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On Entire Functions of Infinite Order
by
Mansoor Ahmad

1. Introduction. The purpose of this paper is to extend
to a class of entire functions of infinite order some theorems
on entire functions of finite order.

Theorems 1 and 2 are formal analogues of two theorems [1]
and [2] of Shah. Theorems 8, 4 and 5 are new; but they are
closely connected with some theorems [8] of Shah. Theorem 6
is an analogue of a theorem of Lindelof [4].

2. DErFINiTIONS. We define the k-th order and the k-th lower
order of an entire or meromorphic function as

1T
0, = Tm 1 (1)
r—»o logr
and
T
&t BT
== logr

Similarly, we define the k-th order and the k-th lower order of
the zeros of f(z) as

——ln(r)
o, = lim ——
r—>o logr
and
6k = lim lkn(r),
= logr

where T(r), n(r) have their usual meanings and !,z = log 2,
Ly = log log , and so on.

8. LEMMA (i) If x(«) is a positive function continuous almost
every where in every interval (ry, 7); and if
—)
Tim 250) _
o logr

O
then

lim SLEr)LE(r) - . - LaE(r) <!

= x2(r) o
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where &(r) =f %w—)dw.
Lemma (ii) If y(2) and &(r) are the same functions as before;
and if
lim 250) _

> logr

O»

then
. 2(r)
lim <s,.
e ELE() - Lt =

Proor. If f(z) and g(z) are two positive functions which tend
to infinity with z; and if each of the functions is differentiable
almost every where in every interval (ry, r), such that their
derivatives f'(z) and g’(z) have a definite finite value at every
point of this interval, then

(P
o g(r) o g(r)

and
tim 1) > 3 £
—o8(r) =< g(r)

Now, putting f(r) = 1,&(r) and g(r) = log r, we get the required
results.

4. TueoreMm 1. If f(2) is an entire function of infinite order;
and if the k-th lower order of its zeros is ¢, then

n(r)

(i) lim
s WM(r)LM(r) . . . 1, M(r)

lIA

0y

and

(ii) lim n(r)
oW M(r)ln(r)lan(r) . .. L_n(r)

IA

Ok»

provided that
lim 2877 _
—o L
: . Tn(z)
These can be proved easily by putting £(r) = | — dz in
Lemma (ii). o ®

TueorEM 2. If f(2) is an entire function of finite k,-th order
but of infinite (k,—1)-th lower order, then
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lim UM(r) . ,M(r)... [, M(r) < 1
== ¥(r) (8
where g, is the k-th order of f(z). _
Proor. Since, by hypothesis, f(z) is of finite k,-th order but of
infinite (k;—1)-th lower order, we can very easily prove, by using
the inequalities

u(r) = M(r) < 8u(r)v(2r) (1)
that
T ) _
r—> lOgT
and

lim ——-—lk‘_l v(r) =00
>e logr

Now, we can very easily show that

lim 2277 _ @)
o Ly(ar)
where k is any positive integer or zero; and « is any fixed positive
number.
Also, putting &(r) = log u(r) in Lemma (i); and using (1),
we have
lim llu(?')lzu(r) e Lu(r) < 1
== ¥(r) (8
o, being the k-th order of f(2).
Lastly, by using (1), (2) and (8), we can easily prove the
required result.
THEOREM 8. If f(2) is an entire function of finite k,-th order
but of infinite (k,—1)-th lower order, then

lim T(r),T(r)...L_T(r) < 2

= n(r, [—h) Qx
for every entire function f,(z) of finite (k;—1)-th order, with
one possible exception, where T'(r) refers to f(z), o, is the k-th
order of f(2); and n(r, f—f,) denotes the number of zeros of
f(2)—f1(z) in the region |z| =7, every zero being counted according
to its order.

Proor. By the second fundamental theorem of Nevanlinna

[5, § 84], we have

T(r,p) =T(r)<N(r,0)+N(r, 1)+N(r, o)
+8log T(er)+0(log r) (4)

(3)
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for all sufficiently large r, where c is a fixed number greater than 1.

1&)—h()
&) —Falz) |
I(r,f) = T(r)<N(r, f—=f1)+N(r, f—f2)+8 log T'(cr)
+aT(r, f,)+bT(r, f5)+0 (logr) 35)
for all r>r, where a and b are certain positive constants.
Since, by hypothesis, f(z) is of finite k,-th order but of infinite
(ky,—1)-th lower order; and each of the functions f;(z) and f,(z)
is of finite (k;—1)-th order, we have
. log T(cr)
lim ——— =
o I(r)

Putting ¢(2) = n (4), we have

and

i £ F)

im =0,

r—>wo T(T)
where F denotes each of the functions f,(z) and f,(2). Conse-
quently, we have

L{T(r)—8log T(er)—aT (r, f)—bT(r, f2)} <L{N(r, f—1)
+N(r, }—12)} (6)

Now, putting é(r) = N(r, f—f;)+N(r, f—f;) in Lemma (i),
we get

n(r, f—f)+n(r, f— fz)

e = ) - st () )
Combining (6) and (7), we have
T 1)+ 00 1)
O = e TOWT(r) - L T(r)
Therefore
TOLT(r) . . . by T(r) _ 1 )

im =—
o n(r f=h)+n( f—f) — e
The required result follows easily from (8).
THEOREM 4. If f(z) is an entire function of finite k,-th order
but of infinite (k;—1)-th lower order, for which the deficiency
sum (excluding « =00)Zd(a) = ¢>0; and if n'(r, «) denotes
the number of simple zeros of the function f(z)—a« in the region
|2] <7, then

lim T(r),T(r)...L_T(r) < 2

== n(r,a) 0.0y
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for every finite value of «, with one possible exception, where
oy is the k-th order of f(z).
Proor. If N'(r, «) and N'(r, §) refer to n'(r, «) and n'(r, §)
respectively, we have
N(r, a)+N(r, B)<N'(r, a)+N'(r, B)+2N,(r)+0 (log 7).

Also, by the theorem of Nevannlina (loc. cit.), we have

T(r, {)<N(r, a) +N(r, ) —N,(r)+ 8 log T(cr)+0 (log r)
<N'(r, a)+N'(r, B)+Ny(r)+8log T(cr)+0 (logr) (9)
for all sufficiently large r, where N,(r) has the same meaning
as in [6, § 383, (16)].
Further, by the same theorem, we have

— Ny(r) ——log T(cr)
é I L <14 Tm ———.
2 0(a) + lim o 5 < 1+ lim ==
But, under the conditions of the theorem, we have
1
lim 28 LC7) _
oo L(r)
Therefore
—N,(r)
im -2~ <1—o. 10
e T = ° (10)

By (9), we have

L{T (r)—=N,(r)—log T(cr)—0 (log r)} <L{N'(r, ) +N'(r, B)}.
The rest of the proof, now, depends on (10) and follows the same
lines as that of the preceding theorem.

THEOREM 5. If f(2) is a meromorphic function of finite k,-th
order but of infinite (k;—1)-th lower order, then

lim T(r)(Tr)...l,_T(r) < 3

o n(r, f—f1) Ok
for every meromorphic function f,(z) of finite (k;—1)-th order,
with two possible exceptions, where n(r, f—f;) and g, have the

same meanings as before.
The proof of this is similar.

4. We define the type of an entire function f(z) of finite
k-th order as
— M
T, = T 2M0),
r—>o %
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Lemma. If f(z) =ia,,z” is an entire function of finite k-th
n=0

order g, k>1, then

..Q.’i
T,=Tlml,_mn-|a,|".
n—r w0
Proor. Let
(43

v, = Tim L,_yn - |a,|".
n—> o

We have

for an infinity of n.
Therefore, by Cauchy’s inequality, we have

n

M) > Ve—E\e "
()

lLim

for an infinity of m. Choose r such that

o a-l, n ,
Vy—E
where a is any fixed number greater than 1.

Consequently, we have
n n

M) = (vk—s)a (a- lk_ln)ﬁ

liam V,—&
n

= aa
_ el
Proving thereby that
aT, =v,—e.
Making a and ¢ tend to unity and zero respectively, we have
T,=v,. (11)

Also, we have la,| = (vk_i_e)%

for all sufficiently large n.
Therefore

1) <3 a,)r

n=o0
n

< i . (v,,+s)ek + 0(r™).

nene  Vg—17




m On Entire Functions of Infinite Order. 165

v\

% , . .
Now, r® (l ) is maximum for a value of z, say #,, which
@
k—1

satisfies the equation

1
(pk-l-e) r% — lk—lwl . el,,_lxl lpg®yeee ‘1"1.
We can take z, sufficiently large, by choosing r to be large.
Therefore, we have
ek—l {(Vk+6)rek} é wl _S_ ek—l {(Vk_*_s)rek} ’
1+4-¢ 1—e¢
where ¢, is arbitrarily small.
Let m = e,_,{(v,+2¢)r*}. We have

/(=) = Z |@,|rm + Z |ag|r
+ &) r0k

(v,
=S e {(ve+2e)r%} (1_}_81)9,‘ e 1{ r— }+ $ (

n=0

Vit )e,,

v+ 2¢
lck X {("k"") fek}
= ey {(ni+26)r%} (1 +e,)% M 7 4 0(1).
Therefore, we have
T,= .. (12)
Hence, combining (11 )and (12), we have

Tk == vk-

THEOREM 6. If P(z) = ﬁ E (i, p,,) is a product of primary
1 Zn

factors of finite k-th order, having zeros (z,) n =1,2,8,...,
where p, <log n<p,+1; and if
L, = mlk—l'n("'),
r—>o r%
then
LT, AL,

where n(r) has its usual meaning and A4 is a constant.
Proor. When p,>0 and |z| =%, we have

2 s

Log | E(s p) < g (1-+[a) +[s]+ 5+ ... + 12"
2 Dy

§2|z|+|—z2—l—+ ............... &

y

< 2(2[2])".
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Similarly, we have
Izl |2]*
log | B, )] = Tog [1~3] —Jol = - — .. = -
= log [1—z| — 2(2|z|)”".

Let N be a positive integer such that |2y|=2|z|<|zy,,]- The
product of primary factors is

Pw) =11E (2 ) JIZ(2 p) =TT, 19)

N+1

say. We denote |2|, |2,], | —

n

If p,>0, when n>n, we have

by r, r,, u, respectively.

—23 (2u,) < log
no+1

N
2 log

ng+1

2
1] —=
2

n

N 2
H E (_’ pn)
ny+1 R0

N
<23 (2u,)
no+1

since %, =% in [];.
In II,, we have u,<% and so

log E (E, p,,)
1 2,

n

Datl
e

[og [Ty || = [logI,| < 3
N+

N+1

Combining the two inequalities, we have

Z log

2
1—=
g,

n

—23 (2, pe—2 5 et < log | P3|

not+1

<2 Z (2u, )" +2 f: uttl 4 o(logr).  (14)

not+1 N+1
Let us suppose that the second order of P(z) is g, where g, is
—— log n(r)

o2

log n)“
Tn > ( H ’
when n>n,, where a=1/p,; and H is any fixed positive number

greater than L,.

If m denotes the greater of the two numbers n, and n,
we have

finite; and let L, = lim

r—>0

00. We have
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N @
I=23 (2u,)+ 2> ub*!

m+1 N+1

N )
— Dy 2,108 0, ,,Pp—lOg N logn,, ,,p,+1—logn
=2 Z 2 "ung Uy" ¢ + 22 u”g Up*

m+41 N+1

< 22 (2u logn_|_2zulogn

m+1

N 27.Ha )log n P ( r Ha, )log n
<23 ———.,r.n + 2 S — e
me1 (log m)* 8" 5y (log n)
r® .
We can easily see that the function — is steadily increasing
z

1 1
Hra Hra .
or # > ——. Putting
e

or steadily decreasing, according as z <

L L
H(2r)¢ Hr®

R=e¢ ®* , Rj=e¢ °, we have

[ <@y | (e o, 3 ey
miy1 N (log R)*'&® n>R PPn
n<R ( Ha)n (rHa)log Ry (TH“)”"
2 2 +2
+ El n + (lOg Rl )a log Ry "ZRI :g”

Now, if [z] denotes the integral part of the positive number z;
and if s; = [%] , Where s is a positive integer, not less than
e, we have
= [log 8s] = [log s] +1
ps, = [log s;] = [log s]—1.

Therefore, the number of times an integer p, can be repeated is

1
less than ————= $(Be—1). ; and this is less than (8¢—1)e®. Consequently,
e
we have
o, (2rHe)" (2rHe )8 R 2eH"r)”
I —
<§ non (log R)alogR +2 3e l) z
© (rHe)" (rHo)e R (erH®)"
2 2
+ g non (1 og R )along + ( )g nen
o (2eH% He log R 2(rHe log R1
B o NI G N o sl
1 n™ (log R)*"°¢ (log R, )¢ ™

where A is a constant.
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. . . © (2eH%)"
Since the type [7, § 2.2.9] of the entire function ) T
1

is (2¢)% - H, we have proved that
I < etetirte (15)
for all sufficiently large r, where A is an absolute constant.
By (14) and (15), we can easily show that
T,<A4,L,.
But, by Jensen’s theorem, we have
L,=T,.
Combining the two, we have
L,=T,<A,L,.

Next, let us suppose that the 8rd. order of f(z) is p;, where
g3 is finite; and let

r, > (lzn)
H
when n>mn,, where H is any fixed positive number greater
than Ly and a = 1/p;.

If m, be a positive integer greater than n, and n,, such that
log log m,>1, we have

We have

N a0
=23 (2u,)™+ 2> ut

ml+1 N+1

< 22 2u )logn_l_2zulogn

my+1 N+1
N 2Ha log n © Ha log n
<oy @ET e (H)

m (log log n)*1osn 411 (log log n)*len )

@
(log z)**
decreasing, according as

Now, the function is steadily increasing or steadily

> a
logroraloglogaz++ —.
< log z

Let r>1. If n = R, be a root of the equation

log (rH®) = alzn —|— —
Ln’
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when n>m,; and n = R; be a root of the same equation with r

1

replaced by 2r, then log n < €™, when n = R, and log n < ¢#®"",

when n = R,.
Consequently, if E, be the set of values of r, at which the
inequality

log (rH*) > alyn + l
lyn

holds; and S, the set at which the reverse inequality holds, then

we have
( a)n H(2')%
I< 252,, (log n)™ + 2e2{H(2r) } - (2rH®) + |
(2rHey (rHe ) : (rH® )P
2 + 2¢,(H He)? oy V2
T22 log gy T 22 logmy Oa SUSHESEED> - {log 7,)
(2rH®)" H(zr)%

<2y + 2e2{H(2r) } - (2rH)®

mptl (log n)en

© (2rH%)"» o (rHe)" g;,,« ©  (rH®%)®»
Hre v
2,..lz+1 (log p,,)** +~z+1 (log n)*" +2e(Hr ) 2~+1 (log p, )=
(2rH®)" (2erH® )"
25 g 283 (ot
(rH)" (erH®)"
23 fognrs fogny " 2(06=1) 3 fogmy
1 1 1
+ 2ez{H(2r)°} @ 4 ey (Hr® ) - (rHe
(2erH®)" H(zr)é

1
de, SH(2r)o Y . (2rHS)E 16
<4 z(log ayon + e {H(@r)7} - (2rH?) (16)
where A4 is a constant.
It is easily seen, by putting k¥ = 2 in the lemma, that the
type of the series on the right-hand side is H(2e).

Therefore, by (14) and (16), we have
Ta<A4,L,
Now, let us suppose that the k-th order of P(z) is g,, where g,
is finite; and let
Lk — l_lk—ln(r)

r—>o i
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‘We have

1,1 n\*
> (57

when n>n,, where H is any fixed positive number greater than
L, and a = 1/g,.
Let m, be a positive integer greater than n, and n;, such that

ly_gmy>1.
Proceeding in the same way as before, we can prove that
o (2er H*)" 1
I<A4y ( ) + e;_y(BreH),

my (Lg—am)™"
where A and B are absolute constants.

The rest of the proof follows easily, if we put (k—1) for &
in the lemma.

CoroLLARY 1. If f(z) = P(2)e?® is an entire function of finite
k-th order, where P(z) is the product of primary factors of
Theorem 6 formed with the zeros of f(z); and Q(2) is an entire
function, then Q() is of finite or zero type, finite (k—1)-th order,
if f(2) is of finite or zero type.

Proor. By a slight modification of the proof of Theorem 6,
it can be easily shown that the k-th order of the product of
primary factors P(z) is equal to the k-th order of its zeros.

By (14), we have

N
log |P(z)| 2 3 log 1,
1

2
1—=
zﬂ

where

N 23}
I=23 (2u,)+2 ultl.
no+1 N+1
If f(2) is of finite type, L, is finite.
Consequently, by Theorem (6), we have
I <eqqy(Ar®)

for all sufficiently large values of r, where 4 is a constant.

3
Now, when r, <1, we have |1 ——| >1, provided that r>2,
and so
2
log JTT |1 ——|>0.
rps1 2

But, when 1<7,<2r and 2z lies outside all the small circles

|3—=z,| = e for  which r, = |2, > 1, h being any
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fixed number greater than 1, we have

1— _Z_ —_ —————Iz—z"' = }_ . e_hgk—l(’nek+s)
zn rn B r‘n
> l . e—he,,_gmr)@k‘*‘
— 2r
Therefore
2
log TI |1——|= —N[he, y(2r)%** +log 2r]
1>r,<2r n

Since L, is finite, we have
N <o, 4(Br%)

for all sufficiently large r, where B is a constant.
Combining these results, we have

N

log T]

1
Consequently, we have

log |P(3)| > —ey_1(Bro)[hey_5(2r)%" 4 log 2r] —e,_, (Ar®)
> —2¢;,_1(cr%) - e5_o(2r)%**

F
1—=

n

> —ey_y(Br%) - [he,_y(2r)>"* + log 2r].

for all sufficiently large r such that the circle |3| = r intersects
none of the small circles containing the zeros of f(z), ¢ being any
fixed number greater than each of 4 and B.

Also, since f(z) is of finite type, we have

#(z)] < ex(Mr)

for all sufficiently large r, M being a constant.
Combining the two inequalities, we have

|€2®)| = 1)

Myer) - 2eu—aler® - e_g(2n)Oi*e
P(z) < e )

< ee,c_,(c1 7%) - €,,_5(27)0%k*E

for a certain set of arbitrarily large values of 7, ¢, being an absolute
constant.

Consequently, by the principle of the maximum modulus, it
can be easily proved that

l eQ(Z)I < ee,,_l(clrek)ek_,(Zr)(’k“
for all sufficiently large values of r. Hence it follows that Q(z)

is of finite type.
The proof for zero type follows the same lines.
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CoraLLARY 2(i). If f(z) = P(z)e?™ is an entire function of
finite 2nd. order, then a necessary and sufficient condition that
f(2) be of finite or zero type is that L, be finite or zero and Q(3)
satisfy the conditions of a theorem of Lindelof (loc-cit.).

(ii) If f(z) = P(z)e?® is an entire function of finite 8rd. order,
then a necessary and sufficient condition that f(z) be of finite
or zero type is that L; be finite or zero and Q(z) satisfy the
conditions of (i).

(iii) If f(z) = P(z)e®® is an entire function of finite k-th order,
then a necessary and sufficient condition that f(z) be of finite
or zero type is that L, be finite or zero; and Q(z) satisfy the
conditions for an entire function of finite (k—1)-th order to be
of finite or zero type, where P(z) is a product of primary factors
of Theorem 6, formed with the zeros of f(z).
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