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Free subgroups of the orthogonal group
by
J. de Groot and T. Dekker

1. Let G™ be the group of all proper orthogonal transforma-
tions in Euclidean space E™ (therefore represented by real or-
thogonal n-matrices (a,;) with determinant + 1). We shall prove
in this note — using the axiom of choice —, that for n >2 G*
contains a free (non Abelian) subgroup with just as many free
generators as the potency of G" itself (which is the potency N
of real numbers). The theorem is clear, if we can prove it for G3.
Hausdorff [1] showed how to find two rotations ¢ and v in G®
which are independent except for the relations ¢2? = ¢% = 1.
Robinson [2] showed that pyey and py2py? generate a free group
of rank two. Since any free group of rank two contains a subgroup
of rank N, (comp. Kurosch [3] f.i.), it is already clear that G3
contains a free subgroup G, with an infinite, but countable number
of free generators.

These results are used essentially to prove certain theorems
concerning congruence relations for subsets of a sphere (comp.
f.i. Hausdorff [1], Robinson [2], Dekker and de Groot [4]).

The rotationgroup G?%, being commutative, obviously does not
contain a free non Abelian subgroup. Moreover the group of all
congruent mappings of E? on fitself does mot contain a free non
Abelian subgroup. Indeed, suppose the congruent mappings «
and B generate a free subgroup. Then «* and #? are rotations or
translations. It follows that y and ¢ defined by

y = a2fla2p2
8 = alfa—4p—2
are translations, which yields to yé = dy. Hence there exists a
non-trivial relation between « and g, q.e.d.

2. Lemma. Let F ={f,} be a family of potency F< N of
functions f (2, @, . . ., x,) & O each analytic (in terms of power-
series) in its n real variables x;, Then there are real values
a;, (t=1,2,...,n), such that f,(a;) # 0 for any f, e F.
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Proor. Forn = 1 the lemma is trivial. Consider f (2, . . ., z,)
for a fixed « and for 0 < #; < 1. There is only a finite number
of values 2, = b such that for a fixed b:f (b, 2 ..., 2,)=0
(otherwise the analytic function of one variable f,(z;, ¢;, €3, . - -, C;,)
should vanish identically for fixed but arbitrary z; =c¢; (1 <i=n).
From this follows f,(z;) = 0). For each « we leave out this finite
number of values z;. Because F < X there remains a number
2y = a, such that for each a: f,(ay, @5, ..., 2,) Z 0.

This is for any « a function of » — 1 variables, satisfying the
conditions of the lemma. Hence we find by induction: there are
real values a;(¢ = 2, ..., n) such that f (a}, a, ..., a,) #0 for
any f, ¢ F q.e.d.

3. TuaEOREM.. The group G" of all rotations of n-dimensional
Euclidean space (n > 2) for which the origin is a fized point con-
tains a free (non Abelian) subgroup with W free generators.

Proor. We have to prove the theorem for G3. Let G, be defined
as in 1., G, being a free subgroup of G® with rank §,. We shall
prove by transfinite induction the existence of a free subgroup
of rank N.

Suppose that for a certain limitnumber « < wy (the initial-
number of &) the groups Gy, ﬂ=< « are defined, where Gg is a

free rotationgroup with &, + f free generators such that
G CGC...CG,C...CGC... (<)

Moreover we assume that for any f < «, the 8, +;=3 + 1 free

generators by which Gg,, is defined consist of the &, + B free
generators of Gg (by which Gg is defined) to which one new
generator is added.

Now it is clear, that for a limitnumber « the sum ﬂgaGﬁ =G,

is a free group. Indeed the generators are the union of the already
defined generators of Gﬂ, f < a; a relation (between a finite
number of generators) in G, is already a relation in a certain
Gg and therefore a trivial one. The theorem is therefore proved,
if — given a certain Gg — we may define a rotation y such

that the N, + /3 free generators of Gy together with y are free
generators of a group Gg,,.

A non-trivial relation in Gg,, may be written (after simplifica-
tions) in the form

(1) &1 gy .. &y =1 (j integer, g e Gp).
We must find a rotation y for which no relation (1) is true.
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Consider a fixed relation (1). The g may be represented by
matrices with known elements:

(2) & = (gi)-
The unknown y can be expressed like any rotation under con-
sideration as a product of three matrices:

1 0 0 cosé& 0 —sin &\ /1 O 0
(3)x = (0 cos & —sin 53)( 0o 1 0 )(0 cos § —sin 51)

0 siné; cos&/\sing, O cos &/ \0 sin &  cos &

(&1, &5, &; are the so called angles of Euler). Using the substitutions
(2) and (8) we get relation (1) in matrixform. This leads to a
finite number of equations in the real variables &, &, &;.

We show first that at least one of these equations does not
vanish identically (for all values of &, &, &;). Indeed the g, (I =
1, 2,...,r) of (1) may be expressed uniquely in a finite number
of free generators of G4. If we substitute in (1) for x a free generator
of Gg not occurring in one of these expressions g, the relation (1)
is certainly not fulfilled (since Gg is a free group). At least one
of the mentioned equations is therefore untrue for well chosen
numbers &, &, &. We call this equation in &, &, & an equation
connected with (1). The total number of relations (1) with
variables g, e Gg and j; has clearly a potency less than N. The
number of connected equations f,(&, &, &) = 0 has therefore
a cardinal less than §§. From (38) it follows that the f, are analytic
in the real variables &, &,, &. Therefore we can apply the preceding
lemma. This gives real values a,, a,, ag with f (a,, ay, a3) # 0 for
any «. The corresponding y (substituting @, = &, in (8)) therefore
does not satisfy any relation of the form (1), which we had to
prove.
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