COMPOSITIO MATHEMATICA

J. DE GROOT T. DEKKER Free subgroups of the orthogonal group

Compositio Mathematica, tome 12 (1954-1956), p. 134-136 <http://www.numdam.org/item?id=CM_1954-1956_12_134_0>

© Foundation Compositio Mathematica, 1954-1956, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Free subgroups of the orthogonal group

by

J. de Groot and T. Dekker

1. Let G^n be the group of all proper orthogonal transformations in Euclidean space E^n (therefore represented by real orthogonal *n*-matrices (a_{ik}) with determinant + 1). We shall prove in this note — using the axiom of choice —, that for n > 2 G^n contains a free (non Abelian) subgroup with just as many free generators as the potency of G^n itself (which is the potency \aleph of real numbers). The theorem is clear, if we can prove it for G^3 . *Hausdorff* [1] showed how to find two rotations φ and ψ in G^3 which are independent except for the relations $\varphi^2 = \psi^3 = 1$. *Robinson* [2] showed that $\varphi \psi \varphi \psi$ and $\varphi \psi^2 \varphi \psi^2$ generate a free group of rank two. Since any free group of rank two contains a subgroup of rank \aleph_0 (comp. Kurosch [3] f.i.), it is already clear that G^3 contains a free subgroup G_0 with an infinite, but countable number of free generators.

These results are used essentially to prove certain theorems concerning congruence relations for subsets of a sphere (comp. f.i. Hausdorff [1], Robinson [2], Dekker and de Groot [4]).

The rotationgroup G^2 , being commutative, obviously does not contain a free non Abelian subgroup. Moreover the group of all congruent mappings of E^2 on itself does not contain a free non Abelian subgroup. Indeed, suppose the congruent mappings α and β generate a free subgroup. Then α^2 and β^2 are rotations or translations. It follows that γ and δ defined by

$$egin{array}{ll} \gamma &= lpha^2eta^2lpha^{-2}eta^{-2} \ \delta &= lpha^4eta^2lpha^{-4}eta^{-2} \end{array}$$

are translations, which yields to $\gamma \delta = \delta \gamma$. Hence there exists a non-trivial relation between α and β , q.e.d.

2. LEMMA. Let $F = \{f_{\alpha}\}$ be a family of potency $\overline{F} < \aleph$ of functions $f_{\alpha}(x_1, x_2, \ldots, x_n) \neq 0$ each analytic (in terms of powerseries) in its n real variables x_i . Then there are real values a_i $(i = 1, 2, \ldots, n)$, such that $f_{\alpha}(a_i) \neq 0$ for any $f_{\alpha} \in F$.

PROOF. For n = 1 the lemma is trivial. Consider $f_{\alpha}(x_1, \ldots, x_n)$ for a fixed α and for $0 \leq x_i \leq 1$. There is only a finite number of values $x_1 = b$ such that for a fixed $b: f_{\alpha}(b, x_2, \ldots, x_n) \equiv 0$ (otherwise the analytic function of one variable $f_{\alpha}(x_1, c_2, c_3, \ldots, c_n)$ should vanish identically for fixed but arbitrary $x_i = c_i$ $(1 < i \leq n)$. From this follows $f_{\alpha}(x_i) \equiv 0$). For each α we leave out this finite number of values x_1 . Because $\overline{F} < \aleph$ there remains a number $x_1 = a_1$ such that for each $\alpha: f_{\alpha}(a_1, x_2, \ldots, x_n) \neq 0$.

This is for any α a function of n-1 variables, satisfying the conditions of the lemma. Hence we find by induction: there are real values $a_i(i = 2, ..., n)$ such that $f_{\alpha}(a_1, a_2, ..., a_n) \neq 0$ for any $f_{\alpha} \in F$ q.e.d.

3. THEOREM. The group G^n of all rotations of n-dimensional Euclidean space (n > 2) for which the origin is a fixed point contains a free (non Abelian) subgroup with \aleph free generators.

PROOF. We have to prove the theorem for G^3 . Let G_0 be defined as in 1., G_0 being a free subgroup of G^3 with rank \aleph_0 . We shall prove by transfinite induction the existence of a free subgroup of rank \aleph .

Suppose that for a certain limitnumber $\alpha \leq \omega_{\aleph}$ (the initialnumber of \aleph) the groups G_{β} , $\beta < \alpha$ are defined, where G_{β} is a free rotationgroup with $\aleph_0 + \overline{\beta}$ free generators such that

 $G_0 \subset G_1 \subset \ldots \subset G_\omega \subset \ldots \subset G_\beta \subset \ldots (\beta < \alpha).$

Moreover we assume that for any $\beta < \alpha$, the $\aleph_0 + \overline{\beta} + 1$ free generators by which $G_{\beta+1}$ is defined consist of the $\aleph_0 + \overline{\beta}$ free generators of G_{β} (by which G_{β} is defined) to which one new generator is added.

Now it is clear, that for a limitnumber α the sum $\bigcup_{\beta < \alpha} G_{\beta} = G_{\alpha}$ is a *free* group. Indeed the generators are the union of the already defined generators of G_{β} , $\beta < \alpha$; a relation (between a finite number of generators) in G_{α} is already a relation in a certain G_{β} and therefore a trivial one. The theorem is therefore proved, if — given a certain G_{β} — we may define a rotation χ such that the $\aleph_0 + \overline{\beta}$ free generators of G_{β} together with χ are free generators of a group $G_{\beta+1}$.

A non-trivial relation in $G_{\beta+1}$ may be written (after simplifications) in the form

(1) $g_1\chi^{j_1}g_2\chi^{j_2}\ldots g_r\chi^{j_r}=1$ $(j_l \text{ integer, } g_l \in G_\beta).$

We must find a rotation χ for which no relation (1) is true.

Consider a fixed relation (1). The g_i may be represented by matrices with known elements:

$$g_l = (g_{ik}^l).$$

The unknown χ can be expressed like any rotation under consideration as a product of three matrices:

$$(3)\chi = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \xi_3 & -\sin \xi_3 \\ 0 & \sin \xi_3 & \cos \xi_3 \end{pmatrix} \begin{pmatrix} \cos \xi_2 & 0 & -\sin \xi_2 \\ 0 & 1 & 0 \\ \sin \xi_2 & 0 & \cos \xi_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \xi_1 & -\sin \xi_1 \\ 0 & \sin \xi_1 & \cos \xi_1 \end{pmatrix}$$

 $(\xi_1, \xi_2, \xi_3 \text{ are the so called angles of Euler})$. Using the substitutions (2) and (3) we get relation (1) in matrixform. This leads to a finite number of equations in the real variables ξ_1 , ξ_2 , ξ_3 .

We show first that at least one of these equations does not vanish identically (for all values of ξ_1, ξ_2, ξ_3). Indeed the g_l (l =1, 2, ..., r) of (1) may be expressed uniquely in a finite number of free generators of G_{β} . If we substitute in (1) for χ a free generator of G_{β} not occurring in one of these expressions g_{l} , the relation (1) is certainly not fulfilled (since G_{β} is a free group). At least one of the mentioned equations is therefore untrue for well chosen numbers ξ_1 , ξ_2 , ξ_3 . We call this equation in ξ_1 , ξ_2 , ξ_3 an equation connected with (1). The total number of relations (1) with variables $g_i \in G_\beta$ and j_i has clearly a potency less than \aleph . The number of connected equations $f_{\alpha}(\xi_1, \xi_2, \xi_3) = 0$ has therefore a cardinal less than \aleph . From (3) it follows that the f_{α} are analytic in the real variables ξ_1 , ξ_2 , ξ_3 . Therefore we can apply the preceding lemma. This gives real values a_1, a_2, a_3 with $f_{\alpha}(a_1, a_2, a_3) \neq 0$ for any α . The corresponding χ (substituting $a_i = \xi_i$ in (3)) therefore does not satisfy any relation of the form (1), which we had to prove.

REFERENCES

HAUSDORFF, F.

Grundzüge der Mengenlehre (1914), p. 469-472.
ROBINSON, R. M.
Fund. Math. 34 (1947), p. 246-260.
KUROSCH, A. G.
Gruppentheorie, Berlin (1954), p. 274.
DEKKER, T. and DE GROOT, J.
Proc. Int. Congr. Math. (1954), II, p. 209.
Institute of Mathematics
University of Amsterdam.

(Oblatum 18-9-54)