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Absolute Neighborhood Retracts and Local
Connectedness in Arbitrary Metric Spaces

by

J. Dugundji

1. Introduction.

For separable metric spaces, the following implications and
équivalences are wel l-known :

I. ANR ~ local contractibility =&#x3E; LC°°. These concepts are
equivalent only in the finite-dimensional spaces.

II. AR ~ contractibility and local contractibility ~ C°° and
LC°°. These notions coincide only in the finite-dimensional
spaces.

III. n-dimensional and LCn (n finite) ~ ANR.
IV. A R = contractible ANR - C°° ANR.
A unified account is given in [9; Chap. VII] 1). The proofs of the

equivalences in I - III are based on embedding into Euclidean
spaces; those in IV on embedding into the Hilbert cube.
Upon attempting to determine the interrelations of thé above

concepts in non-separable metric spaces, one meets (1): the

question of what definition of dimension to adopt, and (2): that
the embeddings considered above are never possible, since the
image spàces mentioned are separable. The theory, therefore,
does not give any information about I - IV in non-separable
metric spaces.
The main object of this paper is to show that the complete

statements I - IV are valid in all metric spaces, if the covering
definition of dimension be used. In the course of this, various
alternative characterizations of LCn and ANR are derived, so
well as other subsidiary results. Only the point-set aspects are
given here; homology in such spaces will be considered elsewhere.

2. Preliminaries.

E n denotes Euclidean n-space; H n C E n is 
n

{(x1, ..., xn) E En | 03A3x2i ~ 1} and the ( n -1 )-sphere S n-1 =

boundary Hn. I represents {x ~ E1 | 0 ~ x ~ 1}.
1) Numbers in square brackets are références to the bibliography. 
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"An open covering of a space X" will always mean "A covering
of X by open sets". {U} is a nbd-finite open covering of X if each
x E X has a nbd intersecting at most finitely many sets U; X is
paracompact if each open covering has a nbd-finite refinement.
2.1 Every metric space is paracompact. [15; 972]
2.2 In paracompact spaces, each open covering {U} has a star
refinement {V}, i.e. for each V, ~ {V03B1 | V03B1 ~ V ~ 0} ~ some

set U. [16; 45]
"A continuous map f of a space X into a space Y" is written

4tf : X ~ Y". The homotopy of f0, fi : X - Y is symbolized
"f0 ~ f1"; if the homotopy 0 satisfies 03A6(X I) C B where
B C Y, f o and f i are called "homotopic in B". f is nullhomotopic
(notation: f ~ 0) if it is homotopic to a constant map.
2.3 f : Sn ~ Y is nullhomotopic in B if and only if f has an
extension F : Hn+1 ~ Y with F(Hn+1) C B. [1 ; 501]
A polytope is a point set composed of an arbitrary collection of

closed Euclidean cells (higher-dimensional analogs of a tetrahe-
dron) satisfying: 1. Every face of a cell of the collection is itself a
cell of the collection and 2. The intersection of any two cells is a
face of both of them. The dimensions of the cells need not have
a finite upper bound, and the set of cells incident with any given
one may have any finite or transfinite cardinal. The CW topology
[17; 316] is always used: U C P is open if and only if for each
closed cell 5, Un a is open in the Euclidean topology of 7i.
2.4 The open sets of P are invariant under subdivision. Stars of
vertices are open sets. f : P - Y, Y any space, if and only if
f Q is continuous for each cell (T. If {U} is an open covering of P,
there is a subdivision P’ of P having each closed vertex-star
contained in some set of {U}. [17].
For a metric space X, define dim X ~ n if each open covering

{U} has a refinement {V} in which no more than n+1 sets V have
a non-vacuous intersection. (i.e. {V} is of order ~ n+1).
2.5 dim X  I ~ dim X+1. For any set E C X, dim E £ dim X.
[13]

In a space X with metric d, S (xo, a) denotes {x E X | d(x, x0) 03B5}.
Let A C X be closed, cover X - A by {S(x, 1 2d(x, A)) x E X - A}
and take a nbd-finite refinement {U}. Then [4; 354]
2.6 {U} has the properties: 1. Each nbd of a e [A - interior A]
contains infinitely many sets U; 2. For each nbd W D a there is a
nbd W’, a E W’ C W, such that whenever U ~ W’ ~ 0 then U C W;
3. For each LT, d(U, A) &#x3E; 0.
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Open coverings of X-A with the properties 1-3 above are
called canonical. One can always assume order{U}~dim(X-A)+1.

If N(U) is the polytope nerve of a canonical cover of X-A, the
set li=A UN(U) is given a Hausdorff topology by taking:

(a). N(U) with the CW topology and (b). A subbasis for the
nbds of a e A C X to consist of all sets with form

{W~A} u {all vertex stars in N(U) corresponding to sets U C W}
where W is a nbd of a in X.

2.61 Let K : X-A ~ N(U) be the Alexandroff map.
The (canonical) map

of X into X is continuous, and p A a homeomorphism. [4; 356]
2.62 If N(U)o is the zero-skeleton of N(U), then A C X is a

retract of A UN(U)o.
A retraction r is obtained [4; 357] by first choosing a point

xU e U; for each xu select au E A with d (au, xu)  2d(xU, A ) and
set

r (pu) = au, pU the vertex of N(U) corresponding to
r(a) = a, a ~ A.

2.63 An f : A ~ E has an extension F : A ~N(U) ~ E if either
(a). E is a convex subset of a locally convex linear space [4 ; 357]

or

(b). E is a convex subset of a real vector space L having the
finite topology: G C L is open if and only if for each finite-dimen-
sional linear subspace K, CO K is open in the Euelidean topology
of K. [3; 9]
B(Z) denotes the Banach space of all bounded continuous

real-valued functions on Z.
2.7 Each metric X can be embedded in B(X) [11 ; 543] as a
closed subset of its convex hull H(X) [18; 186].
LEMMA 2.8. Let X, Y be metric, A C X closed and f : A ~ Y.

Then there exists a metric Yi D Y and an extension F : X - Y,
such that Y is closed in Yl and F | X-A is a homeomorphism
of X-A with Yl-Y.

PROOF. Embed Y in H(Y); 2.61 land 2.63 yield and extension
F+ : X ~ H(Y). Regard X C B(X) and form the cartesian

product H(Y) X El X B(X); with Kuratowski [8; 139],
F(x)= [FI(x),d(x, A),x·d(x, A)] is the desired map and Y1=F(X).
3. The property LC".

DEFINITION 3.1. A space is n-locally connected (symbol:n-LC)
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at y E Y if for each nbd U D y there is a nbd V, y E V C U, such
that every f : Sn ~ V has an extension F : Hn+1~U, or, equiv-
alently (2.3) every f : Sn ~ V is nullhomotopic in U.
Y is LCn if it is i-LC at each point for all 0  i  n
Y is LC°° if it is LCn for every n.
The following is the generalization of Kuratowski’s theorem

[10; 273] to the non-separable metric case; the proof is similar.
THEOREM 3.2. Let Y be metric and n finite. The following four

properties are equivalent:
3.21 Y is LCn, n finite.
3.22 If X is metric, A C X closed, and dim (X-A) ~ n+1, then
every f : A ~ Y can be extended over a nbd W D A in X.
3.23 For eaeh y E Y and nbd U D y there is a nbd V, y E V C U
such that: if X is metric, A C X closed, and dim (X-A) ç n + 1,
then every f : A ~ V has an extension F : X - U.
3.24 For each y E Y and nbd U D y there is a nbd V, y E V C U
such that: if X is metric, dim X ~ n, every f : X ~ V is null-
homotopic in U.

PROOF.
1 =&#x3E; 2: Form X = A ~ N(U) of 2.61 with dim N(U) ~ n + 1.

Regarding f defined on A C X. one need only construct an open
W, A C WC X and an extension F : W ~ Y; Fp | 03BC-1(W) will
then be the required extension.

Let N(U)k be the k-skeleton of N(U); for k = 0, 1, ..., n+1,
open Wk, A C Wk C.9, and extensions fk : [A ~ N(U)k] n Wk~Y
will be defined inductively; the result follows by taking W = TV n+l
and f = fn+1.
Take Wo = X by 2.62, f0 = f r is the extension.
Suppose k - 1  n and Wk-1, fk-1 constructed. For each a E A

let Wa be a nbd of fk-1(a) = f(a) such that any f : Sk-1 - Wa
extends to a continuous map of Hk into Y. From 2.6 and con-

tinuity of fk-1 there is a nbd P. D a such that each closed k-cell 7i in
the vertex-stars that form Va satisfies (1) 03C3 ~ Wk-1 and
(2) Ik-l(bdry 03C3) C W a.

Set Wk = ~ Va.
a

To define fk, let 5 be any closed k-cell in a vertex-star forming
Wk; by (2) fk-1 1 bdrya has an extension over à. Let ~(03C3) be the
infimum of the diameters of the images of 7i taken over all possible
extensions, and define fk | 03C3 to be an extension having image
diameter  2 ~(03C3). Proceeding in this way yields and extension
Ik of fk-1 over (A ~ N(U)k) ~ Wk. Continuity need be proved
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only at A, and follows at once by observing that Y is (k -1 ) -LC
and fk-1 is continuous.
2 ~ 3. Assume 3 not true at yo. Then there is an S(y0, oc) = U,

a sequence Xi of metric spaces, a sequence A C Xi of closed
subsets with dim (Xi-Ai) ~ n+1, and a sequence of fi : Ai -+
- S (yo, oe li ) none of which is extendable over X with values in U.
The points and metric of X i will carry the subscript i. One can

assume all the metrics bounded: di (xi, x’i)  1. Construct a metric

space 1 consisting of a point x and the pairwise disjoint union of
the Xi by setting

Â = x u A, is closed 1 and dim (-Â) ~ n+1 [13]. Defining
 : Â ~ Y by I(ai) = f(ai), f(x’) = yo, f is continuous, so by 2 there
is an open  ~ Â and an extension P :  ~ Y. Because x E 
and diam (x U X i )  2-i, W contains all X four 1 large. Using the

continuity of P at x one easily finds diam (YoU (Xi)  03B1 2 for

large i, so that then (Xi) C U. Since F Xi is an extension of Ii
this contradiction proves the assertion.

3 =&#x3E; 4. This is the homotopy theorem corresponding to 3:

set  = X I and A = X 0 ~ X  1 then 3 applies since
dim (X I) ~ n+1.
4 ~ 1. Let X = Sr, 0  r  n.
REMARK 3.3. In case n = ~, then 3.2 holds is one restricts

X - A to having finite dimension.

THEOREM 3.4. Let Y be metric. The following two properties
are equivalent.,
3.41 y is LCn n finite.
3.42 If Z is metric, Y C Z is closed, and dim (Z-Y) ~ n+1,
then Y is a nbd retract in Z.

PROOF. 1 ~ 2 is obvious from 3.22.
2 =&#x3E; 1. One shows 3.22 valid. Given f : A -+ Y as in 3.22,

use 2.8 to obtain a metric Yi D Y, Y closed in Y,, and an extension
F : X - Yi.

Since X -A is homeomorphic to Yl - Y, dim (Y1-Y) ~ n+1
so that there is an open U D Y in Y1 and a retraction r : U -+ Y.
rF | F-1(U) is the desired extension of f.



234

4. Characterization of LC° by partial realization.
DEFINITION 4.1. Let {U} be a covering of a space Y. Let P be

a polytope and Q a subpolytope of P containing the zero-skeleton
of P. An f : Q - Y is called a partial realization of P relative to
{U} if for each closed cell o- of P, f(Q ~ a) C some set U.
THEOREM 4.2. Let Y be metric. The following two properties

are equivalent:
4.21 Y is LCn, n finite.
4.22 Each open covering {U} of Y has a nbd-finite refinement
{V} with the property: Every partial realization of any polytope P
dim P  n+1, relative to {V} extends to a full realization of P
relative to {U}.

PROOF. 1 =&#x3E; 2. For each y e Y select a U D y ; choose an open
V, y e V C U satisfying the definition of n-LC and let {V(n)} be a
star-refinement. Repeat, using {V(n)} and (n-1)-LC to obtain
{V(n-1)}. A nbd-finite refinement of {V(0)} satisfies the re-

quirements.
2 =&#x3E; 1. Let y e Y. For any e &#x3E; 0 take the open covering:

S(y, e), Y-S(y, e/2). Let {V} be the refinement satisfying (2),
and choose V D y. Then V C S (y, e) and, Sk being a subpolytope
of Hk+1, any f : Sk ~ V extends to F : Hk+1 - S(y, a), k  n.
This suffices to prove the assertion.
REMARK 4.3. 4.2 is valid even if the polytopes of 4.22 are

restricted to be finite.

5. Characterization of LC" by homotopy.
THEOREM 5.1. Let Y be metric. The following two properties

are equivalent:
5.11 Y is LCn, n finite.
5.12 Each open covering {U} has a nbd-finite refinement {W}
with the property: For any metric X, dim X ~ n, and any
fo, f, : X ~ Y satisfying

(a). 10(x) and fl(x) belong to a common W for each x e X.
Then fo - f, and the homotopy 0 can be chosen so that 0(x, I) lies
in a set U for each x.

PROOF. 1 =&#x3E; 2. Let {U(0)} be given. Construct successive star
refinements {U(i)}, i = 0, i, ..., n with {U(i+1)} having prop-
erty 4.22 relative to {U(i)}. Let {W} be a star refinement of
{U(n)}; by 2.1 {W} may be assumed nbd-finite. This is the desired
open covering.
Let /0, f, satisfy (a) and let {G} be a common refinement of

{f0-1(W)} and {fi-1 (W)}. Take a common refinement of a canonical
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cover of X I-[X 0 ~X 1] and {G I}, and let {V} be a star
refinement of thisresulting cover. {V} can be assumed nbd-finite and
of order  n+1; it is clearly also a canonical cover.

Form X  I = X  0 ~ X  1 ~ N(V ) and regard f0, f, defined on

the subsets X  0, X  1, respectively, of X X I. Construct an

extension Fo : X 0 ~X 1 ~N(V)0 ~ Y as follows : given the
vertex pv select xy X iy E V ; if iV ~ 1 2 set F0(pV) = 10(xv), otherwise
F0(pV) = f1(xV). Fo is continuous.
Let (po ..., pr) be any r-cell of N(V ); all these vertices will be

shown to map into a single {U(n)}. Since Vo n ... ~ Vr ~ U,
u V i C G X I for some G so that Ú aei C G. Since G C f0-1(W) for
0 0

some W, ~f0(xi) C W. By condition (a) for each i = 0, ..., n
o

there is a Wi with f0(xi) ~ f1(xi) C Wi so that W ~ Wi ~ 0, which
means U Wi C U(n) for some U(n) and therefore

Proceed by induction. Assume an extension Fk-l on
X X 0 ~ X  1 ~N(V)k-1 which is a partial realization of N(V)
relative to {U(n-k+1)}; Fk-1 extends over each closed k-cell b
with image in a set U(n-k). Let q(6) be the infimum of the
diameters of all the possible extensions; select an extension with
diam Fk(a)  2q(6) and Fk(Q) C some U(n-k). This process
yields a partial realization of N(V) relative to {U(n-k)} and the
map is continuous on X  0 ~X 1 ~N(V)k as in 3.22.
The rèquired homotopy is OE = Fn+i ,u; the required condition

is satisfied because, by the above, all vertices corresponding to
sets lying in a strip G I have images in one set {U(n)} so that in
extending the partial realization the images of all cells lie in one
{U(O)}. 2 =&#x3E; 1. As in 4.2

6. Characterization of LC° by "factorization".
THEOREM 6.1. Let Y be metric. The following two properties are

équivalent :
6.11 y is LCn, n finite.
6.12 For each open covering {U} there exists a polytope P,
dim P ~ n and a g : P - Y with the property: For any metric X,
dim X ~ n and any f : X - Y there is a ~ : X - P with f ~ gq,
and the homotopy 0 can be chosen so that 0(x, I) lies in a single
U for each x.
PROOF. 1 ~ 2. Let {W} be a refinement satisfying 5.12 relative
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to {U} let {V} be a refinement of {W} with property 4.22, and
finally let {V} be a star refinement of {V}; {V} can be assumed
nbd-finite. Let P = N(V)n and define ~0 : Po - Y by sending
each pv to a yV E V ; this is obviously a partial realization relative
to {V}; ~0 extends to ~ : P - Y with the image of each n-cell in
some W.

Let X be metric, dim X ~ n and f : X ~ Y. Form {f-1(V)} and
let {G} be a star nbd-f inite refinement of order  n+1. Let
K : X ~ N(G) be the Alexandroff map and define y : N(G ) - P
as follows: for each pG select a V with G C f-1(V) and set

y(pG) = pv. This is simplicial, and extending linearly gives a
continuous map (2.4). f will be shown homotopic to ~03B3K in the
required way.

Let x ~ G1 n ... ~ G, and only these sets; then K(x)~(pG1,...pGs)
so 03B3K(x) ~ (pV1 ... pVs); since g(pVi) E Vi i andn Vi e 0, one finds

g03B3K(x) lying in some W satisfying ÜVi C W. Again, since

f(Gi) C V i, i = 1, ..., s one has f(x) E r1 V i C W also, so for each x
g yK(x) and f(x) are in a common W hence are homotopic in the
required fashion.

2 =&#x3E; 1. Assume Y not k-LC at yo, k  n. There is an S(y0, oc) and
a sequence of f i : Sik ~ S(yo, 03B1/4i) with no fi nullhomotopic in
S(yo, oc). As in 3.2, form S = x ~ Sik and define  :  ~ Y by
() = y0,  | ik = fi.

Cover Y by S(y0, oc/2) and Y-S(y0, ce/3), and let P be the
polytope corresponding to this covering. Since dim  ~ n [13]
there is a ~ :  ~ P with f ~ g~, and because f() C S (yo, oc/4) the
homotopy ~ satisfies ~( I) C S(y0, oc/2) hence g~()~S(y0, 03B1/2).
In particular ~() C g-1(S(y0, 03B1/2)). Cover P by g-1(S(y0, oc» and
P-g-1(S(y0, 03B1/2)) ; subdivide P so each closed vertex star lies in
one of these open sets (2.4). Let St p be the star containing ~().
Then g-1(S(y0,03B1)) is open, contains St p and ~(Sik) ~ St p for
large i. Since ~ | Sik is nullhomotopic in St p (by radial contraction)
and f i ~ g~ | Sik in S(y0, oc/2) one finds f ~ 0 in S(y0, a ), a con-
tradiction.

7. The property LC.

DEFINITION 7.1. A space Y is locally contractible at y E Y if
for each nbd U D y there is a nbd V, y E V C U, contractible to a
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point over U, i.e. the identity map of V is nullhomotopic in U.
Y is LC if it is locally contractible at every point.
Every LC space is clearly LC°°; the converse is not true, even in

separable metric spaces [10; 273]. However,

THEOREM 7.2. Let Y be a finite-dimensional metric space. Thé

following three properties are equivalent:
7.21 Y is LCn, n some integer &#x3E; dim Y.
7.22 Y is LC.

7.23 Y is LC°°.

PROOF. Only 1 ~ 2 requires proof. Given U D y let V be a nbd
satisfying 3.24. Since dim V ~ n (2.5) the identity map of V is
nullhomotopic in U.

8. The properties C’ and C.

DEFINITION 8.1. Y is connected in dimension n (written: n - C )
if each f : Sn ~ Y is nullhomotopic. Y is C n if it is 1-C for all
0 ~ i ~ n Y is C°° if it is C n for all n.
Y is CO is equivalent with Y arcwise connected; Y is n-C is

equivalent with the n-th homotopy group 03C0n(Y) = 0.
DEFINITION 8.2. Y is contractible (symbolism: Y is C) if the

identity map of Y is nullhomotopic.
Clearly Y is C implies Y is C°° ; the converse is not true [10; 273].

The following theorem is well-known (see for example [5; 241]).
THEOREM 8.3. Let Y be any (not necessarily metric) space,

and n finite.

The following five properties are equivalent:
8.31 Y is Cn.
8.32 If P is any polytope, and Q C P a subpolytope, any
f : Q - Y extends over Q U Pn+1, where P 8 denotes the s-skeleton
of P.

8.33 If P is any polytope, Q C P a subpolytope, and f o, fi : P~Y
satisfy f0 | Q ~ f1 | Q, then f0 Q ~ Pn ~ fl 1 Q UP,.
8.34 If P is a polytope with dim P  n, any f : P ~ Y is null-
homotopic.
8.35 If P is any polytope, any f : P ~ Y is homotopic to an
f1 : P ~ Y sending Pn to a single point.

This will be used in the next section.
REMARK 8.4. If n = oo, no restriction need be placed on

dim P in 8.3.
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9. The properties Cn and LCn together.

THEOREM 9.1. Let the metric space Y be LCn. The following
three properties are equivalent:
9.11 Y is Cn.

9.12 If X is metric, A C X closed, and dim (X-A) ~ n+1, then
any f : A ~ Y extends over the entire X.
9.13 If X is metric, dim X ~ n, then any f : X - Y is null-
homotopic.

PROOF. Only 1 =&#x3E; 2 requires proof. Using A UN(U) and regard-
ing f as defined on A C A ~ N(U), the problem is to extend f over
A UN(U). Since Y is LCn, the proof of 3.22 gives an extension f’
over a nbd W’D A in A ~N(U). Let Q be the union of all closed
cells of N(U) on which f ’ is defined; Q is a subpolytope of N(U) and
no point of A is a limit point of N(U)-Q. The extension of /’ j Q
over N(U) guaranteed by 8.32, together with f’ | A ~ Q is the
desired map.
THEOREM 9.2. Let Y be a finite-dimensional metric LCr space,

where r &#x3E; dim Y. The following three properties are equivalent:
9.21 Y is C n for some n &#x3E; dim Y.
9.22 Y is contractible.

9.23 Y is C°°.

PROOF. As in 7.2.
REMARK 9.3. Theorem 9.2 is not true if dim Y = oo, even if Y

is separable metric. [2]

10. Absolute neighborhood retracts and absolute retracts.

DEFINITION 10.1. An arbitrary space Y is an absolute nbd
retract for a class 3t of spaces (written: Y is an ANR 2[) if for any
closed subset A of any X E 2l, and any f : A ~ Y, there is an
extension F : U ~ Y of f over a nbd U D A.
Y is an absolute retract for the class 31 (symbol: A R 9t) if for

any closed subset A of any X ~ U and any f : A - Y, there is an
extension F : X ~ Y.

In the following, YR denotes the class of metric spaces, 13 the
class of polytopes.
An immediate consequence of 2.63, as was pointed out in [3; 9],

[4; 357] is

THEOREM 10.2. Any convex set C of either (a): A locally convex
linear space, or (b): A real vector space with finite topology, is an
A R M.
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11. ’I’he properties ANR and AR in polytopes.
In [3; 10] it was shown that

11.1 Any polytope P can be embedded as a nbd retract in a
polytope K spanning a convex subset of a real vector space with
finite topology.

This leads at once to

THEOREM 11.2. Any polytope is an ANR M and also an ANRI3.
It is an AR m if and only if it is an A R B.
PROOF. The ANRU follows from 11.1 and 10.2; this was

proved in [3; 10a]. The ANR 13 has also been proved in [3; 10a].
A R 13 implies A R 9N since P would be a retract of H in 11.1, and
one then applies 10.2. AR m implies A R 13 is proved inductively
exactly as [3; 10a]
THEOREM 11.3. Let P be a polytope. Taking 2! = Wl or 13, the

following three properties are equivalent:
11.31 P is an A R U.
11.32 P is contractible.
11.33 P is C°°.

PROOF. Only 3 =&#x3E; 1 requires proof; P will be shown A R W1.
From 8.4, 8.32, P is a retract of the K in 11.1, so the result follows
from 10.2.

12. The properties ANR and AR in metric spaces.

THEOREM 12.1. For metric Y the following are equivalent:
12.11 Y is an ANR 9N (an A R 9).
12.12 ’If Z is metric and Y C Z closed, then Y is a nbd retract
(retract) in Z.
12.13 Y can be embedded in the Banach space B ( Y ) as a nbd
retract (retract) of its convex hull H(Y).

PROOF. 1 =&#x3E; 2 =&#x3E; 3 is trivial; 3 ~ 1 is analogous to the proof
given in 11.3.
THEOREM 12.2. If Y is a metric space, and Y is an ANR 9N

(A R M), then Y is also an ANR 13 (A R B).
This is proved in [3; lob].
THEOREM 12.3. Let Y be metric. If Y is an ANR M (AR M

then Y is LC (LC and C), hence also LC°° (LCOO and C°°).
PROOF. Note first that a convex subset of a Banach space is

contractible and locally contractible. The theorem follows from
12.13 by the trivial remark that contractibility is preserved under
retraction and local contractibility is preserved under nbd retrac-
tion.
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12.4. THEOREM For metric Y, the following properties are

equivalent:
12.41 Y is an AR P.
12.42 Y is a contractible ANRV.
12.43 Y is a C°° ANR P.
PROOF. 1 =&#x3E; 2 =&#x3E; 3 is trivial. 3 =&#x3E; 4 follows as in 9.12, using

8.4, 2.63.

13. Characterization of ANR 9R by partial realization.

The following Lemma is due to Kuratowski [8; 122].
LEMMA 13.1. Let D be an arbitrary non-empty subset of a

metric Z. Let {U} be a covering of D by sets open in D. Then
there exists a collection {Ext U} of sets open in Z with
13.11 U = D n Ext il for each U.
13.12 The nerve of {U} is homeomorphic to the nerve of {Ext U}

In fact, one defines
Ext U = fz e Z | d(z, U)  d(z, D-U)}.

REMARK 13.2. If U C U’ then Ext U C Ext U’.

REMARK 13.3. Given z e Ext U; if 03B6 ~ D is to be chosen to

satisfy d(z, C)  2d(z, D) one can always find such an 03B6 in U.
THEOREM 13.4. For metric Y, the following properties are

equivalent:
13.41 Y is an ANR M.
13.42 For each open covering {U} of Y there is a refinement {V}
with the property: Every partial realization of any polytope
relative to {V} extends to a full realization in {U}.

PROOF. 2 =&#x3E; 1. For each n = 1, 2, ... define inductively an
open cover V(n) as follows:
(a) {(1)} is an open cover of mesh  1, i.e. sup diam {(1)}  1

(b) {’(1)} satisfies 13.42 relative to {(1)}
(c) {’’(1)} is a star refinement of {’(1)}
(d) {V’’(1)} satisfies 13.42 relative to {’’(1)}
(e) {V(1)} is a star refinement of {V’’(1)}

If {V(n-1)} is defined, let V(n) be a refinement of mesh -
n

and go through (a) - (e) again to obtain {V(n)}. Note that
{V(n)} is a refinement of {V(n-1)}.
Embed Y in H(Y); to obtain a retraction of a nbd of Y onto Y

some further constructions are needed.

(a) Form the open sets Ext V(n) in H(Y) ; from 13.2,
13.5: Each Ext V(n) is contained in some Ext V(n-1).

(03B2) Let {U} be a canonical cover of H(Y)-Y.
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(y) Define a sequence of nbds Wi ~ Y in H(Y) by induction:
Set 97, = UExt V(1). If Wn-1 is defined, normality gives an

open Gn with Y C Gn C Gn C J17 n-l. For each y E Y choose a nbd of
form Gn ~ Ext V(n); by 2.6, y has a nbd Wn(y) such that
U ~ Wn(y) ~ 0 implies U C G. nExt V(n). Define Wn = U Wn(y)
to complete the inductive step.

Clearly Wn C Wn-1 and one can assume d(Y, H(Y)-Wn)  
n

Furthermore,
13.6 W1 ~ W2 ~ ... and n Wi = Y.
13.7 Let n &#x3E; 3. If U ~ Wn ~ 0 then U C Wn-1 n Ext V(’1t) for
some V(n) and therefore U ~ (Wn-2-Wn-1) = o.

Indeed, U ~ Wn ~ 0 implies U n Wn =1=- 0 because U is open;
thus U ~ Wn(y) =1=- 0 for some y and the result follows.

(b ) To each U assign an integer nu as follows: if U ~ JJT 3 = 0
set nU = 0; if U ~ W3 ~ 0 set nU = sup {i | U ~ Wi ~ 0}; the

finiteness of nu follows from 13.6 and 2.6.

From 13.7 and 13.5 follows

13.8 If nu &#x3E; 3, then U C some Ext V(nU) and for each 3~k~nU
there is a V(k) D V(nU) with U C Ext V(k).
The constructions are now complete.
Form Y ~N(U) and map the vertices (pu) of N(U) into Y as

follows: In each U choose a point zu; for each zu select a yU ~ Y
satisfying d(yu, zu)  2 d(zu, Y). By 13.3 and 13.8, if nU &#x3E; 3 the

yu ean be assumed to lie in a set V(nU) such that U C Ext V(nU).
Define r : YU N(U)o - Y by

Continuity follows from 2.62.
Form the "rings" Rm = W m - W m+1 and let Pm be the sub-

polytope of N(U) formed by all the sets U intersecting Rm.
13.9 For each m ~ 3, r is a partial realization of Pm im {V’’(m)}.
In fact, if (pUi, ..., PUs) is a cell of Pm, then according to 13.8
there are Vi(m) ~ r(PUi) with Ext Vi(m) ~ Ui, i = 1, ..., s; since
Ul n... ~Us ~ 0 the Ext Vi(m), hence ’also the Vi(m), have a
non-vacuous intersection. The union of the Vi(m), hence Û r(pUi)’
is contained in some V"(1n).
By 13.7, Pm ~ Pn = 0 for | m-n | ~ 2. For each n = 1, 2, ...
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extend the partial realization r on P2.+l to a full realization in
{’’(2n+1)} and denote this extension by .
13.10 For each n = 1, 2, ...,  is a partial realization of P2n+2
relative to {’(2n+1)}.

Indeed, let i1 = (pU1, ..., pUs) be a cell of P2n+2; by 13.9,
f sends all the vertices of 6 into a single V"(2n-f-2) hence also into
a single set ’’0(2n+1). Since the faces of o can belong only to
P2n+l’ P2n+2, P2n+3,  sends any realized face to a ’’(2n+1)
intersecting ’’0(2n+1), so that (03C3) is contained in some ’(2n+1).

Y therefore extends to r’ : Û Pi ~ Y with r’ 1 P2n+1 U P2n+2
being a realization relative to {(2n+1)}.

Setting

one has q : Yu U Pi ~ Y, the continuity at points of Y following
3

from mesh (k)  1/k and the continuity of r.

Let W = U Wi and p : H(Y) ~ YU N(U) the canonical map.
5

Then ~03BC | W retracts W onto Y and by 12.13 Y is an ANRR.
1 =&#x3E;2. Embed Y in H(Y); since Y is an ANR, there is a retrac-

tion r of a nbd V D Y in H(Y) onto Y. To simplify the terminology,
a spherical nbd in H(Y) means the intersection of a spherical nbd
in the Banach space B(Y) with H(Y). For each y E Y choose a
spherical nbd S(y) of y in H(Y) satisfying S(y) C V and S(y) ~ Y C
some set {U} of the given open covering. Finally choose a spherical
nbd T(y) in H(Y) with T(y) C V and r(T(y)) C S(y). The desired
refinement is fT(y) ~Y}. Let f be a partial realization of P
relative to fT(y) ~Y} defined on Q D Po. For each closed r-cell à
let Z(Q) = f(Q~ 03C3) and Z(03C3) be the convex closure of Z(or). The
missing faces of P are now inserted so that the image of each à lies
in Z(Q). Since Q ~ Po, proceed by induction.: if all faces of

dimension  r have been inserted as required, for any r-cell îî,

bdry 6 is a subset of Z(03C3); taking the join of q e Z(03C3) with f(bdry 03C3)
gives an extension over b with the required property. Repeating
for each r-cell completes the inductive step. If F is the full

realization obtained, F(6 ) C Z(Q) C T(y) C V for each a, so rF is a
full realization relative to {U}.
REMARK 13.11. The implication 1 =&#x3E; 2 remains true in case Y
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is a polytope. Indeed, given an open covering {U}, subdivide to
get Y’ with each of its closed vertex stars lying in some set of
{U}. Embed Y’ in the K’ of 11.1. A nbd W of Y’ in K’ of which Y’
is a retract is obtained [12; 292] by taking ’the barycentric sub-
division K" of K’ and letting W be the union of all the vertex stars
in K" which have center a vertex of Y". Each such star is convex,

and these play the role of Z in 1 ~ 2 of 13.4.

14. Characterization of ANRU by "factorization".
LEMMA 14.1. Let Y be either an ANR 9 metric space or a

polytope. For each open covering {U} of Y there exists a refine-
ment {W} with the property: If X is any metric space, and

f0, fi : X - Y are such that 10(x), 11(x) lie in a common W for
each x E X then f o ~ f, and the homotopy ~ can be so chosen that
~(x I) lies in a set U for each x ~ X [4; 363].

PROOF. With the notations in 1 ~ 2 of 13.4, {T(y) ~ Y} is
shown to be thé required open cover. If f o, fi are as in the statement
of the Lemma relative to {T(y)~ Y}, then for each x, 10(x) and
f1(x) can be joined by a line segment lying in T(y), hence in V;
letting ~(x, t ) = tf0(x)+(1-t) f1(x) gives f o ~ fi in the required
fashion. The proof for Y a polytope is similar.

It will be necessary to use the trivial
14.2 Let Q be a subpolytope of K. There is a retraction

r : K I ~ K 0~Q I. Furthermore, for each cell ii of K,
r(03C3 1) ~ 03C3 I.

This result is well known; see, for example [14; 84]. It follows
by a simple induction based on the observation that
[bdry 03C3]  I ~ 03C3  0 is a retract of 6 X I.
The following theorem is also given by Hanner [6; 358]; his

proof is different from the one that appears here.
THEOREM 14.3. Let Y be a metric space. The following prop-

erties are equivalent:
14.31 Y is an ANR Sffl.
14.32 For each open covering {U} of Y, there exists a polytope P
and 03BB : Y ~ P, g : P ~ Y such that gÀ = identity map of Y, and
the homotopy ~ can be so chosen that, for each y the set §(y X I )
lies in a set U.

PROOF. 1 ~ 2. This is similar to 1 =&#x3E; 2 of 6.1. See also [4; 365].
2 =&#x3E; 1. 13.42 will be shown to hold. Given {U} select a star refine-
ment {V}. Let P be the polytope satisfying 14.32 relative to {V}.
Since {g-1(V)} is an open cover of P, apply 13.11 to get a refine-
ment {W} having the partial realization property 13.11 relative



244

to {g-1(V)}. Let {} be a common refinement of {03BB-1(W)} and
{V}.
Let f be a partial realization of a polytope K relative to {}.

f is defined on Q D Ko. Â f is a partial realization relative to {W}
hence extends to a full realization F’ in P relative to {g-1(V)};
gfl : K - Y sends each cell of K into a set V, and gF’ | Q = g 03BB f.
Deform g 03BB to the identity according to 14.22; in obvious fashion
this yields a map 11 : K  0 ~ Q XI - Y with 4 | Q  1 = f, and
by the 14.22, 0394(03C3 I) C some U for each b. With the retraction
r of 14.2, 4r j K X 1 is an extension of f over K with the image of
each cell in a set U. By 13.42, Y is an ANR 9Jl.

15. ANR9R and ARU in finite-dimensional metric spaces.

THEOREM 15.1. Among the finite-dimensional metric spaces
(whether separable or not), the locally contractible ones are the
ANR 3K. Precisely, if Y is metric and dim Y finite, the following
three properties are equivalent:
15.11 Y is LCn for some integer n &#x3E; dim Y.
15.12 Y is locally contractible.
15.13 Y is an ANR5JJt
PROOF. 1 =&#x3E; 2 by 7:2. 2 =&#x3E; 3: Since Y is LC, it is also LC°°. If

dim Y  r, applying 6.12 with the identity map of Y, 14.3 shows
Y an ANR 9R. 3 =&#x3E; 1 by 12.3.
For infinite dimensional spaces, this theorem is not true, even

with the added hypothesis of separability.
THEOREM 15.2. Among the finite-dimensional arbitrary metric

spaces, the contractible and locally contractible ones are the
A R 9. Precisely, if Y is metric and dim Y is finite, the following
properties are equivalent:
15.21 Y is Cn and LCn for some n &#x3E; dim Y.
15.22 Y is contractible and locally contractible.
15.23 Y is an A R ID1.
PROOF. 1 ~ 2 from 7.2 and 9.2. 2 ~ 3: By 15.1, Y is an AlvTR9Jl;

use 12.4 to find Y is an A R M. 3 =&#x3E; 1 by 12.3.
The following theorem characterizes the finite-dimensional

AR 9X solely by a special type of contractibility.
THEOREM 15.3. Let Y be metric and dim Y finite. The follow-

ing two properties are equivalent:
15.31 Y is an A R M.
15.32 Given any yo E Y, Y is contractible to this point in such a
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way that during the entire process of deformation, yo remains
fixed.

PROOF. 1 =&#x3E; 2 is trivial.

2 =&#x3E; 1. One need only show that Y is locally contractible. This
follows trivially by selecting a contraction 15.32 to any point yo
and using the continuity of this contraction at yo.
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