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Algebraic Logic, I

Monadic Boolean algebras

by

Paul R. Halmos

Préface. The purpose of the séquence of papers here begun is
to make algebra out of logic. For the propositional calculus this
program is in effect realized by the existing theory of Boolean
algebras. An indication of how the program could be realized for
the first-order functional calculus was published recently (3). In
this paper the details will be carried out for the so-called first-

order monadic functional calculus.

While the projected sequel will, in part at least, supersede some
of the present discussion, the major part of this paper is an

indispensable preliminary to that sequel. In order to be able to
understand the algebraic versions of the intricate substitution
processes that give the polyadic calculi their characteristic flavor,
it is necessary first to understand the algebraic version of the
logical operation of quantification. Thé latter is the subject matter
of this paper, which, accordingly, could have been subtitled: "An
algebraic study of quantification."
Thé theory of what will presently be called monadic (Boolean)

algebras is discussed here not as a possible tool for solving problems
about the foundations of mathematics, but as an independently
interesting part of algebra. A knowledge of symbolic logic is

unnecessary for an understanding of this theory; the language
and the techniques used are those of modern algebra and topology.

It will be obvious to any reader who bappens to be familiar
with the recent literature of Boolean algebras that the results
that follow lean heavily on the works of M. H. Stone and A. Tarski.
Without the inspiration of Stone’s representation theory and
without Tarski’s subsequent investigations of various Boolean
algebras with operators, the subject of algebraic logic could not
have come into existence. The present form of the paper was
strongly influenced by some valuable suggestions of Mr. A. H.
Kruse and Mr. B. A. Galler.
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PART 1

Algebra

1. Functional monadic algebras. There is no novelty
nowadays in the observation that propositions, whatever they may
be, tend to band together and form a Boolean algebra. On the
basis of this observation it is natural to interpret the expression
"propositional function" to mean a function whose values are in
a Boolean algebra. Accordingly, we begin our algebraic study of
quantification with the consideration of a non-empty set X (the
domain) and a Boolean algebra B (the value-algebra). The set B’
of all functions from X to B is itself a Boolean algebra with
respect to the pointwise operations. Explicitly, if p and q are
in BX, then the supremum p v q and the complement p’ are
defined by

for each x in X ; the zero and the unit of BX are the functions
that are constantly equal to 0 and to 1, respectively.
Thé chief interest of BX comes from the fact that it is more

than just a Boolean algebra, What makes it more is the possibility
of associating with each element p of BX a subset R(p) of B,
where

is the range of the function p. With the set R(p), in turn, there
are two obvious ways of associating an element of B: we may
try to form the supremum and the infimum of R(p). The trouble
is that unless B is complete (in the usual lattice-theoretie sense ),
these extrema need not exist, and, from the point of view of the
intended applications, the assumption that B is complète is much
too restrictive. The reniedy is to consider, instead of BX, a
Boolean subalgebra A of BX such that (i) for every p in A the
supremum VR(p) and the iiifinium AR(p) exist in B, and (ii)
the (constant) functions 3p and Vp, defined by

belong to A. Every such subalgebra A will be called a functional
naonadic algebra, or, to give it its full title, a B-valued functional
monadic algebra with domain X. l’he reason for the word "mo-
nadic" is that the concept of a monadic algebra (to be defined
in appropria,te generality below) is a special case of the concept
of a polyadic algebra; the special case is characterized by the
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superimposition on the Boolean structure of exactly one addi-
tional operator.
A simple example of a functional monadic algebra is obtained

by assuming that B is finite (or, more generally, complete), and
letting BX itself play the role of A. An equally simple example,
in which A is again equal to BX, is obtained by assuming that X
is finite. An example with B and X unrestricted is furnished by
the set of all those funations from X to B that take on only a
finite number of values.

If B happens to be the (complète) Boolean algebra of all subsets
of a set Y, and if y is a point in Y, then a value p(x) of a function
p in A (== Bx ) corresponds in a natural way to the proposition
"y belongs to p(x)." Since supremum in B is set-theoretic union,
it follows that each value of 3p corresponds to "there is an x
such that y belongs to p(x)," and, dually, each value of Vp
corresponds to "for all x, y belongs to p(x)." For this reason, the
operator 3 on a functional monadic algebra is called a functional
existential quantifier, and tlie operator V is called a functional
universal quantifier.

It is frequently helpful to visualize the example in the preceding
paragraph geometrically. If X and Y are both equal to the real
line, then A is naturally isomorphic to the algebra of all subsets
of the Cartesian plane, via the isomorphism that assigns to each
p in A the set {(x, y) : y E p(x)}. The set that corresponds to 3p
under this isomorphism is the union of all horizontal lines that
pass through some point of the set corresponding to p; the set
that corresponds to Vp is the union of all horizontal lines that are
entirely included in the set corresponding to p.

In the definition of a functional monadic algebra it is not

necessary to insist that for every p in A both 3p and Vp exist
and belong to A: either one alone is sufficient. The reason for
this is the validity of the identities

In more detail: if A is a Boolean subalgebra of BX such that,
for every p in A, the supremum V R(p) exists and the function
3p, whose value at every point is that supremum, belongs to A,
then, for every p in A, the infimum AR(p) also exists and the
function Vp, whose value at every point is that infimum, also
belongs to A. The converse of this assertion is, in an obvious
sense, its dual, and is also true. The perfect duality between 3
and V justifies the asymmetric treatment in what follows; we



220

sliall study 3 alone and content ourselves with an occasional
comment on the behavior of V.
The fumctional existential quantifier 3 on a functional monadic

algebra A is norntalized, increasing, and quasi-multiplicat ive. In
other words

whenever p and q are in A. The assertions (Q1) and ( Q2 ) are
immédiate consequences of the définition or 3. The proof of
(Q3) is based on the following distributive law (true and easy
to prove for every Boolean algebra B): if {pi} is a family of
elements of B such that Vipi exists, then, for every q in B,
Vi(pi ~ q) exists and is equal to (Vi pi) ~ q. The corresponding
assertions for a functional universal quantifier are obtained from
(Q1) 2013 (Q3) upon replacing 3, 0, , and A by V, 1, &#x3E;, and v,
respectively.

2. Quantifiers. A general concept of quantification that applies
to any Boolean algebra is obtained by abstraction from the func-
tional case. In the process of abstraction the domain X and the

value-atgebra B disappear. What remains is the following defini- .
tiom : a quanti f ier (properly speaking, an existential quantifier) is a
mapping 3 of a Boolean algebra into itself, satisfying the con-
ditions (Q1) 2013 (Q3). The concept of an existential quantifier occurs
implicitly in a brief announcement of some related work of Tarski
and Thompson (9). The concept of a universal quantifier is

defined by an obvious dualization, or, if preferred, via the

equation Vp == (p’)’. Since we have agreed to refer to universal
quantifiers only tangentially, the adjective "existential" will

usually be omitted.
The following examples show that the conditions (Q1) 2013 (Q3)

are independent of each other. For (Q1) : A is arbitrary and
3p - 1 for all p in A. For (Q2) : A is arbitrary and 3p == 0 for
all p in A. For (Q3): A is the class of all subsets of a topological
space that includes a non-closed open set and 3p is the closure
of p for all p in A.

It is worth while to look at some quantifiers that are at least
prima lacie different from the functional examples of the preceding
section. (i) The identity mapping of a Boolean algebra into itself
is a quantifier; this quantifier will be called discrete. (ii) Tlie
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mapping defined by 30 = 0 and 3p -- 1 for all p ~ 0 is a quan-
tifier ; this quantifier will be called simple. (The reason for the
terms "discrete", borrowed from topology, and "simple", borrowed
from algebra, will become apparent later; cf. sections 3 and 5,

respectively. ) (iii) Suppose that A is the class of all subsets of
some set and that G is a group of one-to-one transformations of
that set onto itself. If p = ~ g~G gp for all p in A, then 3 is a

quantifier; 3p is the least set including p that is invariant under
G. (Examples of this type are of some importance in ergodic
theory.) (iv) Suppose that A is the algebra of all subsets of, say,
the real line, modulo sets of Lebesgue measure zero. (Generaliza-
tions to other measure spaces are obvious.) If, for all p in A, 3p
is the measurable cover of p (modulo sets of Lebesgue measure
zero, of course), then 3 is a quantifier.
To obtain insight into the algebraic properties of a quantifier,

it is now advisable to derive certain elementary consequences of
the definition. Several of these consequences are almost trivial
and are stated formally for convenience of reference only. The
important facts are that a quantifier is idempotent (Theorem 1)
and additive (Theorem 2). Throughout the following statements
it is assumed that A is a Boolean algebra and that 3 is a quan-
tifier on A.

LEMMA 1. 31 = 1.
PROOF. Put p = 1 in (Q2).
Theorem 1. 33 = .
PROOF. Put p = 1 in (Q3) and apply Lemma 1.
LEMMA 2. A necessary and sufficient condition that an elentent p

o f A belong to the range of 3, i.e., that p E (A), is that 3p = p.
PROOF. If p ~ (A), say p = q, then p = q = q (by

Theorem 1), so that, indeed, 3 p = p. This proves necessity;
sufficiency is trivial.
LEMMA 3. Il p  3q, then 3p  3q.
PROOF. By assumption p ~ 3q = p; it follows from (Q3) that

3p = (p ~ 3q) = 3p A 3q, so that, indeed, 3p  3q.
LEMMA 4. A quantifier is monotone; i.e., if p  q, then 3p  3q.
PROOF. Note that q ~ 3 q by ( Q2 ) and apply Lemma 3.
LEMMA 5. 3 (3p)’ - (3p)’.
PROOF. Since (3p )’ ~ 3p = 0, it follows that

and hence tliat (p)’ ~ (3p)’. The reverse inequality is imme-
diate from (Q2).
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LEMMA 6. The range 3(A) of the quantifier 3 is a Boolean sub-
algebra of A.
PROOF. If p and q are in 3(A), then (by Lemma 2) p = 3p

and q = 3q, and consequently (by (Q3)) P 1B q = p ~ q =
3(p 1B 3q). This proves that 3(A) is closed under the formation
of infima. If p e 3(A), then (again by Lemma 2) p = 3p, and
therefore (by Lemma 5) p’ = (3p)’ = 3(3p)’. This proves that

3(A) is closed under the formation of complements.
Theorem 2. 3(p v q) = 3p v 3q.
PROOF. Since p  p v q and q ~ p v q, it follows from

Lemma 4 that 3p  3(p v q) and 3q  3(p v q), and hence that
3p v 3q  3(p v q). To prove the reverse inequality, observe
first that both 3p and 3q belong to 3(A) and that therefore (by
Lemma 6) 3p v 3q belongs to 3(A). It follows from Lemma 2
that 3(3p v 3q) = 3p v 3q. Since p  3p v 3q (by (Q2», and,
similarly, q ~ 3p ~ q, so that p v q  3p v 3q, Lemma 4 im-
plies that (p ~ q) ~ (p ~ q); this, together with what was
just proved about 3 (3p v 3q), completes the proof of the theorem.

It is sometimes necessary to know the relation between quanti-
fication and relative complementation (where the relative com-
plement of q in p is defined by p - q = p ~ q’) and the relation
between quantification and Boolean addition (where the Boolean
sum, or symmetric difference, of p and q is defined by p + q =
(p - q) v (q - p)). The result and its proof are simple.
LEMMA 7. 3p - 3q  3(p - q) and 3p + 3q  3(p + q).
PROOF. Since p ~ q = (p - q ) ~ q, it follows (by Theorem 2)

that 3p v 3q = 3(p - q) v 3q. Forming the infimum of both

sides of this equation with (3q)’, we obtain

Thé result for Boolean addition follows from two applications
of the result for relative complementation.

3. Closure operators. A closure opera.tol’ is a normalized, in-

creasing, idempotent, and additive mapping of a Boolean algebra
into itself; in other words, it is an operator 3 on a Boolean al-
gebra A, such that the conditions stated in (Q1), (Q2 ), Theorem 1,
and Theorem 2 are satisfied. The first systematic investigation
of the algebraic properties of closure operators was carried out
by McKinsey and Tarski (5). A typical example of a closure
operator is obtained by taking A to be the class of all subsets of
a topological space and defining 3 p to be the closure of p for

every p in A. Included among the results of the preceding section
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is the fact that every quantifier is a closure operator. In the
converse direction, the only obvious thing that can be said is

that the closure operator on a discrète topological space is a quan-
tifier. It is, in fact, a discrete quantifier; this is the reason for
the use of the word "discrete" in connection with quantifiers.

Despite the apparently promising connection between quantifi-
cation and topology, it turns out that the topological point of
view is almost completely valueless in the study of quantifiers.
Not only is it false that every closure operator is a quantifier, but,
in fact, the discrète (and therefore topologically uninteresting)
closure operators are essentially the only ones that are quantifiers.
The precise statement of the facts is as follows. The closure

operator on a topological space is a quantifier if and only if, in
that space, every open set is closed, or, equivalently, every closed
set is open. (The proof is an easy application of Lemma 5.) In
such a space the relation R, defined by writing x R y whenever
x belongs to the closure of the one-point set {y}, is an equivalence
whose associated quotient space is discrète. Conversely, every
space with this latter property has a quantifier for its closure

operator. It follows that such spaces are as nearly discrète as
a space not satisfying any separation axioms can ever be; in
particular the Tl-spaces among them are discrete. Since these
results border on pathology, and are of no importance for the
theory of quantification, the details are omitted.

Nevertheless, closure operators play a useful role in quantifier
algebra. The point is that it is frequently necessary to define a
Boolean operator by certain algebraic constructions, and then to
prove that the operator so constructed is a quantifier. It is usually
easy to prove that the construction leads to a closure operator;
the proof of quasi-multiplicativity, however, is likely to be more
intricate. For this reason, it is desirable to have at hand a usable
answer to the question: when is a closure operator a quantifier?
Theorem 3. Il 3 is a closure operator on a Boolean algebra A,

then the f ollowing conditions are mutually equivalent.
(i) 3 is a quantifier.
(ii) The range o f 3 is a Boolean subalgebra o f A.
(iii) 3(3p)’ == (p)’ for all p in A.
PROOF. The implication from (i) to (ii) is the statement of

Lemma 6. To derive (iii) from (ii), note first (cf. Lemma 2) that
p E 3 (A) if and only if p = p. It follows that (iii) is equivalent
to the assertion that (p)’ ~ 3 (A) for all p, and this in turn is
an immédiate conséquence (via (ii)) of the fact that 3 p E 3 (A)
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for all p. It remains only to prove that if (iii) is satisfied, then 3
is quasi-multiplicative.

Since p A q ~ p ~ p, it follows that 3 (p A 3 q)  3 3 p = p.
(The reasoning here depends on the fact that an additive operator,
and hence in particular a closure opera,tor, is monotone; cf.

Lemma 4.) Similarly, since p A 3 q :::;: 3 q, it follows that 3 (p A 3 q )
~ q and hence that (p ~ q) ~ p ~ q. To prove the reverse
inequality, note that

and that, therefore, 3 p 3(p A q) ~ (q)’. (This is where (iii)
is used. ) Forming the infimum of both sides of this relation with
3 q, we obtain

and the proof is complete.
4. Relative completeness. There are certain similarities

between Boolean homomorphisms and quantifiers. A homomor-
phism is a mapping, satisfying certain algebraic conditions, from
one Boolean algebra into anotller; a quantifier is a mapping,
satisfying certain algebraic conditions, from a Boolean algebra
into itself. A homomorphism uniquely determines a subset of its
domain (namely, the kernel). The homomorphism theorem can
be viewed as a characterization of kernels; it asserts that a subset
of a Boolean algebra is the kernel of a homomorphism if and only
if it is a proper ideal. Similarly, a quantifier uniquely determines
a subset of its domain (namely, the rauge). The purpose of this
section is to point out that the range uniquely determines the
quantifier and to characterize the possible ranges of quantifiers.
A Boolean subalgebra B of a Boolean algebra A will be called

relatively complete if, for every p in A, the set B(p), defined b y

lias a least elemeiit (and therefore, a fortiori, an infimum).
Relatively complete subalgebras are the objects whose relation
to quantifiers is the san1e as th e relation of proper ideals to

homoinorphisms.
Theorem 4. Il 3 is a quantifier on a Boolean algebra A and

i f B is the range of 3, then B is a relatively complete sitbalgebi-a
o f A, and, moreover, i f B(p) = (q e B: p ~ ql, then p = AB(p)
for every p in A.

PROOF. The fact that B is a Boolean subalgebra of A is already
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known from Lemma 6. If q E B(p), then, of course, p ~ q, and
therefore 3p  3 q = q. Since p ~ B(p), it follows that B (p )
does indeed have a least element and that, moreover, that least
element is equal to 3 p.
Theorem 5. Il B is a relatively complete subalgebi-a of a Boolean

algebra A, then there exists a unique quantifier on A with range B.
PROOF. Write, for each p in A, 3 p = ~ B(p); it is to be proved

that 3 is a quantifier on A and that 3 (A) = B.
(i) If p == 0, then B(p) = B and therefore 3 0 = 0.
(ii) Since p ~ q whenever q ~ B(p), it follows that p

AB(p) = 3p.
(iii) If p E B, then p E B (p ) and therefore 3 p = ~ B(p) ~ p.

It follows from (ii) that (iiia) p = p whenever p E B. Since

3 p E B for all p in A, this result in turn implies that (iiib)
p = 3 p whenever p E A.

(iv) If pi and P2 are in A, then 3 pl and p2 are in B and
therefore, since B is a Boolean algebra, 3 p1 v 3 p2 E B. Since, by
(ii), Pl v p2 ~ 3 Pl v 3 p2, so that 3 pl v 3 p2 E B(p1 v p2), it follo’ "vs
that 3 (pi v P2) == ~B(p1 V p2) ~ p1 v 3 p2. On the other hand,
since 3 (p1 v p2) E B(p1 V p2), it follows that pi v p2 ~ 3 (pl v p2)
and hence that p1 ~ 3 (p, v p2) and p2 ~ 3 (p, v p2). The défini-
tion of 3 implies that p1 ~ (p1 ~ p2) and p2 ~ 3 (Pl v p2),
and hence that 3 pl v 3 p2 Ç 3 (p, v p2).

(v) The range of 3 is included in B by the definition of 3.
The result (iiia) implies the reverse inclusion, so that 3 (A) = B.

In (i) 2013 (iv) we saw that 3 is a closure operator. Since, by
(v), the range of 3 is a Boolean algebra, it follows from Theorem 3
that 3 is a quantifier. The existence proof is complete; uniqueness
is an immediate consequence of Theorem 4.

5. Monadic algebra. A monadic algebra is a Booleal algebra A
together with a quantifier 3 on A. The elementary algebraic
theory of monadic algebras is similar to that of every other al-

gebraic system, and, consequently, it is rather a routine matter.
Thus, for exarnple, a subset B of a monadic algebra A is a nzonad ic
subalgebra of A if it is a Boolean subalgebra of A and if it is a
monadic algebra with respect to the quantifier on A. In other
words, a Boolean subalgebra B of A is a monadic subalgebra
of A if and only if 3 p E B whenever p e B. The central concept
is, as usual, that of a homomorphism; a 1nonadic homomoi-phism
is a mapping f from one monadic algebra into another, such that
1 is a Boolean homomorphism and fp = 3 f p for all p. Associated
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w-ith every homomorphism f is its kernel {p: fp = 01. The kernel
of a monadie homomorphism is a monadic ideal; i.e., it is a Boolean
ideal 1 in A such that  p ~ I whenever p E I. The adjective
"monadie" will be used with "subalgebra," "homomorphism,"
etc., whenever it is advisable to emphasize the distinction from
other kinds’ of subalgebras, homomorphisms, etc. - e.g., from
the plain Boolean kind. Usually, however, the adjective will be
omitted and the context will unambiguously indicate what is

meant.

The homomorphism theorem (every proper ideal is a kernel)
and the consequent définition of monadic quotient algebras work
as usual. If A is a monadic algebra and 1 is a monadic ideal in A,
form the Boolean quotient algebra B = A/I, and consider the
natural Boolean homomorphism f from A onto B. There is a

unique, natural way of converting B into a monadic algebra so
that f becomes a monadic homomorphism (with kernel I, of

course). Indeed, if p1 and P2 are in A, and if fp1 = f p2, then
f(pi + p2) = 0, or, equivalently, pi + p2 E I. Since 1 is a monadic
ideal, it follows that 3 (pl + p2) E I. By Lemma 7, 3 pi + 3 p2 E I,
or, equivalently, fp1 = /3p2* This conclusion justifies the fol-
lowing procedure: given q in B, find p in A so that f p = q, and
define 3 on q by 3 q ---- fp. The preceding argument shows that
the definition is unambiguous; a straightforward vérification
shows that 3 is a quantifier on B.
A monadic algebra is simple if {0} is the only proper ideal in it.

A monadic ideal is maximal if it is a proper ideal that is not a

proper subset of any other proper ideal. The connection between

maximal ideals and simple algebras is an elementary part of
universal algebra: the kernel of a homomorphism is a maximal
ideal if and only if its range is a simple algebra.
LEMMA 8. A ’lno’nadic algebra is simple if and only i f its quantifier

is simple.
PROOF. If A is simple and if p -E A, p ~ 0, write I = {q: q  3 pl.

Since, clearly, 1 is a non-trivial monadic ideal, it follows that
1 == A, and hence, in particular, that 1 ~ I. This implies that
3p - 1 whenever p =,4 0. Suppose, conversely, that 3 p = 1
whenever p ~ 0, and suppose that 1 is a monadic ideal in A. If
p E I, then p ~ I; if, moreover, p -=1= 0, this implies that 1 ~ I
and hence that 1 = A. In other words, every non-trivial ideal
in A is improper; this proves that A is simple.
Thé only simple Boolean algebra is the two-element algebra,

to be designated throughout the sequel as 0. This Boolean
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algebra is a subalgebra, and, what is more, a relatively complete
subalgebra, of every Boolean algebra. Lemma 8 asserts that a
monadic algebra is simple if and only if the relatively complete
subalgebra associated with its quantifier is equal to 0, or, in

other words, if and only if the range of its quantifier is a simple
Boolean algebra.
The connection between simple Boolean algebras and simple

monadic algebras is even closer than that indicated in the preceding
paragraph; it turns out that the simplest examples of monadic
algebras (in both the popular and the technical sense of "simple" )
are the O-valued functional algebras.
Theorem 6. A monadic algebra is simple il and only i f it is

(isomorphic to ) an O-valued f unctional monadic algebra.
PROOF. If A is an O-valued functional monadic algebra with

domain X, and if p is a non-zero element of A, then p(x0) = 1
for some point xo in X. It follows that 1 e R(p) and hence that
V R(p) = 1. The definition of functional quantification implies
that 3 p = 1. Since this proves that 3 p = 1 whenever p ~ 0,
i.e., that 3 is simple, the desired result follows from Lemma 8.
The converse is just as easy to prove, but the proof makes use

of a relatively deep fact, namely Stone’s theorem on the represen-
tation of Boolean algebras (7).

If A is a simple monadic algebra, then A is, in particular, a
Boolean algebra, to which Stone’s theorem is applicable. It
follows that there exist (i) a set X, (ii) a Boolean subalgebra
B of OX, and (iii) a Boolean isomorphism f from A onto B.
Since, by Lemma 8, the quantifier of A is simple, and since, by
Lemma 8 and the first part of this proof, the quantifier of B is
simple, it follows that f preserves quantification, i.e., that f is

automatically a monadic isomorphism between the monadic

algebras A and B.

6. Monadic logics. In the usual logical treatment of Boolean
algebras and their generalizations, certain elements of the appro-
priate Boolean algebra are singled out and called "provable".
From the algebraic point of view, the definition of provability
in any particular case is irrelevant; what is important is the

algebraic structure of the set of all provable éléments. It is con-
venient, in the examination of that structure, to dualize, i.e., to
consider not provability but refutability. There is an obvious

relation between the two concepts; clearly p should be called
refutable if and only if p’ is provable.
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Suppose accordingly that A is a monadic algebra whose elements,
for heuristic purposes, are thought of as propositions, or, rather,
as propositional functions. What properties does it seem reasonable
to demand of a subset 1 of A in order that its elements deserve
to be called refutable ? Clearly if p and q are refutable, then p v q
should also be refutable, and if p is refutable, then p A q should
be refutable no matter what q may be. In other words, 1 should
bc, at least, a Boolean ideal in A. That is not enough, however;
I should also bear the proper relation to quantification. If, in

other words, p is refutable (and here it is essential that p be

thought of as a propositional function, and not merely as a
proposition), then p should also be refutable. The requirement
(satisfied by the set of refutable elements of the usual logical
algebras) converts 1 into a monadic ideal.
The following definition is now adequately motivated: a 1nonadic

logic is a pair (A, I), where A is a monadic algebra and I is a

monadic ideal in A. The elements p of 1 are the refutable elements
of the logic; if p’ E I, then p is called p1’ovable.
For monadic logics, as for most other mathematical systems,

representation theory plays an important role. Representation
theory proceeds, as always, by selecting a class of particularly
simple and "concrete" monadic logics, and asking to what extent
every monadic logic is representable by means of logics of that
class. For intuitively obvious reasons there is universal agreement
on which logics should be called "concrete". The technical term
for a concrete monadic logic is rraodel; a model is, by definition,
a monadic logic (A, I ), where A is an O-valued functional monadic
algebra and 1 is the trivial ideal {0}. Note that since an O-valued
functional monadie algebra is simple (Theorem 6), 1 could only
be {0} or A, and the latter choice is obviously uninteresting.
An interpretation of a monadic logie (A, I ) in a model (B, {0})

is a monadic homomorphism f from A into B such that fp = 0
whenever p ~ I. A convenient way of expressing the condition on
the homomorphism is to say that every refutable element is false
in the interpretation. If, in other words, an element p of A is

ca.lled universally invalid wlienever it is false in every interpretation,
then, by définition, every refutable element is universally invalid.
There could conceivably be elements in A that are not refutable
but that are nevertheless universally invalid. If there are no such
elemeiits, i.e., if every universally invalid element is refutable,
the logic is said to be semantically c01nplete. This definition sounds
a little more palatable in its dual form: a logic is semantically
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complète if every universally valid element is provable. (The
element p is universally valid if f p = 1 for every interpretation f,
i.e., if p is trace in every interpretation.) Elliptically but sug-
gestively, semantic completeness can be described by saying that
everything true is provable.

7. Semisimplicity. Semantic completeness demands of a

logic (A, I) that the ideal 1 be relatively large. If, in particular,
1 is very large, i.e., 1 = A, ttthell the logic is semantically complete,
simply because every element of A is refutable. (The fact that
in this case there are no interpretations is immaterial.) If 1 ~ A,
then the quotient algebra A/1 may be formed, and the problem
of deciding whether or not the logic (A, I ) is semantically complete
reduces to a question about the algebra A/I.

Since every interpretation of (A, I ) in a model (B, {0}) induces
in a natural way a homomorphism from A/I into B, and since
(by Theorem 6) the only restriction on B is that it be simple,
the question becomes the following one. Under what conditions
on a monadic algebra A is it true that whenever an element p
of A is mapped on 0 by every homomorphism from A into a simple
algebra, then p = 0? Since every monadic subalgebra of an 0-
valued functional monadic algebra is an algebra of the same kind,
it follows from Theorem 6 that every monadic subalgebra of a
simple monadic algebra is also simple, and, consequently, that the
difference between "into" and "onto" is not essential here.
Because of the correspondence between homomorphisms with
simple ranges and maximal ideals, the question could also be
put this way: under what conditions on a monadic algebra A
is it true that whenever an element p of A belongs to all maximal
ideals, then p == 0? In analogy with other parts of algebra, it is
natural to say that a monadic algebra A is semisimple if the inter-
section of all maximal ideals in A is {0}. The question now becomes:
which monadic algebras are semisimple ? The answer is quite
satisfying.
Theorem 7. Every 1nonadic algebra is semisimple.
REMARK. Since monadic algebras constitute a generalization of

Boolean algebras, Theorem 7 asserts, in particular, that every
Boolean algebra is semisimple. This consequence of Theorem 7 is
well known: it is an immediate consequence of Stone’s represen-
tation theorem, and it is often presented as the most important
step in the proof of that theorem. The proof of the present
generalization can be carried out by a monadic imitation of any
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one of the usual proofs of its Boolean special case. The proof below
adopts the alternative procedure of deducing the generalization
from the special case.

PROOF. It is to be proved that if A is a monadic algebra and
if po is a non-zero element of A, then there exists a monadic
maximal ideal 1 in A such that p0 E’ I. It follows from the known
Boolean version of the theorem that there exists a Boolean
maximal ideal I. in A such that p0 ~’ Io. If 1 is the set of all those
éléments p in A for which 3 p E I0, then it is trivial to verify that
1 is a monadic ideal and that po E’ I. The proof of semisimplicity
can be completed by showing that 1 is maximal. Suppose therefore
that J is a monadic ideal properly including I. It follows that J
contains an element p such that 3 p E’ Io. Since J is a monadic
ideal, 3 p E J. Since p ~’ 10, and since Io is a Boolean maximal

ideal, (p)’ ~ I ~ J. l’he last two sentences together imply that
1,E J, so that J = A; the proof is complete.

It should be remarked that there are natural examples of
Boolean algebras with operators (4), easy generalizations of

monadic algebras, that are not semisimple. Thus, for instance,
the semisimplicity of the closure algebra of a topological space
appears to depend on which separation axioms the space satisfies.

PART 2

Topology
8. Hemimorphisms and Boolean relations. The algebraic

theory of Boolean algebras is bctter understood if their topological
theory is taken into account; the same is true of monadic algebras.
In u-hat follows we shall therefore make use of the topological
version of Stone’s theorem, in the following form: there is a one-
to-one correspondence between Boolean algebras A and Boolean
spaces X such that each algebra A is isomorphic to the algebra
of all clopen subsets of the corresponding space X (8). Explanation
of terms: a clopen set in a topological space is a set that is simul-
taneously closed and open, and a Boolean space is a totally
disconnected compact Hausdorff space, i.e., a compact Hausdorff
space in which the clopen sets form a base. ’l’lie one-to-one nature
of the correspondence must of course be interpreted with the
usual algebraic-topological grain of salt: X uniquely determines
A to within an isomorphism, and A uniquely determines X to
within a homeomorphism. The algebra A corresponding to a space
X will be called the dual algebra of X, and the space X cor-
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responding to an algebra A will be called the dual space of A.
There is a natural isomorphism between the dual algebra A

of a Boolean space X and the set of all continuous functions from
X into O. In order to interpret this assertion, we must, of course,
endow 0 with a topology; this is done, once and for all, by
declaring open every one of the four subsets of 0, so that 0 itself
becomes a (discrète) Boolean space. The isomorphism mentioned
just above assigns to each clopen subset of X its characteristic
function. It is algebraically convenient to identify A with the
algebra of all continuous functions from X into O. In view of
this identification, every Boolean algebra that occurs below is

to be regarded as identical with the algebra of all O-valued con-
tinuous functions on its dual space. Thus, for example, if A is a
Boolean algebra with dual space X, and if p ~ A and x E X, then
p(x) makes sense; it has the value 1 or 0 according as x belongs
or does not belong to that clopen subset of X which corresponds
to the element p of A.
The duality theory of monadic algebras is conveniently studied

at a slightly more general level than might appear relevant at
first sight. The point is that it is possible to treat simultaneously
both the old theory of homomorphisms and the newer theory of
quantifiers. The appropriate general concept is that of a hemimor-
phism, defined as a mapping f from a Boolean algebra A into a
Boolean algebra B, such that f0 = 0 and f(p v q) = fp v f q for
all p and q in A. The reason for the name is that, roughly speaking,
a hemimorphism preserves half the structure of a Boolean al-
gebra. Hemimorphisms occur, under the name of "normal and
additive functions", in the work of Jônsson and Tarski (4). Two
elementary consequences of the definition are that a hemimorphism
is 1nonotone (fp ç f q whenever p  q) and submultiplicative
(f(p ~ q)  fp ~ f q). It is clear that every homomorphism (from
a Boolean algebra A to a Boolean algebra B) and every quantifier
(from a Boolean algebra A to itself) is a hemimorphism.
The proper topological concept is that of a Boolean relation.

A relation between two sets Y and X (or, more accurately, from
Y to X) is, as always, a subset 99 of the Cartesian product Y X X;
the assertion (y, x) ~ ~ is conveniently abbreviated as y~x. If

Q is a subset of Y, the direct irraage of Q under ~, in symbols ~Q,
is the set of all those points x in X for which there exists a point
y in Q such that yggx. If q;-1 denotes the inverse of the relation
~, i.e., ç-1 is the set of all those pairs (x, y ) in X X Y for which
y~x, then the inverse image of a subset P of X under ~, in symbols
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ylP, is the direct image of P under ~-1, or, equivalently, it is

the set of all those points y in Y for which there exists a point
x in P such that y~x. If y ~ Y and {y} is the set whose only élément
is y, then ~{y} is also denoted by Ty; similarly if x E X, then

~-1{x} is also denoted by ~-1x. These concepts are well known;
they are explicitly mentioned here only in order to establish the
notation. Several other related concepts (e.g., equivalence relation
a nd i-elation product) will be used below withotit explicit definition.
A Boolean relation is a relation 99 from a Boolean space Y to a

Boolean space X, such that the inverse image of every clopen
set in X is a clopen set in Y and such that the direct image of
every point in Y is a closed set in X. It is easy to verify that a
function from a Boolean space Y to a Boolean space X is a Boolean
relation if and only if it is continuous. It is also pertinent to
remark that the two conditions in the definition of a Boolean
relation are independent of each other. Indeed, if X is a Boolèan
space with a single cluster point x, if Y = X, and if 99 = ( Y X X)
- {(, )}, then cp-IP = Y for every non-empty clopen subset
P of X, so.that the inverse image of every clopen set is clopen,
but 991 = X - {}, so that the direct image of a point is not

always closed. Any discontinuous function from a Boolean space
Y to a Boolean space X furnishes an example of a relation for
which th e direct imag e of every point is closed, but the inverse
image of a clopen set is not always clopen.

9. Duality. Suppose that A and B are Boolean algebras, with
respective dual spaces X and Y. If f is a hemimorphism from A
into B, its dual, denoted by f*, is the relation from Y to X

definecl by

im other words, yf*x if and only if p(x) ~ fp(y) for all p in A.
(Symbols such as fp(y) will be used frequently in what follows.
They are to be interpreted, in every case, by first performing
all the indicated functional operations and then evaluating the
resulting function at the indicated point. Thus, explicitly,
fp(y) - (fp)(y).)

If ~ is a Boolean relation from Y to X, its dual, denoted by
~*, is the mapping that assigns to every element p of A a function
~*p from Y to 0, defined by

The following theorem is the principal result of the theory of
Boolean duality.
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Theorem 8. If 1 is a hemimorphism, then f* is a Boolean

relation, and f** = f. Il q is a Boolean relation, then rp* is a hemi-
morphism and ~** = 99. If f and 99 are each other’s duals, then

(*) {y: fp(y) = 1} = ~-1{x: p(x) = 1}

for every p in A.
REMARK. A similar but weaker theorem has been published

by Jônsson and Tarski (4), and the same comment is true for
some of the results obtained in sections 10 and 11. The essential
différence between the present approach and that of Jônsson and
Tarski can be described as follows: since they do not have the
concept of a Boolean relation, they are unable to state whieh

relations between Boolean spaces can occur as the duals of

hemimorphisms.
PROOF. Since

so that f*y is obviously closed, in order to prove that J* is a Boolean
relation, it is sufficient to prove that (*) holds with f* in place
of 99. Given po in A, write

it is to be proved that f*-l Po = Qo. If po = 0, then Po is empty;
since, by the definition of a hemimorphism, f0 = 0, it follows

that Qo is empty. In what follows, it is therefore permissible to
assume that p0 ~ 0 and hence that Po is not empty.

If y E f*-l Po, then there exists a point x in Po such that yf*x,
i.e., sueli that p(x) ~ fp(y) for all p in A. It follows in particular,
with p = p., that 1 = p0(x) ~ fp0(y), so that y E Qo. This proves
that f*-1 P0 ~ Q0; the reverse inclusion lies sli ghtly deeper.

It is to be proved that if y E’ f*-1P0, then fpo(y) = 0. To say
that y E’ f*-l Po means that the assertion yf*x is false for every
x in Po. This, in turn, means that to every x in Po there corresponds
an élément px of A such that the assertion px(x)  fpx(y) is

false, i. e., such that px(x) = 1 and fpx(y) = 0. Since

the fact that Po is closed (and therefore compact), together with
the fact that each set {z: px(z) = 1} is open, implies that there
exists a finite subset fxl, ..., xn} of Po such that
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The assumption that Po is not empty is reflected here in the fact
that n ~ 0, i.e., that the finite set is not empty.

Write p = Vnj=1 pxj. If z E Po, then pxj(z) == 1 for at least one j,
and, therefore, p(z) = 1; it follows that po ~ . Since f is a

hemimorphism, f p = nj=1fpxj; since fpz(y) = 0 for all x in Po,
it follows that f(y) = 0. Since a hemimorphism is monotone, it
follows, finally, that f0(y) = 0; this completes the proof that
1* satisfies (*) and is, consequently, a Boolean relation.

It still remains to be shown that f** = f . Since yf*x implies
that p(x) ~ fp(y) for all p, the inequality B/{p(x): yf*x}  fp(y)
is obvious. The reverse inequality amounts to the assertion that
if p(x) = 0 whenever yf*x, then fp(y) = 0. But to say that
p(x) = 0 whenever yf*x is équivalent to saying that y does
not belong to f*-1{x: p(x) = 1}. It follows from (*) that

V{p(x): yf*x} = fp(y), and hence, by the définition of the dual
of a Boolean relation, that f** = f.

Suppose now that 99 is a Boolean relation from Y to X. It

follows from the définition of ~* that rp*p(y) == 1 if and only
if there is a point x such that p (x ) = 1 and such that yggx; in

other words, (*) holds with ~* in place of f. Since the inverse

image uiider 99 of a clopen set is clopen, it follows that ~* maps
A into B. The verification that ~* is a hemimorphism is a matter
of trivial routine.

It remains only to verify that q** == ~. If y~x, then, for every
p in A, p(x) is one of the terms whose supremum is ~*p(y), and,
consequently, p(x) ~ ~*p(y). On the other hand, if the assertion
y~x is false, then (since ~y is closed) the Boolean nature of X
implies that there exists an element po in A such that po(x) - 1
and such that p0(z) = 0 whenever y~z. It follows that ~*p0(y) = 0
and hence that the assertion that p(x)  ~*p(y) for all p is also
false. Conclusion: y~x if and only if p(x) ~ ~*p(y) for all p, and
hence, by the definition of the dual of a hemimorphism, ~** = p.
The proof of Theorem 8 is complete.
COROLLARY. ttndei- a Boolean relation, the inverse image of every

point is closed.
PROOF. If ~ is a Boolean relation and f = ~*, then

for every x in X.

10. The dual of a homomorphism. In view of the duality
theorem, it is possible, in principle, to translate every algebraic
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property of hemimorphisms into a topological property of Boolean
relations, and vice versa. The purpose of this section is to carry
out the translation for some of the properties of importance in
the theory of monadic algebras.
LEMMA 9. Il X and Y are Boolean spaces and if ~ and 03C8 are

Boolean relations f rom Y to X such that ~-1 P = 1p-l P f or every

clopen subset P of X, then ~ = 03C8.
PROOF. If x and y are such that y~x and if P is a clopen subset

of X such that x E P, thew y E ~-1P and therefore, by assumption,
y E 1f,-1 P. This implies that P ~ 03C8y is not empty. In other words:
every neighborhood of x meets the set yy. Since yy is closed, it

follows that x E yy, i.e., that yyz. This proves that q C y; the
reverse inclusion follows by symmetry.
Theorem 9. I f A, B, and C are Boolean algebras, with respective

dual spaces X, Y, and Z, and i f f and g are hemimorphisms front
A into B and f rom B into C respectively, then (gf)* = f*g*.
PROOF. An application of (*) (section 9) to g f shows that

for all p in A. An application of (*) to g shows that

for all q in B; replacing q by fp and applying (*) to f, we deduce
that

for all p in A. Together the two equations involving g f p imply that

for every elopen subset P of X. Since it is an elementary fact
about relations that g*-1f*-1 = (f*g*)-1, the desired result follows
from Lemma 9.

LEMMA 10. Il a hemimorphism f ( f rom A to B) and a Boolean
relation ~ ( from Y to X) are each other’s duals, then a necessary
and sufficient condition that i be multiplicative (j(p A q) = f p A fq)
is that ~ be a function.

PROOF. If 99 is a function, then y~x means that rpy = x and
therefore

Tlie multiplicativity of f is the result of a straightforward com-
putation. If ~ is not a function, then there exists a point y in Y
and there exist distinct points xo and x1 in X so that y~x0 and



236

yq;x1. If p is an element of A such that p(x0) = 0 and p(x1) = 1,
then (since p’(x0) = 1) fp’(y) = fp(y) == 1 and therefore

f p’ A fp ~ 0. Since f(p A p’) = f0 = 0, it follows that f is not

multiplicative.
In the following two lemmas, as in Lemma 10, f is a hemi-

morphism from A to B and ~ is the corresponding Boolean
relation from Y to X.

LEMMA 11. A necessary and su f f icient condition that f1 = 1 is

that 99 have 1r for its domain.
PROOF. It follows from (*), with p = 1, that

and hence that f 1 = 1 if and only if 99-’X = Y.
LEMMA 12. A necessary and sufficient condition that f be a

homomorphism (fp’ = (fp)’) is that ~ be a function with domain Y.
PROOF. It is a well-known and easily proved fact about Boolean

liomomorphisms that a hemimorphisim f is a homomorphism if
and only if it is multiplicative and satisfies the equation /1 = 1.
Thé desired conclusion now follows from Lemmas 10 and 11.
At this point the generalized version of Boolean duality makes

contact with the standard version. The duality between homo-
morphisms f (from A to B) and continuous functions cp (from
Y to X) is known. It is known also that f is a monomorphism
(i.e., an isomorphism into) if and only if g maps Y onto X, and
f is an epimorphism (i.e., a homomorphism onto) if and only if
g is one-to-one (8); these facts will be used below.

11. The dual of a quantifier. Suppose, throughout this section,
that A is a Boolean algebra, with dual X, and that f is a hemi-
morphism from A into itself, with dual g. A useful auxiliary
concept in this case is the relation  in X; by definition

In other words, yx if and only if fp(x) = fp(y) for all p in A.
It is obvious that the relation  is an equivalence with domain X
(and, therefore, with range X).
LEMMA 13. A necessary and sufficient condition that f be a

quantifier is that 92 = .
PROOF. If f is a quantifier, then, of course, / is increasing. It

follows that if yx, then p(x)  fp(x) = fp(y) for all p in A, so
that yggx; in other words,  C 99. To prove the reverse inclusion,
suppose that y~x, i.e., that p(x) ~ fp(y) for all p in A. This
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inequality, applied first to f p and then to (fp)’ in place of p,
yields

(cf. Theorem 1), and

(cf. Lemma 5). Since (ii) is equivalent to the reverse of (i), it

follows that fp(r) = jb (y) for all p in A, and hence that yx.
This means tliat p ~  and therefore completes the proof of the
necessity of the condition.
For sufficiency, it is to be proved that if 99 = , then i is

increasing and quasi-multiplicative. The assertion that i is in-

creasing means that p(x) ~ fp(x) whenever p ~ A and x ~ X,
and, consequently, it is equivalent to the assertion that g is

reflexive. If g = êp, or, more generally, if 99 is known to be an

equivalence with domain X, then 99 is reflexive and therefore i
is increasing. (This comment will be used again in the proof of
Lemma 14 below. ) To prove that f is quasi-multiplicative, note
first that

Since ~ = , so that, in particular, cp ~ , the condition y~x
implies that lq(x) = fq(y). It follows that

this completes the proof of sufficiency.
LEMMA 14. A necessary and suf f icient condition that ~ =  is

that 99 be an equivalence with domain X.
PROOF. Necessity is trivial. To prove sufficiency, assume that

99 is an equivalence with domain X. It was already remarked
that this implies that f is increasing.

It follows, exactly as in the corresponding part of the proof
of Lemma 13, that  C g. To prove the reverse inclusion, assume
that y q x. Since

and since x~z is equivalent to yrpz, it follows that fp(x) = fp(y)
for all p, i.e., that ~ C ip.
Theorem 10. A necessary and sufficient condition that f be a

quantifier is that rp be an equivalence with d01nain X.
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PROO"l4’.. Obvious from Lemmas 13 and 14.

The two extreme quantifiers are sometimes of interest.
LEMMA 15. Il 3 is the discrete quanti f ier on A, then 3 * is the

identity (i.e., y3 * x i f and only i f y = x); i f 3 is the simple quan-
litier on A, then ~* = X X X (i.e., y ~* x for all x and y).
PROOF. If 3 is discrete, then, by definition, 3 p = p for all p.

It follows that y~*x if and only if p(x) = p(y) for all p (cf.
Lemma 13), and hence if and only if x = y. (Observe also that
the discrète quantifier on A coincides with the identity homo-
morphism from A onto itself; it follows from the duality theory
of homomorphisms that its dual is the identity mapping from X
onto itself.) If 3 is simple, then 3 p = 1 whenever p =1= 0; it

follows a f ortiori that p(x ) ~ ~p(y) whenever p ~ 0 (for all x
and y). Since the inequality is still true when p = 0, the proof
is complete.

PART 3

Representation

12. Boolean mappings. Just as the ordinary duality theory
shows that the study of Boolean algebras is equivalent to the
study of Boolean spaces, the duality theory of quantifiers shows
that the study of monadic algebras is equivalent to the study of
Boolean spaces equipped with a Boolean equivalence relation.
An equivalence relation 99 in a topological space X determines a
quotient space X/~; the first purpose of the present section is

to use this fact in order to describe a topological version of
monadic algebra in terms of objects that are more familiar than
Boôlean equivalence relations. In the approach it is convenient
not to use the theory of quotient spaces but to use, instead,
methods more directly relevant to Boolean theory. The appro-
priate concept is that of a’Boolean mapping, defined as a continuous
and open mapping from one Boolean space onto another. The
principal result is that the study of quantifiers is equivalent to the
study of Boolean mappings.
LEMMA 16. Il 3 is a quantifier on a Boolean algebra A, then

there exists a Boolean rrzapping n, from the dual space X of A to a
Boolean space Y, such that x1 ~ * x2 is equivalent to 03C0x1 = 03C0x2.
PROOF. Let B be the range of 3, so that B is a Boolean sub-

algebra of A, and let Y be the dual space of B. Despite the iden-
tification convention of section 8, it is not permissible to identify
B with the algebra of all continuous functions from Y to 0;
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the trouble is that, in view of that identification convention, B
is already concretely given as an algebra of continuous functions
from X to 0. All that it is possible to say is that there is an
isomorphism, say f, from B onto the algebra of all continuous
functions from Y to 0, and, fortunately, this is all that is needed.
The identity mapping from B into A is a homomorphism; its

dual is a continuous function 03C0 from X onto Y. The assertion
that 03C0 is the dual of the embedding of B into A means that the
result of evaluating a funetion q in B at a point x in X is the
same as the value of the image function f q on Y at the point
xr of Y; in other words,

for all q and all x.
In view of Lemma 13, the condition xl 3 * x2 is equivalent to

the validity of 3 p (xl ) - ~p(x2) for all p in A; since 3 maps A
onto B, this, in turn, is equivalent to the validity of q(xl) = q(x2)
for all q in B. It follows from the definition of x that x1 3 X2
if and only if fq(03C0x1) = fq(03C0x2) for all q in B; since, finally, f is
an isomorphism, the condition is equivalent to 03C0x1 = 03C0x2.
One consequence of the preceding paragraph is that 3 * Q =

n-lxo for every subset Q of X. Indeed, if xo E 3 * Q, then x0 ~* x
for some x in Q, and therefore 03C0x0 = nr for some x in Q. The last
assertion means that 03C0x0 ~ 03C0Q, or, equivalently, that xo E 03C0-103C0Q.
This proves that 3 * Q ~ 03C0-103C0Q; the reverse inclusion follows by
retracing the steps of the argument in the reverse order.

Since 3 * is a Boolean relation, the equation 3 ’* Q = n-lnq
implies that x-Ino is clopen whenever Q is clopen. Since it is an
elementary fact about mappings between compact Hausdorff
spaces, i.e., mappings such as n, that if 03C0-1P is open (or closed),
then P is open (or closed ), it follows that nQ is clopen whenever
Q is clopen. The Boolean nature of X implies now that n is open;
the proof is complete.
LEMMA 17. If 03C0 is a Boolean mapping front a Boolean space X

to a Boolean space Y, then the1-e exists a quanti f ier 3 on the dual
algebra A o f X such that x1 3 * X2 is equivalent to 03C0x1 = nX2’

PROOF. Define a relation 99 in X by writing x1~x2 if and only
if nxl = 03C0x2. Clearly cp is an equivalence relation with domain
X, and gQ = x-lxo for every subset Q of X. The Boolean nature
of x implies that the (inverse) image under q of a clopen set is
clopen and that the (direct) image under g of a point is closed.
(Since ~ is an equivalence, the distinction between direct and
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inverse images is purely verbal.) In other words, T is a Boolean
equivalence with domain X; the desired result follows from

Theorem 10.

It is not difficult to verify that the correspondences described
in Lemmas 16 and 17 are in an obvious sense dual to each other.

If, in other words, 3 is a quantifier and a is the Boolean mapping
that corresponds to 3 via Lemma 16, then the quantifier that
corresponds to 03C0 via Lemma 17 is the same as 3, to within an
isomorphism, and a similar statement holds with the order of
n and 3 reversed. Since the proof of this assertion involves ab-
solutely no conceptual difficulties, it may safely be omitted.

13. Constants. The first-order monadic functional calculus
is often described as the modern version of Aristotelean (syl-
logistic) logic. Correspondingly, the algebraic formulation of

Aristotelean logic is to be found in the theory of monadic al-
gebras ; the fact that a certain syllogism is valid can be described
by asserting that the ideal generated by two specified elements
of a monadic algebra contains a third specified element.
The point is worth a little closer examination. It turns out that

the logically relevant concept is not that of an ideal (cf. section 6)
but the dual concept of a filter. A (Boolean) filter, by definition,
is a non-empty subset F of a Boolean algebra A, such that if p
and q are in F, then p ~ q ~ F, and if p ~ F, then p v q E F for all
q in A. A monadic filter is a subset F of a monadic algebra A,
such that F is a Boolean filter in A and such that Vp E F whenever
p E F. The validity of the syllogism Barbara can now be described
in the following terms: if p, q, and r are elements of a monadic

algebra, then the monadic filter generated by V(p’ v q ) and

(q’ v r ) contains V(p’ v r ).
If the preceding example is examined with a view to specializing

it to the well-known syllogism concerning the mortality of

Socrates, an intuitively unsatisfactory aspect of the situation
emerges. In highly informal language, the trouble is that the

theory is equipped to deal with generalities only, and is unable
to say anything concrete. Thus, for instance, by an appropriate
choice of notation, a monadic algebra might be taught to say "all
inen are mortal", but difficulties are encountered in trying to
teach it to say "Socrates is a man." The point is that "manhood"
and "mortality" can easily be thought of as elements of a monadic
algebra, since they are the obvious abstractions of the propositional
functions whose value at each x of some set is, respectively, "x
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is a man" and "x is mortal". Socrates, on the other hand, is a

"constant", and there is no immediately apparent way of pointing
to him. A classical artifice, designed to avoid this situation, is to
promote Socrates to a propositional function, namely the function
whose value at x is "x is Socrates". This procedure is both in-

tuitively and algebraically artificial; Socrates is not a proposition,
but an entity about which propositions may be made.

Intuitively, constants play the same role in algebraic logic as
distinguished éléments (e.g., the unit element of a group) play
in ordinary algebra. What is desired is to single out certain points
of a given domain X and to build them into the theory. Since,
however, the ultimate objects of the theory are not points of X,
but abstract elements suggested by functions on X, the desideratum
becomes that of finding ait algebraic description of what it means
to replace the argument of a function by a constant.
The correct description is quickly suggested by the study of

functional algebras. Suppose, to be specific and to avoid irrelevant,
non-algebraic difficulties, that B is a complete Boolean algebra,
and that A is the functional monadic algebra of all functions from
some domain X into B. A convenient way to describe the act

of replacing the argument x of a function p in A by a fixed
element xo of X is to introduce the mapping c that associates
with p the function cp, where

for all x in X. It is clear that c is a Boolean endomorphism on A.
Since, moreover, ~p is always a constant function, its value at

xo is the same as its constant value, so that c~p = 3p. Since,
similarly, cp is always a constant function, an application of the
quantifier leaves it unchanged, so that 3 cp = cp.
The following definition is now adequately motivated: a constant

of a monadic algebra A is a Boolean endomorphism c on A,
such that

It follows from the definition that (i) c is the identity on the
range of 3, and (ii) the range of c is included in the range of 3.
Conversely, (iii) if c is a Boolean endomorphism satisfying (i)
and (ii), then c is a constant. (iv) A constant is idempotent
(c2 = c ). (y/) If c is a constant of A, then cp  ~p for all p in A.
If c is a constant of A, then (vi) cV = V, and (vii) Vc = c, and,
convfAely, (viii) if c is a Boolean endomorphism satisfying (vi)
and (vii), then c is a constant. In view of (vi), (vii), and (viii),
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all true assertions about constants have true duals, and, in par-
ticular, (ix) if c is a constant of A, then Vp  cp for all p in A.
With all the machinery at hand, it is easy to formulate the

algebraic version of the syllogism about the mortality of Socrates.
It asserts tliat if p and q are éléments of a monadic algebra A,
and if c is a constant of A, then tlie filter generated by V(p’ v q )
and cp contains cq.
Thé introduction of constants was motivated above by logical

considerations. It turns out that constants are also of great
algebraic importance, and that, in fact, they play a central role
in the proof of the fundamental représentation theorem for

monadic algebras. A final pertinent comment is this: although
the concept of a constant is a purely algebraic one, in the dis-
cussion of the existence of constants it is convenient to ma.ke

use of the topological theory of duality; it is for that reason that
the definition was not given before. 

14. Cross sections. 1B. cross section of a continuous mapping n
from a topological space X onto a topological space Y is a con-
titluous mapping a from Y imto X such that 03C003C3y = y for all y
in Y. Cross sections do not al«rays exist, not even if X and Y are
Boolean spaces. Example: let X be a Boolean space with exactly
two cluster points, let Y be obtained from X by identifying the
two cluster points, and let n be the identification mapping. One
reason this example works is that n is not a Boolean mapping.
Unfortunately, however, even Boolean mappings do not always
have a cross section. Examples to show this are not trivial to
construct; a suitable one ha,s been constructed by J. L. Kelley
and is described in the work of Arens and Kaplansky (1).

Cross sections of Boolean mappings are intimately related to
constants of monadic algebras; the relation depends, naturally,
on thc correspondence between Boolean mappings and quantifiers.
Suppose, indeed, that A is a monadic algebra, with quantifier 3
and dual space X, and let 03C0 be a Boolean mapping from X onto
a Boolean space Y such that x, ~* x2 is equivalent to I-tXl = 03C0x2
(Lemma 16).
LEMMA 18. There is a one-to-one correspondence between all

constants c o f A an d all cross sections a of n, such that

for aU p in A and all x in X.
PROOF. Suppose that c is a constant and let y be its dual; in
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other words, y is a continuous mapping from X into X such that
cp (r) = p(03B3x) for all p and all x. The cross section a corresponding
to c is defined for a point y = nx of X by writing ay = yx. It
must, of course, be proved that this definition is unambiguous;
i.e., that if nx, = nx2, than 03B3x1 = yx2. Indeed: if 03C0x1 = nX2, then
x1 ~* x2, so that 3 p (xl ) = ~p(x2) for all p. This relation, applied
to cp in place of p, yields the conclusion that cp(x1) = cp(x2)
for all p, and hence that p ( yxl ) = p(03B3x2) for all p; the equation
03B3x1 = yx2 now follows jmmediately. Clearly a maps Y into X,
and, if p E A, x e X, and y = nr, then

It remains to prove that a is continuous. Suppose, for this pur-
pose, that p E A. The set {x: p(x) = 1} is a typical clopen set in
X; it is to be proved that its inverse image under a is open. Since
y ~ 03C3-1{x: p(x) = 1} if and only if y = nr with p(03B3x) = 1, i.e.,
if and only if y E 03C0{x: cp(x) = 1}, the desired result follows from
the fact that n is open.

Suppose next that is a cross section of 11:; the constant c

corresponding to a is defined for an element p of A by writing
cp(x) - p(03C303C0x) for ah x in X. Clearly c is a Boolean endomorphism
of A. Since 03C003C3y = y for all y, so that 03C003C303C0x = xr for all x, it follows
from the relation between n and 3 that anx 3 * x for all x. This

implies that

for all p and al] x, and lience that c 3 == 3. Finally, if xi 3 * x2,
then 03C0x1 = 03C0x2, so that p(03C303C0x1) = p(03C303C0x2), or cp(x1) = cp(x2);
this implies tliat

for all p and all xo, and hence that 3 c = c. The proof of the
lemma is complete.
From Lemmas 17 and 18 we can conclude that there exist

monadic algebras that possess no constants. The assertion of the
existence of a constant for a monadic algebra A, whenever it is
true, can be regarded as an extension theorem. Indeed, a Boolean
endomorphism of A is a constant of A if and only if it is an
extension (to a homomorphism from A to 3 (A)) of the identity
mapping (from 3 (A) to 3 ( A )) . These considerations make contact
with a theorem of Sikorski (6). The reason Sikorski’s theorem
is not available to prove the existence of constants is that Sikorski
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needs the added assumption that the prescribed range algebra
is complete.

15. Rich algebras. A constant c of a monadic algebra A with
quantifier will be called a witness to an element p of A if 3 p - cp ;
we shall also say that c is a witness to p with respect to A, or,
more simply, i n A. If A and A+ are monadic algebras such that
A is a monadic subalgebra of A+ and such that every element
of A has a witness in A+, we shall say that A+ is a rich extension
of A, or, more simply, that A+ is rich for A. A rich algebra is oiie
that is rich for itself.
LEMMA 19. Il po is an arbitrary element of a monadic algebra A,

then there exists a 1nonadic algebra A+0 including A as a 1nonadic
s2cbalgebra and such that (i) there is a witness Co to po in At, and
(ii) every constant of A has an extension to a constant of At.
PROOF. Let X be the dual space of A and let 03C0 be a Boôlean

mapping from X onto a Boolean space Y, such that xl 3 * x2 is

equivalent to 03C0x1 = nX2 (Lemma 16). If X+ = X X X, Y+ = X X Y,
and 03C0+(x, y ) = (x, 03C0y) whenever (x, y ) E X+, then 03C0+ is a Boolean
mapping from X+ onto Y+. To this Boolean mapping there
corresponds a quantifier 3 + on the dual algebra A+ of X+ such
that (xl, YI) 3 +* (x2, y2) is equivalent to n+(x1’ YI) = n+(X2’ y2)
( Lemma 17). It follows from the définition of 03C0+ that if p (x, y ) =
q(x) ~ r(y), where q and r are in A, then

~+p(x0, yo) = ~ {p(x, y): xo = X, y0 ~* yl = q(xo) A ~{r(y): yo.3 * yl
= q(x0) ~ ~r(y0).

If we write p+(x, y) - p(y) for every p in A, it follows from what
was just proved about 3 + that the mapping p ~ p+ (whieh is

obviously a Boolean isomorphism from A into A+) is a monadic
isomorphism. We may therefore regard A as a monadic sub-
algebra of A+ whenever it is convenient to do so.
We observe next that every constant c of A has a natural

extension to a constant c+ of A+. To say that c+ is an extension
of c means, of course, that c+p+ == (cp )+ whenever p e A. To prove
this, let 03C3 be a cross section of 03C0 such that cp(x) = p(03C303C0x) (Lemma
18) and write or+(x, y) = (x, ay ) whenever (X, y ) E Y+. It is easy
to verify that a+ is a cross section of 03C0+ and that the constant
c+ corresponding to the cross section 6+ via Lemma 18 is the

desired extension.
The algebra A+ has a simple Boolean endomorphism c+ that is

almost a constant of A+; by définition, c¿p(x, y) = p(x, x). It is
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trivial to verify that cô is an idempotent Boolean endomorphism
and that 3+ ct = c+0; the only reason et is not a constant is that
the équation c+0 ~ + = 3+ need not hold. (The equation does not
hold, because, for instance, if p E A, then 3 + p+(x, y ) = ~p(y),
whereas c+0~+p+(x, y) = 3 p (x ). ) We shall force c+ to become a
constant by identifying c+0 ~+ p with 3 + p for every p in A+.

Precisely speaking, we shall consider in A+ the monadic ideal I+
generated by all elements of the form 3 +p - ct3+p, and we shall
form the quotient algèbre A+/I+. We shall prove that during the
reduction modulo I+ the subalgebra A is not disturbed, and that
after that reduction the endomorphism et becomes a constant.
An element of A+ belongs to I+ if and only if it is dominated

by the supremum of a finite set of generators. If q E I+, so that

q ~ Vni=1(~+pi - c+0~+pi),
then, applying et to both sides, we obtain c+q = 0. If, in par-
ticular, q E A and q+ E I+, then c+0q+ = 0, and, since c+0q+(x, y ) = q(x),
it follows that q = 0. If f+ is the natural homomorphism from
A+ onto A+/I+, the result we just obtained implies that f+ is

one-to-one on A, i.e., that we may regard A as a monadic sub-
algebra of A+/I+ whenever it is convenient to do so.

Since, as shown in the preceding paragraph, c+ maps I+ onto
0, it follows that if p and q are in A+ and if f+p = f+q, then
c+0p = c+0q. This implies that et maps cosets of I+ onto cosets of
I+ and hence that c+ may be regarded as a mapping of A+/I+
into itself. A routine vérification shows that et is, im fact, a constant
of A+/I+, as promised.
An argument similar to the one just given shows that every

constant of A+ can be transferred to A+/I+. Suppose indeed that
c+ is a constant of A+. If p and q are in A+ and if f+p = f+q,
then p + q ~ I+. Since c+(p + q) ~ 3 +(p + q ) and 3+(p + q ) E I+,
it follows that c+p + c+q E I+ and hence that f+c+p = f+c+q. This
implies that c+ maps cosets of I+ onto cosets of I+ and hence
that c+ may be regarded as a mapping of A+/I+ into itself. The
fact that c+ is a constant of A+/I+ follows from the fact that f+
is a monadic homomorphism. From this result and from what we
said earlier about extending constants from A to A+, it follows
that every constant of A has a natural extension to a constant of

A+/I+. The proof of the transferability of c+ to A+/I+ did not
use any special properties of A+ and I+; we have proved, in fact,
that a constant can always be transferred to a quotient algebra.
Since the final algebra A+ that we shall construct will be a
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quotient algebra of A+/I+, as soon as we prove that the natural
homomorphism from A+/I+ onto A+ does not disturb A (i.e., is

onc-to-one on A), it will follow automatically that A+ has pro-
perty (ii).
To construct A+0 out of A+/I+, we simply force the identification

of ctpt with ~+p+0. Precisely speaking, we shall consider in A+/I+
the monadic ideal I+0 generated by 3+pt - ctpt (or, rather, by
the coset of I+ containing that élément), and we shall form the
quotient algebra A+ = (A+/I+)jIt. In accordance with what was
said above al l that remains to be proved is that if an element

q of A belongs to I+0, then q = 0. An element of A+/I+ belongs
to Ici if and only if it is dominated by the coset of 3 + po - ctpt.
What we must prove reduces therefore to the following im-
plication : if q E A and if

then q+ E I+ (i.e., q+ is equal to 0 modulo 1+). In fact we can
conclude that q+ == 0. If po = 0, this is trivial, since q+  3 +p+0.
If p0 ~ 0, let xo be a point of X such that po(xo) == 1, and form
the infimum of both sides of the assumed inequality with ctpt.
The result is that q+ ~ ctpt = 0 and hence that q(y) ~ p0(x) = 0
for all x and y; the desideratum follows by setting x equal to xo.
The proof of Lemma 19 is complete.
Theorem 11. Every monadic algebra is a subalgebra of a rich

algebra.
PROOF. Repeated applications of Lemma 19 show that if Ao

is a monadic algebra, then there exists a monadie algebra Ai
including Ao as a monadic subalgebra and such that (i) A, is a
rich extension of Ao and (ii) every constant of Ao has an extension
to a constant of Al. The applications of Lemma 19 have to repeated
rather often, to be sure; precisely speaking, what is involved is
transfinite induction. The w itnesses to the elements of Ao are
introduced one by one. The constants obtained at each stage are
carried along to all subsequent stages, and, finally, to the union
of the chain of algebras so obtained. The details are automatic.
The proof of the theorem consists of repeated applications of

the result of the preceding paragraph. The applications have to
be repeated countably often in this case; what is involved is

elementary mathematical induction. Given A,n, we denote by
An+1 a rich extension of it with the constant-extension-property.
Thus the constants obtained at each stage are carried along to
all subsequent stages, and, finally, to the union of the increasing
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sequence of algebras so obtained. Since that union is obviously
a rich algebra, the proof of Theorem Il is complete.

Constants play the same role in the theory of monadic algebras
as homomorphisms into 0 play in. the theory of Boolean algebras;
in a (somewhat vague) sense a constant is "locally" a homo-
morphism into O. Theorem Il is the monadic substitute for

Stone’s theorem on the existence of sufficiently many maximal
ideals; the representation theorem of the next section is based
on Theorem 11 almost the same way as Stone’s representation
theorem is based on the maximal ideal theorem.

16. Représentation. It is a routine application of universal
algebraic techniques (2) to put together the simplicity theorem
(Theorem 6) and the semisimplicity theorem (Theorem 7) to
obtain a representation theorem that exhibits every monadic
algebra as a subdirect union of O-valued functional monadic
algebras. The purpose of this final section is to discuss a stronger
and more useful representation theorem that asserts, in effect,
that the functional algebras with which we began the theory of
monadic algebras exhaust all possible cases.
Theorem 12. Il A is a monadic algebra, then there exists a set

X and there exists a Boolean algebra B, such that (i) A is isomorphic
to a B-valued functional algebra À with domain X, and (ii) for
every element fi of À there exists a point x in X with p(x) = 3p(x).

PROOF. The conclusions of the theorem are such that if they
are valid for an algebra, then they are automatically valid for all
its subalgebras. It follows from this comment and from Theorem
11 that there is no loss of generality in assuming that A is rich.
This means that for each element p of A there exists at least

one constant c = c. of A such that cp = 3 p ; let X be a set of
constants containing at least one such c for each p. Let the Boolean
algebra B be the range 3 (A) of the quantifier 3 on A. Define
a mapping f from A into BX, i.e., associate a function  = f p,
from X into B, with every element p of A, by writing p (x) = cp.
Since 3 cp = cp, the value fi (c) is indeed in B for every c in X,
so that p E Bx. Since each c in X is a Boolean endomorphism on
A, and since the Boolean operations in BX are defined pointwise,
a routine verification shows that f is a Boolean homomorphism.
If f p - 0, i.e., if (c) = 0 for all c in X, then, in particular,
3 p = cp p = (cp) == 0, and therefore, p = 0; this proves that the
homomorphism f is one-to-one.
Let À be the range of f, so that À is a Boolean subalgebra of
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Bx; it is to be proved that À is a functional monadic algebra
and that f is a monadic isomorphism between A and À. If

p = Ip E Ã, the range R() of the function p contains, in par-
ticular, the element ~p = cpp = (cp) of B; since cp  3 p
for every constant c, it follows that R() has a largest element,
and therefore a supremum, namely 3p. This proves that 3 p
exists and has the value 3 p at each c in X. On the other hand,
f~p(c) = c~p = ~p for all c, so that ~ fp = ~ = f~p; the proof
of the theorem is complete.

It is instructive to observe that the simplicity and semisimplicity
theorems can be recaptured from this general representation
theorem. The purpose of the following considerations is to show
how that can be done.

LEMMA 20. If A is a B-valued functional monadic algebra u’itk
domain X, such that f or everyp z n A there exists a point x in X with
p(x) = 3p(x), and i f lo is a Boolean homomorphism from’ B into
0, then the mapping f, f rorn A into OX , defined by fp(x) = f0(p(x)),
is a monadic homomorphism.

PROOF. The fact that f is a Boolean liolnomorphism is an easily
verified consequence of the fact that f0 is such, and of the fact
that the Boolean operations in Ox are defined pointwise. The
proof of the fact that f is a monadic homomorphism is also similar
to the corresponding part of the proof of Theorem 12. Indeed, if
po E A, and if xo is a point such that p(x0) = ~p(x0), then R(fp)
contains f0(p(x0)) as its largest element, and therefore ~fp(x) =
fo(p(xo)) for all x. Since, on the other hand, 3p is a constant

function, so that

it follows that 3 fp == f~p, as desired.
It is now an easy matter to give an alternative proof of the

deeper half of the simplicity theorem. In view of Theorem 12,
there is no loss of generality in restricting attention to a functional
monadic algebra A that satisfies the condition of Lemma 20. If
A is simple, then select the f o in Lemma 20 arbitrarily; since,
by simplicity, the homomorphism f so obtained has a trivial

kernel, it follows that f is an isomorphism.
Once the simplicity theorem is known, the assertion of semi-

simplicity takes the following form: ifpeA and p ; 0, then there
exists a monadic homomorphism f from A into an O-valued func-
tional algebra, such that fp ~ 0. For the proof, find x in X so
that p(x) ~ 0, and (by the semisimplicity theorem for ordinary
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Boolean algebras) find f o so that f0(p(x)) =F 0; the f obtained
from Lemma 20 satisfies the stated condition.

University of Chicago.
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