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Normed spaces of generalized functions
by

J. B. Miller

1. Introduction 

We describe here some pairs of dual spaces determined from
initially prescribed normed linear spaces by means of bounded
linear operators. If the prescribed spaces are function spaces, the
dual pair frequently play the roles of a space of generalized func-
tions and its space of test functions, and the construction serves
as a method of embedding a given function space in an extension
space of generalized functions which can be described as strong
limits. The construction of a pair of dual spaces is straightforward.
Let X and ?) be Banach spaces, and A a suitable operator on 3i
into ID. We can define a new norm on 3i by writing

and if 3i so normed is incomplete, embed 3i in its completion,
which we write as 3E+ and call an inflation of X by A. At the same
time, the range of A in ?) can be normed by

we call this a deflation of ID, and denote it by IDÃ-l. The spaces

(where * dénotes the adjointing operation) constitute the dual
pair determined by 3E, V and A. 

Consider two examples.
1°. Take 3C = ?) = L2(0, oo) and define A by

It turns out that 3EA+ is an extension of L2{0, oo ) whose elements
have some of the properties usually associated with generalized
functions. The space contains a delta function, and up to k
derivatives can be defined locally for its members, though not
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very conveniently. The dual space (X*)-i determined by the
adjoint operator

is made up of L 2 functions x for which t""0153(k)(t) e L2 and

X = A*[uk0153(k)(u)J. Elements of this space possess atleast k deriv-
atives, with certain Lipschitz properties. These spaces are discussed
in detail in [5], [6] and [7]. Some other extensions of L2(0, oo)
are described in [8].

2°. Take x = Ll (0, oo), let F be a compact subset of the positive
reals with non-empty interior, and consider the Laplace transfor-
mation

as a mapping of Ll(0, oo) into the space ?) = C(F) of continuous
functions on F with the uniform norm. Then

and by completion under this norm LI yields a space in which
every element has a well-defined strong left derivative. We return
to this example later, and obtain a generalization of it in § 7.

Other examples of the types of structures contemplated in this
paper will be found in [2], [8] and [4]. A. P. Guinand in [2]
describes some deflations of L2(0, oo), and also uses deflationary
processes to obtain a pair of subclasses of L2(0, 2n) and 12 with a
Fourier-series reciprocity property. R. R. Goldberg in [3] general-
izes some deflations described by Guinand and the author.
CONTENTS. In § 2 we specify a class of operators which give rise

to inflations and deflations, and in § 3 we examine further the
duality between the two spaces; § 4 is devoted to examples. § 5
discusses the partial ordering of inflations by inclusion. § 6

describes inflation of algebras.
We use Example 2° as a motivating and illustrative example in

the course of the discussion, and in § 7 obtain a natural generaliza-
tion by using the Gelfand representation of a commutative
Banach algebra.

2. Inflating operators in Banach spaces

Starting with spaces 3E and ID, we first consider the conditions
which A should satisfy in order that XÀ be a workable extension of
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X. For simplicity we suppose A linear; and although the norm of 3i
and its completeness are not necessary for the definition of the
inflation, none the less we suppose both 3E and ?) to be Banach
spaces. We can regard ae+ as usual as the set of equivalence classes
of sequences of elements of 3i which are Cauchy with respect to
the A-norm II-liA, and write (X,,)IAX, X.--&#x3E;AX, ae = limAaen
if the sequence (x.), x. e ae (n -&#x3E; oo) determines x in 3E+. We lay
down the following requirements.

(a) 1 IXI JA be defined for all x e 3E; i.e. D(A) = X.
(b) The norm of ae be stronger than ".11 A, so that the limiting

process in l£ be preserved in ae+A; i.e.

For this it is necessary and sufficient that A be bounded.

(c) The norm topology of 3E+ indu ce a Hausdorff topology on
ae; Ï.e.

which is the case if Ax = 0, x e ae imply x = 0. This condition also
ensures that l’. liA has the properties of a norm.

(d) A ae be dense in ID.. (If the closure A ae were a proper subspace
of ID, we could restate the theory using this subspace in place of D.)

(e) ae+A be a proper extension of ae; i.e. there exist at least one
sequence (sn)’ Sn e ae, which is Cauchy in ae+A but not in ae.
These suggest
DEFINITION 1. The linear operator A from ae into D is called a

"proper inflator" (proper inflating operator) il
DÀ(I) A is bounded, with domain ae;

(2) Ax = 0, x e ae imply x = 0;
(3 ) the range 01 A is dense, but properly contained, in 9).

Il instead A satis f ies (1), (2) and
(3)’ the range 01 A is ID, .

it is called an "improper inflator".
we denote the set of inflating operators by (ae, D), of proper

inflators by Ùp . A proper inflator satisfies (a) to (e). If A is an
improper inflator, then ae+A = ae: for A -1 exists by (2), and is bound-
ed, by a well-known theorem of Banach; 1 ) hence every A -

Cauchy sequence is Cauchy in ae.
As consequences of Q(l )-(3) we note that A is closed, and its

1) See [1 ], Theorem 2.12.1. Other theorems in Chapters 1 and 2 of [1] are used
below.
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range is of the first category in ID (by the closed graph theorem);
A-1 is defined and closed but unbounded; A* (the adjoint of A)
exists as a bounded linear operator mapping ID* into 3i* (the
conjugate Banach spaces), IIA*11 = IIAII, and (A* )-1 = (A-’)*,
the operators being unbounded. We summarize the construction
of YÀ in
THEOREM 1. If A is a proper inflator in U(ae, D), then ae+A is a

Banach space isometrically isomorphic to ID, and ae is a dense sub-
space in ae1. The operator A can be extended to an operator mapping
XÀ onto ID, with a unique inverse which is the extension of the A-’
determined by QA(2).
We shall not as a rule distinguish A, A* or A-1 from their

extensions explicitly. The following result is useful.

LEMMA 1. Il a subset lI of 1 is dense in ae, then it is dense in
ae+A; that is, A U is dense in D.
The proof is straightforward.
A consequence of the lemma is that U(ae, D) is a semigroup

under operator multiplication; for if A, B, e Ù, then A B clearly
satisfies S2AB (1) and (2), and (3) follows from the lemma. 3p is
likewise a semi-group, and we have

for if A B, for example, is improper, (A B -1 is bounded, and so then
is A -1 = B (A B)-’, implying A e We note that I c- %’ e 0 e
THEOREM 2. Il A is an improper inflator, then so is A*. I f

A ej)(ae, ID) and 3E is reflexive, then A * e 3E*).
PROOF. If A e(ae, ID), then QA-(l) and (2) hold. If A is im-

proper then (A*)-’ = (A-’)* has domain ae*, and so A * is an

improper inflator. Suppose A proper; we prove .QA(3). Now
A * ID* is properly contained in ae*, for if not then A -1 is bounded
and A is improper. Also A*?)* is dense in ae* if X is reflexive.
For then the closure A * fi* equals [N (A ) ]0, the annihilator of the
null space of A : here 91(A) is {0}, and hence [N(A )]° = 3E*. Thus
QA*(3) holds. 2 )
The condition that 3i be reflexive cannot be omitted. A counter-

example will be found in [12], Ex. (II2, 11,2)’
THEOREM 3. When A e 8(X, ?)), the de f lation IDA -1 is a Banach

space.
PROOF. The deflation space is clearly linear ; the proof of its

2 ) We have used [1], Theorem 2.11.15 and [14], p. 286, Theorem 2.
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completeness follows directly from its définition and the assump-
tion that 3E is complete.

If A * is an inflator, the set A *ID* can in the same way be made
into a Banach space (ae*&#x3E;:*-l, a déflation of X*, with the norm

We note that if A e U(ae, ID), (ae*)Ã.-l is a Banach space even when
A * j iJ(ID*, ae*), i.e. when QA*(8) does not hold.
Let [., .]..4 be the complex-valued bilinear function on

(3i* )x*-i X ££ defined by

With this form, the deflation and inflation become a pair of dual
spaces in the sense of Rickart [10], p. 62,3) in fact normed dual,
since

We shall denote this pair of spaces briefly by 3i*-, X+, omitting
the "A" when there is no ambiguity.

3. Conjugacy and A-weak convergence

We now look for conditions under which the duality between
the spaces ae*- and X+ becomes one of conjugacy, and to this end
prove Theorem 5 below. We also consider a form of weak conver-

gence in 3i+ under which ae+ may be complete. The two results
sliow the way in which ae*- may play the role of a space of test
functions for a space ae+ of generalized functions. We assume in
this section that A e(ae, D), but make no stipulation about A*.
DEFINITION 2. The sequence (xn), aen e 3E, is called A-weakly

Cauchy il [X*, X.-X,,,]A -&#x3E; 0 as min (n, m) -&#x3E; oo, f or every
X* e (x* )A *-1.
THEOREM 4. Let A c- jà(3E, ?» and let fi be re f lexive. Then the

A-weak completion of ae is ae1, and ae+ is A-weakly complete.
PROOF. If x E , then (2.1) shows that

defines a bounded linear functional ~ in (X*")*, thé conjugate

8) Cf. Lemma 2, below.
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space of (ae*)Ã*-l. If (aen) is A -weakly Cauchy, it then follows from
the theorem of uniform boundedness that

also defines an element of (ae*-)*. Therefore every x* e ae*-, a
bounded linear functional in ae*, can be extended to a bounded
linear functional in ae+* by defining x*(x) when x e ae+ to be
limnooae*(aen), where (aen) "-’Aae: the limit exists since any A -

Cauchy séquence is A -weakly Cauchy, and it is independent of the
sequence chosen for x. Moreover

and IIXIIA is the norm of this functional in 3i+*. Inequality (3.2 )
is valid for all x e 3i+, x* E 3E*-, and the definition of an A -weakly
Cauchy sequence can be extended to include sequences with
elements from 3E+. We call the collection of A-weak limits of

(equivalent) A -weakly Cauchy sequences from 3i the A -weak
completion of X.

Clearly 11 is contained in the A -weak completion of X. Conver-
sely, suppose that (xn ), xn e X, is A-weakly Cauchy. Then

for all x* = A* y* e ae*-, i.e. the sequence (Axn,) is weakly Cauchy
in ID, and since ?) is reflexive 4) converges weakly to some element
y e ID. By Theorem 1, y = Ax for some x e ae+; since x*(x) = y*(Ax),
we have

showing that (aen) converges A-weakly to an element of ae+.
The same argument shows that ae+ is A-weakly complete.
LEMMA 2. Let A e %’S(ae, ID) and ae e ae. Then

il and only il x = o.
PROOF. If x e X, the result is trivial. The sufficiency of x = 0

is also obvious. Suppose (xn ), xn e X, is a sequence for x e ae+ and
that (3.3) holds, i.e. lim_z*(z) = 0, all x* E A*ID*. Write
ae. = A* y*; it follows that (Axn) is weakly Cauchy in ID. It is
also strongly Cauchy by definition; since the strong and weak
limits coincide, we have IIA0153nll -&#x3E; 0, that is, x = 0.

C) [14] p. 156, Theorem 2.
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THEOREM 5. 1 f A e (ae, ID) and ?) is reflexive, then ae and
((3i* )x*-i]* are isometrically isomorphic.
PROOF. Let xeae; we saw that ~ in (3.1) is then an element in

(3i*-)*. Conversely, any element in (3i*-)* can be so written;
let ~ be an arbitrary bounded linear functional on 3E*-, so that
IcI&#x3E;(x*) 1  Î§" IIX*IIA--l’ , i.e.

Then cp(A *.) defines a bounded linéar functional y** on ?)*, and
since ID is reflexive, an element y e ID such that cp(4 * y*) =
y**(y* ) = y*(y), all y* e ?)*. Since y = Ax for some x e ae+,
§(A*y* ) = y*(4x) = (A*y*)(x); thus cp has the form (3.1) for
some x e ae+. Moreover

The mapping x --&#x3E; cp of X+ onto (X*")* determined by (3.1) is

easily seen to be a homomorphism, in fact an isomorphism by
Lemma 2, and it has been shown to be an isometry. This proves
the theorem.

When A is improper, so is A*, and the theorem takes the form
3i çr X**. Thus it may be thought of as providing a generalization
of reflexivity. If ?)’,is not reflexive, we can still conclude that

3e+ c (I*-)*.
COROLLARY. If A e 9(X, and X is reflexive, then (ID*). and

(eAzi)* are isometrically isomorphic.
The proof comes by applying the theorem to A* e i1(ID*, ae*).

4. Examples

1° (continued). It can be verified that the operators A and A*
of § 1, 1 ° are inflators, in the sense of Definition 1. Theorems 4 and 5
apply.

2° (continued). Let us verify that A e Ù(Ll(o, oo), C(F)} for
the operator in (1.3). Clearly Q(l) holds. Moreever, if x e Ll(0, oo ),
its Laplace transform x 1 (z) is a holomorphic function in R(z) &#x3E; O;b)
therefore if xv(z) vanishes on F, it vahishes for all 9t (z) &#x3E; 0,
and so x = 0; thus 12(2) holds. To prove S2(3) we use the Stone-

5) [13], p. 57.
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Weierstrass Theorem. Let a product in Ll(0, co) be defined by

the products induced by regarding Ll(0, oo ) as the closed subalgebra
{x: x(u) = 0 if u  0} of the group algebra Ll(-oo, co) with
convolution product, and consider the images of Ll(0, oo ) under A.
Since x v (z)y v (z) = (x y)V(z), these form an algebra. The algebra
separates points; for if x v (.1) = . v (z.) for all x e L’, then

e-Z1U-e-Sau as an element of L°° defines a zero functional in (L’)*,
and so zl = x2. It follows from the complex case of the above-
mentioned theorem that ALl is dense in C(F); 8) since it is certain-
ly not all of C(F), Q(3 ) is true. Clearly 3iQ is an algebra with iden-
tity.
The adjoint deflation in this case is the space of all measurable

functions f on (0, oo) of the form

where /À is a regular countably-additive set function on the Borel
sets of F, and IlfIL.*-l = JFld,u(s)l.

3°. Take 3i = LI( - 00, oo ), and ?) = Co(2013oo, oo ), the space of
continuous functions on the real line which vanish at :f: 00,
with uniform norm, and take for A the Fourier transformation

Q(l) and (2) hold, and (3) also, for it is known 7) that the Fourier
transforms of functions of LI( - oo, oo) are dense and of the first
category in Co( - oo, oo ). Thus A determines a proper inflation of
Ll. If Ll is made into a commutative algebra by means of the
convolution product, so that A (x . y) = AxAy, then T+ is also
an algebra; but it does not contain an identity (delta function),
nor is it possible to define derivatives conveniently in it, even of
all L’ functions; thus it lacks the more useful properties of the
usual generalized-function spaces.

4°. Consider the A of 3° instead as a mapping into = C(F).
In this case D(I) and (3) hold, but not (2). Let

1) [10], (3.2.13). ALI is self-adjoint on F since F is contained in the positive real
axis.

7) See Segal, [11].
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IF is a closed ideal in Ll. Let À be the operator induced by
A which maps LIlI F into C(F), i.e.

Then À is a proper inflator on 3C = LI/IF" and the algebra Il
is well defined. It has an identity, the element â for which

ô A (t) = 1. (t e F). Let Th be the translation operator

so that

zh is constant on cosets of IF, and so Th( = (Th) -) is defined, map-
ping X into I; and since ))ïj = IlilIÃ, TA is extendible to Il.
Consider the operator on L1 given by (1.h = h-l(Th_l), for which,
(exAae)"(t) = h-l(e-iht-l)ae"(t). Now if Itl  C and h is small

and so by appropriate choice of C we find that, for x e LI,

It follows that (ae(t+h)-ae(t»)/h as h -&#x3E; 0 is Cauchy in A-norm.
In fact, it is easy to see that (0153hx) is Cauchy in Â-norm for any
x e ae, and hence that derivatives are definable by strong
limits in X*t, for all elements of the space.
A similar argument (without recourse to a factor algebra)

justifies the assertion at the end of § 1, 2°.
To identify the adjoint deflation, notice that 3E* (LIlI F)*

can be identified with those elements of (Ll)* which are constant
on Ip, with the same norms, while (C(F))* is the space rca(F) of
all regular countably-additive set functions on the Borel sets
of F. It can then be shown that J* maps y e rca(F) into f(t) =

!Feit’dfl(s); thus (ae*).-l consists of such/, with 1I/IIA*-l = J pld,u(s)l.

5. Partial ordering of inflations

We examine conditions for different inflating operators to
determine the same inflation or same déflation, and more general-
ly, for inflations and deflations to be ordered by inclusion. In-
clusion and equality for two deflations of the same space may
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obviously be taken to mean set inclusion and equality; and then
we have

THEOREM 6. I f A e 3(X, )) and B e 9(S8, ?)), a necessary and
sufficient condition for IDÃ-l  ID:B-l is that B-1 A have domain ae. In
this case B-1 A is bounded.
The proof is straightforward. B-1 A is a closed operator, and

therefore bounded when its domain is ae.
In defining inclusion for two inflations of the same space X,

we wish to preserve the individuality of the elements of the
included space, and this is achieved if we regard an inflation
of X as a set of equivalence classes of sequences from X, and so as a
subclass of the class @(ï) of all sets of sequences from X, and
understand inclusion and equality to mean set inclusion and
equality in 6. Accordingly we make

DEFINITION 3. Il A e (ae, ID) and B e (ae, g) then I ae
shall mean that

(a) every A-Cauchy sequence from ae is also B-Cauchy,
(b) any two A -Cauchy sequences which are B-equivalent are also

A -equivalent.
We note that (a ) implies that two sequences which are Cauchy

and equivalent in A-norm are so in B-norm also, and that a se-
quence which converges to 0153 e ae in A-norm does so in B-norm
also. Thus (a ) ensures that an equivalence class in ae is preserved
intact in ae; (b) ensures that Il.IIB imposes a Hausdorff topology
on ae1 , as required. It is clear that C partially orders the deflations
and inflations of a given space.
A necessary and sufficient condition for (a) to hold is that

BA -1 be bounded in ID. For BA -1 maps Aae onto BX; if it is bound-
ed, then ) )BA-ly)[  cllYl1 for all y e AI, and so IIB0153ll  cllA0153l1
for all x e X, and (a) follows. Suppose conversely that (a) holds,
and let yn -+ y for Yn’ y e Aae. Writing Yn = Axn , y = Ax, we
have 0153n -+ .A0153, and therefore 0153n -+B 0153; i.e., BA -IYn -+ BA -ly.
Thus BA -1 is continuous on its demain, and so bounded. In this
case the least bounded closure BA -1 exists.

THEOREM 7. Il A e(ae, ID) and B e (ae, ,8), a necessary and
su f f icient condition f or XCX is that BA-l e ae(ID, ,8). For

ae1 . ae, it is necessary and sulficient that BA -1 be improper, i.e.,
that BA -1 and A B-1 are bou’l1.d,ed.

PROOF. Suppose that C = BA-1 is an inflator ; then C is bound-
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ed, and (a ) holds. To prove (b ), let (x’), (xi ) be two A -Cauchy
sequences from 3i which are B-equivalent, and write xn Xl _X2
yn = Aaen. Then Bx.,, 0; also yn --&#x3E; y for some y e ID, and so

Cy,, -&#x3E; Cy. Since IICYnl1 = IIBaenl1 -- 0, we have BA -1 y = Cy = 0,
and therefore y = 0 by !Jc(2). Thus Ax,. 0, and (xl), (xi)
are A -equivalent. Hence (b ) holds, and X CX.
To prove necessity, suppose (a) and (b) hold. By (a), BA-1 is

bounded with domain ?), and Qc(l) is satisfied. Clearly Qc(3) or
(3 )’ holds, and it remains to prove Qc(2). Let y e ?) be such that

BA -1 y = 0, y ~ 0. By S2A (3 ) we can find a sequence of elements
yn = A xn , xn e ae, such that yn -- y ; the (aen) so determined is then
an A -Cauchy sequence defining some ae e ae, and ae =F 0 since

y e 0. On the other hand,

that is, IIBxnll - 0, so that (xn ) and (0) are A -Cauchy sequences
which are B-equivalent but not A -equivalent, which contradicts
(b). The first part of the theorem is proved. The second follows
without difficulty.
COROLLARY 1. Il A and B belong to (x, ID) and ae is reflexive,
ae ae implies (x* &#x3E;:;*-1 (X*)j-i.
PROOF. The first inclusion implies that BA-l e (ID, ID), and

hence that A *-1 B* = (BA -1)* = (BA -1)* has domain ID*; the
result follows from Theorems 2 and 6.

COROLLARY 2. Il A and B belong to (x, I), then ae aeB’
. with equality i f and only il A is improper.

PROOF. We know that A B e 8(X, X). Since A = AB . B-1 is an
inflator, x C ££ . If the spaces are equal, A-l = B(AB)-1 is

bounded and A is improper; conversely if A is improper, B (A B )-1
and AB . B-1 are both bounded and so X =. X1B.
COROLLARY 3. Unless j)(x, ae) is empty, ae has no greatest

inflation.
PROOF. If A e Ù(3i, ae), Âri C aeft+l for n = 1, 2, ....
The next result concerns repeated inflation.
THEOREM 8. I f A and B belong to Ù(£, £ ) and 3i£ C £x , then B

has a closure 11 in (ae1, ae), and
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PROOF. Since Bx  = IIABA-l. Axll, B exists if and only if
A BA-1 is bounded; but this is a consequence of BA -1 e (ae, ae).
Now suppose C is a bounded linear operator mapping ae into
itself; it is easy to verify that C e (ae, ae) if and only if

ACA-1 e 9(X, I). For example, Qc(2; X) takes the form

which by the substitution xn = A x. becomes

and this is equivalent to: x E X, A CA w x = 0 imply i = 0. Thus
it follows from ABA-l=ABA-l=A.BA-le(ae,ae) that
B e Ù(3i£ , ae). And 3E’ = (ae). For the elements of these spaces
are the classes of .B-equivalent sequences of elements from

3i, 3i£ respectively, and any class of (3E+)-t can by the diagonal
process be seen to contain a sequence from X. But two such se-

quences determine the same or distinct elements in (3i£)) accord-
ing as they determine the same or distinct elements in 3E+
Thus the spaces are isomorphic, and since one contains the other,
they are equal.
The theorem and corollary point the distinction between XA+2

and (1+)+ = 3e+ .A A A .

If the operator of (1.1) is denoted by Ak , it can be verified by
using Mellin transform theory that

in the sense of Definition 3.
Consider the dependence in Example 2° of X+ upon the set F:

write AF for the operator in (1.3), and let F, G be two compact
sets of the type described in § 1, 2°, with F C G. Clearly IlxllÂI’ 
1 Ixl ÂG for x e 3i ; but this is not sufficient to imply that 3E’, C 3e+
In fact, AFAG’ satisfies Q(l) and (3)’, but not (2). The set

is a closed ideal in £+ and

(On the other hand, the adjoint deflation for F is contained in
that for G). At the same time there exist sequences which are
Cauchy in A F-norm but not in AG-norm. Shrinking the set F
has the effect of making the inflation less discriminating.


