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Markovian walks on crystals
by

J. M. Hammersley
Oxford

§ 1. Summary.
This work originated in a metallurgical problem, treated in § 5,

on the diffusion of electrons in a crystal structure. This problem is
a special case of some general theory, developed in §§ 3, 4, on the
asymptotic distribution of the sum of a large number of vectors
selected from a fixed set of vectors by a Markovian process of
finite order. This extends the work of Romanovsky, who treated
the corresponding problem for scalars selected by a Markovian
process of order unity. Some standard algebraic theory, required
for § 3, appears in § 2.

§ 2. Properties of finite constant stochastic matrices.

A finite constant stochastic matrix (hereafter called simply a
stochastic matrix) is a finite square matrix P with real constant
éléments Pik (j, k = 1, 2, ..., n) satisfying

that is to say each row-sum of P is unity. A stochastic matrix is
simple if it has a simple latent root A = 1. A rearrangement of a
matrix is a permutation of its rows accompanied by the same
permutation of its columns.
THEOREM 2.1. Let A be any latent root o f a square matrix with

n

(perhaps complex) elements aik (j, k = 1, 2, ..., n); let 03B1i = 03A3 1 a;k 1;

let oc = max (Xi; and let 3 be the (perhaps empty) set of all integers

f such that oc,  oc. Then 1 A | oc; and 1 A | oc implies the existence
of a (possibly empty but otherwise proper) subset 9 o f the integers
1, 2, ..., n such that R  J and a;k = 0 whenever j ~ R and k ~ se.
THEOREM 2.2. Any stochastic matrix P has at least one latent

root A = 1, and all its latent roots satisfy 1 A 1 ~ 1.
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THEOREM 2.3. 1 f m is the multiplicity of the latent root 03BB = 1 of
a stochastic matrix P, then P can be rearranged into one of the alter-
native forms

where Pij (j = 1, 2, ..., m) is a simple stochastic matrix, and the
latent roots 03BB of Pm+1,m+1 satisfy 1 A 1  1.

These results are standard, being either explicit or more or
less implicit in the work of Frobenius [1], Romanovsky [2], and
Brauer [3]. However to save the reader, who is not already
familiar with these results, the trouble of extracting them from
amongst the lengthier and more complete treatments cited above,
we prove them here.

In Theorem 2.1, corresponding to the latent root A there is a
non-null row-vector (Xl, x2, ..., xn) such that

Hence

n

and |03BB| ~ oc follows from S |xj| &#x3E; 0. For the remainder of the

theorem we may suppose that 3 is not empty, else we could take
 empty too. Then oc &#x3E; 0. If 1 A | = 03B1, the quantities of (2.4) are
equal; and the last two quantities show that xj = 0 for j ~ J.
Take 9 to be the set of all i such that xj = 0. Then ? 2 3 and is
a proper subset of 1, 2, ..., n because (x1, x2, ..., xn ) is non-null.
Since 9 implies j ~ 3, it also implies 03B1j = 03B1; and so (2.3) yields

This completes Theorem 2.1, since |xj| 1 &#x3E; 0 for j f. 9. The last
part of Theorem 2.2 is a particular case of the first part of Theorem
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2.1, in view of (2.1); and the first part of Theorem 2.2 is obvious,
since the row-sums of I - P are zero.

In proving Theorem 2.3, we neglect the trivial case m = 1.
Then n &#x3E; m ~ 2; and adj (03BBI ~ P) exists. Let fjk(03BB) be the (j, k)-
element of adj (03BBI 2013 P), and let f(03BB) = 1 AI - P 1. Since fjj(03BB) is
a real continuous function of real Â which is positive for large
positive Â we have

for otherwise, in contradiction of Theorem 2.1, the complementary
minor of pjj in P would have a latent root A &#x3E; 1. On the other

hand, since m ~ 2,

Combining this with (2.5) we have fjj(1) == 0, i = 1, 2, ..., n.
We assert that for 03BB = 1 we can find a latent column-vector

(xi, x2, ..., xn} of P, whose elements xj are real and not all equal.
This is obvious if the rank of I - P is less than n 2013 1. Since

|I 2013 P1 =0, there only remains the case in which the rank of
I 2013 P is n - 1, i.e. when there is some non-zero element fj’k’(1).
In this case we may take xk = fj’k(1), k = 1, 2, ..., n, according
to the rule of false cofactors; and we shall ensure 0 = xj’ ~ xk,.
Therefore in any case we may divide the integers 1, 2, ..., n into
two non-empty classes j E 3 if xj = min xj and j ~  if xj &#x3E; min xj.

Then by ( 2 .1 )

and therefore, because xj 2013 xk  0 for j ~ J, k ~ R, (2.1) yields

Now let i be the maximum integer such that P can be written in
the form

where the partitioning of rows is the same as the partitioning of
columns in (2.8), and all possible rearrangements of P are consider-
ed in arriving at (2.8). We have i ~ 2, by (2.7). We assert that,
if Qjj has a latent root A satisfying 1 A 1 = 1, then Qjk = 0 for
k = 1, 2, ..., i 2013 1. For the row sums of Qjj cannot exceed unity;
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and hence, by Theorem 2.1, there exists a maximal non-empty set
2 of the rows of Qij such that the elements of each member of J
sum to unity. Let J’ be the set of rows of Qjj which do not belong
to S. Suppose (for the sake of a contradiction) that 3’ is not

empty. Then, by Theorem 2.1, there exists a proper subset $l1’ of

the rows of Qjj such that R’  ’ and the elements qjk of Qjj
satisfy qjk = 0 for j ~ R’, k E R’; whereupon we can rearrange P by
permuting those rows which intersect Qjj, and thereby increase i
to i + 1. This is a contradiction because i is maximal. Thus S’ is
empty, and the assertion follows from (2.1). Hence Qjj is a stoch-
astic matrix if it has a latent root 1 A 1 = 1; and it must also be a
simple stochastic matrix, otherwise (2.7) would operate to show
that i was not maximal. Now rearrange the partitional blocks of
(2.8) so that rows which intersect a Qjj having | 03BB 1 = 1 precede
all other rows (if any). Then P takes one of the forms (2.2 ); and
the theorem is complete because rearrangement will not alter the
multiplicity of the latent root 03BB = 1.

§ 3. Markovian interstate distributions.

Suppose that a system is restricted to a finite number of states
So, S1, ..., St_1, that it passes from state to state at consecutive
instants, and that, N being a fixed integer, there is a constant

probability pj1j2···jNk that the system will pass into 5 k when it is
known to have just occupied 5j, 5j, ..., SiN in that order. The
system is then said to follow an N-th order finite constant Marko-
vian process, hereafter denoted by MN. Let Vi denote the number of

instants at whieh the system occupies S,, when a total of v = 03A3vj
consecutive instants are considered. The joint distribution of the
random variables vj is termed the interstate distribution of the

9NN; and we shall détermine it asymptotically for large v. With
MN we associate a stochastic matrix P, whose rows and columns
are numbered in t-ary digit scale from 0 to n - 1 = tN - 1. The
element pjk of P is

otherwise

where j = [j1j2...jN], k = [k1k2...kN] are the expressions of i and
k in the scale of t. We say that RN is simple if P is a simple stoch-
astic matrix. 

With a simple stochastic matrix P we associate a column vector
m and a square matrix M as follows :-- Let 03C0ik denote the value
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of the determinant obtained by deleting from I - P its jth and
kth rows and its jth and kth columns. In case this process
breaks down because there are no surviving rows and columns,
we define 03C0jk = 1. Now set 

This formula is not nugatory, because, P being simple, (2.6) can-
pilot apply. We take m = {m11, M2e ..., mnn}, and M for the
matrix with elements mik (je k = 1, 2, ..., n). Let u be the n-
rowed column vector {1, 1, ..., 1}; and let K be the (t X n)-
matrix (I, I, ..., I). Write v = Km, and V = (K vu’)M
(uv’ - K’).
THEOREM 3.1. The interstate distribution o f a simple MN with

stochastic matrix P is asymptotically normal as v - oo, having mean
vv and variance-covariance v v, independently of the initial state.

The transformation (3.1) takes the given mN with states

So, S1, ..., St-1 into an ml with states É5o, 61, 6n-l. Let pj0 denote
the probability that this M1 is in 6j after the first N instants. The
probability that it then passes successively through 6;0 ~ 6;1 ~
... ~ jv is pj0pj0j1pj1j2···pjv-1jv; and hence the joint characteristic
function of the variates Vj of M1(j) is

0, (t) 0v(to, tl,..., tn-1)=03A3pj0pj0j1pj1j2···pjv-1jv exp {i(tj0+tj1+··· +tjv)},
where the sum is taken over all j0, j1, ..., jv = 0, 1, ..., n 1.
Define Q(t) to be the matrix with elements qjk = pjkexp(itk),
(je k = 0, 1, ..., n 1 ), and q(t) be the column-vector with

elements pjexp(itj). Then

Hereafter we suppose throughout that t is a real vector.
Let x = {x0, xl, ..., xn-1} be an arbitrary column-vector, and

write 1B x ~ for the non-negative square root of 03A3 | xj 2. Since

| Xi 2 ~ ~ x ~2, pik ~ 0 and 03A3 pik = 1, we have for any positive
k=O

integer v

in which 03A3’ denotes summation over k1, k2, ..., k, = 0, l, ...,
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As a matter of passing interest, this is a best possible inequality.
Let Âj(t) denote the latent roots of Q(t) with due regard to

multiplicity. By Theorem 2.1, |03BB*j(t)| ~ 1; and so each 03BB*j(t) is
a bounded root of a polynomial equation, whose coefficients are
continuous functions of t. Therefore there exists a set of n one-
valued continuous functions 03BBj(t) such that, for each fixed t, the
numbers Â* are a permutation of the numbers 03BBj. Thus lim Âj(t) =

= 03BBj are the latent roots of P; and, since P is simple, there is
precisely one of these functions, which without loss of generality
we denote by 03BB0(t), such that

for some sufficiently small open neighbourhood  of t = O. Now
(3.5) shows that the rank of (Q(t) - Âo(t)I) is precisely n - 1 for
t e ; and therefore there exists a unique continuous column-
vector uo(t) satisfying

for Pu = u. Thus (3.4) and (3.6) yield for any fixed t

0 ~ lim sup ~[Q(v-1 2t)]v[u0(v-1 2t)-u]~ ~ lim sup n1 2~u0(v-1 2t)-u~ =0;

whereupon

Premultiply this last relationship by lim [q(v-1 2t)]’ = (po, pl, ...,
pn-1) = p’, notice that p’u = 1, use (3.3), and deduce

Setting D for the diagonal matrix with elements e-itj, (j = 0, 1,
..., n 1), we can write the characteristic equation of Q(t) in
the form
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Row-by-row differentiation of (3.8) yields

Since g is differentiable as many times as we please and ~g/~03BB =1= 0
for t E , we may appeal to the implicit function theorem to obtain

Then (3.7) provides

The theorem is now completed by taking the inverse Fourier
transform of this last relation and then by means of the transfor-
mation K, condensing the states j to Sj by enumerating the for-
mer in terms of the last t-ary digit of their suffices. In the course of
the foregoing proof we have been entitled to make no distinction
between v and v + N, since these quantities are asymptotically
equivalent. The normal distribution just obtained is singular,
because v Iv,: this we may see otherwise in terms of the identi-
ties m’u = 1, (I - mu’)M(um’ - I)u = 0.
Turning now to the case when UN is not simple, we first per-

mute the suffices of 6j and thereby rearrange P into the form
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(2.2). et (S* (i = 1, 2, ..., m) denote the aggregate of states 6;
which correspond to rows of Pjj in the rearrangement; and let
**j (i 1, 2, ..., 1) dénote the remaining 6, (ifany) correspond-
ing to the rows of P m+l, m+18 Then the transition matrix for the
states * and (S** is 

in which = Pm+1, m+l and r, is a column-vector composed of the
row-sums of Pm+1,j. (In case Pm+1, m+1 does not exist, we take
R = 0, r, = 0). Let p*j denote the probability that the system
starts in *j and p* * the probability that the system starts in **j
(In case Pm+1, m+1 does not exist, we take p* i * = 0). The cor-
responding probabilities after v steps are

whence

Since all the latent roots of R are less than unity in modulus, we
have

Let mj, U,, Mi denote the values of m, u, M for Pjj. Then in the
rearrangement of j the interstate distribution is the weighted
mean of m normal distributions, the jth distribution having mean
vmj, variance v(I-mju’j)Mj(ujm’j-I), and weight p* +
+ q’(I - R)-1rj. To obtain the required interstate distribution
we must transform this by K*, the column permutation of K
corresponding to the rearrangement of P. We obtain
THEOREM 3.2. The interstate distribution of a general W’lN’ as

v ~ oo, is asymptotically the weighted mean of a finite number of
normal distributions specified above.

§ 4. Abstract crystals.
This section consists largely of définitions. They are framed to

give, on the one hand, sufficient generality to deal with most
applied mathematical problems, which may fall within the présent
subject matter; but, on the other hand, they avoid the patholo-
gical difficulties which would be the result of a completely general
pure mathematical approach.
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A directed linear graph (hereafter called simply a graph) is a
countable (i.e. finite or enumerably infinite) aggregate of points
and bonds: the points are points Pl, P2, ... of an abstract space C,
and the bonds are directed paths joining certain pairs of (not
necessarily distinct) points. If there is a bond from P, to P,, we
denote it by PjPk and say that PjPk exists. The existence of PjPk
does not necessarily imply the existence of PkPj. We write
@ = 05 (Pi, ) for such a graph.
A random walk on a graph Q) is the motion of a particle ,vhich,

at each of a sequence of discrete instants, steps in a random
fashion from point to point of OE along the directed bonds of 0.
We write M[(Pj, )] for such a walk. We also write 03C0K{Bj ~
Bk |M[(Pj, )]} for the probability that at the Kth instant of
M[(Pj, Q5 )] the particle steps from some point of the set Bj to
some point of the set Bk.
A graph Q)*(P:, @)*) is called a homomorph of (Pj,) if there

exists a one-valued transformation H(Pj) = P*j such that the
existence of Pi P: implies the existence of PjPk. We then write
H() = OE*. We also write H-1(B*) for the set of all points P of
Q5 which map into a given set B* of C* under H. The random walk
M*(*) on * = H() is called a probability homomorph of M(),
written 38* = H(M), if and only if

for all K, Bj, Bk.
Let (S be a vector space with a vector basis xi, x2, ...; so that

with x = 1:jrJ..jXj the scalar coordinates of a general point x are
03B11, OC2, ... For any arbitrary set of (positive, negative, or zero)
integers 03B21, P2, ..., the transformation 03A3j03B1jxj ~ 03A3j(03B1j + 03B2j)xj is

called an integral shift. Points of 6 which can be transformed into
each other by suitable integral shifts are called congruent. The
set of all points x = 03A3j03B1jxj, 0 ~ ai  1 is called the fundamental
cell of . A lattice  is a graph of 6 with the three properties

(i) 2 is invariant under all integral shifts as regards both its
points and its bonds,

(ii) the set 33 of all points of  in the fundamental cell is finite, and
(iii) the set ? of all bonds of S directed from points of the funda-

mental cell is finite.
Let Bo, Bj, ..., Bt-1 be the points of 58 and vo, vl, ..., vs-i be
the distinct displacement vectors representing the directed bonds
of B. The set of all points congruent to B, is denoted by S,, called
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the ith point-state of the lattice. A walk M[] is called lB’larkovian

and denoted by W1N[£] if it is an MN on the S;.
A homomorph of a lattice is called a cr ystal. A Markovian walk

on a crystal  = H(), denoted by MN[], is any H(MN[]). The
problem is to determine the asymptotic distribution of the point
reached by an MN() after a large number v of steps.

If 3i and ?) are finite sets of objects xj and yk respectively, their
direct product set X  D is the set of all pairs (xj, yk). We also
define X(l) = X X X(l-1), X(1) = 3i. In place of MN[] consider an
M1 on % = 6(N) X B, where Q5 is the set of S; for an 2 such that
 = H(2,). By admitting zero probabilities wherever necessary we
can obviously choose this M1 so that it is homomorphic in probabil-
ity with the UN [2] satisfying H(UN[2,]) = MN[]; for 3: exhausts all
states of the MN[]. According to § 3 we can find the asymptotic
interstate distribution of ; and then condense Z onto B. This will

give the interstate distribution on B; and hence, since S is a lattice,
the asymptotic distribution of terminal position on . The required
result then follows by mapping this distribution under H.
We illustrate this theory with a simple example.

§ 5. Practical application.
In a certain metallic structure the atoms may be considered as

contiguous spheres all of equal radius. These spheres lie in layers as
shown in the diagram. In a given layer, a given atom So is touched
by six neighbours Sj (j = 1, 2, ..., 6) as shown, the centres lying
in the plane Oxy. The layer which lies above this layer is similar in
structure and orientation, but has suffered a displacement in the
Oy direction, so that the centres of three of its spheres lie above
the points A, B, C in such a way that the sphere (centred above
A for example) touches the spheres So, Si’ Ss. The layer in the Oxy
plane may be termed an even layer, and the one above it an odd
layer. The complete three-dimensional structure then consists of
even and odd layers stacked alternately. A particle starts at one
atom and moves from atom to atom in a sequence of steps. At any
step it may move to a contiguous sphere, so that it has 12 available
possibilities for each step. The probability that it will make a step
to any one of the six atoms in the same layer is p/6, and the pro-
bability that it will step to any one of the six atoms in the layers
above and below is q/6, where p and q are given and p + q = 1.
The probabilities of successive choices amongst the 12 available
are independent. The problem is to determine the dioLribution of
the final position after a large number v of steps.
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Taking right-handed axes as shown in the diagram the steps and
their probabilities may be represented by the following displace-
ment vectors (where we take the radius of a sphere to be 3) :-

Particle stepping from
even layer

Particle stepping from
odd layer
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A little reflection will show that the steps vl, v2, ..., v. cannot

follow immediately after the steps V7’ v8, ..., v18. This together
with 7 similar considerations shows that the stochastic matrix of

the transitions amongst the 24 displacement vectors is

where 03C0 = - p/6, (7J = - q/6, and U and 0 are 6 X 6 matrices
whose elements are all unities and zeros respectively. To get the
joint interstate distribution we have to evaluate the principal
minors of I - P obtained by omitting one or two rows and the
same one or two columns. Let 03BCj = 0, 1, 2 (i == 1, 2, 3, 4) be the
number of rows omitted from the jth block of I - P when parti-
tioned in the same way as (5.1). To evaluate the resulting deter-
minant carry out the following opérations successiirely:-

(i) In each block, subtract the first row of the block from each of
the remaining rows of the block;

(ii) In each block, add to the first column of the block the sum
of the remaining columns of the block;

(iii) Subtract the first row of the fourth row-block from the first
row of the first row-block, and subtract the first row of the
third row-block from the first row of the second row-block ;

(iv) Add the first column of the first column-block to the first
column of the fourth column-block, and add the first column
of the second column-block to the first column of the third
column-block.

The resulting determinant is identical with a unit determinant

except in two rows (namely the first rows of the third and fourth
row-blocks); and hence on evaluating it by these rows and the
corresponding columns, we find as its value

This vanishes, as it should, when III = 112 = 1"3 = /l4 = 0. In-

serting into (5.2) the appropriate values of tij, we find, in the
notation preceding (3.1),
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Since 1 nii = 2q, the latent root A = 1 is simple whenever q ~ 0.

[If q = 0, the walk is confined almost certainly to a single layer
of atoms, and can be treated separately in a much simpler fashion;
so we may suppose q ~ 0.] It follows that

where U1 is a 12 X 12 matrix of unities; and

Further
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Thus, using the rela.tions U2 = 6U, U21 = 12 Ul, we find
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This last matrix is puzzling. I cannot interpret physically what

happens a.s q ~ 0+ : yet 1 can detect no fault in the steps leading
to this matrix, which moreover leads to the physically reasonable
final result (5.5).
The diffusion matrix is now

where

This yields

wherc

and so finally
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