Compositio Mathematica

J. DE GROOT
 T. DEKKER

Free subgroups of the orthogonal group
Compositio Mathematica, tome 12 (1954-1956), p. 134-136
http://www.numdam.org/item?id=CM_1954-1956__12__134_0
© Foundation Compositio Mathematica, 1954-1956, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques http://www.numdam.org/

Free subgroups of the orthogonal group

by
J. de Groot and T. Dekker

1. Let G^{n} be the group of all proper orthogonal transformations in Euclidean space E^{n} (therefore represented by real orthogonal n-matrices ($a_{i k}$) with determinant +1). We shall prove in this note - using the axiom of choice -, that for $n>2 G^{n}$ contains a free (non Abelian) subgroup with just as many free generators as the potency of G^{n} itself (which is the potency \aleph of real numbers). The theorem is clear, if we can prove it for G^{3}. Hausdorff [1] showed how to find two rotations φ and ψ in G^{3} which are independent except for the relations $\varphi^{2}=\psi^{3}=1$. Robinson [2] showed that $\varphi \psi \varphi \psi$ and $\varphi \psi^{2} \varphi \psi^{2}$ generate a free group of rank two. Since any free group of rank two contains a subgroup of rank $\boldsymbol{\aleph}_{0}$ (comp. Kurosch [3] f.i.), it is already clear that G^{3} contains a free subgroup G_{0} with an infinite, but countable number of free generators.

These results are used essentially to prove certain theorems concerning congruence relations for subsets of a sphere (comp. f.i. Hausdorff [1], Robinson [2], Dekker and de Groot [4]).

The rotationgroup G^{2}, being commutative, obviously does not contain a free non Abelian subgroup. Moreover the group of all congruent mappings of E^{2} on itself does not contain a free non Abelian subgroup. Indeed, suppose the congruent mappings α and β generate a free subgroup. Then α^{2} and β^{2} are rotations or translations. It follows that γ and δ defined by

$$
\begin{aligned}
& \gamma=\alpha^{2} \beta^{2} \alpha^{-2} \beta^{-2} \\
& \delta=\alpha^{4} \beta^{2} \alpha^{-4} \beta^{-2}
\end{aligned}
$$

are translations, which yields to $\gamma \delta=\delta \gamma$. Hence there exists a non-trivial relation between α and β, q.e.d.
2. Lemma. Let $F=\left\{f_{\alpha}\right\}$ be a family of potency $\overline{\bar{F}}<\boldsymbol{N}$ of functions $f_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \not \equiv 0$ each analytic (in terms of powerseries) in its n real variables x_{i}. Then there are real values $a_{i}(i=1,2, \ldots, n)$, such that $t_{\alpha}\left(a_{i}\right) \neq 0$ for any $f_{\alpha} \in F$.

Proof. For $n=1$ the lemma is trivial. Consider $f_{\alpha}\left(x_{1}, \ldots, x_{n}\right)$ for a fixed α and for $0 \leqq x_{i} \leqq 1$. There is only a finite number of values $x_{1}=b$ such that for a fixed $b: f_{\alpha}\left(b, x_{2}, \ldots, x_{n}\right) \equiv 0$ (otherwise the analytic function of one variable $f_{\alpha}\left(x_{1}, c_{2}, c_{3}, \ldots, c_{n}\right)$ should vanish identically for fixed but arbitrary $x_{i}=c_{i}(1<i \leqq n)$. From this follows $\left.t_{\alpha}\left(x_{i}\right) \equiv 0\right)$. For each α we leave out this finite number of values $x_{\mathbf{1}}$. Because $\overline{\bar{F}}<\boldsymbol{\aleph}$ there remains a number $x_{1}=a_{1}$ such that for each $\alpha: f_{\alpha}\left(a_{1}, x_{2}, \ldots, x_{n}\right) \not \equiv 0$.

This is for any α a function of $n-1$ variables, satisfying the conditions of the lemma. Hence we find by induction: there are real values $a_{i}(i=2, \ldots, n)$ such that $f_{\alpha}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq 0$ for any $f_{\alpha} \in F$ q.e.d.
3. Theorem.. The group G^{n} of all rotations of n-dimensional Euclidean space $(n>2)$ for which the origin is a fixed point contains a free (non Abelian) subgroup with $\boldsymbol{\aleph}$ tree generators.

Proof. We have to prove the theorem for G^{3}. Let G_{0} be defined as in $1 ., G_{0}$ being a free subgroup of G^{3} with rank $\boldsymbol{\aleph}_{0}$. We shall prove by transfinite induction the existence of a free subgroup of rank \boldsymbol{N}.
Suppose that for a certain limitnumber $\alpha \leqq \omega_{\kappa}$ (the initialnumber of $\boldsymbol{\aleph}$) the groups $G_{\beta}, \beta<\alpha$ are defined, where G_{β} is a free rotationgroup with $\boldsymbol{\aleph}_{0}+\overline{\bar{\beta}}$ free generators such that

$$
G_{0} \subset G_{1} \subset \ldots \subset G_{\omega} \subset \ldots \subset G_{\beta} \subset \ldots(\beta<\alpha) .
$$

Moreover we assume that for any $\beta<\alpha$, the $\boldsymbol{\aleph}_{0}+\overline{\bar{\beta}}+1$ free generators by which $G_{\beta+1}$ is defined consist of the $\boldsymbol{\aleph}_{0}+\overline{\bar{\beta}}$ free generators of G_{β} (by which G_{β} is defined) to which one new generator is added.

Now it is clear, that for a limitnumber α the sum $\underset{\beta<\alpha}{\cup} G_{\beta}=G_{\alpha}$ is a free group. Indeed the generators are the union of the already defined generators of $G_{\beta}, \beta<\alpha$; a relation (between a finite number of generators) in G_{α} is already a relation in a certain G_{β} and therefore a trivial one. The theorem is therefore proved, if - given a certain G_{β} - we may define a rotation χ such that the $\boldsymbol{\aleph}_{0}+\overline{\bar{\beta}}$ free generators of G_{β} together with χ are free generators of a group $G_{\beta+1}$.

A non-trivial relation in $G_{\beta+1}$ may be written (after simplifications) in the form

$$
\begin{equation*}
g_{1} \chi^{j_{1}} g_{2} \chi^{j_{2}} \ldots g_{r} \chi^{j_{r}}=1 \quad\left(j_{l} \text { integer, } g_{l} \in G_{\beta}\right) . \tag{1}
\end{equation*}
$$

We must find a rotation χ for which no relation (1) is true.

Consider a fixed relation (1). The g_{l} may be represented by matrices with known elements:

$$
\begin{equation*}
g_{l}=\left(g_{i k}^{l}\right) \tag{2}
\end{equation*}
$$

The unknown χ can be expressed like any rotation under consideration as a product of three matrices:
(3) $\chi=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \xi_{3} & -\sin \xi_{3} \\ 0 & \sin \xi_{3} & \cos \xi_{3}\end{array}\right)\left(\begin{array}{ccc}\cos \xi_{2} & 0 & -\sin \xi_{2} \\ 0 & 1 & 0 \\ \sin \xi_{2} & 0 & \cos \xi_{2}\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \xi_{1} & -\sin \xi_{1} \\ 0 & \sin \xi_{1} & \cos \xi_{1}\end{array}\right)$
($\xi_{1}, \xi_{2}, \xi_{3}$ are the so called angles of Euler). Using the substitutions
(2) and (3) we get relation (1) in matrixform. This leads to a finite number of equations in the real variables $\xi_{1}, \xi_{2}, \xi_{3}$.

We show first that at least one of these equations does not vanish identically (for all values of $\left.\xi_{1}, \xi_{2}, \xi_{3}\right)$. Indeed the $g_{l}(l=$ $1,2, \ldots, r$) of (1) may be expressed uniquely in a finite number of free generators of G_{β}. If we substitute in (1) for χ a free generator of G_{β} not occurring in one of these expressions g_{l}, the relation (1) is certainly not fulfilled (since G_{β} is a free group). At least one of the mentioned equations is therefore untrue for well chosen numbers $\xi_{1}, \xi_{2}, \xi_{3}$. We call this equation in $\xi_{1}, \xi_{2}, \xi_{3}$ an equation connected with (1). The total number of relations (1) with variables $g_{i} \in G_{\beta}$ and j_{i} has clearly a potency less than $\$$. The number of connected equations $f_{\alpha}\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=0$ has therefore a cardinal less than $\$ \%$. From (3) it follows that the f_{α} are analytic in the real variables $\xi_{1}, \xi_{2}, \xi_{3}$. Therefore we can apply the preceding lemma. This gives real values a_{1}, a_{2}, a_{3} with $f_{\alpha}\left(a_{1}, a_{2}, a_{3}\right) \neq 0$ for any α. The corresponding χ (substituting $a_{i}=\xi_{i}$ in (3)) therefore does not satisfy any relation of the form (1), which we had to prove.

REFERENCES

Hausdorff, f.
[1] Grundzüge der Mengenlehre (1914), p. 469-472.
Robinson, R. M.
[2] Fund. Math. 34 (1947), p. 246-260.
Kurosch, A. G.
[3] Gruppentheorie, Berlin (1954), p. 274.
Dekker, T. and de Groot, J.
[4] Proc. Int. Congr. Math. (1954), II, p. 209.
Institute of Mathematics
University of Amsterdam.

