the property (b) which
we wish to prove. We therefore lose no generality if we only
prove tliat-

This statement depends on the signs of the solutions of a system
of r homogeneous equations in r + 1 unknowns:

1-Iciice there is, up to a factor, only one solution proportional to
tlie minors of the matrix 11 Qlq Q29 ..., Qr+1~ with successively
changed signs. However, since B ~ S, we know that the tBVO

minors Dl and Dr+1, obtained by striking out the first and last
column respectively, are of opposite signs. Since. r is even, the
solutions are given by tlie relations

whieh show that pl and Pr+1 are indeed of opposite signs. ’rhis
establishes (3.3) and concludes a proof of our statement 1.

2. Let K, be the convex cone spanned by the vectors OP1’

OP3, ..., OPr+1’ and let K2 be the convex cone spanned by 0 P2,
OP4, . - ., OPr+2. These two cones do not have a ray in common.
For if they had a ray in common, they would have a common
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point R ~ 0 such that

However, tliese relations imply by substraction, that

a relation which contradicts our statement 1.

A proof of Lemma 3 is now readily concluded. Indeed, the cones
K, and K2, having no common ray, may be strictly separated by a
certain hyperplane

where al, ..., ar are the running coordinates. However, this means
that for this choice of the x’s, in the system ( y ) = A(x), the y’s
will alternate in sign.

13. We pass to a couple of theorems which show the in-

variance of the J-property with respect to certain simple
operations. 
LEMMA 4. If A E d and B is a submatrix of A, then also BEA.
PROOF: Let r and s be the ranks of A and B, respectively,

s  r.

If s = r there is nothing to prove, for s independent columns
of B remain a fortiori independent if continued into A, and then
B E d is clear if s = r is odd and equally so if it is even.

If s  r, there are two cases. If s is odd, the matter is again
clear. Assume s to be even. Let Ci, C., be independent columns
of B and Cl, ..., Cs the same columns continued into A, where
they are also independent. Finally, let C be a new column of A,
so selected that Cl, ..., C,, C are s + 1 independent columns of A.
The number s + 1 being odd, the matrix

provided the columns of B* appear in the same order as in A and
not in the artificial order of this defining equation. By Theorem 1,
the corresponding system

(y) = B*(x) has the property v(y)  (s + 1) -1 = s.

If we set = 0 thé variable x, corresponding to the column C, and
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drop all equations not formed with rows of B, we see that also
the system

By Lemma 3 we conclude that B ~ 0394: Indeed, the presence of an
S-submatrix of B would imply that sup vc(y) &#x3E; s + 2, against
our last statement that vc(y)  s, always.
LEMMA 5. I f A is a 0394-matrix, then so is a matrix A * obtained

from A by replacing two adjacent columns o f A by their linear
c01nbination with positive coefficients.
PROOF: To fix the ideas let

and let r and *r* be their respective ranks. We have that

Comparing with the corresponding proof of Lemma 2 (Article 10)
we see that the only case requiring discussion is when r is odd and
r* = r - 1 is even. Suppose then, that A * were not a d -matrix,
i. e. that A * does have a submatrix, of r* + 2 rows and r* columns,
which is an S-matrix. But then, by Lemma 3, we conclude that
the system (y) = A * (x) has the property

and the same conclusion remains valid for the system (y) = A (x).
But vc(y) &#x3E; r* + 2 = r + 1 implies that v(y) &#x3E; r, in contra-

diction to Theorem 1.

14. Our last auxiliary theorem is an analogue of Theorem 1
which we state as
THEOREM 4. Let A be a F-matrix (Definition 2, Article 11)

of rank r. The corresponding system (y) = A(x) has the property

if and only il A is a d-matrix (Definition 3, Article 11).
PROOF OF NECESSITY: The necessity of the condition A -Ed is

clear, for if A were not a d-matrix, then Lemma 3 would imply
that sup vc(y) ~ r + 2, in contradiction to the assumption (3.4).
PROOF OF SUFFICIENCY. Let us now assume that A ~ 0394 and

let us prove that (3.4) holds. This result is clear if r is odd, be-
cause then A(r) has definite columns so that Theorem 1 implies
that v(y) ~ r -- 1, hence vc(y) ~ r - 1 (because r - 1 is even)
and a fortiori (3.4). We may therefore limit ourselves exclusively
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to even values of r. The statement (3.4) being trivial if r = 0,
we use induction and assume (3.4) to be true for all smaller even
values of r. Assume now for the remainder of the proof that (3.4)
is wrong and that, on the contrary, for a certain set of x’s we have

By expressing, if necessary, all columns as linear combinations
of a set of r linearly independent columns (as in Article 6, A) we 
see that we may assume that n = r without loss of generality.
Select r + 2 y’s having alternating signs, which is possible in 
view of (3.5). In this way we get a system which, on changing
notations, may be written as

whose matrix B is a L1-matrix (by Lemma 4), and such that

Let r* be the rank of B. We distinguish two cases:
1. r*  r. If r* is odd, Theorem 1 implies that

in contradiction to (3.7). Let r* be even; by our induction assump-
tion concerning (3.4), we conclude that vc(y) ~ r*, hence

v(y)  r*  r, again contradicting (3.7).
2. r* = r. We claim:

I. None of the r + 2 cyclic block-minors o f order r, o f B, can
vanish. Indeed, suppose that one of these were zero. By cyclic
permutations of rows, which still preserve the property B e L1, we
may assume that

But then, for the partial system

of rank r’, we have r’  r, v(y) = r -1, vc(y) = r. If r’ is odd
we have a contradiction with Theorem 1; if r’ is even, the in-

duction assumption shows that vc(y) ~ r’  r, in contradiction
to vc(y) = r.
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II. The consecutive cyclic block-minors of B alternate in sign
(hence B ~ S, lIl contradiction to A ~ 0394). Indeed, in (3.6) we
must have x1 ~ 0, because r* = r. ive now write down the r -i- 2

systems of r equations, in o unknowns, from among the equations
(3.6), whose matrices are respective!y the r + 2 cyclic block-
minors of B. Solving each of these systems for x1 by Cramer’s
rule, we obtain the relations

where (-1)v-1yv &#x3E; 0, say, while all the minors B(i)j1, being aIl of
thé saIne odd order o -1, are necessarily of thé same sign (or zéro).
Since none of the D’s vanishes, by our previous statement I, and
x1 ~ 0, we conclude that the D"s must indeed alternate in sign.
As already remarked, this result contradicts our assumption that
A e L1 and thé proof is completed.
We can finally turn to a proof of Theorem 3’ (Article 11).
15. PROOF THAT THE CONDITION OF THEOREM 3’ IS NECESSARY.

Let us assume that thé inequality (3.1) always llolds and let us
prove that

(3.8) A ~ 0394

We prove first that

(3.9) A ~ 0393.

The proof runs along thé lines of thé arguments of Article 9.

Let i be odd, 1 ~ i ~ r, and let C1, ..., C 2’ say, be i linearly
independent columns of A. Tlle System (2.3) is also cyclic varia-
tion-diminishing’ so that

However, i being odd, we hâve vc(x1, ..., .ri)  i 1, hence

vc(y) ~ i - 1, and a fortiori r(y)  i - 1. By Theorem 1 we

conclucie that A (i) has definite columns. Again i being odd, let
1  i  r, and let us show that A(i) is def inite. Again we consider
tlie special case (2.4) and make (-1)vyv &#x3E; 0, (j, = 1,.., n).
Since .n = i + 1 is even, w e find for tliese particular values that

hence v(x) = jt, i. e. tlie ,r"s alternate in signe From this point
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on the proof is identical with the similar proof of Article 9.
Thus (3.9) is established. If the rank r of .4 is odd, then (3.9)
implies (3.8).

Let 1 be even and let us show that -4 EJ. By expressing all
columns of A as linear combinations of a set of o linearly inde-
pendent columns we know that (3.1) also implies that

ahvays holds. Now Theorem 4 implies the desired conclusion that
,,l is a L1- ma trix.

16. PROOF THAT THE CONDITION OF THEOREM 3’ IS SUFFICIENT.
Let A E L1, (y) - A(x), where the x’s have fixed values, not all
zero, and let us prove that

we proceed as in the sufficiency proof of Theorem 2. we

perform on A the same two operations 1. and 2. described in the
last two paragraphs of Article 10, with the result that we reduce
the argument to the case when

(3.11) v(x)=n-1.

Indeed, by Lemma 4 and Lemma 5, the matrix of the final

System is also a L1- n1a trix.

On the other hand, by Theorem 4 we conclude that vc(y) ~ r
hence

If n is even, (3.11) gives vc(x) = n, which together with (3.12)
implies (3.10). If n is odd, then (3.12) and (3.11) imply the
relations vc(y)  n, vc(x) = n - 1, wliieh again implv (3.10).
This concludes a proof of Theorem 3’.

This work was done under the sponsorship of the Office of
Naval Research.
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