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Finite binary projective groups
by

W. Peremans

Amsterdam

§ 1. Introduction.

The problem of the finite binary projective groups arose from
that of the finite groups of rotations on a fixed point in ordinary
space. The group of the real rotations on a fixed point is isomor-
phic to the unitary binary projective group over the field of com-
plex numbers. It has been shown by F. Klein [2] that the only
possible finite subgroups of this group are the following: 1. cyclic
groups, 2. dihedral groups, 3. the tetrahedral group, 4. the oc-

tahedral group, 5. the icosahedral group. The restriction to the

unitary group may be dropped: there are no other finite subgroups
of the binary projective group than those mentioned and their
transforms A  A-1.
We consider the generalisation to binary projective groups over

an arbitrary commutative field. Asking first, which finite sub-
groups are possible, we meet with the following circumstance,
which does not occur in the case of the complex field. A binary
transformation has two fixed points (poles ), which may coincide
or not. We call a transformation with coinciding poles a parabolic
transformation. Such a parabolic transformation has finite order
if and only if the characteristic of the basic field is different from
zero. Therefore also parabolic transformations must be taken into
account. It is convenient to treat separately the finite groups in
which parabolic transformations occur or do not occur. It appears
that the possible groups without parabolic transformations are
exactly the same as in the classical case, while in groups with
parabolic transformations other types of groups may occur. This
is proved by a discussion of the structure of all possible finite
subgroups of the projective group.

In the case of rotation groups two finite groups, which are

isomorphic, may be transformed into one another by a rotation
of the space. Similarly, two isomorphic binary projective finite
groups may be transformed into one another by a projective
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transformation in the complex domain. The question arises whether
this fact also holds in the general case. The method by which this
is investigated consists in transforming a set of generators of a
group of a certain type by a projective transformation into some
canonical form; the coefficients of the transformation are allowed
to belong to an algebraic extension of the basic field. In this paper
we assume all extensions of the basic field we need to be performed.
They are always finite. In the case of non-parabolic groups the
attempt succeeds (just as in the classical case), but in the presence
of parabolic transformations there may exist isomorphic groups,
which are not conjugate in the projective group, even after al-
gebraic closure of the field.

Finally the existence of the groups is discussed. For this the
above-mentioned canonical forms are used and it turns out that

the existence of the groups requires only some obvious restrictions
concerning the characteristic of the basic field.
The problem of the existence of the groups without field ex-

tension, will be treated in another paper. There also the question
which isonioiphic groups are conjugate in the projective group
over the basic field without extension, will be discussed.

§ 2. Général remarks concerning the binary projective
group over an arbitrary basic field.

The binary projective group is the group of all fractional linear
transformations of one variable z:

Any such transformation is determined by a matrix

We call two matrices congruent (A ~ B) or projectively equi-
valent if one arises from the other by multiplication with a factor
03BB ~ 0 of the basic f ield : A = 03BBB. In this case A and B define the
same fractional linear transformation.

If we form the projective line by adding one element oo to the
elements of the field, (2.1) defines a one-to-one transformation
of the projective line into itself. By such a transformation three
given distinct points may always be transformed into three ar-
bitrarily given distinct points.
A pole of the transformation with matrix (2.2) (in the following
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also called pole of the matrix) is found as a solution of the equa-
tion :

So the poles belong either to the underlying field or to a quadratic
extension. In this paper we tacitly assume this extension to be
performed for all elements (in finite number) of the group, which
amounts to a finite extension of the basic field. The poles may be
different or coincident. In the latter case we call the transfor-
mation parabolic. If we bring the pole of a parabolic transfor-
mation P to oo, we have c = 0 and d = a, so the matrix of P

reduces to

Now is

so the order of P is infinite, if the characteristic is zero, and p,
if the characteristic is p. This gives us:
THEOREM 2.1. In finite groups of binary projective transfor-

mations parabolic transformations may occur only if the charac-
teristic of the basic field is ~ 0 and if they occur, their order is
equal to the characteristic.
Now we consider the poles of the elements of a finite group.
THEOREM 2.2. The non-parabolic transformations, which have

two fixed poles in common, form a cyclic group. Conversely the
elements of a cyclic group with merely non-parabolic elements
have their poles in common.
PROOF: Clearly the transformations having two given poles con-

stitute a group. We bring the poles to 0 and oo; the transformations
then get the form

If the order of the group is denoted by n, a must be a nth root
of the unity. For the n different transformations exactly n such
nth roots are available, and they form a cyclic group.
The converse is trivial, because the powers of a transformation

have the same poles as the transformation itself.
THEOREM 2.3. When two non-parabolic transformations have

one pole in common and not the other, the group must contain a
parabolic transformation having the common pole of the given
transformations as its pole.
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Relnark. From this theorem it follows that, if a certain pole is
not a pole of any parabolic transformation, all transformations,
which have this pole, have the other pole in common as well.
Still more specially it follows that in a group without parabolic
elements all poles occur in pairs, and a transformation having
one pole of a pair, has the other as a pole too.

PROOF: We bring the common pole to oo. According to the
preceding theorem there are two cyclic groups of orders dl and
d2 with oo as a pole, but with different finite poles; let their pri-
mitive elements have the forms respectively

and

We put (di, d2 ) = d. We distinguish two cases:
1. d ~ 1. Let q be a primitive dth root of the unity; the

first group then contains a transformation

and the second

Their product is:

Now ’qC2 -f- CI =1= 0, because the two transformations belong to
different cyclic groups. Their product therefore is a parabolic
transformation with oo as its pole.

2. (dl, d2 ) = 1. We reduce this case to the preceding one.
There are two such integers k1 and k2, that kidi + k2d2 = 1. Let
~3 be a primitive dld2th root of the unity, then iî"2 is a dlth and
~k1d13 a d2th root of the unity. The first group contains a transfor-
mation of the form

and the second
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Their product is

and belongs to a cyclic group with an order, which is a multiple
of dld2. By combining this group with one of the two given groups
we return to case 1. With this the proof is completed.

In the following we treat the groups with and without parabolic
elements separately, as the most efficient treatment is different
for each of the twô cases.

§ 3. The possible finite subgroups without parabolic
elements.

We consider a finite subgroup ? of the binary projective group
without parabolic elements. All elements of 05, which have a pole
of one element of  as a pole, form a subgroup . (We agree,
that the identical transformation E has every pole of the group
as its pole. ) A left coset AS) transforms the pole into another
point, which is a pole of the group AjjA-1 conjugate to . We
therefore call the poles conjugate and attach to each pole an order
equal to the order of the subgroup belonging to this pole. The
number of the poles conjugate to one pole is equal to the index
of the subgroup belonging to that pole. If we add together the
orders ni minus 1 (omission of the identity) of all poles, all trans-
formations except the identity are counted twice, namely at both
their poles. If we call the order of the group N (by assuming
N ~ 2 we eliminate in advance the trivial case of the group
consisting of the.identity) we get the following fundamental Dio-
phantine equation:

The solutions of (3.1) in positive integers give us the possible
finite groups without parabolic elements. We write .(3.1) in two
other forms, namely

The terms on the left-hand side of (3.3) are all ~ 1 4 and  1 2,
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so r = 2 or r = 3. For r = 2 it follows from (3.2) and n1 ~ N
and n2  N, that nI = n2 = N. We call this case A.

For r = 3 the right-hand side of (3.2) is &#x3E; 1, so one of the

ni, say nl, must be 2. We get

The right-hand side of (3.4) is &#x3E; 1 2, so the smallest of n2 and

n say n2, must be 2 or 3. . F or n2 = 2 we get n3 = N 2. Case B. .
For n2 = 3 we get for n3 the possibilities 3, 4 or 5.
n3 = 3 gives N = 12. Case C.
n3 = 4 gives N = 24. Case D.
n3 = 5 gives N = 60. Case E.
These 5 types evidently correspond to the 5 types of rotation

groups. We therefore give them the same names and we shall prove
later on that the groups of one type and the same order are
isomorphic.

§ 4. List of the numbers of conjugate poles and group
elements.

The numbers of conjugate poles may be derived immediately
from the results of the preceding section.
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Now we derive a list of conjugate group elements for the te-
trahedal, the octahedral and the icosahedral groups, as we need
it later on for the structure proof. To obtain it, we first prove a
theorem, preceded by a
LEMMA. If the élément S interchanges the poles of an element

A, then SAS-1 = A-1, and S2 = E.

Proo f : Bring the poles of A to 0 and oo, then

THEOREM 4.1. The number of elements conjugate to an ele-
ment A is equal to the number of the poles conjugate to a pole
of A, except if A has order 2 and its poles are mutually conjugate;
in the latter case the number of elements conjugate to A is equal
to half the number of the poles conjugate to a pole of A.
PROOF: Let the element S transform a pole P of A into P’.

Then SA S-1 has P’ as a pole. The elements which transform P
into P’, form a left coset of the group , belonging to the pole P.
As  is cyclic and contains A,  is contained in the normalizer
of A, so two elements of the same left coset of 5 give the same
transformed element of A. So we get exactly one transformed
element of A having P’ as a pole. Thus we find to each pole P,
conjugate with P exactly one transformed element SA S-1 with
Pz as a pole. But it may happen, that two different poles P,
and Pk give the same transformed element:

In this case S = S-1iSk gives SAS-1 = A. But S does not leave
invariant the pole P, because Pi =1= Pk, so S must interchange
the poles of A. Now from the lemma and SA S-1 = A it follows
that A-1 = A, or A2 = E. In this exceptional case to each Si
belongs such a Sk = SiS, that Si and Sk give the same trans-
formed element SiAS-1i. The number of transformed elements is
then half the number of conjugate poles Pi.

In the cases C, D and E the poles of an even order (to which
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belongs an element of order 2) are always conjugate, and so for
the elements of order 2 the exceptional case occurs always.
With use of theorem 4.1 and the numbers given at the be-

ginning of this section the following list of conjugate group
elements is obtained by simple counting.

§ 5. The structure of the groups without parabolic
elements.

A. There are only two poles, which all group elements must
therefore have in common. We have already seen in § 2, that
such a group is cyclic.

B. As there are only two poles of order n, the elements

belonging to them form a cyclic group n of order n and of index 2.
All other n elements have order 2. It is known that such a group
must be the dihedral group Dn The argument does not hold for
n = 2, as we do not know a priori how to combine the poles.
However it is clear that a group of order 4 whose éléments E
all have order 2 can only be isomorphic to Klein’s four-group,
i.e. to the dihedral group D2.

C. In this case we consider a set of four conjugate poles of
order 3. These are permuted by the elements of the group. The
mapping of the group upon these permutations is evidently a
homomorphism. But a projectivity leaving 4 points invariant is
the identity, so the homomorphism is an isomorphism. So the
group is isomorphic to a permutation group of degree 4 and order
12. This must be the alternating group 4, which is isomorphic
to the tetrahedral group in the usual sense.

D. Here we take four conjugate subgroups of order 3. Each
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group element transforms one of the subgroups into a conjugate
one and so induces a permutation of the four subgroups. The
mapping between the group and the permutation group is a homo-
morphism. The permutation group is transitive and so has an
order which is a multiple of 4; so the normal subgroup belonging
to the homomorphism must have an order which is a divisor of
24 : 4 = 6. From the scheme at the end of § 4 it follows, that
normal subgroups of order 2, 3 or 6 do not exist. So the homo-
morphism is an isomorphism, and the group is isomorphic to the
symmetrical group 4, which is isomorphic to the octahedral
group in the usual sense.

E. First of all we take an element A of order 2. As the poles
of A are conjugate, there exists an élément, which interchanges
the poles of A and which, according to the lemma of § 4, is of order
2. So BA B = A, A B = BA. The elements, A, B, A B and E
constitute a four-group J. The number of elements conjugate
to A is 15, which is just the index of the normalizer of A. Hence
the latter has the order 60 : 15 = 4, so it is the four-group J.
This means that no other element than B is interchangeable with
A. Thus all elements of order 2 are brought into 5 four-groups,
which are disjoint. Each element of the group induces a permu-
tation of these four-groups and the mapping of the group upon the
permutationgroup is a homomorphism. However from the seheme
at the end of § 4 it follows easily, that the group is simple, because
from the numbers given there no proper divisor of 60 can be
composed. Moreover not all elements are mapped upon the iden-
tical permutation (the permutationgroup is even transitive), and
so the homomorphism must be an isomorphism upon the alter-
nating group 5, since this is the only permutationgroup of degree
5 and order 60. 21s is isomorphic to the icosahedral group in the
usual sense.
Thus the structure of the single types has been found. The

reader will have noticed, that the permutationgroups are essen-
tially the same as those which appear in the well-known geometri-
cal treatment of the rotation groups.

§ 6. Equivalence of the groups of a type for the groups
without parabolic elements.

THEOREM 6.1. Two groups without parabolic elements of the
same type and of the same order may be transformed into one
another by linear transformation.
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PROOF: We prove this by transforming by linear transformation
an arbitrary group of a type into an unambiguously determined
form.

A. We bring the poles of a cyclic group to 0 and oo. This

gives

in which Ç is an arbitrary primitive Nth root of the unity. Another
root gives the same matrices, as Ck runs through all Nth roots
of the unity and so do the powers of another primitive root of
the unity.

B. We bring the poles of order n of a dihedral group to 0 and
oo. The transformations of the cyclic subgroup of order n having
these poles are

03B6 being a primitive nth root of the unity. We now take an ar-
bitrary transformation T not belonging to the cyclic subgroup.
Since T has order 2, we may write

T generates a coset of the cyclic group consisting exclusively of
the elements

Since these elements are all of order 2, we must have a’k = a.
As Il Ik ~ 1 is possible, a = 0. Now we may choose b = 1. Finally
we bring one of the poles of T to 1, then we have c = 1:

Thé group now consists of the fol lowing elements:

Evidently this form is unambiguously determined.
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C D E. For the tetrahedral, the octahedral and the icosahe-
dral groups we use an analogous method, which consists in

choosing two generators and transforming them into an un-

ambiguously determined form by bringing poles to 0, 1 and oo.

By this the proof is finished, as the form of the generators deter-
mines that of all group elements.
We start with some remarks concerning generators of 4, 4

and 5, which we shall need repeatedly.
THEOREM 6.2. The groups 214, 4 and 5 are isomorphic to

groups defined by tW8 generators A and B and the relations:

PROOF: For 4 and 5 the generators are well-known. (cf. Dickson
[1], § 265 and § 267.) For 64 Dickson ([1], § 264) gives three
generators Bl, B2, B3 satisfying the relations

Now if we introduce A = B1B2 and B = B3, we can express
B,, B2, B3 as follows:

and we get the relations mentioned before.
We now prove that in this theorem the orders of the generators

and their product may be permuted arbitrarily, in the following
sense:

THEOREM 6.3. In 4 there are two generators A and B, so
that A, B, A B have order 2 ,3 ,3 in an arbitrarily given order.
In 4 there are two generators A and B, so that A, B, A B have
order 2, 3, 4 in an arbitrarily given order. In 2!s there are two
generators A and B, so that A, B, A B have order 2, 3, 5 in an
arbitrarily given order.
PROOF: That we may interchange the orders of the generators

themselves, follows from the well-known group theorem:

If Ak = Bh = (AB)m = E, then (BA)m = E.
The following cases remain:
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Clearly P and Q satisfy the required relations. This completes
the proof.
We use for each of the three groups two generators A and B,

of which A has order 3 for the tetrahedral, 4 for the octahedral
and 5 fôr the icosahedral group, B order 2 in the three cases and
A B order 3 in the three cases. Here A may be chosen arbitrarily
out of the elements of the given order, because the alternating group
is a normal subgroup of the symmetric group and because in 4,
4 and 65 the elements of order 3, 4 and 5 respectively are con-
jugate. The poles of A may be brought to 0 and oo, a pole of B
to 1. Then A becomes:

in which 03B5 is respectively a third, fourth or fifth root of unity.
B has order 2 and has 1 as a pole:

As the point 0 is certainly not a pole of B we have b ~ 0, hence
b may be chosen ==1. So we get

LEMMA. A non-singular matrix

has order 3 if and only if
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PROOF: By computing the third power of the matrix, equating
the elements of the main diagonal and putting zero the other
elements, we immediately find the condition.
Now

The condition of order 3 for this product takes the form:

We transform the roots of this equation (called a, and a,2 ) into
one another by means of a transformation, which interchanges
0 and oo but leaves invariant 1, i.e. with

This gives in the general case

If 82 - 03B5 + 1 = 0 were true, only one solution would exist, and
we should have nothing to prove. (This case does not occur, which
however does not interest us now.) Otherwise we put

and the equation becomes a2 + 2ka + k = 0. So we have, since

k ~ 0: ala2 = k, 2a1 + 1 = -a12 k and 2a2 + 1 = - a22 k. Now

becomes by transformation with S:

By the transformation e in A has changed into e-1. Therefore we
replace A by A-1, A -1 and B being admissible generators too.
Now the unambiguous determination of the form of the genera-

tors has been obtained, viz.
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as the multivalence of e has no influence, because the powers of

give the otl.er values of the roots of the unity and e by the choice
of A ,indeed may be made equal to a certain given primitive root
of the unity.

§ 7. Existence of the groups without parabolic elements.

By means of the result of the preceding section we are able to
decide whether the groups without parabolic elements exist after
properly chosen extension of the basic field.
The cyclic group of order N, being isomorphic to the multipli-

cative group of the Nth roots of unity (cf. § 2), can only exist
if the characteristic of the field is not a divisor of N, as otherwise
no N different Nth roots of the unity are possible.
For the various types of groups this condition imposes restric-

tions on the characteristic, because of the cyclic subgroups
occûring in those groups. These restrictions appear to be the only
ones. This fact is expressed in the following theorem:
THEOREM 7.1. The necessary and sufficient condition for the

existence of a group of given type in a properly chosen extension
of the basic field is, that the characteristic of the field suffices
the following conditions:

for the cyclic group of order N: no divisor of N,
for the dihedral group of order 2n: ~ 2 and no divisor of n,
for the tetrahedral group: ~ 2 and ~ 3,
for the octahedral group: ~ 2 and ~ 3,
for the icosahedral group: ~ 2, ~ 3 and ~ 5.

PROOF: We have already proved the necessity of thèse con-
ditions. Now suppose that they are fulfilled.
The existence of the cyclic and dihedral groups then is established

because of the schemes (6.1) and (6.2) in which the occuring
matrices are regular and different.

In the- final forms of the generators of the tetrahedral, oc-

tahedral and icosahedral groups in § 6 only roots of the unity
and the element al occured, a1 being quadratic over the prime
field extended with a root of the unity.

Let R be the prime field. The generating matrices A and B,
determined in § 6, contained only elements of the field 7?(c, a,l ).
We adjoin to an arbitrary basic field e and al if necessary; it then
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contains R(03B5, q) as a subfield, and therefore also the matrix-
elements of A and B. According to a wellknown theorem of group
theory, if a group has a set of generating elements, which suffice
certain relations, the group is a homomorphic image of the abstract
group  generated by corresponding generators with the same
relations. In our case A, B and A B have the prescribed orders
and no lower ones. To show this, we need only prove, that they
cannot be singular. For A this is clear; the determinant of B is
-a12- 2a1 - 1 = - (az + 1)2. This would be zero, if a, = 0,
but then the condition whieh a, fulfills becomes: 82 -203B5 + 1" =
(s - 1)2 = 0, e = 1, which is not the case. So A and B generate
a group ’, which is a homomorphic image of Q): ’ ~ /.
For the tetrahedral group the orders of A and B are 3 and

2, hence the order of ’ is a multiple of 6. If OE’ were not isormor-
phic to @, 9t would have order 2. Since 4 has no normal subgroup
of order 2, we have ’ ~ 4.
For the octahedral group the orders of A and A B are 4 and 3,

hence the order of ’ is a multiple of 12. If 0’ were not isomorphic
to ,  would have order 2. Since 4 has no normal subgroup
of order 2, we have ’ ~ 4.
For the icosahedral group the order of OE’ is certainly &#x3E; 1.

Since 5 is simple, it follows that ’ ~ 5.
This completes the proof of existence.

§ 8. Finite additive groups in a field.

In this section we collect some well-known facts about finite

additive groups in a field. (cf Dickson [1], § 68 and § 70.)
In a field of characteristic zero every élément 0 has order Co

(additively!); hence only the trivial finite additive group, con-
sisting of the zero only, exists. Now let the characteristic of the
field be p, so that every element ~ 0 has order p. A finite additive
group, being an abelian group, has a base Â1, ..., Âm, such that
all elements of the group may be written as c1Â1 + ... + cm03BBm
(Ci = 0, 1, ..., p - 1); we call this the additive group

[03BB1, 03BB2,..., Â mJ of rank m with respect to GF(p). The elements
03B3103BB1 + 03B3203BB2 + ... + 03B3m03BBm (Yi arbitrary in a GF(p’’) and

03BBk ~ 03B3103BB1 + ... + 03B3k-103BBk-1) form an additive group of order p mr;
we call this the additive group [03BB1,..., 03BBm] of rank m with

respect to GF(pr).
If we multiply all elements of an additive group [03BB1, ..., 03BBm]

with respect to GF(p) by Il =1= 0, we get an additive group
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[,uÀ1, ..., 03BC03BBm] of the same rank, because

implies

If this group is identical with the original group we call 03BC a
multiplier of the group,. The number of the multipliers is finite
( pm - 1), because a certain élément 0 of the group must be
transformed into another definite element of the group, which

in each case is only possible with one multiplier. There are at
most as much multipliers as group elements ~ 0. If pi and
are multipliers, so are 03BC1 + ,u2 ( if ~ 0) and ,ul,u2; therefore the
multipliers together with zero constitute a Galois field GF(pk),
called the multiplicative Galois field of the additive group. Now
it is easy to see, that the additive group is also an additive group
with respect to its multiplicative Galois field and therefore k 1 m.
Finally an arbitrary multiplicative group of order d of multipliers
is a subgroup of the multiplicative group of the multiplicative
Galois field GF(pk), so d|pk -1, further pk -1| pm- 1

(because k|m), and d 1 p m - 1.

§ 9. The normalizers of the additive and cyclic binary
proj ective groups.

The parabolic elements of a subgroup of the binary projective
group having a given pole form a group, which is isomorphic to
an additive group in the basic field. For if we bring the pole to oo,
the parabolic element becomes

and the product of two such elements is

We therefore call a group of parabolic transformations having the
same pole an additive group. Sometimes it is necessary to distin-
guish between the additive field group and the additive trans-
formation group; but when no confusion is to be feared we simply
speak of the additive group.
We now consider in a finite subgroup of the binary projective
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group an arbitrary transformation, which has a pole at the

common pole of an additive group. The transformation may have
the form

Now let (9.1) be an arbitrary transformation of the additive group.
Then

This must be a transformation of the additive group for every
b of the additive group, 1,e, q must be multiplier of the additive
group, and the order d of the corresponding transformation suf-
fices d|p m 1, if p m denotes the order of the additive group.
We now consider the normalizer of an additive group. In

general, if an element S transforms an element A into A’ with
the same poles (or pole) as A, then S transforms a pole P of A
(or A’) into a pole of A (or A’), because SA = A’S implies
S(P) = A’S(P). If A is parabolic, an element S of the nor-
malizer must have the pole of A as a pole. The converse is also
true:

If S is in the group, 03BC must be a multiplier. So we obtain
THEOREM 9.1. The normalizer of an additive transformation

group consists of those and only those elements, which have the
pole of the additive group as a pole. If d is the order of a non-
parabolic element of the normalizer, the dth roots of the unity
are multipliers of the additive field group corresponding to the
additive transformation group.
We consider the multipliers which occur in the normalizer

somewhat more in detail. If

are elements of the normalizer, their product

obviously is an element of the normalizer too. From this it follows
that the multipliers occurring in the normalizer form a multi-
plicative group, which is certainly cyclic for being a subgroup
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of the multiplicative group of a Galois field. So the multipliers
occurring in the normalizer are powers of one of them: ri.
THEOREM 9.2. An additive transformation group of order pm

and an element of its normalizer of order d 1 pm - 1 generate a
metacyclic group of order dpm.
PROOF: We bring the pole of the additive group to co, the other

pole of the given element of the normalizer to 0. Let (9.1) be a
transformation of the additive group and

the element of the normalizer. The dp m elements:

form a group, because the product of two of them:

(0 is a multiplier!) is also such an element. This group is meta-
cyclic, because it is homomorphic to the cyclic group of the ~k,
the kernel of the homomorphism being the abelian group of the b.
On account of the preceding the proof of the theorem we aimed

at is simple.
THEOREM 9.3. The normalizer of an additive group is either

the group itself or a metacyclie group as in theorem 9.2.
PROOF: We bring the pole of the additive group to oo. If there

exists an element of the normalizer not belonging to the group,
the multipliers form a cyclic group of order d, of which we choose
a primitive element 7y and take a corresponding element T of the
normalizer. If we bring the other pole of T to 0, the element ~
remains unchanged and T takes the form

Now we may form with T, as in theorem 9.2., a metacyclic group,
and we assert that this group is already the whole normalizer.
To prove this it suffices to show that in an arbitrary élément of
the normalizer, which obviously has the form

c is an element of the additive field group corresponding to the
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additive transformation group. We multiply the element by
Td-k and obtain

This is an element of the additive transformation group, which

completes the proof. 
Next we consider the normalizer of a finite cyclic group Q)

with two different poles. An element S of the normalizer of 0
must leave the poles of OE invariant or interchange them. Con-
versely a transformation which leaves invariant the poles of 
belongs itself to (M and a fortiori to the normalizer of 0; a trans-
formation which interchanges the poles of OE transforms the ele-
ments of 0 (lemma of § 4) into their inverses and therefore also
belongs to the normalizer of Q5. Now it is easy to show:
THEOREM 9.4. The normalizer in a finite group of a non-

parabolic cyclic group is a dihedral group or the cyclic group
itself.

PROOF: A product of two transformation interchanging the poles,
leaves invariant the poles and hence belongs to OE. So VlV2 = G,
V2 = ViG (for V12 = E, lemma in § 4), and the elements VIG;
and G, form the normalizer. Of course it may happen, that there
are no transformations interchanging the poles; then the cyclic
group is its own normalizer.

§ 10. The possible finite groups with parabolic elements.

Now we may pass on to the discussion of the possible finite
groups with parabolic éléments. The method of treating it will
consist, once more, in solving a Diophantine equation, which holds
in this case not for the orders of the poles but for those of the
additive and cyclic subgroups.
The parabolic transformation with a certain pole constitute,

according to the preceding section, an additive group of order pm.
THEOREM 10.1. All additive groups are conjugate.
PROOF: We take an additive group of order p m. Every point

except the pole of this group is transformed by the pm trans-
formations of the group into p m different points, and a pole into
conjugate poles. So there are 1 + fpm ( f a non-negative integer)
additive groups conjugate with this group. If there would be still
another parabolic additive group of order pn, not conjugate to
this, the transformations of the latter group would transform the
poles of the former groups into p n poles, from which it would
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follow, that there would be gpn (g a positive integer) groups con-
jugate to the first mentioned additive group. But 1 + Ipm = gp n
is impossible; so all additive groups are conjugate.
For the rest of this section see also Mitchell [3]. The results of

the preceding section on normalizers, and the fact, that the ad-
ditive groups of order pm and also the corresponding cyclic groups
of order dl are conjugate, give us immediately the following
Diophantine equation (in which N is the order of the whole

group, and di the ôrders of the occuring cyclic subgroups):

or in other forms:

We remark, that di as orders of cyclic groups with different poles
are not divisible by p.
We first put dl = 1, then (10.3) becomes:

Now 
m 
 

1 2 gives 
us

Each term, which is not zero, is &#x3E; 1 4. So there is at most one term
~ 0 and then only with f2 = 2. So r = 1 or r = 2. For r = 1
we obtain:

N = pn, dl = 1, r = 1, case I.

If r = 2, f2 = 2, p m can be only = 2 or = 3. pm = 2 gives
iN = 2d2, p = 2, m = 1, d1 = 1, r = 2, d2 odd, f2 = 2, case II.
If p - = 3, the only possibility is d2 = 2 and N = 12:
N = 12, p = 3, m = 1, d1 = 1, r = 2, d2 = 2, f2 = 2, case III.
Now we put dl &#x3E; 1, and we treat first the case f 1 = 1. Then
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Now p ln 3 (p m = 2 gives dl = 1) and so 1 d1pm ~ 1 6.

which is only possible if the sum is void, so r = 1 and:

Finally the case dl &#x3E; 1, f 1 = 2. Then:

Now

and so:

The sum has at most one term, and f2 must be 2. A void sum
(r = 1) is impossible; for in that case

and N &#x3E; d1pm give (dl -1)pm ~ 0, which contradicts the assump-
tion di &#x3E; 1. The only remaining case is d1 &#x3E; 1, f 1 = 2, d2 &#x3E; 1,
f2 = 2. For the discussion of this case the following consideration
will be useful.
We shall count the number of conjugate cyclic groups of order

d2 in two different ways. First we take a special group OE of this
type. A point, which is not a pole of  is transformed by the
transformations of  into d2 different points. A pole is transfor-
med into d2 different conjugate poles. If two poles of a cyclic
group are interchanged by an element A of , there exists for
another group, the poles of which are obtained from the first by
the transformation B of OE, a transformation BAB-1 of , which
interchanges its poles. So the transformation with OE gives d2 or
1 2d2 conjugate groups. If there remain groups which are not yet
treated, we treat the remaining groups in the same way, and so
on, until all groups are treated. Hence the number of conjugate
groups is 1 + 1 2d2g1, where gl is an integer. By transforming in an
analogous way with a group of order dl we find, that the same
number is 1 2d1g2. So we obtain 2=g2d1-g1d2, hence (d1, d2)=1 or 2.
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Let M be the least common multiple of p m, 2d1, 2d2. Now N
is divisible by AI, because the group contains subgroups of those

orders. Further (10.1) and (d1, p) - 1 imply N = 1 + 9N (g a
positive integer) or

hence N = M.

If p is odd, two cases are possible:
(dl, d2 ) = 2 and N = d1d2pm,

or (dl, d2 ) = 1 and N = 2d1d2pm.
If p = 2, dl and d2 are odd, so we have only one case:
(dl, d2 ) = 1 and N = d1d22 m.
Now we substitute r = f 1 = f2 = 2 in (10.2):

Consider first the case N = d1d2pm. In this case (10.4) becomes

If p = 2, d1 and d2 are odd, d2 -d1 even; if p is odd, (dl, d2 ) = 2,
d1 and d2 are even, d2 dl also even. In both cases t(d2 -d1)
is an integer, and by (10.5) a positive integer. If we put
1 2(d2 -d1) = h, then d2 = hp m + 1 and dl = h(pm- 2) + 1, but
d1 ~ pm-1, so h = 1 and dl = pm -1 and d2 = pm + 1:
N = (pm - 1)pm(pm + 1), pm ~ 2, d1 = pm - 1, f1 = 2, r = 2,

d2 = pm + 1, f2 = 2, case V.
Next consider the case N = 2d1d2pm. Then (10.4) becomes :

(d2 - dl) is an integer, and according to (10.6) a positive integer.
We put d2 dl = k, then d2 = 1 2(kpm + 1), d1 = 1 2(kpm +1) -k.

Because d2 is an integer, k must be odd. Further d1 ~ pm- 1,
hence (k -2)pm ~ 2k -3. If lc ~ l, we have

hence k ~ 3. Therefore either lc = 1, or k = 3 and pm = 3.
If k = 1, we have di = 1 2(pm -1), d2 = 1 2(pm + 1):
A’ = 1 2(pm -1)pm(pm+1), p ~ 2, pm ~ 3, dl = 1 2(pm -1),

f 1 - 2, r = 2, d2 = l(pm + 1), 12 = 2, case VI.
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If k = 3, we have p m = 3, dl = 2, d2 = 5:
N = 60, p = 3, m = 1, di - 2, f1 = 2, r = 2, d2 = 5, /2 = 2,

case VII.
Thus all types of groups with parabolic elements are enumerated.

§ 11. The structure of the groups with parabolic elements.

We discuss the group-theoretical structure of the types of groups
deduced in the preceding section.

I. This group is i§omorphie to an additive group of order p m
in a field of characteristic p, or, expressed in terms of group theory,
to the direct product of m cyclic groups of order p.

I I. This group obviously is a dihedral group: it contains a

cyclic group of order d2, which lies, because of f2 = 2, in a dihedral
group of order 2d2, which constitutes already the whole group.

III. This group is the tetrahedral group: we may use for the
12 : 3 = 4 poles of parabolic elements the same argument as for
the 4 poles in § 5, case C, leading to the isomorphism to 4.

IV. This group is a metacyclic group, as we have seen already
in § 9. As explained in § 9, the additive group, contained in the
group, is isomorphic to an additive field group, and there exists
a field element ~ of order dl (primitives dlth root of the unity),
which is multiplier of the additive group. The multiplicative Galois
field GF(pk) of the additive group therefore contains the field of
the dlth roots of the unity over the prime field GF(p), i.e. the field
GF(pr) with the smallest r, for which di 1 pr -1. As the additive
group may be considered as an additive group with respect to
GF(pk), it is certainly an additive group with respect to GF(pr).
The elements are of the form

We now form the group of the elements:

here yi being variables. The two groups are operatorisomorphic
with respect to the éléments of GF(pr) as operators, because

This also gives an isomorphism between the given metacyclic
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group and the metacyclic group having the group

as its additive group. For if

are the elements of the additive group and

a primitive element of order dl, then ATh form the metacyclic
group. The calculation table for these elements may be deduced
from

Now let be x ~ a in the isomorphism, and qhx = xl, xi ~ a1 = qha
and .

then obviously ThA = Al Th and so the multiplication of elements
of the group is unambiguously determined.

V. The excluded case p m = 2 is exactly case II, already
treated, with d2 = 3. The group contains pm + 1 additive groups
of order pm, and so there are p m + 1 poles of parabolic trans-
formations. In the corresponding metacyclic group both poles of
a cyclic group are conjugate (fi = 2 ), and therefore both are poles
of parabolic transformations. As 1 2pm(pm + 1) = (pm: 1 such
cyclic groups exist, to each pair of points chosen from the p m + 1
points there corresponds a cyclic group of order pm - 1 having
that pair of points as its pair of poles. The group is at any rate
homomorphic to a permutation group of these pm + 1 points.
A transformation however, which leaves p m + 1 &#x3E; 3 points in-
variant, is certainly the identity, and therefore the homomorphism
is an isomorphism. We may bring three of those points to 0,
1 and co. The group then contains the transformation

T transforms the point 1 into the pointq, the powers of T transform
1 into the powers of n, i.e. into all elements ~ 0 of GF(pm). The
pm + 1 points are exactly the points of the binary projective
space over GF(pm). Since the group is a permutation group of



121

the p m + 1 points and since to each transformation of the group
we may find a matrix in GF(pm) by considering three points of
the pm + 1 points and their images, the group is a subgroup of
PGL(2, p m ) in the notation of Van der Waerden [4]. The group
is PGL (2, p -) itself, its order being (pl -1)pm(pm + 1). This
result holds also in the excluded case p m = 2, because we get a
permutation group of degree 3 and of order 6, whose objects may
brought to 0, 1 and oo.

VI. The excluded case p m = 3 is exactly the case III, already
treated. There are, as in the preceding case V, p In + 1 poles of
parabolic transformations of order p m and 1 2pm(pm + 1) =

=(pm+12) cyclic groups with pairs of poles chosen from these

p m + 1 points, this time of order 1 2(pm -1). Here too the group
is a permutation group of the pm + 1 points, and three of those
points may be brought to 0, 1 and oo. The group contains the
transformation

with 12 instead of il. To each of the p m + 1 points corresponds a
parabolic transformation having this point as its pole, which
transforms another arbitrary point into a third arbitrary point,
because the p m parabolic transformations having the first point as
their pole transform a certain point, which does not coincide with
that pole, into p m different points, and therefore all points except
the first of the pm + 1 points get their turn. So there exists in the
group a Darabolic element

which transforms oo into ~ and 0 into 1. Now

So the additive group contains the additive group, which lies

in GF(pm), generated by the ~2d and of order pk (k  m). This
group contains ~2d and 0, so 1 2(pm-1) + 1 ~ px, 1 2pm ~ pk,
m  k, and therefore m = k. The additive group is GF(pm). Now

with b arbitrary in GF(pm) transforms 0 into b ; the p m + 1 points
therefore are again the points of the binary projective space over
GF(pm) and again the group is a subgroup of PGL(2, pm). To



122

show that it is PSL(2, pm), we observe, that the elements of
PSL ( 2, pm) have a transformation determinant, which is a square
in GF(pm). Now T2 and thercfore all transformations of the cyclic
groups of order 1 2 (pm-1) fulfill this requirement, just as all

parabolic transformations. For T2 this is obvious (~ lies in GF(p m) )
and a transformation

is parabolic if rx2 + (s - p)x - q = 0 has a double root, i.e.

(characteristic ~ 2 is assumed in advance) if (s - p)2 + 4rq = 0,
i.e. (s + p)2 = 4(ps - rq). Tlie transformation determinant is a
square. If we count all transformations of the group of which we

know already that they belong to PSL(2, p"’), we find:

The group lias in common with PSL (2, p m ) more than half of the
elements, and so the group is PSL ( 2, p-). We could have shorte-
ned the last part of the proof, if we had used the theorem, that
PSL (2, pm) is simple for pm =1= 2 and ~ 3 (cf Dickson [1 ], § 104
and § 105). Finally the isomorphism to PSL(2, p m ) also holds
in the excluded case p m == 3, because PSL(2, 3), being a permu-
tation group of degree 4 and order 12, is isomorphic to 4.

VII. This group is the icosahedral group. The proof of § 5,
case E, may be repeated literally, because the validity of the
scheme at the end of § 4 may be deduced easily from what is
sa,id about normalizers of additive and cyclic groups in § 9. That
the parabolic transformations are all conjugate follows from the
fact, that -1, being a square root of unity, is a multiplier be-
longing to an element of the normalizer, and so

are conjugate.

§ 12. List of the groups and their conjugate subgroups.

On account of the preceding sections the contents of table 1
are clear. The table contains a complete list of all possible finite
binary projective groups with their conjugate additive and cyclic
subgroups. For the groups without parabolic elements we now
have followed a choice of letters according to that of the groups
with parabolic component.
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TABLE I.
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§ 13. Equivalence of the groups of a type for groups with
1 parabolic elements.

We now ask, whether the groups of one type are unambiguously
determined except for linear transformation.
For additive groups this is not true. If we bring the pole to oo,

the transformations get the well-known form

b runs through an additive group of rank m over the prime field
GF(p). We may choose for b the elements of GF(pm). But we
may also extend GF(p ) by adjoining m variables yl, ..., ym and
choose the additive group generated by yi, ..., ym. Now we try
to transform by linear transformation the latter group into the
former. We transform

As we .know, the transformation matrix S must leave the pole
invariant. In § 9 we have seen that the transformed element has
the form

in which p depends only on S, i.e. all elements of the field group
are multiplied by the same factor. The field, generated by the
quotients of the group elements remains the same. But the

quotients yilyj do not belong to GF(pm), except in the trivial

case m = 1. For m &#x3E; 1 the transformation therefore is impossible.
In the case m = 1 (cyclic group) a primitive element may be

written in the form

We have left the possibility of transformation with

and we may just bring a point a into a point b with it:

a+q=b, q=b-a.
We apply this in the case of the dihedral group. An element

of order 2 may be brought into the form (13.2). By the remark
just made we may bring a pole of a primitive element of order
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d2 to 0; it takes the form

Now

must have order 2, i.e. (remember p = 2) ~ + c = 1, c = 1 + ~.
So the elements

are fixed, and as they generate the dihedral group, the group
is also fixed.
For the tetrahedral group (characteristic 3) we bring a pole of

an additive group to oo; the transformations of this group take
the form (13.1). The poles of an element of order 2 are brought
to 0 and 1; the matrix of that element then is

Now the product of these elements has again order 3, i.e. it is

parabolic. It reads like this:

The poles are roots of the equation x2 - (1 + b)x-b = 0. The
transformation is parabolic, if (1 + b)2 + b = 1 + b2 = 0, i.e.

b = + 1 (i = - 1). The two elements are generators of the
group. The bivalence of b may be eliminated by interchanging 0
and 1 and leaving oo invariant, i.e. by transforming with

This gives

We now consider the metacyclic group of order d1pm. We know
already that the additive group, contained in it, may be brought
into the form (13.1), where b runs through an additive group
[03BB1, ..., Â,,,] of rank m. This additive group may be changed only
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into one which arises by multiplying all elements by a fixed factor
li. Let T be a primitive element of order dl. We may bring the
other pole of T to 0; T then becomes

1J is a primitive d1th root of the unity. By replacing T by a power
of T we may replace n by every other primitive dlth root of the
unity. 1J must be a multiplier of the additive group. The multi-
plicative field GF(pk) of the additive group must contain the field
GF(pr) of the dlth roots of the unity. For the rest the additive
field group is perfectly arbitrary: we may choose s = m elements

yi, ..., Ys arbitrarily in a field which contains GF(pr) and then
choose for [03BB1,..., 03BBm] the additive group of all elements

We may take e.g. y,, ..., 03B3s as basic elements of GF(pm) or as
variables yi, ..., ys. The two groups obtained in this way are

certainly not equivalent. Only in the case r = ln, s = 1 we may
change the variable y1 by multiplication with a factor into the
constant 03B31 = 1. Therefore:
The metacyclic group of order d1pm, dI |pm- 1 is unambi-

guously determined except for linear transformation if and only
if the field of the dlth roots of the unity over GF(p) is identical
with GF(pm), or in other words if nt is the smallest divisor k of
m for which d1|pk -1.
The groups PGL(2, pm) and PSL(2, pm) are already brought

into an unambiguously determined form by bringing three points
to 0, 1 and oo in the structure proof of § 11.

Finally the icosahedral group (characteristic 3). For an ar-
bitrary element of order 5 we may find an element of order 3
such that the product has order 2. The two elements then generate
the group. We bring the poles of an élément of order 5 to 0 and 1.
It reads like this:

By taking a power of this élément we may make e equal to a
certain given root of the equation x4 -i- x3 --E- x2 + x + 1 = o. We

bring the pole of the element of order 3 to co. It then takes the
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form (13.1 ). Now

This must have order 2, and so E + b(03B5-1) + 1 = 0, b = 1+03B5.
1 E

By this the unambiguously determined form has been obtained.
The results of this section may be summarized in the follôwing

theorem:

THEOREM 13.1. Two gxoups with parabolic elements of the same
type and with the same value of the constants p, m and di may
be transformed into one another by linear transformation, except
in the following cases:

case I : additive group of order p m, if m &#x3E; 1,
case IV: metacyclic group of order d1P m, if d1|pk-1 with le  m.

§ 14. Existence of the groups with parabolic elements.

From the results on the form into which the transformations
of the groups may be brought we infer, just as for groups without
parabolic elements, the existence of the groups of the different
types after properly chosen extension of the basic field.

It is clear in advance that the prime order corresponding to the
parabolic elements must be the same as the characteristic of the
field (in this section always denoted by p). This natural restriction
is always made in what follows. We may adjoin the (pm- 1 ) th
roots of the unity to the basic field and so make GF(pm) to a
subfield of the basic field. Then from the results of the preceding
section the existence of the additive and metacyclic groups follows
immediately. For the dihedral group we adjoin the d2th roots of
the unity and then find in (6.2) an always existing representation.
(The elements of order 2 there may be parabolic). The groups
PGL(2, pm) and PSL(2, pm) exist over GF(pm), the tetrahedral
group exists as PSL(2, 3). Finally for the icosahedral group we
may literally repeat the proof of existence of § 7: nowhere the fact
is used that the poles of the element of order 3 should be different.
This completes the proof of existence and gives us:
THEOREM 14.1. The necessary and sufficient condition for the

existence of the groups with parabolic elements after properly
chosen extension of the basic field is that the prime order oc-
curing in the additive subgroups be equal to the characteristic p
of the field.
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Interesting is also the question whether the restrictions on the
characteristic for the types of groups without parabolic elements
may be dropped if we admit for those types groups with parabolic
elements. First of all cyclic groups exist only if the order is prime
to p or equal to p. For if the order is prime to p, there exist
cyclic groups with different poles, and if it is equal to p, there
exists an additive cyclic group of order p. This turns out to be
the only restriction we have to make for the types of groups with
respect to the cyclie ,subgroups occuring in it. This is expressed
in the following theorem.
THEOREM 14.2. The types of groups without parabolic elem-

ents exist after properly chosen extension of the basic field,
possibly as groups with parabolic éléments, if and only if the

following requirements concerning the characteristic of the basic
field are fulfilled:

for the cyclic group of order dl : no divisor of dl or = dl,
for the dihedral group of order 2d2: no divisor of d2 or = d2,
for the tétrahedral group: no restriction,
for the octahedral group: ~ 2 ,

for the icosahedral group: no restriction.

PROOF: The necessity of these requirements has been shown
already. Now we assume that they are fulfilled. We may restrict
us to the cases in which the conditions of the corresponding
theorem about groups without parabolic elements in § 7 (theorem
7.1) are not fulfilled, because in the other cases that theorem gives
the required proof of existence.
The cyclic group has been treated already. For the dihedral

group we get first the case p = 2; d2 then is also 2 or odd. If da
is odd we get case II; d2 = 2 gives a four-group, which occurs as
an additive group with p m = 4. Finally the case p =: d2 2;
this dihedral group occurs as a metacyclic group with p ~ 2
and d1 = 2, m = 1. For the tetrahedral group we have p = 2
or p = 3. Now p = 3 gives case III, for p = 2, the group occurs
as a metacyclic group with p m = 4 and dl = 3. For the octahedral
group we have p = 3 and then PGL ( 2 , ,3) meets the requirements.
Finally for the icosahedral group we have p = 2, p = 3 and p = 5.
Now p = 3 gives case VII, p = 2 is fulfilled by PGL(2,4) and
for p = 5 we have PSL ( 2, 5), because the isomorphism of

PSL (2, 5) and 5 may be shown literally in the same way as in
§ 5, case E.

This completes the proof.
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