TSURUSABURO TAKASU

Sphere-geometrical unitary field theories

Compositio Mathematica, tome 10 (1952), p. 95-116

<http://www.numdam.org/item?id=CM_1952__10__95_0>
Sphere-geometrical Unitary Field Theories
by
Tsurusaburo Takasu
Sendai

In this paper I will give proofs of the conclusions 1, 2, 3 and 4 \(^1\) stated below as well as in my previous paper \([21]\) \(^2\). 1 and 2 correspond respectively to the Kaluza—Klein’s unitary field theory \([1]\), \([2]\) and the Einstein—Mayer’s \([8]\), 3 and 4 respectively to the Hoffmann’s generalization of the Kaluza—Klein’s \([4]\) and Einstein—Mayer’s \([5]\). Then I add six further sphere-geometrical unitary field theories 5, 6, 7, 8, 9 and 10 stated below, of which 5, 7 and 9 correspond to the unitary field theories of P. G. Bergmann \([19]\), B. Hoffmann \([17]\) and B. Hoffmann \([18]\) respectively, while 6, 8 and 10 are new. To each of these ten theories there corresponds a new sphere-geometrical connection-geometry, of which the Laguerre connection-geometry finds its origin in the work of Y. Tomonaga \([13]\), \([20]\), \([26]\). The main purpose of this paper is to indicate the four-dimensional sphere-geometrical laws for the unitary field theories, so that the assumptions made therein are fulfilled automatically and we are able to avoid the fifth or the sixth dimension in our line of thought, though the fifth or the sixth dimension survives in abstract sense. The principal importance of this paper seems to lie in the following points: (i) all the figures representing the generalizations of the “Weltpunkte” are realized within the Einstein space \(V_4\), so that the question of four-dimensionality exists no longer; (ii) thus we are lead to the connection geometries of Laguerre’s carrier instead of those of the conformal ones, although we have long waited for the latter one. (It is to be noticed that the space of special relativity is the three-dimensional Laguerre space). (iii) My theories have lead us to new sphere-geometrical connection geometries, which have hitherto been considered to be

\(^1\) The heading numbers 1, 2, \ldots, 10 will be retained throughout.

\(^2\) The numbers in the square brackets refer to the bibliography at the end of this paper.
rather difficult to develop, since the elements of space are other things than points.

In all cases the Einstein space V_4 as basic space is considered to be provided with tangent

\[N.E. \parallel \text{Euclidean} \]

space in the sense of the

\[N.E. \parallel \text{limiting} \]

case of the Veblen’s projective theory (cfr. [16] and [10]. Also [10], [23]). If we denote the tangential spaces arising in the theories 1, 2, ..., and 10 by (1), (2), ..., and (10) respectively, then the tangential spaces, which are realized in the tangent

\[N.E. \parallel \text{Euclidean} \]

manifold, are situated among them as follows:

\[
(\text{N.E. space}) : (\text{Euclidean space}) : (\text{N.E. equiform space}) : (\text{equiform space}) = (1) : (2) : (7) : (8) = (3) : (4) : (9) : (10) = (5) : (6) : (x) : (y),
\]

where

\[
(1) = \text{dual-conformal (i.e. N.E. Laguerre) space},
(2) = \text{Laguerre space},
(3) = \text{Space of Lie’s higher hypersphere geometry},
(4) = \text{“parabolic Lie space” which is new},
(5) = \text{the space which arises from the dual-conformal space by a kind of expansion of each hypersphere and is new},
(6) = \text{the space which arises from the Laguerre space by a kind of expansion of each hypersphere and is new},
(7) = \text{“equiform dual-conformal space” which is new},
(8) = \text{“equiform Laguerre space” which is new},
(9) = \text{“equiform Lie space” which is new},
(10) = \text{“equiform parabolic Lie space” which is new}.
\]

The existence of (x) and (y) is thus suggested. The reader will see below what the new ones are.

The corresponding connection geometries (spaces) will be called respectively:

1. dual-conformal connection geometry (space),
2. Laguerre connection geometry (space),
3. Lie connection geometry (space),
4. parabolic Lie connection geometry (space),
5. B-dual-conformal connection geometry (space),
6. B-Laguerre connection geometry (space),
7. equiform dual-conformal connection geometry (space),
8. equiform Laguerre connection geometry (space),
9. equiform Lie connection geometry (space),
10. equiform parabolic Lie connection geometry (space),
x. B-equiform Lie connection geometry (space),
y. B-equiform parabolic Lie connection geometry (space)

when the base manifold is a general Riemannian space X_4, the
details of which will be developed in a separate paper. 3) Since all these geometries are substantially Riemannian
geometries, the procedures are comparatively easy as long as
one is concerned with normalized vectors. The techniques of the
Riemannian geometry will help us very much for sphere-geo-
metrical interpretations.

§ 1. The Unitary Field Theories of Kaluza—Klein and
Einstein—Mayer as seen from the View Points of the
Sphere-geometries.

In the case of the unitary field theory of
1. Kaluza—Klein [1], [2], 2. Einstein—Mayer [3],
the fundamental quadratic differential form was

$$d\sigma^2 = \gamma_{\alpha\beta} dx^\alpha dx^\beta = g_{ii}(x^i) dx^i dx^j + (\varphi_\alpha(x^\alpha) dx^\alpha)^2,$$

(a, i, j, \ldots = 1, 2, 3, 4; \alpha, \beta, \gamma, \ldots = 1, 2, \ldots, 5),

where $\varphi_5 = 1$ and $g_{ij} dx^i dx^j$ is the fundamental quadratic form of
the Einstein space V_4 and

$$e/m = \varphi_\alpha \frac{dx^\alpha}{ds} = \gamma_{\alpha\beta} \varphi^\beta \gamma^{\alpha\gamma} u_\gamma = \delta^\beta_\alpha \varphi^\beta u_\gamma = \varphi^\alpha u_\alpha = u_5$$

$$= \sin \left(\frac{r}{k}\right) \quad = r$$

the r being the radius of the hypersphere with the center

$$\left(\gamma^{\alpha\beta} \varphi_\beta\right) = \left(\varphi^\alpha\right) = (0, 0, 0, 0, 1)$$
in the tangent

N.E. \parallel \text{Euclidean}

\text{97}

3) There exist a series of sphere-geometrical connection geometries, based
upon a hyperplane manifold. (In preparation). 4) The k will be expressed in terms of the constant R below in Theorem 2°.
space as well as the geodesic radius of the corresponding general-
ized (i.e. geodesic) hypersphere with center \((\varphi^x)\) in \(V_4\). Then the
\[
u^\alpha = \gamma^\alpha{}_{\beta} \frac{dx^\beta}{d\sigma}, \quad \left(\gamma^\alpha{}_{\beta} \frac{dx^\alpha}{d\sigma} \frac{dx^\beta}{d\sigma} = 1\right) \quad u_i = \gamma_{i\beta} \frac{dx^\beta}{d\sigma}, \quad u_5 = \gamma_{\alpha 5} \frac{dx^\alpha}{d\sigma} = -p
\]
are the oriented hyperplane coordinates in the four-dimensional
tangential N.E. \(\parallel\) tangential Euclidean
space of \(V_4\) as well as the coordinates of the totally geodesic
hypersurfaces enveloping the geodesic hypersphere in \(V_4\).

The field equations were
\[
(R^{ij} - \frac{1}{2} g^{ij} R) - 2(g^{st} \varphi^s_1 \varphi^t_1 + \frac{1}{4} g^{ij} \varphi^s_i \varphi^s_j) = 0,
\]
\[
\partial^m \varphi^{ms}_s = 0,
\]
\[
\Sigma \frac{\partial \varphi^i_j}{\partial x^k} = 0,
\]
where the latter two are Maxwell's equations and
\[
\varphi_{j,k} = \frac{1}{2} \left(\frac{\partial \varphi^i_j}{\partial x^k} - \frac{\partial \varphi^i_k}{\partial x^j} \right), \quad \varphi^i_j = g^{ij} \varphi_{j,k}.
\]

The equations of motion were
\[
\frac{d^2 x^i}{d\sigma^2} + \left\{ \begin{array}{l}
i \\
jk
\end{array} \right\} \frac{dx^j}{d\sigma} \frac{dx^k}{d\sigma} + \frac{e}{m} \varphi^i_j \frac{dx^j}{d\sigma} = 0.
\]

The space with which we are concerned is a four-dimensional
dual-conformal \(\parallel\) Laguerre
connection space which is special in the sense that the base
manifold is \(V_4\) instead of a general four-dimensional Riemannian
manifold. If we interpret the geodesic hyperspheres as points it
is nothing but a special five-dimensional Riemannian space which
will be realized within the Einstein space \(V_4\) as a special
dual-conformal \(\parallel\) Laguerre
connection space by means of a minimal projection \(\parallel\) of the
points of the tangent five-dimensional
N.E. \(\parallel\) Euclidean
space of \(V_4\) as well as by its generalization in the five-dimensional

\(\parallel\) T. Takasu, [24].
Riemannian space. This fact is legitimated by the formula (O. Veblen, [16], p. 46):
\[
\frac{\partial \log (\gamma_{\alpha \beta} X^\alpha X^\beta)}{\partial \alpha^\beta} = 0
\]
as well as by the following theorems (S. Sasaki—K. Yano, [23]):

Theorem 1. If the group of holonomy of a space with a normal projective connection \(P_n \) is a subgroup of the group of all projective transformations in \(P_n \) which fix a non-degenerate hyperquadric \(Q \), the \(P_n \) is a space with a projective normal connection corresponding to the class of affinely connected spaces with corresponding paths including an Einstein space with non-vanishing constant scalar curvature. In other words the \(P_n \) is projective to an Einstein space with non-vanishing scalar curvature. The converse is also true. Correspondingly for the case of vanishing scalar curvature.

Theorem 2. Let the group of holonomy of the space with a normal projective connection \(P_n \) corresponding to Einstein space \(V_4 \) with positive definite fundamental tensor and of non-vanishing scalar curvature fix a real or imaginary hyperquadric according as the scalar curvature \(R \) is negative or positive. Then the arc length of a geodesic segment \(PQ \) is expressed by
\[
PQ = \frac{k}{2i} \log \left(PQ, YZ \right), \quad k = \sqrt{3/|R|},
\]
where \(Y \) and \(Z \) are the points of intersections of \(PQ \) with the invariant hyperquadric in the tangent N.E. space.

Correspondingly for the case of vanishing scalar curvature.

Thus the lengths as well as angles are common to the base manifold \(V_4 \) and the tangent N.E. or Euclidean space, so that the so-called geodesic polar coordinates are also common to them:

\[
\begin{align*}
\xi^t &= \sin \frac{r}{k} C^t, \quad \left(C^t = \cos \theta^t, \right) \\
\xi^5 &= \cos \frac{r}{k}, \quad \left(g_{tt} C^t C^t = 1 \right), \quad \left(g_{tt} \xi^t \xi^t = 1. \right)
\end{align*}
\]
\[
\begin{align*}
\xi^t &= r C^t, \quad \left(C^t = \cos \theta^t, \right) \\
\xi^5 &= 1, \quad \left(g_{tt} C^t C^t = 1 \right) \\
\left(g_{tt} \xi^t \xi^t = r^2. \right)
\end{align*}
\]

It is well known that the Einstein space \(V_4 \) is totally umbilical and the oriented hypersphere (as well as the oriented geodesic hypersphere in \(V_4 \)) with center \((\varphi^x)\) is given by the equation:
\[
r = \text{const.},
\]

The N.E. || The
Laguerre coordinates of the oriented hypersphere (as well as of the oriented geodesic hypersphere in V_4) (ξ^α, e) are

$$\begin{align*}
\xi^i &= \xi^i / \cos \frac{\theta}{k}, \\
\xi^5 &= i(g^{ij} \xi^i \xi^j + \xi^5 \xi^5)^{\frac{1}{2}} \tan \frac{\theta}{k}, \\
\xi^6 &= \xi^6 / \cos \frac{\theta}{k}, \\
(g^{ij} \xi^i \xi^j + \xi^5 \xi^5 + \xi^6 \xi^6 &= 1).
\end{align*}$$

The N.E.

Laguerre coordinates of the oriented hyperplane (as well as of the oriented totally geodesic hypersurface in V_4) (u_α) are

$$\begin{align*}
\sigma . U_\alpha &= u_\alpha, \quad (\sigma \neq 0) \\
\sigma . U_6 &= i, \quad (\sigma \neq 0) \\
(\gamma^{\alpha \beta} U_\alpha U_\beta + U_6 U_6 &= 0), \\
(\xi^6 &= 1).
\end{align*}$$

so that the equation to the oriented hypersphere (as well as to the oriented geodesic hypersphere in V_4) $(\xi^A(x^a))$ is

$$\xi^A U_A = 0, \quad (A = 1, 2, \ldots, 6),$$

which forms a hypercomplex (a system of ∞^4 oriented geodesic hyperspheres).

The space of

Kaluza—Klein \parallel Einstein—Mayer

may thus be considered to have arisen from the Einsteinean V_4 by expansion of each point of V_4 to an oriented geodesic sphere of constant radius r such that e/m

$$= \sin \frac{r}{k}. \quad \parallel \quad = r.$$

From this I have concluded as follows:

1. The Kaluza—Klein’s \parallel 2. The Einstein—Mayer’s

space is equivalent to the Einstein’s space V_4 (special-)

connection geometrically so that the points in V_4 correspond to the geodesic hyperspheres of equal geodesic radii, whose developments in the

N.E. \parallel Euclidean

tangential spaces are hyperspheres of equal radii.
According to the new viewpoints in differential geometry in the large of Shing-Shen Chern \[27\], the fundamental orthogonal differential form for $d\sigma^2$ is, except for quadratic transformations, expressible in the form

$$d\sigma^2 = \omega_1^2 + \omega_2^2 + \ldots + \omega_5^2,$$

where ω_i are Pfaffians. In our case we have

$$\omega_5 = \varphi_\sigma \, dx^2$$

$$= \sin \frac{r}{k} \, d\sigma$$

and the part

$$- d\sigma^2 = \omega_1^2 + \omega_2^2 + \omega_3^2 + \omega_4^2$$

corresponds to the Einsteinian V_4.

§ 2. The Hoffmann's Generalization of the Unitary Field Theories of Kaluza–Klein and Einstein–Mayer as seen from the View Points of the Sphere-geometries.

In the Hoffmann's generalization of the

space, the fundamental quadratic differential form was

$$dS^2 = \gamma_{AB} \, dx^A \, dx^B = g_{ij}(x^a) \, dx^i \, dx^j + (\varphi_A(x^a) \, dx^A)^2 + (\psi_A(x^a) \, dx^A)^2,$$

$$a, b, \ldots, i, j, \ldots = 1, 2, 3, 4; \alpha, \beta, \ldots = 1, 2, \ldots, 5;$$

$$A, B, \ldots = 1, 2, \ldots, 6,$$

where $g_{ij} \, dx^i \, dx^j$ is the fundamental quadratic differential form of the Einstein space V_4, and

$$\varphi_6 = 1, \varphi_6 = 0,$$

$$e/m = \varphi_A \frac{dx^A}{dS},$$

$$\psi_6 = 0, \psi_6 = 1,$$

$$\mu/m = \psi_A \frac{dx^A}{dS},$$

$$= \sin \frac{r}{k} \parallel = r$$

$$= \sin \frac{r'}{k} \parallel = r'$$

$$= \text{const.} \parallel$$

the r \parallel the r'

*) The subsequent interpretations of (φ^A, r) and (ψ^A, r') will be made in two ways exposed on the both sides of |.
being the radius (generalized in the sense of common tangential segment) of the oriented linear hypercomplex (of oriented hyperspheres with equal radii

\[r' \parallel r \]

with its "center" (oriented hypersphere with radius

\[r' \text{ and center} \quad (\psi^A) = (0, 0, 0, 0, 1, 0) \]

\[r \text{ and center} \quad (\psi^A) = (0, 0, 0, 0, 1, 0) \]

in the tangential four-dimensional

N.E. \parallel \text{ Euclidean}

space as well as the geodesic radius (generalized in the sense of common geodesic tangential segment) of the corresponding oriented linear hypercomplex (of oriented geodesic hyperspheres with equal geodesic radii

\[r' \parallel r \]

with its "center" (oriented geodesic hypersphere with geodesic radius

\[r' \text{ and center} \quad (\varphi^A) = (0, 0, 0, 0, 1, 0) \]

\[r \text{ and center} \quad (\varphi^A) = (0, 0, 0, 0, 1, 0) \]

realized in the Einstein space \(V_4 \). Thereby the

\[
\begin{align*}
\gamma_{AB} \frac{d\xi^B}{dS} = 1 & \quad (\gamma_{AB} \frac{d\xi^A}{dS} = 1) \\
\frac{dx^A}{dS} \frac{dx^B}{dS} = 1 & \quad (\frac{dx^A}{dS} \frac{dx^B}{dS} = 1) \\
\end{align*}
\]

are the coordinates of the oriented linear hypercomplex \(^7\) of the oriented hyperspheres touching properly two oppositely oriented hyperplanes in the tangential four-dimensional

N.E. \parallel \text{ Euclidean}

space of \(V_4 \) as well as the coordinates of the corresponding oriented generalized totally geodesic linear hypercomplexes (belonging to the generalized linear hypercomplex of the oriented hyperspheres under consideration realized in \(V_4 \)).

\(^7\) A four-dimensional generalization of the system of oriented spheres touching properly a pair of oppositely oriented planes.
The field equations were
\[(R^{mn} - \frac{1}{2} g^{mn} R) + 2(g^{st} \varphi_s^m \varphi_t^n + \frac{1}{4} g^{mn} \varphi_s^m \varphi_s^n) - 2(g^{st} \varphi_s^m \varphi_t^n + \frac{1}{4} g^{mn} \varphi_s^m \varphi_s^n) = 0, \]
\[\sum \frac{\partial \varphi_{ij}}{\partial x^k} = 0, \]
\[\sum \frac{\partial \varphi^i_{ij}}{\partial x^k} = 0, \]
where
\[\varphi_{jk} = \frac{1}{2} \left(\frac{\partial \varphi_j}{\partial x^k} - \frac{\partial \varphi_k}{\partial x^j} \right), \]
\[\varphi^i_k = g^{ij} \varphi_{jk}. \]

The equations of motion were
\[\frac{d^2 x^i}{dS^2} + \left\{ i \right\} \frac{dx^j}{dS} \frac{dx^k}{dS} + \frac{e}{m} \frac{\varphi^i_j}{dS} \frac{dx^j}{dS} + \frac{\mu}{m} \frac{dx^i}{dS} = 0. \]

(i) The space in consideration is a four-dimensional Lie connection space which is special in the sense that the basic manifold is \(V_4 \) instead of a general four-dimensional Riemannian space. If we interpret the linear hypercomplexes of geodesic hyperspheres as points it is nothing but a special six-dimensional Riemannian space which will be realized in the Einstein space \(V_4 \) as a special connection space by means of two successive minimal projections\(^8\) of the points of the tangent six-dimensional N.E. Lie \(\parallel \) parabolic Lie connection space of \(V_4 \) from two different mutually orthogonal directions upon the four-dimensional N.E. \(\parallel \) Euclidean tangent space of \(V_4 \) as well as by their generalization in the six-dimensional Riemannian space.

\(^8\) T. Takasu, [24].
(ii) The space under consideration which is a special four-dimensional Lie connection space is nothing but a special five-dimensional dual-conformal Laguerre connection space if the oriented linear hypercomplexes of oriented geodesic hyperspheres are interpreted as oriented hyperspheres and this dual-conformal Laguerre connection space will be realized in the Einstein space V_4 by means of one minimal projection of the points of the tangent five-dimensional dual-conformal Laguerre space upon the four-dimensional N.E. Euclidean tangent space of V_4 as well as its generalization in the five-dimensional dual-conformal Laguerre connection space.

These facts are also legitimated by remembering that the analytical apparatus is common to the tangential space of V_4 and the space realized in V_4 itself, which is stated in § 1, the meaning of k being the same. The four-dimensional

coordinates of the oriented hypersphere (as well as of the oriented geodesic hypersphere in V_4) may be constructed as follows:

$$\begin{align*}
\sigma \cdot \zeta^A &= \xi^A, \\
\sigma \cdot \zeta^7 &= i(g_{ij} \xi^i \xi^j + \xi^5 \xi^6 + \xi^8 \xi^8) \\
&= i, \\
(\gamma_{AB} \xi^A \xi^B + \zeta^7 \zeta^7 &= 0).
\end{align*}$$

The Lie parabolic Lie

The parabolic Lie
coordinates

\[(U_L) = (\gamma_{LM} U^M), \quad \gamma_{LM} U^L U^M = 1, \quad (L, M = 1, 2, \ldots, 7)\]

of the oriented linear hypercomplex of the oriented hyperspheres (as well as of oriented geodesic hyperspheres) \((\zeta^L)\) are such that \(^9\)

\[U_L \zeta^L = 0, \quad (L = 1, 2, \ldots, 7).\]

The space of the Hoffmann's generalization of the Kaluza-Klein Einstein-Mayer space may thus be considered to have arisen from the Kaluza-Klein's Einstein-Mayer's by expansion of each oriented geodesic hyperspheres \((\varphi^\alpha, r)\) of \(V_4\) to an oriented linear hypercomplex of the constant geodesic generalized (in the sense of common tangential geodesic segment) radius \(r'\) such that

\[
\frac{\mu}{m} = \sin \frac{r'}{k} = r'.
\]

From this I have concluded as follows:

The Hoffmann's generalization of the Kaluza-Klein's Einstein-Mayer's space is equivalent to the Einstein's space \(V_4\) special Lie parabolic Lie connection geometrically so that the points in the Einstein space \(V_4\) correspond to the special linear hypercomplexes of generalized (geodesic) hyperspheres, whose developments in the tangent

\(N.E.\) Euclidean space are hyperspheres of equal radii.

\(^9\) This equation for the righthand side shows, when it is interpreted in a space of six dimensions, that the point \((\xi^\alpha, \xi^7)\) lies on the minimal hyperplane (with coordinates \((U_\alpha, U_7, -P, (U^\alpha U_\alpha + U^7 U_7 = 0))\) expressed in its Hesse's normal form.
§ 3. The Unitary Field Theory of Jordan—Bergmann as seen from the View Point of a Sphere-geometry and a New Allied Theory.

In the case of the

5. Jordan—Bergmann’s space [19],

the fundamental quadratic differential form is

\[d\sigma^2 = g_{ij}(x^\alpha) dx^i dx^j + C^2(x^\alpha)(\varphi_\alpha(x^\alpha) dx^\alpha)^2, \]

\[(i, j, \ldots = 1, 2, 3, 4; \ \alpha, \beta, \ldots = 1, 2, \ldots, 5) \]

leading to the variable

\[e/m(x^\alpha) = C(x^\alpha) \varphi_\alpha \frac{dx^\alpha}{d\sigma} \]

\[= \sin \frac{r}{k}, \]

\[= r, \]

where \(\varphi_\alpha = 1 \) and \(g_{ij} dx^i dx^j \) is the fundamental quadratic form of the Einstein space \(V_4 \), the \(r \) being the radius of the hypersphere with center \((\varphi^\alpha) = (\gamma^{\alpha\beta} \varphi_\beta) = (0, 0, 0, 0, 1) \) in the tangential four-dimensional N.E. as well as the geodesic radius of the corresponding geodesic hypersphere with center \((\varphi^\alpha) \) in \(V_4 \). Therefore the

\[u_\alpha = \gamma_{\alpha\beta} \frac{dx^\beta}{d\sigma}, \]

\[(\gamma_{\alpha\beta} \frac{dx^\alpha}{d\sigma} \frac{dx^\beta}{d\sigma} = 1) \]

\[u_\alpha = \gamma_{\alpha\beta} \frac{dx^\beta}{d\sigma}, \]

\[u_5 = \gamma_{a5} \frac{dx^a}{d\sigma} = -p \]

are the oriented hyperplane coordinates in the tangential four-dimensional N.E. as well as the coordinates of the totally geodesic hypersurface enveloping the geodesic hypersphere under consideration in \(V_4 \).

Putting

\[A_\alpha = C \varphi_\alpha, \ \psi = \log C(x^\alpha), \ \varphi_{mn} = \frac{1}{C} \gamma^\mu_\gamma^\nu (A_\mu, v - A_\nu, \mu) = \varphi_{m, n} - \varphi_{n, m}, \]
the following results were obtained:

\[\gamma^{\alpha\beta} R_{\alpha\beta} = g^{kl} R_{kl} + \frac{1}{2} C^2 \varphi^{rs} \varphi_{rs} + \frac{2}{C} g^{rs} C_{rs}, \]

\[\varphi_{,s} = -2 \varphi^{rs} \varphi_{,s} \text{ (Maxwell’s equations),} \]

\[A^{\sigma}_\varrho = 0, \]

\[g^{rs} \psi_{,r} \psi_{,s} + \frac{1}{8} \varphi^{rs} \varphi_{rs} = 0 \text{ (the fifteenth equation)} \]

accompanied by the identities:

\[A_{\mu,\nu} + A_{\nu,\mu} + \psi_{,\mu} A_{\nu} + \psi_{,\nu} A_{\mu} = 0, \]

\[\psi_{,\varrho} A^{\varrho}_\sigma = 0, \]

\[(B^\sigma = A^\sigma_\varrho A^\varrho_\sigma, \quad B_{\varrho} = -\psi_{,\varrho}). \]

For arguments for and against the theory we refer to the original paper of Bergmann [19].

We will refer to the connection geometry corresponding to

\[ds^2 = \gamma_{\alpha\beta} dx^\alpha dx^\beta = g_{is}(x^i) dx^i dx^i + C^2(x^\alpha)(\varphi_\alpha(x^\alpha) dx^{\alpha})^2 \]

for the general Riemannian quadratic form \(g_{is} dx^i dx^i \) as

\(B\)-dual-conformal \(\parallel \) \(B\)-Laguerre

gometry and conclude as follows:

\textit{The Jordan-Bergmann’s space is equivalent to the Einstein space} \(V_4 \) \special \(B\)-dual-conformal \(\parallel \) \(B\)-Laguerre

collection geometrically, so that the points in \(V_4 \) corresponds to the geodesic hyperspheres in the

\textit{Jordan—Bergmann’s space, \quad \parallel \quad B\)-Laguerre space,}

\textit{whose developments in the four-dimensional tangential}

\textit{N.E. \quad \parallel \quad Euclidean}

\textit{space are hyperspheres of variable radii} \(r \) \textit{such that}

\[\frac{e}{m(x^\alpha)} = C(x^\alpha) \left(\varphi_\alpha \frac{dx^\alpha}{d\sigma} \right) \]

\[= \sin \frac{r}{k} \quad \parallel \quad = r. \]

\[10 \text{) For the reason, cfr. the conclusion of § 1.} \]
§ 4. The Hoffmann's Field Theory Unifying the Gravitation and the Vector Meson Fields as seen from the View Points of a Sphere-Geometry and a New Allied Theory.

In the case of the

7. Hoffmann [17] space

8. equiform Laguerre space

as will be introduced in the following lines

for vector meson and gravitation fields, the fundamental quadratic differential form is

\[d\sigma^2 = G_{\alpha\beta} dx^\alpha dx^\beta = G_{55} (e_{i\ell}(x^\ell)dx^i dx^j + (\varphi_\alpha(x^\alpha)dx^\alpha)^2 = G_{55} \gamma_{\alpha\beta} dx^\alpha dx^\beta, \]

\((a, b, \ldots, i, j, \ldots = 1, 2, 3, 4; \alpha, \beta, \ldots = 1, 2, \ldots, 5), \)

where \(\varphi_\alpha = 1 \) and \(e_{i\ell} dx^i dx^j \) is the fundamental quadratic form of the Einstein space \(V_4 \) and \(G_{55} = \Phi^2(x^\alpha, x^0) = e^{2N} x^0 f(x^\alpha) \) is a scalar of index \(N \) and is

\[G_{55} \varphi_\alpha \frac{dx^\alpha}{d\sigma} = \sin \frac{r}{k}, \]

\[= r, \]

\(r \) being the radius of the hypersphere with center \((\varphi^\alpha) = (\gamma^\alpha, \gamma^\beta) = (0, 0, 0, 0, 1) \) in the tangential four-dimensional

N.E. || Euclidean

space as well as the geodesic radius of the corresponding geodesic hypersphere with center \((\varphi^\alpha) \) in \(V_4 \). Therefore

\[u_\alpha = G_{\alpha\beta} \frac{dx^\beta}{d\sigma}, \]

\[(G_{\alpha\beta} \frac{dx^\alpha}{d\sigma} \frac{dx^\beta}{d\sigma} = 1) \]

\[u_i = G_{i\ell} \frac{dx^\ell}{d\sigma}, \]

\[u_5 = G_{55} \frac{dx^\alpha}{d\sigma} = - p \]

are the oriented hyperplane coordinates in the tangential four-dimensional

N.E. || Euclidean

\(\varphi \)

space of \(V_4 \) as well as the coordinates of the totally geodesic hypersurface enveloping the geodesic hypersphere under consideration in \(V_4 \).
The field equations are
\[
(R^{ab} - \frac{1}{g} g^{ab} R) - 6N^2 g^{ab} + \frac{1}{2} (g^{cd} \theta^a_{\,b} \theta^b_{\,d} + \frac{1}{2} g^{ab} \theta^c_{\,c}) - 12N^2 (\theta^a_{\,b} - \frac{1}{2} g^{ab} \theta^c_{\,c}) = 0,
\]
(a)
\[
\theta^a_{\,b} + 12N^2 \theta^a_{\,c} = 0,
\]
(b)
\[
\theta^a_{\,a} = 0,
\]
where
\[
\Phi_\alpha = N^{-1} \frac{\partial \log \Phi}{\partial x^\alpha}, \quad (\Phi_0 = 1),
\]
\[
\theta_\alpha = \varphi_\alpha - \Phi_\alpha,
\]
\[
\theta_{ab} = 2 \varphi_{ab} = \frac{\partial \varphi_a}{\partial x_b} - \frac{\partial \varphi_b}{\partial x_a} = \frac{\partial \theta_a}{\partial x^b} - \frac{\partial \theta_b}{\partial x^a},
\]
\[
\varphi^{ab} = g^{ac} g^{bd} \varphi_{cd}, \quad \varphi^a_b = g^{bc} \varphi_{bc}.
\]
Here (b) is a direct consequence of (a).

The reciprocal of the index N has the significance that except for a numerical factor, it is the range of the meson force.

x^α is the gauge variable:
\[
x^\alpha = x^0 + \{\log f(x^\alpha)\}^{1/N}
\]

When the quadratic differential form $g_{ij} dx^i dx^j$ is a general one we will call the connection space corresponding to
\[
d\sigma^a = G_{55}(\gamma_{\alpha\beta} dx^\alpha dx^\beta) = G_{55}(a^a, x^0) \left[g_{ij}(x^\alpha) dx^i dx^j + \{\varphi_\alpha(x^\alpha) dx^\alpha\}^2 \right]
\]
the equiform
dual-conformal \hspace{1cm} \|

Laguerre
close

connection space and the corresponding geometry the equiform
dual-conformal \hspace{1cm} \|

Laguerre
close

close

close

The space under consideration is nothing but a special five-dimensional Weyl (i.e. equiform connection) space if the geodesic hyperspheres are interpreted as points and this Weyl space will be realized within the Einstein space V_4 as a special equiform
dual-conformal \hspace{1cm} \|

Laguerre
close

close

close

close

close

close

equiform N.E. \hspace{1cm} \|
equiform
space upon the four-dimensional
N.E. Euclidean
tangential space of \(V_4 \) as well as by its generalization in the
five-dimensional Weyl space.

From this \(^{11)}\) I conclude as follows:

The special equiform dual-
conformal connection space of
Hoffmann

is equivalent to the Einstein space \(V_4 \) special equiform
dual-conformal Laguerre
connection geometrically so that the points in \(V_4 \) correspond to the
tangential hyperspheres of the radii \(r \) such that

\[
G_{55} \varphi_\alpha \frac{dx^\alpha}{d\sigma} = \sin \frac{r}{k}. \quad \|
\]

\(= r. \)

\(^{11)}\) Cfr. also the conclusion of § 1.

§ 5. The Hoffmann’s Field Theory unifying the Gravitation, the Electromagnetism and the Vector Meson as seen from the View Points of a Sphere-geometry and a New Allied Theory.

In the case of the

9. Hoffmann’s space \([18]\) 10. equiform parabolic Lie

space as will be introduced in
the following lines

for vector meson, gravitation and electromagnetic fields, the
fundamental quadratic differential form is

\[
dS^2 = S_{66} \left[\gamma_{\alpha\beta}(x^\alpha)dx^\alpha dx^\beta + \{\psi_A(x^\alpha)dx^\alpha\}^2 \right] = S_{AB}dx^A dx^B = S_{66}g_{AB}dx^A dx^B
\]

\[
= e^{2N_\theta}(x^\alpha)[\delta_{ij}(x^\alpha)dx^i dx^j + \{\psi_\alpha(x^\alpha)dx^\alpha\}^2 + \{\psi_A(x^\alpha)dx^A\}^2], \quad (s_{66} = 1),
\]

\[\begin{align*}
(a, b, \ldots, i, j, \ldots = 1, 2, \ldots, 5; \quad B, A, \ldots = 1, 2, \ldots, 6).
\end{align*}\]
where \(g_{ij}dx^idx^j \) is the fundamental quadratic differential form of the Einstein space \(V_4 \) and

\[
\varphi_5 = 1, \quad \varphi_6 = 0, \quad \varphi_5 = 0, \quad \varphi_6 = 1, \quad S_{66} = \Psi(x^a, \alpha^0) = e^{2N\kappa \xi f(x^a)},
\]

\[
S_{66} \varphi_x \frac{dx^a}{dS} = e/m = S_{66} \varphi_A \frac{dx^A}{dS} = \sin \frac{r'}{k}, \quad \varphi_5 = 0, \quad \varphi_6 = 1, \quad k = \text{the same as in § 1 and } \]

\[
r' = \frac{r'}{k}, \quad \varphi_5 = 0, \quad \varphi_6 = 1, \quad k = \text{the same as in § 1 and } \]

\[
r = \frac{r}{k}, \quad \varphi_5 = 0, \quad \varphi_6 = 1, \quad k = \text{the same as in § 1 and } \]

\[
r' = \frac{r'}{k}, \quad \varphi_5 = 0, \quad \varphi_6 = 1, \quad k = \text{the same as in § 1 and } \]

\[
with its "center" (oriented hypersphere with radius \(r \)) \quad \text{and center } (\varphi^A) = (\varphi^A), \quad \varphi_5 = 0, \quad \varphi_6 = 1, \quad k = \text{the same as in § 1 and } \]

\[
with its "center" (oriented hyperspheres with geodesic radius \(r' \)) \quad \text{and center } (\varphi^A) = (\varphi^A), \quad \varphi_5 = 0, \quad \varphi_6 = 1, \quad k = \text{the same as in § 1 and } \]

\[
with its "center" (oriented hyperspheres with geodesic radius \(r' \)) \quad \text{and center } (\varphi^A) = (\varphi^A), \quad \varphi_5 = 0, \quad \varphi_6 = 1, \quad k = \text{the same as in § 1 and } \]

\[
realized in the Einstein space \(V_4 \). Therefore
\]

\[
\ell_A = S_{AB} \frac{dx^B}{dS}, \quad u_A = S_{AB} \frac{dx^B}{dS}, \quad u_\alpha = S_{\alpha B} \frac{dx^B}{dS}, \quad u_\alpha' = S_{\alpha B} \frac{dx^B}{dS}, \quad (\alpha = 1, 2, \ldots, 5), \quad (\alpha' = 1, 2, \ldots, 4, 6)
\]
are the coordinates of the oriented linear hypercomplex of the oriented hyperspheres touching properly two oppositely oriented hyperplanes in the tangential four-dimensional N.E. space of V_4 as well as the coordinates of the corresponding oriented generalized totally geodesic linear hypercomplexes \(^\text{12)}\) (belonging to the generalized linear hypercomplex of the oriented geodesic hyperspheres under consideration realized in V_4).

The transformations are of the type:

\[
\begin{align*}
\bar{x}^a &= \bar{x}^a(x^b), \\
\bar{x}^0 &= x^0 + \frac{1}{N} \log k, \quad k = e^{N(x^0 - \bar{x}^0)} \\
\bar{x}^6 &= \frac{1}{k^2} x^6,
\end{align*}
\]

so that

\[
S_{AB} = e^{2N\bar{x}^2} S_{AB}.
\]

The field equations are

\[
(R^{ab} - \frac{1}{2} g^{ab} R) + 2(g^{cd} \psi^a_c \psi^b_d + \frac{1}{2} g^{ab} \psi^a_\gamma \psi^b_\gamma) + \frac{1}{2} (g^{cd} \theta^a_c \theta^b_d + \frac{1}{2} g^{ab} \theta^a_c \theta^c_d) - 20N^2(\theta^a a^b - \frac{1}{2} g^{ab} \theta^c \theta^c) = 0,
\]

Maxwell's equations:

\[
\psi^{ab} = 0,
\]

Vector meson field equations:

\[
\theta^{ab} + 20N^2 \theta^a = 0,
\]

where

\[
\Psi_A = \frac{1}{N} \frac{\partial \log \Psi}{\partial x^A}, \quad \Psi_5 = 0,
\]

\[
\Psi_{a\beta} = \frac{1}{2} \left(\frac{\partial \Psi_\alpha}{\partial x^\beta} - \frac{\partial \Psi_\beta}{\partial x^\alpha} \right), \quad \Psi_\beta = \gamma^{\alpha\gamma} \Psi_\gamma \beta,
\]

\[
\theta_\alpha = \Psi_\alpha - \Psi_\alpha^a,
\]

\[
\theta_{ab} = 2\Psi_{ab} = \frac{\partial \Psi_a}{\partial x^b} - \frac{\partial \Psi_b}{\partial x^a} = \frac{\partial \theta_a}{\partial x^b} - \frac{\partial \theta_b}{\partial x^a},
\]

\[
\Psi^a = g^{ac} \Psi_{cb}, \quad \Psi^{ab} = g^{ac} g^{bd} \Psi_{cd},
\]

so that

\[
\Psi^A \Psi_B = \Psi^a \Psi^b = 1 + \theta^a \theta_b,
\]

where

\[
\Psi^A = S^{AB} \Psi_B, \quad S^{AB} S_{AC} = \delta^B_C.
\]

\(^{12)}\) See \(^7\).
When the quadratic form \(g_{ij}dx^idx^j \) is a general one we will call the connection space corresponding to

\[
dS^2 = S_{00}(x^a, x^0)\left[g_{ij}(x^a)dx^idx^j + (\varphi_\alpha(x^a)dx^\alpha)^2 + \{\varphi_A(x^a)dx^A\}^2\right]
\]

the equiform \(\text{Lie} \parallel \text{parabolic Lie} \) connection space and the corresponding geometry the equiform \(\text{Lie} \parallel \text{parabolic Lie} \) connection geometry.

(A) The space under consideration is nothing but a special five-dimensional equiform dual-conformal \(\parallel \text{Laguerre} \) connection space if the linear hypercomplexes of the geodesic hyperspheres are interpreted as geodesic hyperspheres and this space will be realized within the Einstein space \(V_4 \) as a special equiform Lie \(\parallel \text{parabolic Lie} \) connection space by means of a minimal projection (accompanied by a kind of tangential dilatation) of the tangential five-dimensional equiform dual-conformal \(\parallel \text{Laguerre} \) connection space upon the four-dimensional N.E. \(\parallel \text{Euclidean} \) tangent space of \(V_4 \) as well as by its generalization in the five-dimensional equiform dual-conformal \(\parallel \text{Laguerre} \) connection space.

(B) The space under consideration is also nothing but a special six-dimensional Weyl (i.e. equiform connection) space if the geodesic hyperspheres are interpreted as points and this Weyl space will be realized within the Einstein space \(V_4 \) as a special equiform Lie \(\parallel \text{parabolic Lie} \) connection space by means of a succession of two minimal projections from two mutually orthogonal direction (accompanied
by a kind of tangential dilatation) of the points of the tangential six-dimensional

\textbf{N.E. equiform} \quad \parallel \quad \textbf{equiform}

space upon the four-dimensional

\textbf{N.E.} \quad \parallel \quad \textbf{Euclidean}

tangent space of V_4 as well as by its generalization in the six-dimensional Weyl space.

From this I conclude as follows:

\textit{The special equiform Lie connection space of Hofmann} \parallel \textit{The special equiform parabolic Lie connection space}

\textit{is equivalent to the Einstein space V_4 special equiform}

\textit{Lie} \quad \parallel \quad \textit{parabolic Lie}

connection geometrically so that the points in V_4 correspond to the linear hypercomplexes of the geodesic hyperspheres whose developments in the equiform

\textbf{N.E.} \quad \parallel \quad \textbf{Euclidean}

tangent spaces are linear hypercomplexes of the generalized radii r' such that

$$S_{00} \varphi^{\alpha} \frac{dx^\alpha}{dS} = \sin \frac{r'}{k} \quad \parallel \quad = -r'$$

consisting of hyperspheres of the radii r such that

$$S_{00} \psi^A \frac{dx^A}{dS} = \sin \frac{r}{k} \quad \parallel \quad = r.$$

This paper was read at the annual meeting of the Japanese Mathematical Society in Tokyo at the beginning of May 1950.
BIBLIOGRAPHY

TH. KALUZA

O. KLEIN

A. EINSTEIN—W. MAYER

B. HOFFMANN

B. HOFFMANN

K. YANO

K. YANO

K. YANO

K. YANO

S. SATO

EINSTEIN and BERGMANN

K. YANO

Y. TOMONAGA

J. A. SCHOUTEN—J. HAANTJES
J. A. Schouten—J. Haantjes

O. Veblen

B. Hoffmann

B. Hoffmann

P. G. Bergmann

Y. Tomonaga

T. Takasu

A. Einstein

S. Sasaki—K. Yano

T. Takasu

T. Takasu

Y. Tomonaga

Shing—Shen Chern

(Oblatum 9-4-51; emendatum 20-7-51)