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Differentiable mappings in the Schoenflies theorem

Marston Morse

The Institute for Advanced Study Princeton, New Jersey

§ 0. Introduction

The recent remarkable contributions of Mazur of Princeton

University to the topological theory of the Schoenflies Theorem
lead naturally to questions of fundamental importance in the
theory of differentiable mappings. In particular, if the hypothesis
of the Schoenflies Theorem is stated in terms of regular differen-
tiable mappings, can the conclusion be stated in terms of regular
differentiable mappings of the same class? This paper gives an
answer to this question.

Further reference to Mazur’s method will be made later when

the appropriate technical language is available. Ref. 1.

An abstract r-manifold 03A3r, r &#x3E; 1, of class Cm is understood in
thé usual sense except that we do not require that Er be connected.
Refs. 2 and 3. For the sake of notation we shall review the defini-

tion of Er and of the determination of a Cm-structure on Er’ m &#x3E; 0.

we suppose that E, is a topological space which satisfies the
Hausdorff condition and which is an r-manifold in the sense that

each point pE 1,. has a neighborhood which is the homeomorph of
a euclidean r-disc.
We consider local representations F of 1, of the form

in which U is an open subset of a euclidean r-space, and X an

open subset of 03A3r, homeomorphic to U under F. We term X a
coordinate domain on 03A3r and U a corresponding coordinate range.
The euclidean coordinates (ul, ..., Ur) of a point (u) E U are called
local coordinates of the corresponding point F(u) E X.

Let U and V be open subsets of euclidean r-spaces. A homeo-

morphism of U onto V will be said to be a Cm-diffeomorphism of U
onto V if f has the form

where (u) is a point in U, and (f(u)) is the image of (u) under f,
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where each f is of class Cm over U, and where tle functional matrix

is of rank r at each point of U.
A set [F] of local representations F of Er of the form (0.0) will

be said to determine a Cm-structure on Er if [F] together with the
associated sets [U] and [X] of euclidean coordinate ranges U and
coordinate domains X on 03A3r satisfy the following two conditions.

I. Covering Condition. The sets of [X] shall have 03A3r as a union.
II. Cm-compatibility Condition. If

are arbitrary mappings in [F] such that

then the mapping (u ) ~ (v ) defined by the condition

for (u) e F-11(X) and (v),E F-12(X) shall be a C’"-diffeomorphism

in the sense just defined.
Local representations o f class cm, admissible in H. Given a

Cm-structure H on Er determined by [F], a local representation

of X ~ 03A3r, satisfying the conditions imposed on F, in (0.0), will be
admitted in H as a representation of class C-, if Fi and an arbitrary
F2 e [F] satisfy the above compatibility condition defined for
FI and F2. We do not demand that Fi be in [F]. If [F’] is a
second set of local representations of 1,, such that [F] and [F’]
both "determine" a Cm-structure on 03A3r, we understand that these
structures are the same if the ensemble of admissible representa-
tions of 1, of class cm, associated as above with [F], is the en-
semble associated with [F’].

Cm-di f f eomorphisms o f Er onto 03A3’r. Suppose that Er and 03A3’r
are given with Cm-structures (m &#x3E; 0). Let be a homeomorphism
of X,. onto E;. We say that is a Cm-diffeomorphism of X, onto E;
if whenever F : U - X is an admissible local representation of E,.
of class Cm then

is an admissible local representation of 03A3’r of class Cm.
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The euclidean n-spaces E and é. Let n &#x3E; 1 be a fixed integer.
Let E and J be two euclidean n-spaces with euclidean coordinates

(xl, ..., xn ) and (y,, ..., yn ) respectively. We shall be concerned
with an (n -1 )-sphere Sn_1 in E of unit radius, and a compact
(n-1 )-manifold JI n-l in tf of class Cm such that Mn-1 is the image
of Sn-1 under a Cm-diffeomorphism q.
We suppose that Sn-1 and have Cm-structures derived from

those of E and 8 respectively. That is we suppose that Mn-1 is the
union of a finite set of coordinate domains each with a representa-
tion of class Cm of the form

where (yi, ..., Yn) are the euclidean coordinates of the point of
Mn-1 represented and

Here gr is to be deleted from the set (y,, ..., yn) corresponding to
an integer r which depends on the given coordinate range. The
(n -1 )-sphere Sn_1 shall have an analytic structure similarly
related to the structure of E.

C:-diffeomorphisms. Let Er and 03A3’r be r-manifolds of class C-.
Let P and P’ be points respectively of 1,. and E;. Then Er- P and
03A3’r-P’ are r-manifolds to which Cm-structures derived from tllose
of Er and 1,’ respectively will be assigned. A homeomorphism

of 1,. onto E; will be termed a C;:’-diffeomorphism if for some
P E Er and P’ E E;, (P) = P’ and the restriction of  to 1,. - P
is a Cm-diffeomorphism of 1,-P onto E;-Pl. We term P the
exceptional point of A.

Let JSn-1 and J Mn-1 be respectively the closures of the interiors
of Sn-1 and Mn-1 in E and d. Open sets in E and 03B5 are n-manifolds
to which the differential structures of E and J respectively will
be assigned. When we refer to a C;:’-diffeomorphism of a neigh-
borhood of JSn-1 relative to E we shall always mean a Cy-diffeomor-
phism in which the exceptional point (if any exists) is on the
interior of Sn-1. With this understood the fundamental theorem of
this paper is as follows.
THEOREM 0.1. Given a Cm-diffeomorphism (m &#x3E; 0)

o f S.-, onto Mn-1 there exists a C’:-diffeomorphism ~ o f some open
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neighborhood of fSn-1 relative to E onto some open neighborhood of
J M n-l relative to 03B5, ztliere ~ is such that

There are indications that Theorem 0.1 would be false if Cô
were replaced by CI in its statement, at least false for some in-
tegcrs n. See rcf. 5.

Mazur has established an Embedding Theorem under certain
restrictions on Mn-1, without affirming any differential structure
for the mapping function Atp. If J(n-1 is an (n -1 )-manifold of
class Cm, ln &#x3E; 0, and if ~ is a homeomorphism, Mazur’s process is
applicable to prove that Acp exists as a liomeomorphism. The
essence of this paper is that the construction of Mazur can be so
modified and extendcd that when rp is a Cm-diffeomorphism,
a mapping A 91 exists which is more than a homeomorphism, which
is in fact a Cm0-diffeomorphism satisfying Theorem 0.1.

Mcthods. We begin in § 1 and § 2 by setting up a theory of the
composition by partial identification of two n-manifolds of class
Cm to form a new n-manifold 1 of class Cm. In § 3 we introduce a
fiindameiltal theorcm on a modification of a Cm-diffeomorphism
given initially as a Cm-diffeomorphism of a neighborhood of the
origin in E onto a neighborhood of the origin in 03B5. The modifica-
tion is a Cm-diffeomorphism of E onto 03B5.

Iii the next five sections wc successively introduce three different
classes of problems arising out of our initial Schoenflies problem:
given 99 to find ~. We say that a class (A ) of problems A is

ellectively mapped into a class (B) of problems B if to each problem
A corresponds at least one problem B such that the solution of B
implies the solution of A. We show that each of our classes of
problems (excepting the fourth) can be effectively mapped onto
the succeeding class of problems.

(1). The first class of problems is to find ~ satisfying Theorem
0.1, given as in ’rheorem 0.1.

( II ). The second class of problems is a subset of the first class
in which is a "sense preserving" C°°-diffeomorphism (§ 4) such
that for some neighborhood NQ of the "xn-pole" Q of Sn-1

where I is the mapping xi = yi(i = 1, ..., n ) of E onto 03B5.

(III). In the third class of problems in (II) is replaced by a
C~-diffeomorphism 03A6 of a neighborhood of S.-, relative to E. In
some neighborhood of the xn-pole of Sn-1, relative to E, 0 is

is given by I.
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(IV). Finally we reflect E in a suitable (n -1 )-sphere to lead
to a problem which concerns a Cô -diffeomorphism of a rectangular
subregion of an n-cube K in E onto a special subregion of an n-cube
5i in 03B5. Cf. § 7.
We eventually reduce the problem to one involving mappings of

class C~. Various theorems on the possibility of Cm-extensions
over E of Cm-diffeomorphisms given locally are established of
general character.

In the last sections wè return to the theory of the partial
identification of n-manifolds as developed in § 3. We thereby solve
an arbitrary problem of our fourth class, implying a solution of an
arbitrary problem of the first class, that is the existence of a

mapping ~ which satisfies Theorem 0.1.

PART I. TRANSFORMATIONS OF THE PROBLEM

§ 1. Composite n-manifolds 1.

Let M and Jé be respectively two n-manifolds abstractly given,
without points in common. Let W and "Ir be fixed open subsets of
M and -4l respectively. We admit the possibility that M or JI may
be empty. We presuppose the existence of a homeomorphism

Let each point p ~ W be identified with its image u(p), to form a
"point" which we denote by [p : y(p)]. Subject to this identifi-
cation let 1 be the ensemble of all points of M and M.

The #-mappings 03C0, 03C01, Tl2. To each point p E M corresponds a
point n (p) E 1 represented by p if p ~ W and by [p : 03BC(p)] if p E W.
To each point q E vit corresponds a point a (q) E 1 represented by
q if q f. ir, and by [03BC-1(q) : q] if q E ire Set

The mappings

are biunique but not in general onto. Thé mapping n is onto E but
not in general biunique. For the purpose of future identification we
shall refer to 7&#x26;, 7&#x26;1’ 03C02 as the #-mappings associated with E.

Observe that
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and that for p E J4’ or q E F

Notational conventions. In the future we shall ordinarily set
03C02(03BC(p)) = 03C02 · 03BC(p); 03C01(03BC-1(q)) = 03C01 · 03BC-1(q).
We have found such a simplification of notation necessary in more
complex cases. For example, if f1, f 2, f3, f4 are mappings such that

is well-defined for a set A, we shall write (1.6) as

Thus each . replaces a parenthesis (). We admit the notation fi fz
for a composite function only when the range of values of 12’ or a
restiction of f2 indicated by a side condition, is included in the
domain of definition of f l. If G is a subset of a topological space H,
thc set theoretie boundary of G relative to H, and the closure of G
relative to H will be respectively denoted by

27 topologized. Let X and X be arbitrary open subsets of 11l and JI
respectively. Let 03A9 be the ensemble of subsets of 1 of the form

03C01(X) or 03C02(X), together witli the intersection of any finite number
of these subsets of 1. Each union of a collection of sets of Sz shall
be an open subset of X, and each open subset of 1 shall be of this
character. The space 27 is thereby topologized. So topologized 1
is not in general a Hausdorff space. To remedy this we shall
impose Condition (oc) on 1.

In Condition (oc) and in the proof of Lemma 1.1 a neighborhood
of p E M and of q ~ M, relative to M and -4f respectively, will be
denoted by Np and %(1.

Condition (oc). For arbitrary points p E fJMJV and q E 03B2MW
there shall exist neighborhoods N 11 and Nq relative to M and -d

respectively, such that

or equivalently

Since M and JI have no point in common, p ~ q. For the same
reason
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LEMMA 1.1. Under Condition (oc), E is a Hausdorff space.
To establish this lemma let a and b be distinct points of 1.

Let r and s be point antecedents of a and b respectively under n.
Then r and s are in M u .,11. We shall take both r and s in M, or in
JI, if possible. The proof is divided into cases, not in general
disjoint, but covering all the possibilities.
CASE I. r, s E M. In this case disjoint neighborhoods N, and

NB exist in M, and give rise to disjoint neighborhoods 03C01(Nr) and
03C01(Ns) of a and b, respectively, in E.
CASE II. r, q E JI. The proof in this case is similar to that under

Case I.

CASE III. r ~ M - W, s ~ M - 3X’. By proper choice of r and
s, including an interchange of r and s, all possibilities fall under
Case I, II, or III. If r E M - W, then either r ~ 03B2M W or else
r E J.1f - W, where W = ClM W. Similarly if s ~ M-W, where
W = Cl,3i’, then either s E 03B2MW or else r E M-W. Thus
Case III may be partitioned into the following four subcases.
CASE III (1). r E M - W, s E M - Ji. In this case there exists

a neighborhood Nr which does not meet W and a neighborhood
v’Y. which does not meet W. No point of Nr is identified under
with a point of Ns. Ilence 03C01(Nr) does not meet 03C02(Ns).
CASE III (2). r ~ 03B2MW, 8 E 03B2MW. By virtue of Condition (a )

there exist neighborhoods Nr and Ns such that

It follows that 03C01(Nr) does not meet 03C02(Ns).
CASE III (3). r E PM W, S E JI - W. In this case there exists an

Ns which does not meet 3W’, so that 03C02(Ns) will not meet 03C01(Np)
whatever the choicc of Np in M.
CASE III (4). r ~ M-W, s E 03B2MW. The proof is as under

Case III (3).
The lemma is thereby established.
The reader will note that yri and n2 are homeomorphisms into Z.
COROLLARY 1.1. Under Condition (oc) E is an n-manifold.
It remains to show that each point a E Z has a neighborhood

relative to 1 which is the homeomorph of an n-disc. Now a = n(r)
for some point r E M (or M), and r has a neighborhood N1’(or%1’)
which is the homeomorph of an n-disc. Hence 03C01(Nr), or alternately
03C02(Nr), is the homeomorph of a dise, and a neighborhood of a.
COROLLARY 1.2. In the special case in which M = W, E is an

n-manifold, and the mappings
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is a homeomorphism onto E.
If M = W then 03B2MW = 0, so that Condition (oc) is always

satisfied. Since n2 is always a homeomorphism of JI into E, one
has merely to note that when M = W, jl;2 is onto 1.

There exists a corollary similar to Corollary 2 in which one
supposes that -t = ire
A canonical representation of E. The composite n-manifold

defined and topologized as above in terms of the n-manifolds
M and JI, their open subsets W and W and the homeomorphism
,u, will be said to have the canonical form

Subsets of 03A3 p-represented. Let A and  be subsets respectively
of M and -4f, and set

This subset of 03A3 will be said to be 03BC-represented if

If a subset Z of 03A3 is p-represented as in (1.13), then A and d are
uniquely determined as the sets

We shall refer to A and  as the first and second component,
respectively, of [A, , L’J.
Whether ,u-represented or not, [A, , Z] = 0 if and only if

A = 0 and  = 0.
The use of ,u-representations of subsets of 1 entails the validity

of Lemma 1.2. It is particularly convenient when mappings of
subsets Z of 1 are to be defined in terms of mappings of Z’s two
components. In order that such mappings lead to uniquely defined
mappings of Z it is necessary to know what points of A and of d
are identified. When Z is ,u-represented A n W is identified with

LEMMA 1.2. Two p-represented subsets of E,

have a a-represented intersection,

and a p-represented union,
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We first show that (1.17) and (1.18) are ,u-representations of
subsets of 1. This is a consequence of the fact that the relations,.

imply the relations

To prove that (1.17) gives the intersection of the sets (1.16), we
use the definition (1.13), and show that the intersection of the
sets (1.16),

that is the set (1.17). In verifying (1.20) one uses the inclusions,

consequences of the p-representation of the sets (1.16). The proof
of (1.18) presents no difficulty.
COROLLARY 1.3. A necessary and sufficient condition that the

subsets (1.16) o f E have Ø as intersection in 1 is that

COROLLARY 1.4. The complement in 1 of a p,-represented subset’
(1.13) o f E is the it-represented subset of E,

This is a ,u-representation since the given relations

imply the relations

That the set (1.22) is the complement of the set (1.13) follows from
the fact that the set (1.22) does not intersect the set (1.13), and
that the union of the sets (1.13) and (1.22) is the set [M, -4Y, Z] =03A3.
LEMMA 1.3. A sequence

of p-represented subsets of 03A3 has a p-represented union,

and a p,-represented complement in E,
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1’lle proof of the first affirmation of the lemma is similar to that
of the corresponding affirmation in Lemma 1.2. The second aff ir-
mation of the lemma is a consequence of Corollary 1.4.

We shall make repeated use of Lemma 1.4.
LEMMA 1.4. If 03A3 is a composite n-mani f old with the canonical

form (1.12) then any p-represented subset

of 1 in which A is an open subset of 1V, a-nd  an open subset of
JI, is a coiiiposite n-sub1nanilold o f E.

As an open subset of M, A is itself an n-manifold, as is d,
as aii open subset of JI. If Z is ,u-represented it may be identified
with the composite n-manifold,

If .1t1 and .1t2 are #-mappings associated with 03A3, Z is the union

of two open subsets of 03A3, accordingly an open subset of 1. Its
topology as a composite n-manifold (1.26) is readily seen to be its
topology as derived from 27.
Thé following will be readily verified by the reader, recalling

that X - Y = X n (1- Y).
LEMMA 1.4. Il X = [A, , 03A3] and Y = [B, fJ6, 03A3] are ’two

p,-represented subsets of 03A3 then X - Y is the 03BC-represented subset of 1

§ 2. 1 as an n-manifold of class Cm, m &#x3E; 0

Suppose that a composite n-manifold has a canonical represen-
tation

where M and JI are n-manifolds of class Cm, m &#x3E; 0, and 03BC a

Cm-diffeomorphism of W onto 1r. We refer to the #-mappings
03C0, ni Jt2 associated with Z as in § 1. In terms of these elements
we shall assign Z a unique structure as an n-manifold of class C-.
As in § 1 let [F] and [e] be respectively sets of local repre-

sentations

of M and JI which "determine" the given Cm-structure of M
and Jé. A system [F] of local representations of 1 adequate to
detcrmine a Cm-structure on 27 may be defined as follows.
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To each F e [F] defining a mapping U ~ X we make correspond
a mapping

such that for (u) ~ U

Similarly to each F ~ [F] defining a mapping * - fI we make
correspond a mapping

such that for (u) e u

The mappings (2.2) and (2.3) are homeomorphisms of the respec-
tive coordinate domains U and dit onto the open subsets 03C01(X) and
03C02(X) of 1. They are thus local representations of E in the sense
of § 1. It remains to prove the following.
LEMMA 2.1. The above set [F] of local representations o f E satisfy

the Covering Condition I and the Cm-Compatibility Condition II
of § 1.

The Covering Condition. The set [X] of coordinate domains
associated with the system [F] have M as a union, while the set.
[X] of coordinate domains associated with the system [F] have
JI as a union. Taking into account the fact that

we see that the union of the coordinate domains

associated with the system [F] is 1.
The Cm-Compatibility Condition. We consider first the compati-

bility of two local representations of M

in [F]. To these mappings correspond two local representations

in [F]. Set Xl n X2 = X. Then

The compatibility condition for F1 and F 2 involves the two sets
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Taking into account the relations 03C01Fi = F, we see that

If X ~ 0 these sets are not empty and the compatibility condition
on Fi and F2 is satisfied if for (u ) E U’ and (v ) E U" the condition,

impl ies a Cm-diffeomorphism of U’ onto U". Since the condition
(2.5) is equivalent to the condition

and since U’ and U" are the sets (2.4), this compatibility condition
on Fi and F2 reduces to a compatibility condition on FI and F.,
that is to a condition satisfied by hypothesis.
The case in which M is replaced by -4Y is similar.
There remains the question of the compatibility of two local

representations in [F] arising from two local representations

in [F] and [F] respectively. These two representations in [F]
have the form

Set

If A ~ Ø the requirement (C) of compatibility on F, and F2 is the
following.

(C ) For (u) ~ ( U’ ) and (v) ~ U" the condition

shall imply a Cm-diffeomorphism of U’ onto U".
We shall transform this condition into an equivalent form which

is known to be satisfied. To this end recall that X is a subset of M,
and X a subset of JI so that A has the form

with Y C W, y C 3X’ and OY = ,uY. Consequently

Rewrite (2.6) in the form 03C01 · F(u) == Z2 - F(v). Since (u) is

required to be in U’ = F-1(Y) we infer that F(u),E Y C W.
On W, ni = n2lÀ so that (2.6) can be rewritten in the form
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or equivalently

Thus (C) is equivalent to the following.
(C°). For (u) e U’ and (v) e U" the condition (2.7) shall imply a

Cm-diffeomorphism o f U’ onto U".
With respect to the given Cm-structure of M

is an admissible local representation of the n-manifold W. More-
over 03BC is given as a Cm-diffeomorphism of W onto ire According
to the definition of such a Cm-diffeomorphism (Cf. 0.4)

is an admissible local representation of 1r of class Cm. The mapping

is also an admissible local representation of W of class Cm. The
coordinate domains 03BC · F(U’) and F(U" ) in 11’ are identical, in
fact are pY and 03(. Hence y F and 5’ must satisfy the compatibility
condition (C°). Thus (C) is satisfied. 

This completes the proof of the lemma.
C01nposite n-1nanifolds E based on ( E, e). As in § 1 let E and d’

be two euclidean n-spaces. We regard E and tff as n-manifolds with
differential structures determined by the assumption that their
cartesian coordinates are admissible local parameters. We shall
consider the special case of a composite n-manifold.

in which M and -4Y are open subsets of E and é respectively, with
differential structures derived from thosc of E and J. The sets
W and if/ are open subsets of M and -4Y respectively, and is a
Cm-diffeomorphism of W onto W. In such a case we say that 1 is
based on (E, 03B5).
We shall define a condition (y) on 1 sufficient that 27 be an

n-manifold.
Condition y. Let the composite n-manifold (2.10) be based on

(E, tf). Under Condition (03B3), 03BC as de f ined over W, shall be continuous-
ly extensible over ClM W as a mapping v into C, and the subset

of 03B5 shall not meet JI.



96

LEMMA 2.2. Under Condition (y) L"’ is an n-manifold.
Lemma 2.2 will follow from Corollary 1.1 provided we show that

1 satisfies Condition (oc).
As in Condition (oc), let p E PM W and q E 03B2MW be given. Since

q is in Jé and vit is open relative to 03B5, M includes a neighborhood
Nq of q relative to 8, closed relative to 03B5. The point v(p) is in the
set (2.11) and so by hypothesis not in Jé, and in particular not in
%0. 

Set ClM W = W. By hypothesis v maps W continuously into 03B5,
extending ,ci. In particular v maps p into a point v(p) which does
not meet the elosed set fa. If Np is a sufficiently restricted neigh-
borhood of p relative to M, N fi n W will be so restricted a neigh-
borhood of p relative to W that

For such a choice of N 1)

Thus (1.9) of Condition (a) holds. Lemma 2.2 follows from

Corollary 1.1.
Cm-diffeomorphisms ol E. Let E be represented canonically as

in (2.10). Let 03A3’ be a differential n-manifold of the same class

cm, m &#x3E; 0, as 1. We shall establish a fundamental lemma.
LEMMA 2.3. 1 f E has the canonical f orm (2.10), necessary and

8ufficient conditions that there exist a Cm-diffeomorphism a o f E onto
l’ are that there exist a Cm-diffeomorphism f o f M into E’ and a
Cm-diffeomorphism  o f JI into E’ such that

When these conditions are satisfied the Cm-diffeomorphism 03B1 is

uniquely defined by the conditions

If a C--diffeomorphism a of 1 onto X’ exists, the mappings
f = 03B103C01 and f = 03B103C02 are Cm-diffeomorphisms of M into 1", and of
M into 03A3’ respectively. For p E W

so that (i) is satisfied. The condition (ii) is necessary if ce is to be
biunique, while the condition (iii) is necessary if a is to map 1
onto 27’.
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The conditions are sufficient. Given f and 1 satisfying these
conditions one defines oc by (2.11 )’, noting that a is single-valued
on 1 by (i), and biunique by (ii). That oc is a homeomorphism
follows from the existence and continuity of the inverses f-1,
-1, (n1)-1, (03C02)-1. That oc maps 1 onto Z’ follows from (iii).
Since f, 03C01, and Z2 are Cm-diffeomorphisms, a, as defined by (2.11)’,
is a Cm-diffeomorphism.

This establishes the lemma.
A special procedure f or defining a Cm-diffeomorphism oc. Suppose

E, as given by (2.10), partitioned into a countable ensemble of
disjoint subsets,

of which Xo, Xl, ... shall be open subsets of 03A3. Suppose further
that there exists a sequence,

of homeomorphisms of the respective sets (2.12) onto disjoint
subsets of Z’,

whose union is 27’. Suppose moreover that there exists an open
subset X+ of E such that X+ ~ X_1 and a Cm-diffeomorphism
t+ of X+ into Z’ such that

Suppose finally that for i ~ 0, t, is a Cm-diffeomorphism.
LEMMA 2.4. Then the mapping t : 03A3 ~ Z’ defined by setting

is a Cm-diffeomorphism of E onto 1’.
It is clear that t is biunique since each mapping ti is biunique,

since the sets (2.12) are disjoint and have 27 as union, and the
image sets (2.14) are disjoint and have l’ as union. It remains to
show that t and its inverse are locally C--diffeomorphisms. This
is clear for t. For an arbitrary point in 03A3 has an open neighborhood
N in at least one of the sets

and tIN is then a Cm-diffeomorphism into 03A3’. It is true for t-1,
since an arbitrary point in l’ has an open neighborhood N’ in at
least one of the sets

and t-11N1 is then a Cm-diffeomorphism into Z.
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§ 3. Modifications of mappings
In this section we establish Lemma 3.2, a technical lemma of

fundamental importance in transforming the Schoenflies problem.
As previously, let E and 6 be euclidean n-spaces with Cartesian

coordinates (x) = (xl, ..., xn ) and (yl, ..., Yn) respectively. Let
liq i = 1, ..., n, be a function of class Cm, in &#x3E; 0, mapping an
open neighborhood of the origin in E into the axis of reals. We
suppose that fi(0) = 0 for i = 1, ..., n, and that the origin is a
critical point of each f t . The transformation

defines a Cm-diffeomorphism of some spherical neighborhood N of
the origin in E onto a neighborhood of the origin in 03B5.

Let t ~ 03BB(t) be a mapping of the t-axis into the interval [0, 1],
of Class C~, such that 03BB(t) = 03BB(-t) and

Set r2 = x21- ... +x2n. We suppose r &#x3E; 0. Set fi(x) = 0 when
fi(x) is not already defined. These new values of fi(x) will enter at
most formally.
LEMMA 3.1. If e is a sufficiently small positive constant the

mappings

is a cm-dijjeornorphism of E onto if, reducing to the mapping (3.1)
/or r  e and to the ide-ntity,

for r &#x3E; 2e.
The proof of this lemma will be reduced to the verification of

statements (I) to (IV).
(I). The mapping (3.2) reduces to the form (3.1) for r ~ e and

Io I f or r ~ 2e.
Statement (I) is immediate. We continue by setting

and note that the partial derivative Rixf exists and that
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for (x ) EN, and i, i = 1, ..., n. Now 03BB(r2/e2) and 03BB’(r2/e2) are
bounded for r  2e. Moreover for i = 1, ..., n, the integral form
of the Law of the Mean shows that, with i summed from 1 to n,

where aij(x) is continuous on N and aij(0) = 0. Let ~ be an arbitra-
ry positive constant. It follows from (3.5) that for a suitable
choice e(q) of e and for (x) E E

The choice ol iî and e. We put two conditions on e. The first is
that e be so small a positive constant that the subset of E on which
r S 2e is interior to the spherical neighborhood N. Under this
condition on e the right members of (3.2) are functions of class
Cm over E. We now put two conditions on il. We choose q so small
that when (3.7) holds the jacobian

for the mapping (3.2). A second condition on q which will be used
presently is that for the given fixed n

A final condition on e is that e  e(,q). With this choice of e, (3.7)
and (3.8) hold.

(II). With e so chosen let (x) and (a) be arbitrary distinct points
in E with images (y) and (b), respectively, under (3.2). Then
(y) =1= (b).
To prove this let d(x, a) be the euclidean distance between (x)

and (a) in E, and d(y, b) the euclidean distance between (y) and
(b ) in J. We shall show that

indepcndently of the choice of (x) and (a) in E with (x) ~ (a).
Note that

We shall adopt the convention that a repeated index i, h, k, etc. is
summed from 1 to n. Using the integral form of the Law of the
Mean we infer that

where Aij is continuous over E and
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where 11 is the constant appearing in (3.7). It follows from (3.11)
and (3.12) that

From (3.14), (3.13) and (3.9) we see that

Relation (3.10) thus holds and (II) is established.

(III). The mapping (3.2) is onto 8. Let D be the subset of E
on which d(x, 0) ~ 2e, and 9 the subset of J on which d(y, 0) ~2e.
It is clear that the image J" of E under (3.2) is open and includes
8-!!) since (3.2) reduces to the identity I on E-D. Suppose
that C is not wholly included in J". There would then exist a

sequence of points ql, q2, ... in D with antecedents pl, P2, ... in
D such that (qn) converges in 8 to a point q not in d". A suitable
subset of (pn) will converge to a point p E D, since D is compact.
Under (3.2) some open neighborhood of p is mapped homeo-
morphically onto an open set in tff which must necessarily include
q. Hence q is in d". From this contradiction we infer the truth of
(III).

(IV). The mapping (3.2) is 1-1 and bicontinuous.
That the mapping is 1-1 follows from (II). The mapping (3.2),

restricted to the subset [r ~ 2e], of E reduces to I, and so is bi-
continuous. Restricted to the subset [r S 2e] the mapping (3.2)
is also bicontinuous. Cf. Bourbaki ref. 4, Cor. 2, p. 96. For the
subset [r s 2e] of E is compact and the restricted mapping is
1-1 and continuous onto an image in J which is a Hausdorff
space.

This establishes the lemma. We shall prove a fundamental
theorem.
LEMMA 3.2. Let g be a Cm-diffeomorphism, m &#x3E; 0, o f some

neighborhood of (x) = (0) in E onto a neighborhood of (y) = (0) in
tf, where g has the form

Set

For a su f f iciently small positive constant e there exists a Cm-diffeomor-
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phism T o f E onto c? such that T reduces to g f or r S e and to the
mapping

f or r ~ 2e.
We shall obtain T as a mapping T1I-1T2 where T2 is defined

as follows.
The mapping g can be represented in a neighborhood of the

origin in the form

where ri is of class Cm in some neighborhood of the origin, where
ri(0) = 0, and the origin is a critical point of ri. The mapping
IT-11g = To has the form

where p,(x) has the general properties attributed to r,(x). In
accordance with Lemma 3.1, for e &#x3E; 0 and sufficiently small,
there exists a Cm-diffeomorphism T2 of E onto d’ such that T a
reduces to T0 for r  e, and to I for r ~ 2e. Set T = T1I-1T2.
Then T reduces to g for r  8 and to Tl for r ~ 2s. Thus T
satisfies the lemma.

§ 4. The second class of problems 
By a problem of the first class we mean a problem of finding a

mapping ~ which satisfies Theorem 0.1 when a Cm-diffeomorphism

is given as in Theorem 0.1. We shall designate such a problem by

We term m the index of the problem. In the first class of problems
m may be any integer from 1 to oo or oo. We shall introduce a
second and equivalent class of problems.

Sense preserving (p. In this second class of problems we shall
start with a Cm-diffeomorphism ~ of the nature of ~ in (4.1), but
with restricted in two ways. The mapping q shall be sense
preserving in the following sense.

Let p be an arbitrary point of Sn-1 and let

be a set of independent vectors at p of which al, ..., an-1 shall be
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tangent to S.-, at p and an shall be a vector which has the direction
of the interior normal to Sn-1 at p. At the point ~(p) in S let

be a set of independent vectors of which bl, ..., bn-1 shall be the
vectors tangent to Mn-1 at ~(p) which are the transforms under p
of the vectors al, ..., an-1, and let bn be a vector whose direction
is that of the interior normal to J(n-l at q(p). We say that 99 is
sense preserving if the determinant of the direction numbers of the
vectors (ai , ..., an) has the sign of the determinant of the direction
numbers of the vectors (b1, ..., bn ). It is clear that this characteri-
zation of a sense preserving 99 is independent of the choice of
p E Sn_1 and of the vectors al, ..., an_1 tangent to Sn-1 at p.

The sense index 03C3(~) o f 99. We shall assign 99 of (4.1) a sense
index 03C3(~), equal to 1 or -1 according as q is sense preserving or
not. A C--diffeomorphism f of off onto d’ of the form

will be said to be sense preserving if

We note that lep is a C"’-diffeomorphism

We note further that

Let Q be the "xn-pole" of Sn-l’ that is the point on Sn-1 at
which xn attains its maximum value.
The second class o f problems. A problem (4.3) o f the second class

shall be a problem (4.2) of the first class in which ~ is a sense preserv-
ing diffeomorphism ol class COO of S.-, onto vii n-l such that for some
neighborhood, Rg, relative to Sn-l’ of the x.-pole Q o f Sn-1

That the first class of problems is equivalent to the second class
of problems will follow from Lemmas 4.1 to 4.3.

LEMMA 4.1. Given a Cm-diffeomorphism q; of the f orrn (4.1) there
exists a Cm-diffeomorphism f of 03B5 onto oO such that fep is a sense
preserving C’"-dif feornorphism of Sn-1 onto f - ep(Sn-1)’ and such that
for some neighborhood RQ relative to Sn-1 of the xn-pole Q of Sn-l
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Let L and Y be the coordinate (n-1 )-planes in E and e on
which xn = 0 and y. = 0 respectively. Let 0 and 0 be respectively
the origin in E and 03B5. Set ~(Q) = 9. We begin by proving (a).
(a). There exists a sense preserving Cm-diffeomorphism e of e
onto e such that F(2) = O and intersect Y in a neigh-
borhood of 0 relative to Y.

The mapping .5v will have the form hk, where h and k are
defined as follows.

k. The mapping k shall be a rigid motion of e such that k(2)=O
and such that the (n-1)-plane tangent to k(Mn-1) at O is .
Note that k is sense preserving.

h. A sufficiently small open set on  containing 0 will serve
as a coordinate range for an admissible local representation

of k(Mn-1) of class Cm. The function Y has a critical point when
yl = Y2 = ... = y.-, = 0. The equations

define a Cm-diffeomorphism 03BB of a sufficiently restricted neighbor-
hood of a relative to J, onto a similar neighborhood of 0. It
follows from Lemma 3.1 that there exists a Cm-diffeomorphism h
of ol onto 03B5 which reduces to Â in some neighborhood of 0 relative
to 03B5. The image (hk)(Mn-1) accordingly intersects IR in a neighbor-
hood of 0 relative to 2. Note that 03BB and hence h is sense preserving.
The Cm-diffeomorphism F = hk of g onto d’ satisfies (a).
The mapping f required in Lemma 4.1 will be set up in terms of

I and /F, already defined, and mappings F and T now to be de-
fined.

F. Statement (a) admits a parallel statement as follows. There
exists a sense preserving Cm-diffeomorphism F of E onto E such
that F(Q) = 0, and F(Sn-1) intersects the coordinate (n -1 )-plane
L in a neighborhood of 0 relative to L.

T. If 7?o is a sufficiently small open neighborhood of 0, relative
to L, then for p E Ro, the mapping

is a C’"-diffeomorphism of Ro onto a neighborhood of 0 relative to
the coordinate (n-l)-plane Y. The mapping (4.8) carries 0
into 0. It admits an obvious extension
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over a neighborhood No of 0 relative to E, an extension which is a
Cm-diffeomorphism of No onto a neighborhood of 0 relative to J.
Suppose g represented in the form (3.15). By proper choice of g the
sign of the jacobian

can be made positive or negative at pleasure. We choose the sign
of 03941 so that

In accord with Lemma 3.2 there exists a Cm-diffeomorphism T of
E onto 8 which reduces to g on some neighborhood N of 0
relative to E. According to this choice of T

The choice of f. We now introduce tlie mapping

For p E N n Ro

so that (4.7) is satisfied for RQ = F-1(N n R0). The mapping f is
sensé preserving or not, according as T is sense preserving or not.
If L12 is the jacobian associated with f, sign d 2 = 03941 and

in accord with (4.9). Thus fp is sense preserving.
Tliis completes the proof of Lemma 4.1.
We shall now state a lemma ,vllose proof will be given in a

separate paper. Ref. 6. If p were initially of class C°° this lemma
would Hot be needed.
LEMMA 4.2. Il the Cm-diffeomorphism 99 is given as in (4.1) there

exists a sense preserving Cm-diffeomorphism J of 03B5 orz.to 8 such that
J~ is a C°°-di f f eomorphism,

Without this lemma thc procedurcs of this paper would lead to a
proof of Theorem 0.1 modified by supposing that in &#x3E; 1, and

affirming that ~ was a Cm-10-diffeomorphism and not necessarily a
Cm0-diffeomorphism. When q is merely of class C1 the family of
normals to Mn-1 to be introduced in § 5 would in general form a
"field" on no neighborhood of Mn-1 relative to 03B5. Our use of this
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family of normals reduces the class of the mapping functions by 1
when m is finite, but not at all when m = oo. Lemma 4.2 enables
us to prove that the first and second classes of problems are
equivalent. In the second class the given is of class C°°.

Starting with the Cm-diffeomorphism ~, given in (4.1), we can
apply Lemma 4.2 and obtain the C°°-diffeomorphism J~. We now
apply Lemma 4.1 to J~ in place of ~, and obtain thereby a Coo-
diffeomorphism f and a new boundary mapping fJ~. Setting
F = fJ we state the folloBving corollary.
COROLLARY 4.1. Given a Cm-diffeomorphism ~, m &#x3E; 0 of the form

4.1, there exists a Cm-diffeomorphism F of 03B5 onto 03B5 such that F~ is
a sense preserving C°°-di f f eomorphism of S.-, onto F · ~(Sn-1), and

for some neighborhood RQ relative to Sn-1 of the xn-pole Q o f Sn-le
To employ this corollary we need the following general lemma.
LEMMA 4.3. Let F be a Cm-diffeomorphism of 8 onto d. To a

problem (4.2) in the f irst class, o f index m &#x3E; 0, corresponds a problem

also in the tirst class with index ml &#x3E; m such that

If Atpl is a solution o f problem (4.12) then

Ís a solution o f problem (4.1).
Since ~1 is a C:1-diffeomorphism of a neighborhood of JSn-1

onto a neighborhood of JM1n-1, we infer that ~ is a Cm0-diffeomor-
phism of a neighborhood of JSn-1 onto a neighborhood of

As for the boundary condition we have

by hypothesis, so that

Thus A 9) is a solution of problem (4.2).
COROLLARY 4.2. The first and second classes of problems are

equivalent.
Since each problem in the second class is by definition a problem

in the first class, it remains only to show that to each problem (4.2)
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in the first class corresponds a problem

in the second class whose solution Atpl implies a solution ~ of the
given problem (4.2). To ~, given in the form (4.1), corresponds a
mapping F of Corollary 4.1. Setting ~1 = Fq we make the problem
(4.2) correspond to the problem (4.12) of Lemma 4.3. The new
index 1n1 = oo, and 991 is sensé preserving. The mapping 921 is thus
of the type admitted in a problem of the second class. By Lemma
4.3, A" as given in (4.13), affords a solution to problem (4.2).
The corollary follows.

§ 5. The "bands" B.Sn-1 and BaMn-1.
In this section we shall define "band" or "shell" neighborhoods

Ba Sn_i and BaMn-1 of S.-, and vit n-1 respectively, and establish a
Cm-l-diffeomorphism, m &#x3E; 1, of the form

Fields o f normals to Mn-1. Let q be a point on Mn-1 and
(yi, ..., Yn) coordinates in 8. Let

be an arbitrary admissible local representation of JI n-l with a
coordinate domain X which contains q. We are supposing that the
!Fi are of class Cm, m &#x3E; 1, and that the functional matrix

with columns i = 1, ..., n, and rows i = 1, ..., n -1, has the
rank n-1 at each point of 0/1. Let ai(u), i = 1, ..., n, be the

determinant of the submatrix of (5.3) obtained by deleting the
i-th column of this matrix. The set of numbers

define a vector y(u) normal to Mn-1 at the point (Fi(u)). Without
loss of generality we can suppose that (ai (u» has the direction of
the exterior normal to Mn-1 at (Fi(u)). Were this not the case an
interchange of the parameters ul and u2 and the corresponding
interchange of the first two columns of the matrix (5.4) would
bring this about.

Let y(u) be regarded as a directed axis with origin at (Fi(u)).
The point on C!!J(u) with algebraic coordinate s will have euclidean
coordinates
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Since m &#x3E; 1, each mapping a, is of class C1 at least. Set

for each value of s and each (u) ~ u. Recall that 4 (u, 0) is the
determinant of an n-square matrix obtained by adding (5.4) as a
first row to the matrix (5.3). Hence

Let 0//1 be an open subset of 0// which contains F-1(q) and whose
closure relative to the euclidean (n-1)-plane of 4Y is in all. Then
on alll, L1(u, 0) is bounded from zero. We infer that there exists a
positive constant s0 such that 0394(u, s) is bounded from zero for

(u) -E dltl and s on the interval (-so, so). Let Ja designate the
interval (-a, a). It follows from the usual implicit function
analysis that if a is a sufficiently small positive constant, and if

then the mapping of u1 Ja into 8 defined by (5.5) is a homeo-
morphism. Now JI n-1 is compact and so is the union of a finite
ensemble of open sets each of the character of u1.

The band BaMn-1. We draw the following conclusions. Let q
be an arbitrary point of Mn-1 and r fi. the unit vector normal to
Jln-1 at q with the direction of the exterior normal. Let y(q, s ) be
the point (y ) on Y,, with algebraic coordinate s. Let

be a map in which (q, s ) ~ y(q, s ) E 03B5. If ao is a sufficiently small
positive constant a is readily seen to be a homeomorphism of

onto a neighborhood

of Mn-1 relative to 8. As an open subset of 8, BaMn-1 derives a
differential structure from 03B5. We term BaMn-1 a band neighborhood
of Mn-1 o f width 2a.
One can regard the product Mn-1 Ja as an n-manifold of

class Cm since it is the product of two manifolds each of class C"’.
Given the mappings (5.2), the corresponding set of mappings
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regarded as local representations of Mn-1 Ja. define a C"’-
structure on Mn-1 X Ja. The mapping a is a Cm-1-diffeomorphism
of Jln-1XJa into BaMn-1, [Cf. (10.4)]. For a mapping (5.9),
followed by a, leads to an admissible local representation (5.5)
of BaMn-1 of class Cm-1.

The band BaSn-1. Corresponding to p E Sn-1 let Vp be an
exteriorly directed unit vector, normal to Sn_1 at p, and let y be
the signed coordinate of an arbitrary point on V, with s = 0 at p.
If 0  a  1 there clearly exists, as in the case of Mn-1, a C°°-
diffcomorphism

in wllicll the point (p, s) E Sn-1 X Ja corresponds to the point on
Vp with algebraic coordinate s. The image of Sn-1 X Ja under Ha
is denoted by BaSn-1 and termed the band neighborhood of Sn-1
o f width 2a.
LEMMA 5.1. If ~ is a Cm-diffeomorphism given by (4.1) with

m &#x3E; 1, and i f a is a sufficiently small positive constant there exists a
Cm-1-diffeomorphism ~a of the band BaSn-1 onto the band BaMn-1
such that

and such that the point on the vector Vp exteriorly normal to Sn-1 at
p with algebraic coordinate 9,E Ja, corresponds to the point on the
vector V~(p), exteriorly norrnal to Mn-1 at ~(p) with algebraic
coordinate s.

To set up such a Cm-1-diffeomorphism note that the homeomor-
phism

in which (p, s) E Sn-l  Ja corresponds to (99 (p), s) E Mn-1  Ja, is a
Cm-diffeomorphism. If one sets

one infers tliat Cfa is a Cm-1-diffcomorphismof BaSn-1 onto BaMn-1.
NOTE. If m = oo in Lemma 5.1 Cf a is of class C°°, as the proof shows.

If m = 1 Lemma 5.1 does not apply.

§ 6. Problems of the third class

As previously, we suppose that 03B5 is assigned its conventional
differential structure.

Problems o f the third class. Let 0 be a C°°-di f f eomorphism o f an
open.neighborhood o f Sn-1 into e such that in some open neighborhood
No relative to E o f the xn-pole Q o f 5n-l
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Setting Mn-1 = 03A6( Sn-1) a problem

o f the third class is to f ind a C~0-diffeomorphism 03A6 of some neigh-
borhood o f JSn-l onto a neighborhood of Jvltn-1 relative to 03B5, such
that for some neighborhood Z of S.-, relative to E

As in § 1, we understand that a class (A ) of problems A is

"effectively mapped" into a class (B) of problems B if to each
problem A corresponds at least one problem B whose solution
implies a solution of A. In this sense we state the following lemma.
LEMMA 6.1. The second class of problems can be ef fectively mapped

into the third class of problems.
Our first task is to assign to each problem (4.3) of the second

class a problem of the third class.
Given q in problem (4.3), Lemma 5.1 implies the existence of a

constant a &#x3E; 0 and a C°°-diffeomorphism

such that 9’aISn-l = 9’. By definition of the problem (4.3) there
exists a neighborhood Ro, relative to Sn-1, of the xn-pole Q of
Sn-1 such that 9’IRo = I|~. With a chosen as in Lemma 5.1 and Ha
as in (5.10), set

’l’hen NQ is a neighborhood of Q relative to E. It follows from the
definition of (fa in Lemma 5.1 and the relation 991RO = I~, that

Thus ~a is a mapping 0 admissible as datum in a problem of the
third class. To a problem (4.3) of the second class we made corre-
spond the problem

in which 03A6 = P..

Our second task is to show that a solution ~ of the problem
(6.6) is equally a solution of problem (4.3).

It is clear that Acp is a Cô -diffeomorphism of some neighborhood
of JSn-1 onto some neighborhood of JMn-1. Moreover the condi-
ti on (6.3) is satisfied and implies the boundary condition
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in accord with the definition of 0 and of CfJa. Thus the boundary
condition (0.7) is satisfied with A, replacing Atp. Hence A. is a
solution of problem (4.3).
Thus the second class of problems has been effectively mapped

into the third class of problems.
This establishes Lemma 6.1.

§ 7. Problems of type K

In this section we shall define a final class of problems, termed
problems of type K. In § 8 we shall show that the third class of
problems can be effectively mapped into the class of problems of
type K. In later sections we shall show that any problem of type K
admits a solution, thereby implying a solution of our original
problem of class 1.

Two notational conventions require mention. The interior of a
subset X of E or of 8 will be denoted by X . The complement of X
relative to E or 8 will be denoted by CX or WX respectively.

The sets K, K’, K", k, ko. Let K be an n-cube in E with center
at the origin, with (n-1 )-faces parallel to the coordinate (n-1 )-
planes, and with arbitrary diameter. Let IIo denote the (n-1 )-
plane jxn = 0]. Set

The set -k0 is the union of two disjoint open sets K’ and K" into
which K is separated by deletion of k0. Of the two sets K’ and K"
let K’ be the set on which xn  0. Note that

Mappings 00’ and cv. Let G be a compact subset of K’ u K"

such that K - G is arc-wise connected. Set

so that G = G’ u G". We suppose that G" is not empty.
We introduce a C~-diffeomorphism

such that (JJ’ reduces to I on some e-neighborhood Ne relative to E

of CK.
The class (03C9). For each such co’ and choice of G set
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thereby defining a class (ro) of mappings cu. Note that 03C9’ is

uniquely determined by its restriction cv.

The sets Y, K’, Jf, k, lio. Observe that

and note that  - k0 is the union of two disjoint open sets K’ and
.e"’. Just one of the two sets Jf’ and K", say K’, is such that

The sets H, H’, H", Ye, ’, ", 91, ", 9. Let d be so small
a positive constant that the subsets H’ and H" of É on which
aen  - d and xn &#x3E; d respectively are open sets such that

Observe that the parameter d is determined by the choice of H’
and H". Recalling that co is defined on  - G, but not over all of
K, set

It follows from (7.7) and (7.9) that

and, since H’ - G’ and H" - G" are arc-wise connected that

It follows then from (7.9) that

Problems of type K. A problem of type K will be denoted by

and defined as the problem of finding a mapping Â6I which satisfies
Lemma 7.1.

LEMMA 7.1. Corresponding to an n-cube K, a mapping 03C9 ~ (co),
an n-rectangle H’ C K’ and set ’ C ’, chosen as above, there
exists a C~0-diffeomorphism,
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such that for some compact subset Q o f H’ with Q D G’

NOTE. To be assured of a solution of an arbitrary problem of
type K it is sufficient to be assured of a solution of all such prob-
lems for which K is a given fixed n-cube K. To establish this it
merely is necessary to subject E and J to a common change of
scale, defined by a suitable common change of scale on each
coordinate axis in E and 03B5. We shall make use of a special n-cube
K of the form

and solve a problem of type K which is arbitrary except for this
special choice of K.
We need the following lemma.
LEMMA 7.2. The sets ’, ", ’ - ’ and "-" are open

relative to 03B5.
To prove that 3Q’ is open relative to If set K’-H’ = A and

ClEA = B. By (7.9)’

We shall show that

This will follow if 03C9’(B)-03C9’(A) does not meet K’, a condition
which is satisfied since

With (7.15) established note that B is compact. Hence 03C9’(B) is
compact and 3Q’ open relative to 03B5. That 3Q" is open relative to tf
follows similarly.

Since H’ - G’ is open relative to E and the diffeomorphism cv’
maps H’ - G’ onto ’-’, in d, the set ’-’ is open relative
to 03B5. The set "-" is similarly open relative to d.

§ 8. Final reduction to problems of type K
In this section we shall transform a problem

of the third class by means of a reflection t and define thereby a
problem of type K of the form

The n-cube K. The (n-1 )-sphere Sn-1 has a unit radius. Thé



113

coordinates of its center will be determined by our construction
but are in fact immaterial. Let Sc be an (n-1 )-sphere in E with
center at the xn-pole Q of Sn_l, and with radius c  1. We shall

presently further condition the choice of c. The (n-2)-sphere
Sc n Sn-1 lies in an (n-1 )-plane H,,. See Fig. 1. Let Pc be the

Fig. 1, n = 2 , B = t (03B2EK)

intersection of H,, with the xn-axis. Of the n-cubes with center at
Pe and with (n -1 )-faces parallel to the coordinate (n -1 )-planes
let Kr be the smallest n-cube which includes S,. Let NQ be an
open spherical neighborhood of Q relative to E such that

(8.2) OEINQ = II Ne
where 0 is the mapping given in the problem (8.0). Let c be so
small that Kc ~ NQ. We suppose c so chosen and fixed hereafter.
We then set Kc = K and take Pc as the origin of coordinates in E.
The rellections t and T. Let t be the reflection of E -Q in Sc,

recalling that the center of Sc is the xn-pole Q of Sn-1. Set IQ = 2
and let r be the reflection of 03B5-2 in ISc. Both t and T are in-
volutions, and rI = It. Note that t = t-1 and r = z-1.

The choice o f 03C9’. Recall that the domain of definition of 0 in

(8.0) is an open neighborhood N of Sn_1 which includes the
neighborhood NQ of Q. Without loss of generality we can suppose
that N is arc-wise connected. Set 0393 = N-Q and
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We shall prove (a) and (b).
(a). The mapping w’ reduces to I on a neighborhood o f CK

relative to E.
Now ce’ reduces to I on the set R = t(NQ-Q). In fact if p E R,

then p = t(q), with q ~ NQ-Q, so that

Referring to the definition of K, set

and recall that NQ ~ K D A. It follows that Ne is a neighborhood
of A relative to E, and NQ-Q a neighborhood of A-Q relative to
E - Q. We infer from (8.4) that

Hence t(NQ-Q) is a neighborhood of CK and (a) is proved.
Let K’, K", k, ko be subsets of É, defined as in § 7. The t image of

Sn-1-Q is the (n-1)-plane FIe passing through the origin. Hence
t(Sn-1-Q)~k0. We continue by proving (b).

(b). The domain ol definition, tr, ol 03C9’, is arc-wise connected and
has the form

where G is a compact subset of K’ u K" with Q contained in G n K".
Recall that 0393 ~ Q is the domain of definition of 0 so that

On applying t to the members of this inclusion we find that

Since tl’ is open, and, according to (a), includes ko and a neigh-
borhood of CK, it follows that (8.5) holds with G a compact subset
of K’ u K". Since tl-’ does not contain Q, and K" does, we infer
that Q is in G n K".

Set G’ = K’ n G, G" = K" n G and define H’ and H" as in § 7.
On setting

one can further define 2f, ’, 3Q", , 9’, " as in § 7. A problem

of type K is now defined in the sense of § 7. We accordingly turn
to the following lemma.
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LEMMA 8.1. On making the problem (8.0) o f the third class corre-
spond as above to the problem (8.6) o f type K, there is defined an
effective mapping of the third class o f problems into the class of
problems of type K.

Suppose there exists a solution

of problem (8.6). In accord with (7.13) and the definition of co as a
restriction of co’ 

Now m’ is defined on E-G’-G"’ and Â6I on H’. We can extend
Â(d by a C. -diffeomorphism P6I’ such that

The mapping p’11) is thereby defined on

It is defined twice on

but consistently because of (8.7). The sets H’ and E-G"-S2 are
open so that p6J is a C. -diffeomorphism. The "exceptional" point
of ,uw (if such exists) is in 9. Cf. (8.7)". We now set

and complete the definition of A 0 by setting

We shall prove that 03A6, so defined, is a solution of problem (8.0).
To that end we establish (c), (d), and (e).

(c). The domain of de f inition o f Ao is an open neighborhood of
JSn-1.

Recall that E-Q is the union of the disjoint sets

where Sn-1 denotes the interior of JSn-1. The space E is also the
union of the sets

Moreover the images under t of the sets (8.9) are the respective
sets (8.10) and conversely. The domain of definition of 4, is
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Since G" is a compact subset of [xn &#x3E; 0] we infer that 4, is de-
fined on an open neighborhood of JSn-1.

(d). The mapping 03A6 is a C~0-diffeomorphism of its domain ol
definition into 03B5, with "exceptional point" (if any exisls) in Sn-1.
That AfJ) defines a C. -diffeomorphism of t(E-G") into 03B5 - 2

appears from (8.8)’. In the domain of definition of A. there
remains the point Q. Since E-G" contains all points in E whose
distance from Q is sufficiently large

provided HQ is a sufficiently small neighborhood of Q relative to E.
According to (a), w’ reduces to I outside of a sufficiently large
(n-1 )-sphere in E with center at the origin, and by virtue of
(8.7)", u. does likewise. Hence e. reduces to I on t-1(HQ-Q) if
He is sufficiently restricted. For such HQ it follows from (8.8)’ that
A4) reduces to I on HQ-Q. Since 03A6(Q) is defined as I(Q) we
conclude that 03A6 is a C. -diffeomorphism of its domain of defini-
tion, with exceptional point (if any exists) on

In accord with the definition in § 6 of a problem (8.0) of the
third class it remains only to show that for some open neighborhood.
Z of S.-, relative to E

To this end we refer to the compact subset Sl of H’ introduced in

(7.13), and prove the following.
(e). An open neighborhood of S.-, relative to E on which (8.12)

holds is afforded by the set

Since .i2 and G" are compact subsets of [xn  0] and [xn &#x3E; 0]
respectively, it follows from the fact that the t-images of the sets
(8.10) are the respective sets (8.9) that Z as defined by (8.13) is
an open neighborhood of S.-, relative to E. That (8.12) holds
when Z is given by (8.13) is seen as follows. On Z-Q

by virtue of (8.8)’, (8.7)" and (8.3), respectively, provided the
domains of validity of (8.8)’, (8.7)" and (8.3) permit this applica-
tion. That (8.8)’ may be so applied is clear since E-03A9-G" C E
-G". The application of (8.7)" is exactly as written, while (8.3)
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may be applied since E-S2-G" C tr by virtue of the relations
,f2 D G’ and (8.5). Finally 03A6(Q) = I(Q) = O(Q).
Thus A., as defined by (8.8)’ and (8.8)", is a solution of prob-

lem (8.0), and Lemma 8.1 is established.

PART II. CONSTRUCTION OF A SOLUTION

§ 9. The mappings R, 91, Tr, Jr

In this section we shall define certain mappings essential for the
construction of a solution of a problem of type K. As indicated in a
Note in § 7 it will be sufficient to take K as the special n-cube

The sets K, K’, K", H, H’, H", 5i, :Je, K’, 1Y"’, 3Q, -Y’, 3Q" shall
be sets associated with such a K in § 7. Recall that H’ and H" are
the subsets of K’ and K" on which xn  -d and xn &#x3E; d respec-
tively.

The radial trans f ormation R. Let R be a radial transformation of
E onto E in which a point (xl, ..., xn ) has an image (yi, ..., Yn)
such that

The point P = (8, 0, ..., 0) in E is fixed under R. The image
R(K) of K under R is an n-cube of breadth 1, with center at the
point (4, 0, ..., 0) in E.

The mapping T. This mapping is essential in setting up our
modification of the Mazur construction. In enumerating its

characteristic properties we shall denote by Int A the smallest
product of n subintervals of the respective coordinate axes of E
which contains a given bounded subset A of E. Let u denote the
mapping of E onto E by the identity. ’rhe mapping T shall be a
C°°-diffeomorphism of E onto E with the properties (9.3))(9.8).
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We shall define such a mapping T by a composition 03C1303C1203C11 of
three C°°-diffeomorpliisms of E onto E.

The mapping pl. Let ~ be a mapping of class C°° of the t-axis
onto the interval [0, Il such that ~(t) = 0 for t  .5 and q (t) = 1
for t &#x3E; 1. In terms of the above constant d, let a  d2 be a positive
constant presently to be conditioned as in (I). Set 03B1(t) = 1 for
t  0 and

Thé mapping pl shall have the form

It reduces to u for x2n ~ a and xn &#x3E; G, and to the mapping

for xn ~ 0. We continue by proving (I).
(I). I f a &#x3E; 0 is sufficiently small pl is a C~-diffeomorphism of

E onto E.

To establish (I) it is clearly sufficient to show that the mapping.

is a C°°-diffcomorphism of the xn-axis onto itself. To that end note
that

From (9.13) it follows that 03B1’(xn) = 0 when x2n ~ a, and according-
ly that |03B1’(xn)| is bounded independently of the choice of a.
Formula (9.12) now shows that for a &#x3E; 0 sufficiently small,
y’n(xn) has the sign of 03B1(xn), that is, is positive, Statement (I)
follows.

The mapping p2. This mapping is defined as the transformation
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It is clearly a C°°-diffeomorphism of E onto E. It reduces to the
mapping

for xn ~ 0, and to u for xn &#x3E; d.
The mapping p3. This mapping is defined as the transformation

and is a C°°-diffeomorphism of E onto E. It reduces to u for
xn ~ 0 and to the mapping (9.15) for xn  -d/2.
LEMMA 9.1. The mapping T = 03C1303C1203C11 has the properties (9.3)-

(9.8).
Relation (9.3) is immediate since xn &#x3E; d on H" and each of the

mappings pl, P2, and p. reduces to u for xn &#x3E; d.
To verify (9.4) write the mapping R in the form

and observe that when xn  -d, T reduces to a composition of the
mappings (9.11), (9.15), and (9.15), applied in the order written,
that is to (9.16).
We verify (9.5) as follows. The ranges of x1 on the images of K"

under pl, P2Pl, T, RT are included respectively in the intervals
( -1, 1), ( -1, 3), ( -1, 3), (3.5, 5.5). Since the latter two intervals
do not intersect we infer that

The ranges of x, on the images of K’ under pl, p2Pl, T, RT are
included respectively in the intervals (-.5, .5), (1.5, 2.5),
(1.5, 4.5), (4.75, 6.25). Since the last two intervals do not intersect
it follows that

The relations (9.7) and (9.8) are obviously valid. From these
results, from (9.17), (9.18) and the continuity of T, (9.5) follows.
The validity of (9.6) is immediate. One notes that Int[ u RK]

is the n-interval

The range of xl on the image of K under T is included in

(-1, 3) u (1.5, 4.5) = (-1, 4.5) and (9.6) follows.
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The mappings R’’, T,, r, Jr. The r-th iterate of the mapping
R will be denoted by Rr(r = 1, 2, ... ). When r = 0 we understand
that R° = u. The inverse of Rr will be denoted by R-r. We shall
also set

Observe that T = Tl, and that

in accord with (9.3) and (9.4).
We shall consider the sequence of subsets of E

As r t ~ the set Tr() tends uniformly to the center P = (8,
0, ..., 0) of the radial mapping R. Each of the sets (9.21) is
included in the n-interval

Moreover the sets in (9.21) are disjoint. More explicitly:
(a) For integers rand p s-uch that r &#x3E; p &#x3E; 1

The relation (9.22) has already been established when p = 1 and
r = 2. See (9.5). To establish (9.22) in the general case recall that
the range of xl on T(K") is included in the interval (-1, 3) of the
xl-axis. The images of this interval under RI, r = 0, 1, ... are

disjoint for different integers r. It follows that

for arbitrary integers r &#x3E; p ~ 1. On recalling that the range of xl
on T(K’) is included in the interval (1.5, 4.5). one finds similarly
that the images of this interval under Rr, r = 0, 1, ... are disjoint
for different integers r. It follows that

Relation (9.22) follows from (9.23) and (9.24), taking account of
(9.7) and (9.8).
We shall need the following lemma.
LEMMA 9.2. For an arbitrary integer r &#x3E; 0, and for arbitrary

subsets ¿4 and B of  and H, respectively
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Set B’ - H’ n B, B" = H" n B. It will be sufficient to prove
(9.25)’ in the special cases B = B’ and B = B".
Suppose that B = B" and note that Rp(B") = Tp+1(B") by

(9.20), so that

This intersection is 0 if r ~ p+1, by (9.22). However,

since T, is biunique. Thus (9.25)’ holds when B = B".
Suppose that B = B’. Observe that

unless r = p. Moreover

It follows that (9.25)’ holds as stated.

The relation (9.25)" is a consequence of (9.26) with p = 0
therein.

The radial mappings .9r. Set

introducing 9 and R. The mapping .9 is a radial transformation of
8 with center at Y and could be defined in terms of the cartesian
coordinates of 8 as R was defined on E. The r-th iterate of .9 will
be denoted by 9r understanding that .9r is the identity when
r = 0. The inverse of é9’ will be denoted by .9-r.

Ttae mappings Jr. The relations (9.20) will have a partial
analogue on 8 if we define Jp, p = 1, 2, ... over the subset
A’ of é as follows:

The mapping Jr is a C°°-diffeomorphism of K into 03B5.

An extension o f co. The C°°-diffeomorphism m was defined in § 7
as a restriction of co’ to -G We shall here give an extension of
(JJ to the set
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by setting (for r = 0, 1, ... ).

This extension is of course unrelated in general to the extension
m’ of 03C9. The extènded cv is a C°°-diffeomorphism of the set (9.29)
onto the set

We add a useful lemma.

To establish this relation refer to the definition of Tr+1 and note
that in accord with (9.30)

On adding the extreme members of these equations the relation
results.

In Lemmas 9.2 and 9.3 the mapping T has been taken as a
C°°-diffeomorphism of E onto E with the properties (9.3) to (9.8).
For the sake of a proof in § 16 we find it useful to suppose that T is,
in particular, the mapping T = PaP2Pl as in Lemma 9.1. To state a
lemma concerning this mapping let e be a constant such that
-1  e  0 and introduce the subinterval of K,

We shall be concerned with the subset K-K~ of K.
LEMMA 9.4. The mapping T = PaP2Pl has the following property.

Il (x) ~ K and if T(x) ~ K - K~, then (x) ~ K - K~.
Set T(x) = (y). Now (y) ~ K - K~. Hence -1  yi  e for at

least one integer i on the range 1, ..., n. The form of 03C1303C1203C11 shows
that

where hi(xn) &#x3E; 0. We infer that

Since 1  03B1n(xn)  2 it follows that xi  8. Hence (x), given in K,
is in K-KB.
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§ 10. The composite n-manifold X

Composite n-manifolds based on (E, E) are defined in § 2. In
this section a special manifold X of this character will be defined.
In the next section we shall show that X is the C°°-diffeomorph of
E - P.
In defining X we shall make use of the points P and .9 appearing

in § 9 as the centers of the radial transformations R and .9 of
E and e respectively. We shall refer to the special n-cube K of
the form (9.1), to the mapping co, to XI, to subsets of K and 1’
defined in § 7, and to the extension of co over the set (9.29). We
suppose X represented in the canonical form,

and define M, M, a, W, *’ by setting

Observe that M and -4Y are open subsets of E and E respectively,
that W and 3X’ are open subsets of M and JI respectively. That
,u(W) = W follows readily on using the relations

from (7.10) and (9.30), and the consequent relations,

Thus p is a C°°-diffeomorphism of W onto ire The composite
space X is now defined as a topological space as in § 1.
LEMMA 10.1. The space X is an n-manifold.
The proof of this lemma is based on Lemma 2.2. We need the

relations

where co is defined over E - G in § 7 and reduces to ln onK -G.
To establish the first relation in (10.7) note that

Since G is closed in E and included in CM the first relation in (10.7)
follows. Continuing the proof of (10.7) note that
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The second relation in (10.7) follows. The first relation in (10.7) has
the useful extension,

Lemma 2.2 is concerned with

By definition 1À = w 1 W, and in particular 03C9. R’’(p) = Rr. m(p)
for p ~ K - G. Hence p admits a continuous extension v over

03B2M W such that

For this extension it follows from (10.9) and (10.7) respectively
that

’ro apply Lemma 2.2 we have merely to note that the right mem-
ber of (10.10) does not intersect M.

l’he condition (y) in Lemma 2.2 is accordingly satisfied. We
irifer that X is an n-manifold.

We understand that X has received a di f f erential structure of
class C"*in accord with the procedure defined in § 2, making use of
the differential structures of class C°° given on M and M.

A f irst partition of X. In order to define the C°°-diffeomorphism
t of X onto E - P in the next section we shall partition X into an
ensemble of disjoint subsets

of which X., Xl, ... shall be open. These sets will be 03BC-represent-
ed in the sense of § 1.

The sets Xo, Xl, .... With the notation for subsets of a compos-
ite manifold introduced in § 1, let

Since
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Xr is actually a subset of X. To prove that X, is ,u-represented we
must show that the general condition (1.14) is satisfied in the
form appropriate for X,..
The verification of this condition will be clearer if we begin

with the case r = 0. When r = 0 condition (1.14) takes the form,

Since (K - G) ~ W = H-G,,this condition may be written

Now u (H - G) = co(H-G) by virtue of the definition of ,u in
(10.6). We then have

in accord with (7.10) and the definition of 3W’ in (10.4). Thus
(10.13) holds.
In the case of the general r the verification of condition (1.14)

is similar. In fact

for reasons similar to those cited when r = 0. Thus X,. is a 03BC-

represented subset of X.
T he set X-1. This set is the complement relative to X of the

union of the sets Xo, Xl, .... Since the second components of
these subsets of X, as represented in (10.12) have JI as union, it
follows from Corollary 1.4 that X-1 is ,u-represented in the form,

where

The subsets Xo, X1... are open subsets of X, since their first
and second components in the representation (10.12) are open
subsets of M and of Jé respectively. Hence each of these subsets of
X is a submanifold of X in accord with Lemma 1.4. As a submani-
fold of X, X,., r = 0, 1 ... will be assigned the C~-differential
structure derived from X.

The set X+. To show that the mapping t : X ~ E - P (to be ,
defined in the next section) is a C’-diffeomorphism, we shall
need a special open subset X+ of X such that X+ J X-1. (Cf. Proof
of Lemma 2.4). Let n, 03C01, 03C02 be the #-mappings associated with
X, as defined in § 1. Note that X-1 = 03C01(A). It follows from the
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définition of 03C9’ in § 7 that there exists a compact subset B of Ii
such that

We now set X. = n1(A+) where

We see that A+ is an open subset of M and that A. D A. Hence
X+ is open relative to X and

We assign X+ its C°°-differential structure as a submanifold of X.
A second partition of X. We shall here partition X into an

ensemble of disjoint subsets

of which Yo, Y1, ... shall be open. These sets shall be IÀ-represent-
ed in the sense of § 1. This partition will be used in § 12 defining a
C’-diffeomorphism s of X onto X*.

The subset Yo of X. Let

It is clear that H’ - G’ C M and X" C vit. The condition (1.14) that
Yo be ,u-represented takes the form

or equivalently

a condition which is satisfied by virtue of (7.9).
The subsets Y,, Y2, ..., o f X. Referring to the mappings T, and

!Tr defined in § 9, set

We shall prove (a) and (b).
(a). The right member of (10.21) defines a subset Yr of X.
To establish (a) we have merely to prove that

Taking into account the explicit form of M as given in (10.3),
(i) will follow if T,(K-G) does not meet P (obviously the case) and
if
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Relation (10.23) follows from Lemma 9.2. That (10.22) (ii) holds
is a consequence of the definition of .5r,. in (9.28) and of the form

(b). Y, is y-represented in (10.21).
The general condition (1.14) here takes the form

Making use of (10.2 ) and of Lemma 9.2 to reduce the left member of
(10.24), and of the definitions of Tr and of 3W’ to reduce the right
member of (10.24), one arrives at the equivalent conditions

of which (10.26) is satisfied on account of (7.10).
This establishes (b).
The subset Y-, of X. This set is the complement with respect to

X of the union of the sets Yo, Yi .... The union of the second
components of these sets is

It follows from Corollary 1.4 that Y-1 is ,u-represented in the form

where

The subset Y+ of X. We shall need a special open subset Y+ of X
such that Y+ ~ Y_1. Let B be a compact subset of k such that
(10.17) holds. Set

We see that L. is open relative to M and that L C L+. Now Y-l’
as defined by (10.27), is the set 03C01(L). We set Y+ = 03C01(L+) and
note that

as required. The subset Y+ is open relative to X and is assigned
a C°°-differential structure derived from that of X.
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§ 11. The C°°-diffeomorphism t of X onto E - P.

To define t we shall make use of Lemma 2.4 and follow the

procedure outlined preceding this lemma. More explicitly we
shall define homeomorphisms

of the disjoint subsets (§ 10)

of X onto disjoint subsets of 8 -fi/ whose union is E - P. Recall
that .9 = I(P). The mappings to, ti, ... will be C°°-diffeomor-

phisms. We finally define a C~-diffeomorphism t+ of the subset
X+ of X (§ 10) into E - P, and show that

’rhe mapping t defined by setting

DEFINITION OF t,, r = 0, 1, .... In defining t, use will be

made of Lemma 2.3. We refer to the #-mappings 03C0, 03C01, n2
associated with X as in § 1. Let 03C9 be extended as in (9.30). To
define t, om X,. the mappings f and 1 appearing in Lemma 2.3 are
here denoted by f, and respectively, and defined by setting

Thé C~-diffeomorphism tr : X, - E - P is then defined as in

(2.11)’ by setting

Note that

by virtue of (9.30) and (7.10). We shall verify Conditions (i), (ii),
(iii) of Lemma 2.3, taking X’ as Rr(K), and conclude tliat tr is a
C°°-diffeomorphism of X, onto Rr(K).

VERIFICATION OF (i). The general Condition (i) of Lemma 2.3
has the form (p03BC)|W = Il W and must be applied here with W
replaced by

where UT is given in the canonical form of X. Condition (i) thus
rcduces to the condition
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and is satisfied in accord with the definition of 03BC in (10.6) and of
1, and f, in (11.5).
VERIFICATION OF (ii). The condition f(M-W) n f(M) = 0 of

Lemma 2.3 here takes the form

Replacing W, by Rr(H-G) from (11.8), and using (9.30), condi-
tion (11.10) becomes

By virtue of (7.10) this is equivalently

and is clearly satisfied.
VERIFICATION OF (iii). The Condition (iii) of Lemma 2.3 has the

general form f(M) n f(M) = l’, and is here satisfied in the form

It follows from Lemma 2.3 that t, is a C~-diffeomorphism o f X,
onto Rr(K), r = 0, 1,....

DEFINITION OF t_l. Recall that X-1 = n1(A) where A is given
in (10.16). We define t-1 on X-1 by setting

and observe that t-1(X-1) = I(A). It is clear that t-1 is a homeo-
morphism of X_1 onto I(A). Taking into account the form of A as
given by (10.16) we see that

It may be concluded that

and that the sets ti(Xi) are disjoint.
DEFINITION OF t+. Recall that X+ = 03C01(A+) where A+ is given

in (10.18). We define t+ over X+ by setting

PROOF OF (11.3). Note first that if for p E M, 03C01(p) is in Xi,
then p must be in the first component of X i, since X is ,u-rep-
resented. Hence:
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For p e Rr(K-B), 03C01(p) is thus in Xr n X+. In accord with (11.5)’,
(11.6) and (9.30),

since co reduces to I on K- B. A comparison of (11.15) with (11.13)
shows that

as required.
From (10.16) and (10.18) it follows that A+ ~ A, so that

X+ n X-1 = 03C01(A). It follows from (11.11) and (11.13) that

Thus t+ is a C’-diffeomorphism of X+ into d-.9 for which
(11.3) holds. The conditions of Lemma 2.4 are thus satisfied, so
that if t is defined by (11.4) we have the following lemma.
LEMMA 11.1. There exists a C°°-di f f eomorphism t o f X onto

E - P defined by the conditions

§ 12. The composite n-manifold X*.

In this section we shall define a composite n-manifold based on
(E, E). The manifold will be assigned a C~-structure. In the next
section we shall show that there exists a C~-diffeomorphism
s of X onto X*. Let

be a canonical representation of X*. We shall define X* by
defining the elements in the representation (12.1). Reference will
be made to the n-cube K of (9.1) and to the subsets K’, H’, G’,
3éf’, Cd’ etc. associated with K in § 7. The mapping 03C9’ defined on

. E - G in § 7 will also be used as well as the restriction co = co’l (K-
- G ). Set
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The compatibility condition 03BC*(W*) = W* is satisfied since

w(H’ -G/) = A" - 9’ by (7.9). Thus X* is a topological space
as defined in § 1. We continue by proving Lemma 12.1.
LEMMA 12.1. The space X’* is an n-manijold.
This lemma will be proved by showing that X* satisfies Con-

dition (y) of Lemma 2.2. The proof is similar to that of Lemma
10.1. We begin by showing that

As in the proof of (10.7)

making use of (7.9)’. Relation (12.5) follows from (12.6).
Turning to Condition (y) note that 03BC* as defined by co over W*,

and regarded as a map of W* into o, admits co’ as a continuous
extension over flM* W*. Condition (y) is satisfied if the right
member of (12.6) does not meet Jé*. But the set M* = K’ is
open in J, and so does not meet 03B2EK’.
Lemma 12.1 follows from Lemma 2.2.
A partition of X*. We shall partition X into a sequence

of disjoint subsets whose union is X*, and of which the sets
Yg, Y*1,... are open. This partition will be used in defining the
C°°-diffeomorphism s of X onto X*.
DEFINITION OF Y*. Employing the representation of subsets of

a composite manifold introduced in § 1, set

noting first that H’ - G’ C M* and e’ C M*. The condition (1.14)
that Y* be 03BC*-represented in (12.8), takes the form

or equivalently

taking into account the definitions of W and of 3W’*. Condition
(12.10) is satisfied in accord with (7.9)". Moreover Yri is an open
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subset of X* and as such will receive a C°°-differential structure.
DEFINITION OF Y*r, r = 1, 2, .... Set

noting that Tr(K) C M*, since Tr(K) n G’ = 0 by virtue of
Lemma 9.2. Z’he condition (1.14) that (12.11) be a 03BC*-representa-
tion of Y* takes the form,

or equivalently,

and is satisfied in accord with Lemma 9.2. The subset Y*r is open
relative to X* and will receive a C°°-differential structure from X*.
The sets Y£, p = 0, 1, ..., are disjoint since the intersection of
any two of their second components is obviously 0, and since the
intersection of any two of their first components is likewise 0,
in accord with (9.23), (9.24) and (9.25)".
DEFINITION OF Y!l. This set is the complement with respect

to X* of the union of the sets Y*0, Yi , ... and can be p-represented
using Corollary 1.4. The union of the second components of
Y*0, Y*1, ... is .Te’ = M*. The union of the first components of
Y. Y*1,... is

and the complement of this union with respect to M* is L, as given
by (10.28). Hence by Corollary 1.4

With Y!l so defined X* is the union of the disjoint sets Y*,
i = -1, 0, 1, ....

§ 13. The C’-diffeomorphism s of X onto X*.
In defining s we follow the procedure preceding Lemma 2.4.

We make use of the second partition of X into the union of the sets

defined in § 10, and define a sequence of homeomorphisms "onto"
of the form

of whieh s0, s1,... will be C~-diffeomorphisms. With Y+ defined
as in (10.30) we introduce a C°°-diffeomorphism
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such that

We finally set

The sets Y+, Yo, Y¡ ... are open and X is their union. The sets

of § 12 are disjoint and X* is their union. It follows from Lemma
2.4 that s is a C’-diffeomorphism of X onto X*.
DEFINITION OF 80. Recall that

by definition. Let n, 03C01, n2 be the #-mappings associated with
X, and let 03C0*, 03C0*1, 03C0*2 be those associated with X*. Set

These two conditions on so define a single-valued so on Yo, taking
account of the identifications used in defining Yo and Y*. In fact
H’-G’ is identified under ,u with a subset of K’, since

while H’ -G’ is identified under 03BC* with a subset of 2f’ since

If p E H’ - G’, then p and cv(p) are identified both under 03BC and
under p*, and have the same image under so.

It follows from (13.9) that each point of Y 0 is the image of a
point in 3Q’ under n2’ while (13.10) implies that each point of
Yô is the image of a point in K’ under 03C0*2. Hence

Thus (13.5) defines a Coo diffeomorphism s0 of Yo onto Y*0.
DEFINITION OF sr, r = 1, 2 .... Recall that

To define a C~-diffeomorphism sr of Y, onto Y* we shall follow
the procedure of Lemma 2.3 and define a C’-diffeomorphism fr
of the first component of Yr into Y*r, and a C~-diffeomorphism fr
of the second component of Y, into Y*. The C°°-diffeomorphism s,.
is then defined by setting
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for p E Tf’(K-G) and q ~Tr(K).
DEFINITION OF f,.. ’Co define fr we introduce a sequence of

C°°-diffeomorphisms such that

(13.14) -G ~ Tr(-G) ~ Tr() ~ Y* (r &#x3E; 0)
and such that for p ~  - G
(13.15) p ~ T, (p) ~ Tr . I-1. 03C9(p) ~ 1 - T,.. I-1. 03C9(p).
An arbitrary point x in the first component of Yr has the form
T,(p), and by virtue of the mapping (13.15) has an image in Y*
(13.16) fr(x) = ni . Tf’. I-1 . 03C9. T-1r(x) [x E Tr(-G)]
Making use of Lemma 9.3 we see tliat in particular

(13.17) fr(y) = 03C0*1. r,. I-1. y"-;1 . co (y) [y E Tr(H-G)]
DEFINITION OF If’. For z in the second component of Y,. set

(13.18) fr(z) = 03C0*1. Tr . I-1 . T-1r(z) [z ~ Tr(K)]
noting that

(13.19) TrI-1(K) C M* (r &#x3E; 0).
Since :ni is defined on M*, Ir is defined on Tr (K).
We now verify the conditions (i), (ii), (iii) on f and / in Lemma

2.3.

CONDITION (i). The W which appears in the general condition
(i) of Lemma 2.3 is here to be replaced by

(13.20) Wr = W n Tr(K-G) - Tr(H-G), [W from (10.2)]
where the second equality in (13.20) follows from Lemma 9.2.
Making use of the definition of f, in (13.17) and of f. in (13.18), the
condition (i), 1,.,u(p) = fr(p), p E Wr reduces to the form

03BC|Tr(H-G) = 03C9|Tr(H-G),
and is satisfied by virtue of the definition of ,u.
CONDITION (ii). The Condition (ii) has the general form

f(M-W) ~ f(M) = 0

in Lemma 2.3. Here M - W is to be replaced by

Tr(K-G)-Wr = Tr(-H)
in accord with (13.20). Thus Condition (ii) takes the equivalent
forms

fr[Tr(K -H)] ~ fr[Tr(K)] = 0
w . T-1r[Tr(K-H)]T ~ -1r[Tr(K)] = Ø
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(13.21) 03C9(-H) ~ K = 0
and is satisfied in accord with (7.10).
CONDITION (iii). According to this condition Yg, taken as 03A3’

in Lemma 2.3, should equal

[fr . Tr(-G)] U Ifr .Tr(K)]
= [03C0*1. T, I-1.03C9(-G)] u [03C0*1. T,. I-1(K)]
= 03C0*1.Tr. I-i(éé’) = ni . Tr()

using (7.10). The last member is Y*, so that Condition (iii) is
satisfied.

If sr is defined by (13.13) then Lemma 2.3 implies that the mapping
(13.22) sr : Yr ~ Y*r = 03C0*1.Tr(K) (r&#x3E;0)
is a C~-diffeomorphism onto Y*r.
DEFINITION oF s_i. Recall that

(13.23) Y-1 = [L, 0, XJ Y*-1 = [L, 0, X*]
where L is given in (10.28). An arbitrary point in Y-1 is of the
form n1(p) with p e L. The point 03C0*1(p) is then a point in Y*1.
We define s_i by setting

(13.24) s-1.03C01(p) = 03C0*1(p) (p ~ L)
So defined s_i is a homeomorphism of Y_i onto Y*1.
THE DEFINITION OF S+. Recall that Y+ = nl(L+) where

(13.25) L+ = M- 5 T,(B-G) D L [Cf. (10.29)]
r=1

We define a C°°-diffeomorphism of Y+ into X* by setting
(13.26) s+ . 03C01(p) = 03C0*1(p) (p E L+).
We must show that the relations

(13.27) s+|(Y+ ~ Yi) = si(Y+ ~ Yi) (i = -1, 0, 1, ...)
are satisfied.

VERIFICATION OF (13.27). This verification is immediate in
in case i = -1, as one sees on comparing (13.26) and (13.24) for
peL.

The case i &#x3E; 0 in (13.27). To verify (13.27) in this case note the
following. If for a point p e M, 03C01(p) is in Yf, then p must be in the
first component of Y,, since Y, is 03BC represented. Hence

(13.28) Y+ n Yr = nl(L+) ~ 03C01 . Tr(-G) = 03C01 . Tr(-B)
(r &#x3E; 0)
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Any point in Y+ n Y, is thus of the form 03C01(x) with x in Tr(- B).
For such an x (13.13) gives

(13.29) s,.. 03C01(x) = f, (x) = 03C0*1. Tf’ I-1 . ro . T-1r(x)
hy (13.16). But B has been so chosen that

03C9|(-B) = I(-B),
so tliat co can bc replaced by I in (13.29). It follows then from
(13.29), so rcduced, that

(13.30) sf’ . 03C01(x) = 03C0*1(x) (03C01(x) ~ Y+ n Yr)
Now (13.30) is in agreement with (13.26) so that (13.27) holds for
i &#x3E; 0.

The case i = 0 in (13.27). As in the case i &#x3E; 0, if for p E M.
tlic point 03C01(p) is in Yo, then p must be in the first component of
Y0 since Yo is ,u-represented. Hence

(13.31) Y+ n Yo = 03C01(L+) ~ n1(H’ -G’) = n1(H’ -G/)
For such a ni (p)
(13.32) so . 03C01(p) = 03C0*1(p) (n1(p) E Y+ n Yo)
in accord with tlie definition (13.8) of so. On comparing (13.32)
with (13.26) we see that (13.27) holds for i = 0.
Thus (13.27) holds without exception, so that if s is defined

by (13.5), it follows from Lcmma 2.4 that s is a C°°-diffeomorphism
of X oito X*.
The definition of s is explicit in Lemma 13.1.
LEMMA 13.1. There exists a C~-diffeomorphism s o f X onto X*

defined by the followinc, conditions:

§ 14. A spécial C°°-diffeomorphism D.

’l’he mapping D which we shall define in this section, taken
with thc mappings t and s already defined in § 11 and § 13 respec-
tively, is essential for our dérivation of a solution of a problem of
type K.

The 1napping a. ’ro define D we shall need a C°°-diffeomorphism
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a of D into E, where D is an open n-interval of E of the form

(14.1) D : (a  xi  bi) (i = n)

Let c and p be constants on the open interval (0, 1). We shall refer
to the n-subinterval of D

(14.2) De : (a  xi  a+c(bi-a)) (i = 1, ..., n)

Bearing in mind the fact that pc is a constant on (0, 1), Dpe is
well-defined and D D Dc ~ Dpe. Observe that D, Dc, and Dp, are
geometrically similar n-intervals with common vertex (a, a, ..., a )
E E. We shall define a over D in such a fashion that

(14.3) a(D) = De, a|D03C1c = uldp,
where u is the identity on E.
The mapping c03BB03C1. Let c03BB03C1 map the interval (0, 1) onto the

interval (0, c) in such a way that

c03BB03C1(t) = t (0  t ~ 03C1c)
eÂp’ (t) &#x3E; 0 (0  t  1)

and c03BB03C1 is of class C°°. The existence of eÂp is readily established as
an indefinite integral of a suitably chosen function.
DEFINITION OF a. The required mapping a may be defined as

one in which (x) ~ (x’) in E with

(14.4) 1 = (bi-a)c03BB03C1 xi-a (i = 1, ..., n)

It is readily verified that a has the desired properties. It will be
noted that a depends upon c and p as well as upon D. However c
and p will be chosen and fixed.

The choice of D and c. Recall that K, H’ and H" are defined by
the respective conditions

K : (-1 ~ xi ~ 1) (i = 1, ..., n)
H’ : (-1  xj  1), (-1  xn  -d), (i = 1, ..., n-1)
H":(-1  xj  1), (d  xn  1), (j = 1,..., n-1)

Recall also that d &#x3E; 0 was chosen in § 7 so small that

H’ ~ G’, H":) G"

We shall take D as an n-interval of the form

(14.5) (-1  xi  bi) (bi &#x3E; 1)(i = 1,..., n)
such that D contains the fixed point P of the radial transforma-
tion R, and is geometrically similar to H’. These conditions do not
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uniquely determine D. It is however sufficient that some choice of
D be made. Once a choice of D is made it is clear that for suitable
choice of c, with 0  c  1

(14.6) D, = H’.

We suppose D and c so chosen and fixed.
The choice of p. Since H’ ~ G’ it is possible to choose p such that

0  p  1 and |03C1-1| is so small that

(14.7) D03C1c ~ G’
We suppose p so chosen and fixed. We note that

(14.8) DPo-G’ C H’-G’ = W*
The point a(P). Since P is in D, a(P) is in H’. Since a(P) ~ P,

a(P) is not in the set Dp,, because D pc is pointwise invariant
under a. Hence

(14.9) a(P) e H’-Dpc C H’-G’ = W*
The set k* ~ D. Note that

(14.10) M* n D = D-P-G’; a(M* n D) = H’-G’-a(P)
DEFINITION OF X*D. The composite manifold X* was defined in

§ 12. We here introduce the subset

(14.10)’ XD = [M* n D, 3Q’, X*]
of X*. This set is ,u*-represented. In fact the Condition (1.14) here
takes the form

(14.11,) 03BC*(M* ~ D ~ W*) = K’ r)

Since W* is included in M* and in D, and since 3Q’ D W*,
Condition (14.11) reduces to the form 03BC*(W*) = JX’* and is

satisfied.
The point p** £ Y*0. In (12.8) we have introduced the set

(14.12) Y* = [H’-G’, Ye, X*] = 03C0*2(K’) [Cf. (13.11)]
Observe that X* D Y* since M* n D ~ H’-G’. Set

(14.12)’ a . a(P) = P** e Yô [Cf. (14.9)]
We shall prove the following lemma.
LEMMA 14.1. There exists a C°°-dif feomorphism

(14.13) D : X*D ~ Y*0-P**
onto YÓ-P**.

In defining D the procedure of Lemma 2.3 will be followed.
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We identify E’ of Lemma 2.3 with YÓ-P**, define two Coo-
diffeomorphisms into y: - P**,
(14.14) f : M* n D ~ Y*0-P**; f : 3f’ ~ Y:-P**,
and show that Conditions (i), (ii), (iii) of Lemma 2.3 are satisfied.
The set which should replace W in Lemma 2.3 is

(14.15) (M* ~ D) ~ W* = W*
so that Conditions (i), (ii), (iii) of Lemma 2.3 will take the form

(14.16)(i) (1p,*)IW* = /1 W*

(14.16)(ii) 1[(M* n D)-W*] n f(K’) = 0

(14.16)(iii) f(M* n D) u f(K’) = Yô-P**
Once f and f have been defined and shown to satisfy the relations
(14.16), we shall define D in accord with Lemma 2.3 by setting

(14.17) D . 03C0*1(p) = f(p) (p e M* n D)

(14.18) D . 03C0*2(q) = f(q) (q ~ K’)

DEFINITION OF f. Since (14.10) holds we can define f by setting
(14.19) f(p) = 03C0*1. a(p) (p e M* n D)
and conclude that

(14.20) f(M* n D) = 03C0*1(H’-G’)-P** = 03C0*1(W*)-P**
(oc) Thus f is a C~-diffeomorphism of M* n D into y:-p.*.
DEFINITION OF 1. Since 3Q’ is the union of the disjoint sets

3X’* and G’, f can be defined over 3f’ by setting

(14.21) (f03BC*)|W* =fIW*
in accord with (14.16)(i), and by setting

(14.22) f|G’ = 03C0*2|G’
Definition (14.22) taken with (14.18), implies that D reduces to the
identity over 03C0*2(G’). We continue by proving (fl).
The mapping 1 is a C~-diffeomorphism of Ye’ into y:-p**.
Note first that f|W* is a C°°-diffeomorphism of 3W’* into

03C0*1(H’-G’) in accord with (14.21) and (14.20). To show that f is a
C°°-diffeomorphism into Y* it will be sufficient to recall that

K’ = 3W’* w G’, and to exhibit an open neighborhood v¥" of lO’
relative to G such that v¥" C K’ and 11v¥" is a C°°-diffeomorphism
of v¥" into Y,*.
To that end recall that Dp,-G’C W* by (14.8). It follows

from (14.21) and (14.19) that
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(14.23) 1 . 03BC*(p) = 03C0*1. a(p) [p E D03C1c-G’]
Since a(p) = p for p ~ Dpc, and since D03C1c-G’ C W* we

conclude from (14.23) that

(14.24) ,. 03BC*(p) = 03C0*1(p) = 03C0*2. 03BC*(p) [p ~ D03C1c-G’]
We introduce an open neighborhood % of G’ relative to E by
setting

N = K’-03C9’(ClE[H’-D03C1c]) = K’-03C9’(H’-D03C1c) (Cf.Lemma7.2)
= [K’-03C9’(H’-G’)] u 03C9’(D03C1c-G’) = G’ ~ 03BC*(D03C1c-G’) ~ K’

Relations (14.24) and (14.22) imply that

11% = 03C0*2|N
Thus 1 is a C~-diffeomorphism of N into 03C0*2(K’) = Y*0.

Finally 1 maps K’ into Y*0-P**. In fact f(W*), as defined by
(14.21) and (14.20), does not contain P**. Nor does f(G’) =03C0*2(G’)
as defined by (14.22), since

P** = 03C0*1. a(P) E 03C0*1(W*) = 03C0*2(W*) [Cf. (14.9)]
’l’his completes the proof of (03B2).
Now that f and 1 are admissibly defined we shall verify Condi-

tions (14.17). Of these conditions (14.16)(i) is implied by (14.21).
VERIFICATION OF (14.16)(ii). Since

f(K’) = f(W*) u f(G’) = f(W*) u 03C0*2(G’)
by (14.21) and (14.22), Condition (14.16)(ii) is équivalent to the
pair of conditions

(14.25)’ f[(M* n D)-W*] n f(W*) = 0

(14.26) f[(M* n D)-W*] n 03C0*2(G’) = 0
Condition (14.25) is satisfied since f is a homeomorphism. With
the aid of (14.20) we see that thé left member of (14.26) is included
in

03C0*1(W* n 03C0*2(G’) = 03C0*2(W* n G’) = 0

so that (14.16)(ii) 1101ds.
VERIFICATION OF (14.16)(iii). The left member of (14.16)(iii)

is included in YÓ-P** in accord with (03B1) and (03B2), and in turn
includes

[03C0*1(W*)-P**] u 03C0*2(G’) = 03C0*2(W* u G’)-P** = Y*0-P**/
[Cf. (14.20), (14.22)

Thus (14.16)(iii) holds.
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It follows from Lemma 2.3 tliat D is a C°°-diffeomorphism of
X*D onto Yô-P**.

This completes the proof of Lemma 14.1.
We shall be explicit in describing D.
LEMMA 14.2. The C~-diffeomorphism D o f Lemma 14.1 is such

that,

(14.27)’ D. 03C0*1(p) = 03C0*1. a(p) [p e M* n D]

(14.27)" D .03C0*2(q) = 03C0*2(q) [q ~ G’]
The relations (14.27) define D at each point of X*D. For X*D

equals .

03C0*1(M* n D) u 03C0*2(K’) = 03C0*1(M* n D) u 03C0*2(G’)
by virtue of the relation K’ = W* u G’ and the inclusion in
03C0*1(M n D) of 03C0*1(W*) = 03C0*2(W*).

§ 15. Neighborhoods of P e Ext X and P*,c Ext X*.

The point P e E and the point P = I(P) ~ E have their ordinary
euclidean neighborhoods. We shall extend X and X* by adding
ideal points P and P* respectively. These extensions of X and X*,
topologized as below, will be denoted by

(15.0) Ext X, Ext X*

The C°°-diffeomorphism t of X onto E - P was defined in § 11.
Let t’ be an extension of t to Ext X such that te(P) = .9. After
having defined a base (Nm) for neighborhoods of P relative to
Ext X, we shall show that t’ is a homeomorphism of Ext X onto 8.

The neighborhoods Nm of P, m = 0, 1, .... Set

(15.1) N’m = [Rm(M n D), &#x26;rn(JI), X] (m = 0, 1, ...)

(15.2) Nm = N’m ~ P
We first show that

(15.3) Rm(M n D) C Ill, Rm(M) ~ M [Cf. (10.1)]
so that (15.1) defines a subset of X. Set D-P = D’ and note that

(15.4) Rm(D’) ~ Rr(); Rm(D) n RP(K) = 0
for m  r and 0 ~ p  m respectively. We have

Rm(M n D) = Rm(M n D’)

(15.5) = Rm[D’ - 5 Rr(G)]
= [Rm(D’)- 3 Rz(G)] C M.
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Moreover

(15.6) Rm(M) = u Rr(K) ~ M

This establishes (15.3).
It is readily shown that N’m is p-represented in (15.1). We

leave the proof to the reader. We shall set I(D) = D, I(D’) = D’
and prove the following.
LEMMA 15.1. t(N’m) = £Hm(!!J/) (m 0).
To prove this lemma we need the relations, (r ~ 0)

(15.7) X, n N. = Xr (m  r)

(15.8) X,nNm = ~ (m &#x3E; r)

(15.9) t(X, n N’m) = Rr() (m S r)

(15.10) t(X, n NJ = ~ (m &#x3E; r)

(15.11) t(X-1 n N’m) = Rm(D’) - S Rr() (m ~ 0)

where the subsets Xi of X are defined in § 10.
Equations (15.7) and (15.8) are valid since the first and second

components of X, in its ,u-representation as a subset of X are
included in the corresponding components of Nm when m  r,
while corresponding components do not meet when m &#x3E; r. This

follows readily from (15.4), and (15.5) in the case of first coinpo-
nents, and is immediate in the case of second components.
Relations (15.9) and (15.10) follow from (15.7) and (15.8) respee-
tively, recalling that t(Xr) = Rr(). § 11.

To verify (15.11) recall that X-1 = 03C01(A) where

(15.12) A = E-P- û Rr() [Cf. (10.16)]

Now A n W = 0, so that whenever a point nl(p), (p e A) is in N£
p must be in the first component of Nm. I-Ience

X-1 n N’m = nl(A n [Rm(M n D)])
(15.13) = 03C01(Rm(D’)- Ü R(K))
using (15.5) and (15.12). Relation (15.11) follows from (15.13)
since t . nj(p) = I(p) for p ~ A. Cf. (11.11).
Now the union of the sets Xi, for i = -1, 0, 1, ..., is X, so that

00 t(Xi n N’m) = t(N’m) = Rm(D’)
using (15.9), (15.10) and (15.11). This establishes the lemma.
The space Ext X is topologized giving the points of Ext X-P
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- X their neighborhoods in X and taking the ensemble (Nm)
as a base for the neighborhoods of P. The reader will verify that
Ext X is a Hausdorff space.
COROLLARY 15.1. The mapping te is a homeomorphiqm o f Ext X

onto E.
Since t is a homeomorphism of X onto E - P it is sufficient to

note that

te(Nm) = Rm(D) (m = 0, 1, ...),
and that Rm(D) is a base for neighborhoods of P relative to 8.

The neighborhoods N: o f P*. As a base for the neighborhoods of
P* relative to Ext X* we shall take the subsets Nm of Ext X* of
the form N*’ u P* where

(15.14) Nm’ - [Rm(D’), 0, X*J (m = 1, 2, ...)
Before coming to the fundamental Lemma 15.2, we establish two
relations.

(15.15)’ Tr(K) n Rm(D’) = Tr(). (m ~r -1)

(15.15)" T,.(K) n Rm(D’) = ~ (m &#x3E; r+1)

PROOF OF (15.15). From (9.6)

T(K) C Int [ ~ R(K)] C D’
By définition Tr+1 = R’’T, so that for r &#x3E; 0

Tr(K) C Rr-1(D’) C Rm(D’) (1n  r-1)

establishing (15.15)’. Further

Tr() C Int [Rr-1() u Rr(K))]
’rhe last set does flot intersect Rr+1(D’) and hence does not inter-
sect Rm(D’) for m ~ r+1. Thus (15.15)" holds.
By definition (10.21)

(15.16) Yr = [Tr(-G), Tr(K), X] (r = 1, 2, ...)

Concerning Y, we shall prove the following

(15.17)’ Y,. n Nm = Y,. (m ~ r-1)
(15.17)" Yr ~ N’m = ~ (m ~ r+1)
PROOF OF (15.17)’. To establish (15.17)’ we show that the two

components of Yr relative to X are included in the corresponding
components of Nl. Lemma 9.2 implies that

(15.18) Tr(-G) (1 u RfJ(G) = 0
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It follows then from (15.15)’ tliat

(15.19) Tr(-G) ~ Rm(D’) -  Rv(G) (m ~ r-1)

The right member of (15.19) is the first component of N’m as given
by (15.5). Thé second component of Yr is

(15.20) Tr(K) = Rr-1(K") ~ Rr(K’) ~ u Rp(K)

provided m ~ r -1. Since the right member of (15.20) is the second
component of N., (15.17)’ follows.
PROOF OF (15.17)". If m ~ r+1 it follows from (15.15)" that

the members of (15.19) do not intersect, nor do the extreme
members of (15.20). Since Y, is 03BC-represented (15.17)" follows.
The mapping s of X onto X* defined in § 13 will be given an

extension sl over Ext X by setting se(P) = P*. With this under-
stood the basic lemma on (N*m) follows.
LEMMA 15.2. N*m+1 C se(Nm) C N*m-1 (m = 2, 3, ...)
The second inclusion. We shall introduce the set

(15.21) Lm = Rm(D’)- V Tr() (m = 1, 2, ...)

C [E-P- û Tr()-H’] = L [Cf. (10.28)]

That Lm C L is implied by the relations

Rm(D’) C E-P; H’ n Rm(D’) = ~ (m &#x3E; 0)

TP() ~ Rm(D’) = ~ (p = 1, ..., m-1)(m &#x3E; 1)
of which the last follows from (15.15)". Noting that for m = 0,
1,...

(15.22) N’m ~  Yp [by (15.17)’]

we shall show that in accord with Lemma 1.4

(15.23) N’- û Yp = [Lm, ~, X] (m &#x3E; 0)

PROOF OF (15.23). One vérifies the fact that the second compo-
nent of the left member of (15.23) is 0 by showing that

[2nd comp N’] C [2nd comp u Yp], (M &#x3E; 0)

recalling that the second component of Yp is Tp(K).
It follows that (15.23) holds if

(15.24) [Ist comp N’m]-[1st comp  Yr] - Lm (m &#x3E; 0)

or equivalently, using (15.5) and (15.16), if
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(15.25) [Rm(D’) - u Rr(G)] - [u [Tr(K-G)] =Lm
That (15.25) holds is verified with the aid of (9.20). Hence (15.23)
is valid.

It follows from (15.23) that

(15.26) N’m C [ Yp] u [Lm, 0, X] (m &#x3E; 0)
p-m

We now apply s to the members of (15.26). Recall that Lm C L, so
that s . nl(Lm) = 03C0*1(Lm) in accord with (13.24), and that for
p &#x3E; 0

s(Yp) = 03C0*1. TfJ(K) [by (13.22)].

Hence (15.26) and (15.15)’ imply that

s(N:n) C 03C0*1[ Tp() u Lm] ~ 03C0*1. Rm-1(D’) = N*’m-1
for m = 2, 3, ....

This establishes the second inclusion in the lemma.
The first inclusion. It follows from (15.22) and (15.23) that

N’m ~ [ Yp] ~ [Lm, ~, X]
s(N’m) ~ 03C0*1[ Tp() u LJ [by (13.22), (13.37)]

= 03C0*1[Rm(D’)-Tm(K)] ~ 03C0*1 . Rm+1(D’) = N*’m+1
[by (15.15’), (15.21)]

since

Rm(D’) ~ Rm+1(D’); Tm() ~ Rm+1(D’) = ~ [by (15.15)"]
The first inclusion in the lemma is thereby established.
COROLLARY 15.2. The mapping se is a homeomorphism 01 Ext X

onto Ext X*.

An extension De of D. Observe that

X1; = ( M* n D, vIt*, X*] [Cf. (14.10)]
is a subset of X* which includes N:/, m &#x3E; 0, since

(15.27) M* ~ D = D’-G’ ~ Rm(D’) (m &#x3E; 0)

It is therefore appropriate to extend X*D by adding the ideal point
P* ~ Ext X to X*D. We denote this extension by Ext X*D, and
extend the topology of XD by regarding Ext Xh as a subset of
Ext X*. Let the C°°-diffeomorphism D : X*D ~ Y*0 of Lemma 14.1
be given an extension over Ext X*D by setting

(15.28) De(P*) = p** = 03C0*1 . a(P) E Yri [Cf. (14.12)/]
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We complete Lemma 14.1 by the following.
LEMMA 15.3. The extension De o f D is a homeomorphism

De : Ext X*D ~ Y*0 [onto Y*0].
Let p be given in Rm(D’), m &#x3E; 0. Since p is then in M* n D,

ni(p) is in Xb, and in accord with Lemma 14.2

(15.29) D . 03C0*1(p) = 03C0*1 . a(p) E Y*0
Sincc 03C0*1(p) represents an arbitrary point in Nm’

D’(N*’m) = 03C0*1 . a . Rm(D’).
Taken with (15.28) this gives

(15.30) De(N*m) = 03C0*1 . a. Rm(D) (m = 1, 2, ...)
The base (N*m) for neighborhoods of P* relative to XD thus has for
image the ensemble (15.30). This ensemble is clearly a base for
neighborhoods of P**, relative to Y*0.
The lemma follows.

§ 16. Proof of Theorem 0.1.

It follows from Corollary 4.2 and Lemmas 6.1 and 8.1 that the
first class of problems can be "effectively" mapped into the class
of problems of type K. To establish the existence of a solution of
Theorem 0.1, it is therefore sufficient to establish a solution of a

problem.
(16.1) [03C9, H’, K’]K
of type K. Such a problem is defined by means of Lemma 7.1. As
observed in a Note in § 7 no generality is lost if the n-cube K on
which thc problem (16.1) is defined is the special n-cube

(16.2) (-1 ~ xi ~ 1) (i = 1, ..., n)
introduced in (9.1). We continue with a lemma.
LEMMA 16.1. In order that the problem (16.1) admits a solution it is

sullicient that there exists a C~0-diffeomorphism

g : H’ ~ Y*0 [Cf. (12.8)]
onto the subset Yri o f X* such that f or some compact subset il o f
H’ which includes G’

(16.3) 03C0*1(p) = g(p) (pEH’_Q)

Assuming that g exists we shall define a solution Â.6J of problem
(16.1). Recall that
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Y*0 = [H’-G’, Je’, X*] = 03C0*2(K’) [Cf. (13.11)]
We can then define À.tl) by the condition

(16.4) 03C0*2 . 03BB03C9(p) = g(p) (p ~ H’)
So defined Âtl) is a C~0-diffeomorphism of H’ onto K’.

It remains to show that 03BB03C9 satisfies the boundary condition
(7.13) associated with the problem (16.1). It is thereby sufficient
to show that

(16.5) 03BB03C9(p) = 03C9(p) (p ~H’-03A9)
for the set S2 given in Lemma 16.1. Now

(16.6) 03C0*2 . 03C9(p) = 03C0*2 . 03BC*(p) = 03C0*1(p) [p E H’-G’ = W*]

by virtue of the definitions of 03C0*1, 03C0*2, and p*. From (16.3) and
(16.4) we find that

(16.7) 03C0*2. 03BB03C9(p) = 03C0*1(p) (p ~ H’-03A9)
A comparison of (16.6) and (16.7) shows that (16.5) holds.

This establishes the lemma.
In terms of the mappings t of § 11, s of § 13 and of 1 we shall

define a mapping k.
The mapping k. A C°°-diffeomorphism

(16.8) k : E-P ~ X* [onto X*]
results from the sequence of C°°-diffeomorphisms,
(16.9) E-P ~ E-P~X~X*,
defined by I, t-1, s respectively. The C°°-diffeomorphism
(16.10) k = s t-1 I

thereby maps E-P onto X*.
The n-interval Z. We have chosen D in § 14. Referring to (14.2)

let 03C3 be a constant with 0  a  1 and with |03C3-1| so small that
D03C3, like D, includes g and the point P, and a(D03C3) ~ G’. Such a
choice of a is possible since a(D) = H’ ~ G’. The interval DQ
is of the form

(-1  xi  ci) (i = 1, ..., n)

with ~ a constant such that -1  ~  0 we introduce the
n-interval

(16.11) Z : (~ ~ xi ~ ci) (i = 1, ..., n).
Setting C = DQ-Z we suppose r¡+1 is so small a positive constant
that
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(16.11a) 03C9(p) = I(p) [p ~ 03B6 ~ K]
(16.11b) a(Z)DG’

(16.1le) 03B6 n Rr(K) = 0 (r &#x3E; 0).

Let y be the complement of 03B6 n K in D-Z so that

(16.12) D-Z = (03B6 ~ ) ~ 03B3.
One sees that y is a subset of each of the sets

A = E-P- ô R(K) [Cf. (10.16)]
r-0

L = E-P- 3 T,(K)-H’ [Cf. (10.28)]
r-1

For our purposes the essential properties of Z may be summarized
as follows.

(03B1) The n-interval Z, given by (16.11) is closed in E, contains P,
is a subset ol D, and is such that (16.lla), (16.11b) and (16.12)
hold with y C A n L.
LEMMA 16.2. The niapping k is a C~-diffeomorphism of E - P

onto X* such that

(a) kl(D-Z) = nil(D-Z)
(b) k(D’) = [M* n D, JI*, X*] = X*D.

Proo f of (a). It follows from Lemma 11.1 that for p e A

(16.13)’ t-1 . I(p) = 03C01(p).

This relation is also valid for p ~ 03B6 n  in accord with Lemma 11.1,
since for such p, co(p) = I(p). It follows from Lemma 13.1 that

(16.13)" s. 03C01(p) = 03C0*1(p) [p e L v (C n K)].
The relation (16.13)" follows from (16.37) for p e L. To establish

(16.13)" for p ~ 03B6 n K observe tliat

 = ( ~ L) ~ ( ~ H’) ~ ( ~ T())
in accord with the formula for L. For p not in L but in 03B6 n É, p
cannot be in G, since 03C9(p) is defined. Cf. (16.11a). There thus
remain two cases: Case I, p e H’-G’; Case II, p = T(q), q ~ .
In Case 1, (13.33) serves to establish (16.13)". In case II, Lemma
9.4 implies that q E C n K, hence cu(q) = I(q), so that q is not in G.
With q thus in K-G, (13.35) applies to x = p with co(q) = I(q),
and shows that (16.13)" holds for the given p.
Thus equations (16.13) both hold for p e y since y C A n L,
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and also hold for p ~ 03B6 n K. By virtue of (16.12) equations (16.13)
bot h hold for p ~ D - Z, so that for such p, k(p) = 03C0*1(p). This
establishes (a).

Proo f o f (b). Note that E -D is included both in A and in L,
so that both equations (16.13) hold for

p E E-D. Now E-D = M*-D’ so that

(16.14) k(M*-D’) = 03C0*1(M*-D’)
Since M* - D’ does not meet W*, the set

(16.15) 03C0*1(M*-D’) = [M*-D’, 0, X*J = k(M*-D’)
is a ,u*-represented subset of X*. We have successively

D’ u (M*-D’ ) = E - P,
k(D’) u k(M*-D’) = k(E-P) = X*,
k(D’) = x*-[M*-D’, 0, X*] = X*D,

using (16.15) and Cor. 1.4. This establishes (b) in the lemma.
If use is made of Corollaries 15.1 and 15.2, then on setting

(16.16) ke - se(te)-1I,
we have the following lemma.
LEMMA 16.3. The Coo-diffeomorphism k o f E - P onto X* admits

an extension ke which is a C~-diffeomorphism o f E onto Ext X* and
in which

(16.17) ke(P) = se(P) = P*.

We refer to the C°°-diffeomorphism a of D onto H’ defined in
§ 14, to the point a(P) E H’ - G’ of (14.9), and to P** = 03C0*1 . a(P)
of (14.12)’ and prove the following lemma.
LEMMA 16.4. There exists a C~0-diffeomorphism g p o f H’ onto

Y*0, o f the general nature o f g o f Lemma 16.1, and in particular such
that gP defines a C~-diffeomorphism o f H’-a(P) onto Y*0-P**.

Recall that the inverse of a is a C°°-diffeomorphism of H’ onto
D, that ke|D is a C~0-diffeomorphism of D onto Ext X*D (Lemmas
(16.2, 16.3), and De is a C~0-diffeomorphism of Ext X*D onto Y*0
(Lemmas 14.1, 15.3) such that the mapping,

(16.18) gP = De . ke . (a)-1 : H’ ~ Y*0
is a C~0-diffeomorphism of H’ onto YÓ. In particular

(16.19) a(P) ~ P - P* ~ P** [Cf. (15.28), (16.17)]
under gp . We shall show that gp satisfies the lemma.

Restricted to H’-a(P), gp maps
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[H’-a(P)] ~ D’~X*D ~ [Yri-P**J
as a C°°-diffeomorphism, in accord with the definition of a, and
with Lemmas 16.2 and 14.1. It remains to choose a compact
subset S2 of H’ with Q D G’, such that the boundary condition
(16.3) is satisfied.
The choice o f 03A9. With the n-interval Z given by (16.11) and

conditioned as in (ex), set il = a(Z). The set il is compact. More-
over D D G’ in accord with (16.11b). Since a(D) = H’, by (14.3)
and (14.6), and D ~ Z,

H’ ~ 03A9 ~ G’, H’-Q = a(D-Z).

By definition of gp

(16.19)’ gp(p) = D . k . a-1(p) = D . 03C0*1 . a-1(p) [p E H’-03A9]
since a-1(p) is in D-Z and Lemma 16.2(a) applies. Since a
reduces to the identity on C’ [Cf. (14.7)], it follows from (16.11b)
that Z ~ G’, and hence D-Z C 111* n D. With a-1(p) E M* n D,
p in (14.27)’ can be replaced by a-1(p) so that the last member of
(16.19)’
reduces to

n*1.a.a-1(p)=03C0*1(p) (p ~ H’-03A9)
’rhus the boundary condition (16.3) is satisfied and Lemma 16.4 is
established.
LeInma 16.4 combined with Lemma 16.1 gives us the fundamen-

tal corollary.
COROLLARY 16.1. The problem (16.1) admits a solution irnplying

the existence o f a solution o f each problem o f the first class.
As defined in (16.4) the solution ÂCtI of problem (16.1) is such that

(16.20) 03C0*2 . 03BB03C9(p) = gp(p) = De . k6 . a-1(p) (p E H’)
The sequence (16.19) shows that gp, and hence 03BB03C9, may fail to be
of class C°° at a(P) E H’ - G’. Under 03BB03C9, as represented in (16.20),

H’ ~ D ~ Ext X*D ~ Y*0 ~ 2’ [Cf. (13.11)]
and in particular the exceptional point a(P) is transformed as
follows :

a(P) ~ P ~ P* ~ P** ~ 03C9 . a(P)

This is in agreement with (16.19) up to the final image. To verify
this final image recall that

(03C0*2)-1 . 03C0*1(p) = 03C9(p) (p ~ W*)
since 03BC* = 03C9|W*. The final image of a(P) is
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(03C0*2)-1(P**) = (03C0*2)-1 . 03C0*1 . a(P) = co. a(P) [Cf. (14.12)’]
since a(P) is in W*. [Cf. (14.9)].

It is not difficult to show that the mapping A,, affirmed to
exist in Theorem 0.1, may be chosen so that the "exceptional
point" at which A, may fail to be differentiable may be chosen
arbitrarily on the interior of Sn-1, and its image under 039B03A6 arbitrarily
on the interior of Mn-1.
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