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On Entire Functions of Infinite Order

by

Mansoor Ahmad

1. Introduction. The purpose of this paper is to extend

to a class of entire functions of infinite order some theorems
on entire functions of finite order.
Theorems 1 and 2 are formal analogues of two theorems [1]

and [2] of Shah. Theorems 3, 4 and 5 are new; but they are
closely connected with some theorems [3] of Shah. Theorem 6
is an analogue of a theorem of Lindelôf [4].

2. DEFINITIONS. We define the k-th order and the k-th lower
order of an entire or meromorphic function as

and

Similarly, we define the k-th order and the k-th lower order of
the zeros of f(z) as

and

where T(r), n(r) have their usual meanings and llx = log x,
l2x = log log x, and so on.

3. LEMMA (i) If x(x) is a positive function continuous almost
every where in every interval (rp, r); and if

then
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where

LEMMA (ii) If X(x) and e(r) are the same functions as before;
and if

then

PROOF. If f(x) and g(x) are two positive functions which tend
to infinity with x; and if each of the functions is differentiable
almost every where in every interval (ro, r), such that their
derivatives f’(x) and g’(x) have a definite finite value at every
point of this interval, then

and

Now, putting f(r) = lk03BE(r) and g(r) = log r, we get the required
results.

4. THEOREM 1. If f(z) is an entire function of infinite order;
and if the k-th lower order of its zeros is 03B4k, then

and

provided that

These can be proved easily by putting e(r) = J 
rn(x) dx in

Lemma (ii). 
THEOREM 2. If f(z) is an entire function of finite kl-th order

but of infinité (k1-1)-th lower order, then
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where (!k is the k-th order of f(z).
,

PROOF. Since, by hypothesis, f(z) is of finite k1-th order but of
infinite (kl -1 )-th lower order, we can very easily prove, by using
the inequalities

that

and

Now, we can very easily show that

where k is any positive integer or zero; and a is any fixed positive
number.

Also, putting e(r) = log u(r) in Lemma (i); and using (1),
we have

k being the k-th order of f(z).
Lastly, by using (1), (2) and (3), we can easily prove the

required result.
THEOREM 3. If f(z) is an entire function of finite kl-th order

but of infinite (kl-1)-th lower order, then

for every entire function fl(z) of finite (kl-l)-th order, with
one possible exception, where T(r) refers to f(z), ek is the k-th
order of f(z); and n(r, f-fl) denotes the number of zeros of

f(z)-fl(z) in the region |z|~r, every zero being counted according
to its order.

PROOF. By the second fundamental theorem of Nevanlinna
[5, § 34], we have
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for all sufficiently large r, where c is a fixed number greater than 1.

Putting 99(z) = f(z)-f1(z) f(z)-f2(z) in (4), we have

for all r&#x3E;ro, where a and b are certain positive constants.
Since, by hypothesis, f(z) is of finite kl-th order but of infinite

(kl-1)-th lower order; and each of the functions il(z) and /2(Z)
is of finite (kl-1 )-th order, we have

and

where F denotes each of the functions fl(z) and f2(z). Conse-
quently, we have

Now, putting e(r) = N(r, f-fl)+N(r, f-f2) in Lemma (i),
we get

Combining (6) and (7), we have

Therefore

The required result follows easily from (8).
THEOREM 4. If f(z) is an entire function of finite kl-th order

but of infinite (k1-1)-th lower order, for which the deficiency
sum (excluding oc = ~)03A303B4(03B1) = 03C3&#x3E; 0; and if n’(r, 03B1) denotes
the number of simple zeros of the function f(z)-a in the region
|z| ~ r, then
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for every finite value of oc, with one possible exception, where
(!k is the k-th order of f(z).
PROOF. If N’(r, oc) and N’(r, P) refer to n’(r, 03B1) and n’(r, p)

respectively, we have

Also, by the theorem of Nevannlina (loc. cit.), we have

for all sufficiently large r, where Nl(r) has the same meaning
as in [6, § 33, (16)].

Further, by the same theorem, we have

But, under the conditions of the theorem, we have

Therefore

By (9), we have

The rest of the proof, now, depends on (10) and follows the same
lines as that of the preceding theorem.
THEOREM 5. If f(z) is a meromorphic function of finite kl-th

order but of infinite (kl-1)-th lower order, then

for every meromorphic function /,(z) of finite (kl-1)-th order,
with two possible exceptions, where n(r, f-f1) and Qk have the
same meanings as before.
The proof of this is similar.

4. We define the type of an entire function f(z) of finite
k-th order as
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LEMMA. If f(z) = 03A3anzn is an entire function of finite k-th
11.=0

order Qk, k&#x3E;1, then 

PROOF. Let

We have

for an infinity of n.
Therefore, by Cauchy’s inequality, we have

for an infinity of n. Choose r such that

where a is any fixed number greater than 1.

Consequently, we have

Proving thereby that

Making a and a tend to unity and zero respectively, we have

Also, we have

for all sufficiently large n.
Therefore
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New, rx(vk+03B5 lk-1x) is maximum for a value of x, say x1, which
satisfies the equation

We can take x, sufficiently large, by choosing r to be large.
Therefore, we have

where el is arbitrarily small.
Let m = ek-1{(vk+203B5)rk}. We have

Therefore, we have

Hence, combining (Il )and (12), we have

THEOREM 6. If P(z) = fl E -, pn is a product of primary
factors of finite k-th order, having zeros (zn) n = 1, 2, 3, ...,
where pn ~ log npn+1; and if

then

where n(r) has its usual meaning and A is a constant.
PROOF. When pn &#x3E; 0 and |z| ~ 1 2, we have
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Similarly, we have

Let N be a positive integer such that |zN|~2|z||zN+1|. The
product of primary factors is

say. We denote |z|, 1 z,,, 1, 1 :n by r, rn, un respectively.
If pn&#x3E;0, when n&#x3E;n0, we have

since un ~ 1 2 in II
In 03A02, we have un1 2 and so

Combining the two inequalities, we have

Let us suppose that the second order of P(z) is e2’ where Q2 is

finite; and let L2 = hm  oo. We have
-ce rQ2

when n&#x3E;n1, where a=1/2; and H is any fixed positive number
greater than L2.
If m denotes the greater of the two numbers no and nl,

we have
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We can easily see that the function rx xax is steadily increasing

or steadily decreasing, according as x   
or x &#x3E; . PuttinglIe 1

H(2r)G ’griî
R = e e , R1 = e e , we have’

Now, if [x] denotes the integral part of the positive number x;
and if si = [s e], where s is a positive integer, not less than
e, we have

Therefore, the number of times an integer ps can be repeated is

less than s(3e-1) and this is less than (3e -1)eps. Consequently,
e

we have

where A is a constant.
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Since the type [7, § 2.2.9] of the entire function 1 (2eHar)n
1 nan

is (2e)2. H, we have proved that

for all sufficiently large r, where A is an absolute constant.

By (14) and (15), we can easily show that

But, by Jensen’s theorem, we have

Combining the two, we have

Next, let us suppose that the 3rd. order of f(z) is 3, where

3 is finite; and let

We have

when n&#x3E;n2, where H is any fixed positive number greater
than L3 and a = 1/3.

If ml be a positive integer greater than no and n2, such that
log log m1&#x3E;1, we have

Now, the function rx (log x)ax is steadily increasing or steadily

decreasing, according as

Let r&#x3E;1. If n = R2 be a root of the equation
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when n&#x3E;m1; and n = R3 be a root of the same equation with r
1 i

replaced by 2r, then log n  eHra, when n = R2 and log n  eHC2r)a,
when n = R3.

Consequently, if E,, be the set of values of r, at which the

inequality

holds; and Sr the set at which the reverse inequality holds, then
we have

1

where A is a constant.
It is easily seen, by putting k = 2 in the lemma, that the

type of the series on the right-hand side is H(2e )(l3.
Therefore, by (14) and (16), we have

Now, let us suppose that the k-th order of P(z) is Qkl where k
is finite; and let
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We have

when n&#x3E;n3, where H is any fixed positive number greater than
Lk and a = 1/k.

Let m2 be a positive integer greater than no and n3, such that
lk-2m2 &#x3E; 1.

Proceeding in the same way as before, we can prove that

where A and B are absolute constants.
The rest of the proof follows easily, if we put (k-1 ) for k

in the lemma.
COROLLARY 1. If f(z) = P(z)eQ(z) is an entire function of finite

k-th order, where P(z) is the product of primary factors of
Theorem 6 formed with the zeros of f(z); and Q(z) is an entire
function, then Q(z) is of finite or zero type, finite (k-1)-th order,
if f(z) is of finite or zero type.

PROOF. By a slight modification of the proof of Theorem 6,
it can be easily shown that the k-th order of the product of
primary factors P(z) is equal to the k-th order of its zeros.
By (14), we have

where

If f(z) is of finite type, L, is finite.
Consequently, by Theorem (6), we have

for all sufficiently large values of r, where A is a constant.

Now, when rn ~ 1, we have 1 - z &#x3E; 1, provided that r &#x3E; 2,

and so

But, when 1  rn ~ 2r and z lies outside all the small circles

|z-zn| = e-hek-2(rnk+03B5) for which rn = |zn| &#x3E; 1, h being any
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fixed number greater than 1, we have

Therefore

Since Lk is finite, we have

for all sufficiently large r, where B is a constant.
Combining these results, we have

Consequently, we have

for all sufficiently large r such that the circle 1 z | = r intersects
none of the small circles containing the zeros of f(z), c being any
fixed number greater than each of A and B.

Also, since f(z) is of finite type, we have

for all sufficiently large r, M being a constant.
Combining the two inequalities, we have

for a certain set of arbitrarily large values of r, cl being an absolute
constant.

Consequently, by the principle of the maximum modulus, it
can be easily proved that

for all sufficiently large values of r. Hence it follows that Q(z)
is of finite type.
The proof for zero type follows the same lines.
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CORALLARY 2(i). If /(z) = P(z) eQ(z) is an entire function of

finite 2nd. order, then a necessary and sufficient condition that

f(z) be of finite or zero type is that L2 be finite or zero and Q(z)
satisfy the conditions of a theorem of Lindelôf (loc-cit.).

(ii) If f(z) = P(z)eQ(z) is an entire function of finite 3rd. order,
then a necessary and sufficient condition that f(z) be of finite
or zero type is that L3 be finite or zero and Q(z) satisfy the
conditions of (i).

(iii) If f(z) = P(z)eQ(z) is an entire function of finite k-th order,
then a necessary and sufficient condition that f(z) be of finite
or zero type is that Lk be finite or zero; and Q(z) satisfy the
conditions for an entire function of finite (k-1 )-th order to be
of finite or zero type, where P(z) is a product of primary factors
of Theorem 6, formed with the zeros of f(z).
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