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Integral functions of two complex variables
by
S. K. Bose and Devendra Sharma 1) %)

1. Let 3)

(o]
f(215 22) = 2 aml,m,zinlz'zn"

my, me=0
be a function of the two complex variables z, and z,, regular for
|z,| <7, t=1,2. If r, and r, are arbitrarily large, then f(z,, 2;)
is an integral function of the two complex variables. We know that

M(ry, r;) = max [f(z;, 2), £ = 1, 2,
AR
is the maximum modulus of f(2,, 2,) for [z, = 7.

In this paper we have defined maximum term and the ranks of
the maximum term, and have extended the method of systematic
determination of these as in the case of one variable by Newton’s
polygon ((1), p. 28). Also we have obtained relations between
these, and inequalities involving these and the maximum modulus.
Further, we have defined order and have obtained necessary and
sufficient conditions for the function to be of finite order, and also
the same for functions of finite order and type 7.

2. Let 4)
oo
[(21:2) = X ap, w2725
m;, my=0
be a function of the two complex variables z,; and 2,, regular in
[2,] =<7, and [2,] < 7,. Writing z; = 7,1 and 2, = r,€'%,

f(21s 22) = Ul(ry, 73, 04, 0,) + 3V (ry, 74, 04, 0,)

i) I regret to announce the sudden and untimely death of Devendra Sharma on
18th June, 1957.

2) We are thankful to the referee for the valuable criticism.

3) We have considered only two variables for simplicity. The results can easily
be extended to several variables.

4) If (=, z:) is any given point, then by neighbourhood of this point we would
mean a bicylinder [z, —20| < 71,5 —2)| < 73,7, >0, 1, > 0.



23 Integral functions of two complex variables 211

and
Amymg = %mym, + zﬂml,m.’

(-]
(2.1) U(ry, 79,01, 05) = 3 17750, m, €OS (40, + my0,)

m,,me=0
— Bomym, Sin (M 0, + my 0,)}-

This series is convergent for all values of 6, and 6, because

oy, mg=0l@m,,m,|71*72* is uniformly convergent, by hypothesis.
We, therefore, multiply both sides by cos (m,0, + m,0,) or
sin(m, 0, + m,0,) and integrate term by term between the limits

zero and 2n. We thus have

2 2 2m 21
(2) Py e = f U cos(m, 0, -+ m,0,)d0,db,
0vYo
and
2 2 21 p27
( ’2‘) g, = — f U sin(m, 0, -+ 1m,0,)d0, db,.
[\] 0

Multiplying the second by ¢ and adding, we get

27t 2 2 n2m
% Qo 175 =f Ue™mOrtmifa) g9 dg, .
0Jo
Hence
(27!:)2 27 p21
(2.2) g w7 S f f |U|d0, db,.
0Jo

Again, if we integrate (2.1) with respect to 0, and 6, in the range
zero to 2m, we get

(2.3) (27)2a,0 = [ [2" U dbydb,.
From (2.2) and (2.8) follows

(27)>
2

27 p27m
{lam 73+ 2000} < [ | (014 U)a0,00,.
0vYo

Now, if U is positive, then the integrand is equal to 2U and if U
is negative or zero, then the right hand side is zero. Hence we have

THEOREM 1. If the function f(2,, 2,) is regular for |3 < r, and
|2g] = 75 and if A(ry, 73) ts its maximum real part for |3,| < r; and
|25]| = 73, then for all positive values of m, and m,y, the number
laml,m']ri"lr;”' is less than or equal to the greatest of the two numbers
—2a4 ¢ and 4A(ry, 15)—200 4.
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COROLLARY. If f(2;, 2,) s an integral function, then
(2.4) G, m 11272 = 4A(ry, r3)—20, 95

for all positive values of m, and m,, and for all ry > 17, r, > 13.
Similar results can be obtained for minimum of U (ry, 75, 04, 6,).
Also for the maximum and minimum of V(ry, 7, 6, 6,).

TaeoreM IL. If f(z,, 2,) is an integral function, and g, and g,
are two fized finite positive numbers such that |f(2, ;)| is algebra-
ically less than Krirr§s for |z,| = r, and |3,| = r,, where 7, and 7,
are arbitrary large numbers and K is a constant, then f(z,, 3,) is a
polynomial of degree not greater than q,4-q,.

Proor: Since |f(2;, ;)| < K717 for |2 =7, and |2, = 7y,
therefore, from (2.4) follows

(@ m,| = 4K ™M™ — 200 o171y
If m; > q, or m, > q,, then the right hand side vanishes as

7y or 7, respectively tends to infinity, and so @, ., is zero for
my > gy OF My > q,.

THEOREM IIL. If f(2;,2,) ts an tintegral function of the two
complex variables z, and z,, then

R\ R,
M(ry, 1) < (Ri—r,)(Ro—ry) [44(Ry, R;) + 8lag,ol]s

for all R, > r, > 13 and R, > r, > 13, where

M(ry, r3) = max|f(z,, 2,)l,
for oyl <7, and [z] < 7.

Proor: We can write (2.4) as

m r ml r ﬂl’
|Gy m s < [4A(R,, Rz)—zao,o](fll) (E)
and taking r, < R; and r, < R,, it follows that
M(rl’ 7'2) é z |am1'm2|ri"1r;“|

m,, me=0

< lag,ol + [44(Ry, Ry) —200,0] 3 (Q)MI(E)M’

m,, my Rl R2
r r
= la0,0I + [4A(R1a Rz) —210,0] -IT:T; : Rz.z_.rz
R,R
< 12 [44(R;, R,)+38lag,ol]-

(Ry—n)(Ry—73)
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CoroLLARY: If f(2;,2;) is =ero at 2z, =0, 3, = 0, then

4ry7,

M(ry, 7)) = (Rl__rl)(Rz—"'z)

A(Ry, Ry)

for R, >r,, Ry, > r,.
8. Consider the moduli of the terms of the double series in the
expansion of the integral function?)

(o <]
(3.1) f(z15 25) =m g_ocm,,mgz,lnlz;n”
1 M=
Coo Co1 72 Co,2 3 cee Co,m, rg?,

2 m

Ciors Cyamiry Ciamre .. Cyp 1173t
2 2 2,2 2

Coori Coariry Coariry ... Czym’rlrzi

(3.2)

m
Compori*C

m my 2 My M
mp1 71 T2Cm o1 72« o« Cop o 11722« &

where

If we consider any column or row, then the sequence thus ob-
tained tends to zero for all values of r, or r,. Hence for every
value of r;, keeping m, and r, fixed, there is, therefore, one term of
the sequence thus obtained which is greater than or equal to all
the rest. This term will be the maximum term in that column and
will be denoted by u(my; 7, 7,). If there are more than one such
term, then the term of the highest rank will be regarded as the
maximum term of this column and the rank will be denoted by
vi(mg; 7). We next give different values to m,, i.e. consider
different columns and suppose the greatest term occurs in the »,th
column, then the term u(v,; 74, 7,) will be the maximum term with
respect to columns and the rank of this term will be denoted by
71(7ry). If there are more than one column containing such term,
then the term of the highest rank with regard to column will be
regarded as maximum term, i.e. the column of highest rank
which contains the maximum term is v,th. Similarly, if we consider
m,th row, keeping »,, r, and m, fixed, then we shall have

1) Suffix 1 will indicate row, for example, m,, p,, », etc. and suffix 2 will indicate
column, m,, p,, v, ete.
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u(my; ry,7;) as the maximum term in that row and the rank asv,(m,;
r,). Further, for different values of m,, suppose the greatest term
occurs in the »,th row, then the maximum term will be denoted by
u(vy; 7, 75) and the rank of this term will be denoted by »,(r,).
If there are more than one such term, then the same convention
as for columns is adopted. Hence we shall denote the maximum
term for given values of ; and r, by u(r;, r,) and the rank of this
term will be denoted by »(r,, 7,).

For a systematic study of finding the maximum term we shall
extend the method of Valiron ((1), p. 28) for one variable.

Let logCp m, = —8m,m,> then

(3.3) Lt Emymy _ + o0
m;—>00 m1
and

Lt Smum_ o o

mg—o0 My

my me
Since V/ Cmpm,and VCp, . tend to zero as m; and m, respec-
tively tend to infinity.

Taking OX, 0Y, OZ as the axes of coordinates, if we plot the
points 4, . of coordinates (my,my, gn m,), then, from (3.3),
it follows that we can construct a surface with plane faces and
every section of this surface by planes parallel to the X Z-plane
and YZ-plane form a Newton’s polygon, having certain of the
points 4,, ., lying in this vertical plane. Out of these some of
them coincide with the vertices of the polygon, whilst the remain-
der lie either on or above it. Let us denote this surface by S(f)
and call it Newton’s polyhedron.

If »;, and », be the rank of a maximum term as defined above and
my # v; Or my 7 vy, then, it easily follows:

8mymy—M log ri—mylogry = 8y, v,—7110g 71 —v; log 7.

Now, let us consider the geometrical interpretation of this
inequality. Let D, , denote a tangent plane, having direction
cosines proportional to —logr;, —logr, and 1, passing through
the point 4, ,, or 4, , . If we now draw the plane parallel to
the X Z-plane through 4, ., then those points 4,, , which lie
in the plane do not lie below the line L, , the line of intersection
with the plane D, , , of slope log r,. Similarly, if we consider the
plane parallel to the Y Z-plane through 4,, , , those points 4,, n,
which lie in that plane do not lie below the line L, , the line of
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intersection with the plane D, , , of slope log 7,. The point 4, .,
or 4, , istherefore a point of the polyhedron S(f) and the plane
D, ., is a tangent to this polyhedron.

Now, we take a vertical plane parallel to XZ-plane through
A, m,s then m, is fixed, i.e. in (8.2) we are considering a column.
The intersection of the plane with the surface will include a New-
ton’s polygon and the tangent line L, of slope logr, will pass
through 4, , . The point 4, , is uniquely determined in the
plane, when log r; is not equal to the slope of one of the sides of
7,(f), and for such values of r,, there is only one term in the se-
quence (column of (3.2) under consideration) equal to u(my; 74, 75).
When log r, is equal to the slope of a side of #,(f), there are several
such terms and their number is equal to the number of the points
A,  m, which lie on this side of this polygon. When more than one
term are equal to u(my; ry, 7,), we shall take the term of highest
rank amongst them as the maximum term, with respect tom,and r, .

Thus having obtained the maximum term or terms with respect
to m, and r;, we must draw a plane parallel to Y Z-plane through
Am,,»,> then m, is fixed, i.e. in (8.2) we are considering m,th row.
Again the intersection will include a Newton’s polygon and the
tangent line L, of slope log r, will pass through 4,, , . Here
again the point 4,, , is uniquely determined in the plane, when
log 7, is not equal to the slope of one of the sides of z,(f), and for
such values of 7, there is only one term in the sequence of terms in
the m,th row equal to u(m,;7,,7r,). When log r, is equal to the
slope of a side of 7,(f), there are several terms and their number is
equal to the number of points 4,, , which lie on the side of the
polygon. As in the case of m, and r;, we shall take the term of
highest rank amongst them as the maximum term, with respect to
m; and 7,. Finally the greater of the two terms obtained above
shall be denoted by wu(ry, ;).

We have thus, with this convention, obtained one term as maxi-
mum with respect to m,, m,, r, and r,. Thus »,(my; r,, 7,) or
v1(ry, 73), 75 fixed, vy(my; 7y, 73) OF wy(ry, 7,), 7y fixed, and »(ry, 73)
will be used to denote ranks of the maximum term of the double
series. »,(myg; 1y, 75), v9(my; 7y, 7,) and »(r;, r,) are unbounded
non-decreasing functions of r; and r,. Furthez, v (m,; r;, 75) and
vo(my; 71, 73) have left hand discontinuity wherever r, and 7,
respectively pass through a value such that log r, and log 7,
respectively equal the slope of one of the sides of the polygons
7;(f) and 7,(f). Hence »(ry, r,) has also discontinuity for such
values of r; and 7,.
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4. Two functions f(2,, 2,) and g(z,, 2;) having the same poly-
hedron will have the same maximum term and the rank.
Let us consider the function

0o
(4.1) W(ry,r) = 3 € CmumyrPrr]s,
m;, my=0

where G, n, is the Z-coordinate of the point, whose X and Y
coordinates are m,; and m,.

The function W(r;,r,) is a dominant function for f(3,, 2,)
and has the same maximum term. Also it is the simplest function
corresponding to the polyhedron S(f). The ratio

R’,:: = ¢Om,;, my—Cm,~1, mg, S:”": — %my,mgCm;, my—1

and
G.

Rmv mg = € ™ my~Cmy—1,my—1,
of the coefficients in W(r,, r;) corresponds to the ratio of a,, .,
and @, 3 m; Gm,m, 80d @y 1, 80d Gy 8Dd Gy 3. We
shall call these as rectified ratios. The logarithm of Ry is equal to
the slope of the Newton’s polygon obtained by plotting the points
(my, G, m,) in a plane parallel to X Z-plane at a distance m,, and
is therefore a non-decreasing function of m, tending to infinity.
Similarly the logarithm of Sm: and R, . are non-decreasing
functions of m,, and m, and m, tending to infinity.
Suppose for simplicity that G, , = 0. Then we have

11yt
(4.2)  p@ir,r)=-= ™ .
LR (S Sy . SH)(RORS ... RY)
and since
j 41 5,(05 2) 2 = iflog R, —log KY)
i 1
and
sh dx
fsf:l va(vy; %) — = j(log S7i,—log S}1),
3 2
therefore,

71

(4.8) log u(vy; 7y, 72) =f

0
We may also put (4.2) as

dx, T dx,
1(0; ;) 2, +J‘° A OHED) z

TR
(RaRy, ... R)(S8.50 ... SY)

p(ve; 11, 79) =
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and hence

2 dz g dz
(4.4) log u(vy; 1y, 73) =f 75(0, @) — +f v1(v5 1) —.
0 Zy 0 Zy

Since u(ry, ;) is greater of u(vy; 7y, 73) and u(vy; 1y, 73), therefore,
log u(ry, ;) will be given by either (4.8) or (4.4) or both.

We are now in a position to find a relation between u(ry, r,)
and »y(ry, 73), v5(ry, 72) and »(ry, ry). In the first place

p(ry, rg) < M(ry, 7p).

Also it is obvious that M(r,, 7,) does not exceed the value of the
function W(ry, ry). Suppose that p, and p, are integers greater
than »;, = »;(r;) and v, = »,(r,) and such that the rectified ratio
Rf,:'l > r; and SZ;_I > 7,. Then, for ¢, = p, and ¢, = p,,

T,

€ %0 a1 rde = ¢ Cpy1, 91901t p2r71

L PR

X RaR%H ... RuSrisnT ... Sl
a P

-1 P da a1

ro NPl g\ GPytl
s (2 )
» P

1

Hence
2,—1, pg—1 o
W(ry,rg) = 3 e CmumgParfs Y e CmyumypPrgls
my, my=0 M =Py, My=Py
91_1 [ 1)’—'1 [}

+ 2 z e’Gmn my 7‘1”‘ 7‘;"' + 2 z B_G’"lv'": 7';”1 7';”'

Mmy=0 Mmy=p, mg=0 m;=p,

0 00 7, [ 2% 2 Ty ag—pytl
<ururmmt 3 3 (2) (o)
Py Ps

49=Ps ¢1=7;

[’ "'2 a3 patl <] rl ql—pl+1
+p 2 (:971_—1) +p. 2 (R”rl) ]
Pa 71

3=Pg =0

o) Ty 0~ Py tl ,’.1
= u(ry, 7'2)[1’11’2 + X ( )

p,—1 s
=0 \O o R,,1 7y

o0 Ty [P 730 oo r a;—p;+1
+ pl E (Spl_l) + p2 z (Rg’—l) ]
Py (3%

d9=D, =9

74 =) Ty 0a—Pyt1l
§M(71’72)|:P1p2+ > ( )

R =11 05, \Sp7?
(4.5) + P17y + P27y :I
S;:‘l—rz R;:‘l—rl
1 . s
Ry—r Sp7—ry

P172 PaT1 ]

< u(rs, rz)[pl ps -+

+

+

p—1 P :
Syt —ry,  Rp—1y
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In order that the terms in the bracket may be substantially
equivalent, we choose

T2

I’1=71(’1+ )+1

»Te +
v1(71572) 9(715 73)
and
1 T2

+

_ 1'2 —————
v1(715 73) vg(715 72)

P2 = ”2(7’1 - ) + 1,

which implies that

r
Rol>syp 41
- ! v1(71s 72)

and

.
St 2
no T )

Hence we have the following result:

p(rysrg) < M(ry, 1y)

< u(rys "'2)[3”1("'1 + ik + ik )

» Ty
v1(715 72) V(715 T2)

Xv(r—{— "1 4T ) 3]
21’1 )+

s T
v1(ry5 73) vo(Tys 7o

éu(rl,rz)[av(r1+ B )+3].
v1(715 73) v9(T15 73)

5. We shall now define order. Here we shall restrict to integral
functions of finite order.

(4.6)

Let
4500 1;—>00 10g ry 7,200 1400 log )
and let
p = max. (py, p2)y 0=p< o,
then
(5.1) i—t lOg 'V(Tl, 7'2) = p,

71y Tg—>00 log (7172) h

and f(2,, 2;) is said to be an integral function of finite order p.
Further, p,(r;) and p,(r;) be defined as proximate orders.
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Now, for those functions which satisfy (5.1), the relation (4.6)
appears in an especially simple form, and it may be written

log M(ry, 72)

lo {3 (r 4"t 4T )+3}
» , :
=[1+0 SO ) ) ]
log p(ry, 75)

log u(ry,75)s

0<i<l
Hence
log M(ry,75) ]
7y, fg—>00 lOg .u(’rl’ 7'2)
We may also define order as

(5.2) 7 log log M (ry, r3)

7y, rg—>00 log(rl T2 )

We will now prove the equivalence of the two definitions.

Let us start with the definition (5.1). From (4.3) and (4.4) and
the definitions of p,;, p, and p, we have

=p'

log p(ry, 73) < log p(re,s 7e,) + kyrfte _“:’ 2y e day,

€3
or

log pu(ry, r5) <log u(re,, 7e,) + leyrg e _‘.: 2 day,

1

where ¢ = max.(g, &) and k; > 1, k;, > 1, and so

(ry7e)™* + K, k= max (k,, k),

1 ,
og u(ry, 72) <p+e

whence, in virtue of (4.6)

(5.3) L log log M (ry, 75) _ I log log u(ry, 73) <
1, Ty log(r,7;) oo log(ryry)

Next, if we suppose that
log M(ry,75) < (ry72)°*8, for 71, > rg 1y > 14
then

2ry
Bal0sr)Hnmsrimlog2 < [
< log u(2r,, 2r,)
< (ryrp)P*e,

7,5(0; xz)dx _l_fz" ”1(”2331)dw
2 19

T 2 1
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or
{105 71) + va(v15 71, 73)} log 2 < log pu(2ry, 2r,) < (ry7g)Pte.

Hence
7 log »(r4,73) < I log log pu(ry, 73)
Ty Ty log(rl 7'2) Ty, Tg—00 log (7‘1 75)
(5.4) _ E loglog M(rl,rz)
£y, 14300 log (r475)

Thus, from (5.8) and (5.4), the equivalence of the two definitions
follows.

6. We shall now come to the necessary and sufficient condition
for an integral function f(2,, 2,) to be of finite order p. The result
is as follows:

THEOREM IV. The integral function

L)
f(zls zz) = z aml,m,zinlz;"’
m,, mg=0

is of finite order, if and only if
—  log(m71my?*)
My, My—>00 log(lllaml,m,l)

is finite; and then the order p of f(2,, 2,) ts equal to u.

(6.1) p=

Proor: We first prove that p = u. We may note that in case
u = oo the above statement is to be interpreted as meaning that
the order is infinite, or else f(2,, 2,) is not an integral function.
We know that

1
mq ! my!

aml-(-m,f

m m
07 051

/(215 22)
————dz, dz,
(2m) £21|=,1Lz’l —r,® 1+1 mytl

< M(ry,'rp)

la’ml,mal =

(6.2)

My, me °
7'117‘2’

(i) If 4 = 0, p = u, since p is not negative. Let us suppose that
0 < e<p< oco. Then, from (6.1), we have

(/’"'—8) ].Og (l/laml, m,l) = 10g (minlm;n,)
ie.,

(6.3)  10g (@, m,| = —(u—e)(m, log my + my log my),
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for an infinite sequence of values of m; and m,.
Also (6.2) may be written as
log M (ry,13) Z loglap, m,| +log(r*75")

= —(u—e)7(my log m; + m, log m,)
+ my log ry + my log 7y

1 1

=m, (log L — log ml) + mz(logr2 ———log mz) .
—e& n—e

Let 7, = (em;)"#~° and r, = (emy)Y#~%. Then

Hw—E p—E
log M(ry,75) = ™ e 0 it .
p—e p—e  e(u—e)

Since u—e¢ is independent of 7, and r,, therefore,

= 7 log log M(ry,1,) > y—e.
7y, Fg—00 lOg (7172)
Further, ¢ is arbitrary and so p = u.
(ii) Next we prove that p =< u. We note that if x4 = co, the
result is obvious. So we suppose that u < co. Let £ > 0. Then
from (6.1) follows

1 1 m™s
< log (mirmg®) _ pt e
log (1/|agm,m,|)
for m; > m? and m, > m3,

i.e.
m ™
log m; #+¢ + log my #*€ 2 log |ay |,

or
m My
l ml,m,l = mll‘+8m P+e
Hence
m,0 im0
M(ry, ry) < Arivrgy + oy Iam,,m,lr?‘r'zn'
my=m, 041, mg=mg+1
m
+ 2 2 ml,m.lr 2+ 2 b G, m, |77 73
my=0 mgemm Ot me=0 m1-=m,°+1
m my
0
(6.4) < Arm’ e 2 My ATE g K6 1y
my, My
my my

4+ Br;"l" 2 my PHE 7 '+Cr';"" 2 m, e .

me=mg0+1 my=m,"+1
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Let X, be the part of the double series in (6.4) for which
< (2r)**t < my, < (2r,)**%. We estimate X, by taking the
largest value of rT173's. Then
my my
= 3 S my FEmy KFE pTay
my<(2r)AHE mgy< (2rg)HHE
m m
(6.5) < Ikt et 3 ml—;;lg mz_/"*_!é
my, My

26 +2¢
=0(e(2r1)# + (2rg)F ),

since the seriesin (6.5) is cbﬁvergent andisindependent of 7, and r,.
Let X, contain the terms for which m; = (2r,)#*® and m, =
(2r,)*** and so in Z,, we have rym;V#*® < 1 and rymz'#*® < 1,

and hence
my my

= 3 S my AEm, #E Ty
my=(2r))FHE my= (2r,) HHE
=2 E"E@Em=sL
My, My
Let 23 be the part of the series for which m;, < (2r;)**® and
my = (2r,)**¢, then

m, My
23 = 2 m, Wte 71"1 2 m, pte r;"l.
my<(2r,) W€ mg2(2rg)HHE
Since
me
my wte 7’2": <1
my(2rg) A€
and
m,
—aTe .m 2r.) W H2E
m, pt+E ] 1 é o{e( 1) }’
m,<(2r)#tE
therefore,

Z; < ofelerotEy

Let the remaining part of the double series in (6.4) be denoted
by Z, i.e. for m; = (2r,)**®* and m, < (2r,)**%, then

Z, < oferattEey

Further,
]
Br™’ Y mg #E ¢ < O{e(zﬁ)’”’ 25}
m
t mx

Crps’ 2 my FFE 7 < O el

my
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Hence, substituting these values in (6.4), we get
M(ry, 13) < Zy+ Zy + Zy + Z+0{e" T2 4 ofelerd” 5
<o {e(zr,)ﬂﬂe + (zr,)ﬂ+2€}
< ofetnrFtey
and hence

log log M (ry, 75) -

6.6 Lt
( ) 1y, rg—>00 log (7172)
since ¢ is arbitrary and independent of », and 7,.

7. Suppose 0 < p < o and let us define
—_— 1
(7.1) a= Lt {mhmPla, ,|}mFm
m,, mg—>00
and
e= L gMn.m)
7y, Tg—>00 7’{ + "Jz)
The functions which satisfy the latter equality are said to be
functions of exponential type 7.
If « = erp and using the Sterling’s formula

my! ~ mre~™(2um, ) ef102m) |

(7.1) takes the form

— 1 1
wp= Lt -{mirmz1la, ., |°}mtm

my, me—>00

1My
omitms

— 1 1 _
= Lt —{ myrmys ”‘1+"‘=( » 2
iy, my-r00 e ( 1 2 ) m1! m2 !Iaz;_"l z;n’f( 1 2)

— m™rpTa\ _1=P | gmitms o
= Lt {( :n +m2 )m1+m’ o aom (%15 32) m‘+m'},
m;, my—00 e 1T 321 1 Bz, 2

)

(7.2)

where 2,, 2, are any (fixed) complex numbers.
If in this we put p =1, then

1tmg

m1+m,}

v= Lt {3 lla,,.,f(vzz)

my, me—>00

We now deduce the following result:

THEOREM V. If 0 < a < 00, the function

L)
/(zl’ z2) = z am,,m,zinlz;n.

m,, me=
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is of order p and type 7, if and only if o = ezp.
Proor: From (7.1), we have

Mty i T
(7.8) @y, myl = (x+2) 7 my P m, e,

for ¢ > 0 and m,, m, large.

We shall first prove that v < a/ep. Since we may add a polynom-
ial to f(z;, 3;) without affecting its type, we may suppose that
(7.8) holds for all m, and m,, interpreting its right hand side as 1
for m; = 0, my = 0. Then

[
V(zl’ zz)l = Z laml,m.‘r,lnlr,zn’
ml,m.=0

) mytm, m;  mg
< Y (ate)"p mypmy e ryrrye
my,me=0

The general term of the right hand side does not exceed its maxi-
mum.
Let

my+my

m
¢(my, my) = log(a+¢) _‘p—l log m, + m, log ry
my
— —log my + m, log r,.
P

Then for ¢ to be maximum,

0
% _ 0 and 2% _ 0,
om, my
i.e.
p p
m, _ (eter and m, = (“+8)r2.
e e
Therefore,

my+my

max. term = exp { log (x+¢) —7—n—110g my
P

m
— 72 log my + m, log r; + m, log rz}

o

ﬁ%ﬂ+¢w

=exp{ .

Thus the maximum term is exp {(r{+4r2)(ax-¢)/ep}, attained for
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m; = r{ (a+¢)/e and my, = 74 (x+¢)/e. Let X, denote the part of
the series for which m; < («a+42¢)r{ and m, < (x+2¢&)r5. Then

-
pe
=0 [exp {a;}’—)s (% + rg)}] .

Let 2, denote the part of the series for which 7 < m,/(ax+2¢)
and 7§ < my/(«+2¢). Then

5, S (ak 2o exp [ (rf+rs)}

myt+my _m my

2, < > > (ate) 2 my P my,*

mi>(at28) 1P my> (a-+28) 7P
m; \Z2t [ m, \™2
<) ()
at2¢ a+2¢

ate\22 a+e\Z2
e Bl B )
my> @t2e)r,p \&+28/  my> (@at2e)ryp a+2¢
= 0(1).

Let 2, denote the part of the series for which m; < (x-+2¢)rf and
my > (a+2¢)r. Then

my _ml fﬂ —"_l_’
(xte)p m, » 17t 3 (xt-e)r m, P 132
my < (a+26)ryP my> (a+26)ryP
my ™
<K > (xt-e)p my » 1,

my < (a+28)r, P

2y

since
= 0(1).

my> (at26)ryP

Therefore
ate b
X, < 0feer " L
Let the remaining part of the series be denoted by 2, i.e. for
my > (a+2e)rf and my, = (a+2¢)r§. Then, as in X;, we obtain
ate p
Zy<0fer "}
Thus

1f(215 22)| = 21+ 22+ 2542,

+E (. pir,p)

at+é€
< o{ecr 3
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Hence

o

IIA

T s

ep
since f(2;, 2,) is of exponential type 7.

Next, to show that 7 = «/ep, we have again from (7.1), for an
infinite sequence of values of m, and m,,

s s S R
Gy my| = (x—8) 7 my P My, 0< &< a

If we take r; and 7, such that

mye

and 7§ = ,
x—¢ x—E¢

for these values of m, and m,, we have
“—-—.
ep

for a sequence of values of r; and 7,, tending to infinity. Hence

M(Tl’ 72) 2 laml,m"r;_nl’r;n’ g exp{

° (r+78)

o

T N
ep

%

It remains now to show that f(2,, 2,) is of order p at most if
o << 00, and is of order p at least if « > 0.
For large m,, m,, we have from (7.1)

1
ate= {m;nlm'zn’laml, m’IP}ml+m,’ e>0,

and hence
log(myrmz?) _ P
10g(1/lap, m) — | _(miFmy)log (ate)
m, logm,+m,logm,

By (6.1), the order of f(z;, 3,) is p at most. Similarly if « > 0 the
order of f(2,,%,) is at least p.
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