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Probability methods in the theory of distributions
modulo one*

by

J. H. B. Kemperman

1. Introduction

One of the purposes of the present paper is to demonstrate that
many of the methods and results of probability theory play an
important role in the theory of distributions modulo 1, as is also
apparent from the work of Cassels [1], Cigler [3], Hlawka [10],
Kac [11], Kesten [13], [14], Stapleton [19] and many others.
The following sections 2, 3 and 5 are entirely expository. The

results in the sections 6, 7 and 8 are new, and also some of the
results in the sections 4 and 9.

2. Random variables

Many problems in the theory of distributions modulo 1 involve
the asymptotic behavior of the sum

here, g(x) is a given real and bounded Borel measurable function
satisfying

Quite often, xk = xk(03B8) (k = 1, 2, ...) depends on a parameter
0 S 03B8 ~ 1 and one is interested in statements on {Rn(03B8)} holding
at least for almost all 0.
More generally, consider a measure space

(e a a-field of subsets of 03A9, 03BC a nonnegative measure on e), which

*) Nijenrode lecture.
Some of this work was supported by the National Science Foundation under

G-24470.
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is a probability space in the sense that 03BC(03A9) = 1; example:
il = [0, 1] with e as the cr-field of all Borel subsets and li as the
Lebesgue measure.

Suppose further that xk = xk(03B8) is a given real and measurable
function on S2. Here, a function x(B) from il to a given topological
space (say, the reals) is said to be measurable if for each open
subset U of this space one has {03B8: x(O) E U} e (fi. Relative to
the probability space (2.2), (which is kept fixed in most problems),
such a measurable function is also called a random variable.

If x(O) is real-valued then its so-called distribution function
is defined as

In particular, one may be interested in the asymptotic behavior
of the distribution function

of the random variable Rn = Rn(03B8), when n is large.
For instance, if - (o, 11 as above and

With a ~ 2 as a fixed integer, then [11] one has for a large class
of functions g that, for each - oo  z  + oo,

here, cr denotes a positive constant depending on g.
Or, take Q as the unit square of points 6 = (0’, 03B8") together

with the o-field of Borel sets and the Lebesgue measure p. Let
further

Then, as was shown by Kesten [13], [14], one has for g (x) = x- [x] - 2,
and also when g(x)+c (0 ~ x  1) is equal to the characteristic
function of an interval, that

with a as a positive constant.

3. Independent random variables

Relative to a fixed probability space (2.2), a collection

{yk, k ~ I} of random variables (sometimes called a stochastic
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process) is said to be a collection of independent random variables
if

for each choice of the finitely many distinct ky e I and each choice
of the open sets Uy. In the special case, where each yk(03B8) assumes
at most denumerably many values, this is equivalent to

Now suppose that {yk = yt (0), k = 1, 2, ...} is a uniformly
bounded sequence of real-valued and independent random variables.
Further. Dut

and

Then one has the following important result, compare [8] and [16].

THEOREM 3.1. Assume in addition that s" - oo. Then

for each fixed real value z.
Let further y(t) be any non-decreasing positive function. Then,

for almost Lu] all 0 ~ 03A9, the inequality

holds for only finitely many or f or infinitely many n, depending
on whether the integral

converges or diverges.
Usually, one takes y(t) as one of the functions

(r ~ 4); for these functions, (3.5) converges or diverges according
to whether à &#x3E; 0 or 03B4 ~ 0.
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Theorem 3.1 applies for instance to the example (2.3). Thus, let
il = [0, 1] with Lebesgue measure p, and let a ~ 2 be a fixed
integer. Let uk(03B8), k = 1, 2, ..., denote the sequence of random
variables defined (for almost [03BC] all 0) by

and

Using the criterion (3.2), it is easily seen that the uk(03B8 ) are

independent random variables such that, for all k = 1, 2, ...,

Now, consider

with

By(8.6),

(k  n), hence,

(a.s)

where

Note that 18J(8)1 1 fg 1 2(a-1)-1. Clearly, the sequence {yk(03B8)} satisfies
the conditions of Theorem 3.1 with mk = 0 and

Thus,

hence,
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It follows by (3.3) that, for each fixed real number z,

This is a special case of (2.4). Moreover, by (3.4) and (3.9), we
have for almost all 0 that

(r &#x3E; 4), for only finitely many n or for infinitely many n depending
on whether 03B4 &#x3E; 0 or 03B4 = 0. In particular,

for almost all 0  0  1. Similarly, (replacing Yk by -yk),

4. Infinité product spaces

Let G denote a fixed compact Hausdorff space. When consider-
ing G as a measurable space, we shall always mean the pair (G, e),
where -q denotes the 03C3-field of all Borel subsets of G, that is,
the smallest Q-field containing all open subsets of G. Similarly,
by a measure v on G we shall always mean a finite (usually,
nonnegative) measure on -q which, moreover, is regular; (for v non-
negative this means that to each B E C and each e &#x3E; 0 there cor-

responds a closed subset F of B such that 03BD(F) &#x3E; 03BD(B)201303B5.)
Let Gk (k = 0, 1, ... ) be a copy of G and consider the infinite

product

which is again a compact space. Each point 0 E G°° may be regarded
as an infinite sequence

of points ok in G; Ok will be called the k-th coordinate of 0 E G°°.
Equivalently,
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where xk(03B8) denotes the measurable function on G°° defined by

Next, let "’00 be any probability measure on G°°, thus, (G°°, 03BD~)
is a probability space. Relative to this probability space, each
coordinate function xk(03B8) is a random variable taking values
in G and with

as its so-called probability distribution.
Now consider the special case that "’00 is a direct product,

that is,

(where J.lk is regarded as a probability measure on the copy Gk of G).
Then the random variables Xk(O) (k = 0, 1, 2, ...) are independent
(and conversely). Hence, so are the real-valued random variables
yk = f(xk(03B8)) = 1(ok) (k = 0, 1, ... ), where f(x) is a given real-
valued and Borel measurable function on G.

Let us assume that f(x) is also bounded, thus, one can apply to
the sequence {yk} the assertions of Theorem 3.1, provided that
sn - oo; (if sn is bounded then the series 03A3(yk(03B8)2013mk) converges
for almost all 0, see [16] p. 236).

For convenience, let us consider the still more special case
that 1’00 is defined by (4.2) with Pk = Ml for all k ; (the random
variables xk(03B8) are then said to be equidistributed ). One obtains
by (3.4) that, for almost all [03BD~] sequences (4.1), (the exceptional
set depending ôn f), one has

Here, the remainder cannot be improved, except for the trivial case
that f(x) is equal to a constant c for almost [03BC1] all x E G. In

particular, we have for almost all [03BD~] sequences (4.1) that

This much holds for any real and Borel measurable function f on
G, such that the integral in (4.4) exists, namely, by the so-called
strong law of large numbers, see [16] p. 239.
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From now on, let us assume that the topology of the compact
space G has a countable base, (in other words, G is a metricspace).

It then follows from (4.4) that almost all [03BD~] sequences (4.1)
have the asymptotic distribution 03BC1, (hence, at least one does),
in the sense that (4.4) holds for each f e C(G).

Here, C(G) denotes the collection of all complex-valued con-
tinuous functions on G. We shall also regard C(G) as a Banach
space with norm

Because G is metric there exists a denumerable collection {fi} of
real-valued ti e C(G) such that the finite linear combinations of
the fi form a dense subset of C(G). If (4.4) holds for each fi in
such a collection it automatically holds for each f e C(G). This
proves the above statement in italics.
The result (4.3) is more or less known; sometimes the remainder

can even be shown to be uniform with respect to a class of measur-
able functions f, see Cassels [1].

Let us now demonstrate an analogous result for averages of
the type

Here, the ank (n, k = 0, 1, ... ) are given real numbers. Further,
f(03BE1, ..., 03BEp) is a given real-valued and measurable function on
the p-fold direct product G X ... X G (p &#x3E; 1 fixed), such that

and

The following result is new. Here, we take again the probability
measure 03BD~ on G°° of the form (4.2) with Ilk = III for all k.

THEOREM 4.1. Let {03B5n} be any sequence of positive numbers such
that

where
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Then zve have f or almost all [03BD~] points 0 e G°° that, f or n sufficiently
large,

The case p = 1 of Theorem 4.1 sharpens a result of Hlawka [10]
p. 233. If (ank) is as in (4.3), that is ank = n-1 if 1 S k S n
and zero otherwise, then tn = 1/n and (4.8) holds with

The resulting assertion (4.10) is slightly weaker than the optimal
result (4.3).
For the proof of Theorem 4.1 (and also in section 6) we shall

need the following auxiliary result.

LEMMA 4.2. Let {Zk, k = 0, 1, ...} be a sequence o f independent
real-valued random variables such that |Zk| S 1 f or all k. Let

further {ck} be a sequence of real constants such that

Then

satisfies

f or each number 03B4 &#x3E; 0.

As is the. case for most results in the theory of probability,
Lemma 4.2 holds with respect to any underlying probability space
(D, 9, P), (in particular with respect to (G°°, 03BD~)).
By EZ = E(Z) we mean (here and in the future) the integral

whenever the right hand integral is (absolutely) convergent.
Further, it is known ([15] p. 236 ) that (4.12) converges for almost
[P] all 0 e Sl whenever the Z. are independent and satisfy

The latter is implied by (4.11) and |Zk| ~ 1. Finally,
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Proof of lemma 4.2. Put

Then ~k(0) = 0, ~’k(0) = mk and

by |Zk| ~ 1. Therefore,

Hence, letting S’ denote the truncation Y-.,M= 0 of (4.12),

(in the first step we used the assumed independence of the Zk). On
the other hand,

Taking u = ±03B4/s, one obtains (4.13), (first with S replaced by its
truncation S’(0), afterwards, using Egorov, say, for S(03B8) itself).

COROLLARY 4.3. Let Zo, Zl, ... be a sequence of real-valued
random variables, such that there exists a partition of {0,1, ...}
into p disjoint sets Di with the property that for each - 1, ..., p
the random variables {Zk, k e Dj} are independent. Then 1 Zk  1
(k = 0, l,...), (4.11) and (4.12) together imply that, for all ~ &#x3E; 0,

Proof. Let si = tj and S; correspond to the subsequence
{Zk, k E Dj}. Then, by (4.13), one has for all points 0 outside
a set of P-measure  p(2e-62/2) that

hence,

Proof of theorem 4.1. Apply the above corollary with (G~, 03BD~)
as the underlying probability space. Then {xk(03B8) = 03B8k} is a se-
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quence of independent random variables taking values in G.
Let further

Zk - Zk(03B8) - f(03B8k, 03B8k+1, ..., 03B8k+p-l).

Clearly, {Zhp+j-1, h = 0, 1, ...} is a sequence of independent
random variables, for each fixed y == 1,..., p. Further, by (4.6)
and (4.7), we have |Zk| ~ 1 and E(Zk) = 0. It follows by (4.5),
(4.9) and (4.14) that

Thus, (4.8) implies the desired result (4.10).

5. The complete asymptotic distribution of a sequence

In this and the following sections,

will denote a fixed real matrix such that

and

Note that (5.2) implies that

Thus, A is -a regular summation matrix such that uk ~ 0 and
A -lim uk = u imply u ~ 0. Moreover, if {uk} is bounded then

Let further G denote a fixed second countable compact Haus-
dorff space, say, the reals modulo 1. To each bounded linear
functional 03BC(f) on the Banach space C(G), (that is, 03BC(f) is linear
and complex-valued such that |03BC(f)| ~ cllfll for some constant c),
there corresponds a unique regular Borel measure It on G such that

Conversely, this formula associates to each such measure Il a
bounded linear functional 03BC(f) on C(G). In view of this, a bounded
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linear functional 03BC(f) on C(G) will also be called a measure on G.
This measure is real and nonnegative if 03BC(f) ~ 0 for each (real
and) nonnegative f e C(G). If, moreover, p(1 ) = 1 then ,u(f) is

called a probability measure on G.
Let

be a given double sequence {xnk} of points in G; (in many applica-
rions, aenk = Xk is independent of n in which case {xnk = xk} is
called a simple sequence). A measure IÀ, on G will be called a
limiting measure of this double sequence if, for some sequence
0  no  nl  n2  ... of integers nj, one has

for all f e C(G). Note that, by (5.1), pi must be a probability
measure on G. By the remarks following (4.4) (and a diagonal
procédure) there exists at least one limiting measure.
The collection of all limiting measures of {xnk} will be denoted as

If it consists of a single measure 03BC1 then pi is called the asymptotic
A-distribution of the double sequence {xnk}.
We shall also be interested in the joint distribution of successive

elements xn, k, Xn,k+1, ..., Xn,k+r-1’ that is, in the asymptotic
A-distribution of the sequence of points

in the r-fold direct product

(Hère, G, denotes a copy of G.) Thus, consider the measure

on Gr having a mass ank ~ 0 at the point x(r)nk, and let V,. = V,.
{xnk} = V1{x(r)nk} denote the non-empty collection of limit points of
the sequence of measures {03BCt,n, n = 0, 1, ...}. That is, a probability
measure ,u,, on Gr belongs to Vr{xnk} if and only if there exists
an increasing sequence of positive integers ni such that
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for each function f = f(03B80, ..., 03B8r-1) in C(Gr). If Vr{xnk} consists
of a single probability measure 03BCr on Gr, we call 03BCr the r-dimensional
A-distribution of the double sequence {xnk}.

Finally, consider the infinite product space

and the measures

on G°°. Here,

denotes the point in G°° whose r-th coordinate is equal to xn,k+r.
Let again

denote the non-empty collection of limit points of the sequence
{03BC~,n} If it consists of a single probability measure 03BC~ on G°°
we call 03BC~ the complete A-distribution of the double sequence {xnk}
of points xnk in G.

In any case, if 1 ~ s  ~  ~ then V, is precisely the set
of projections (marginals) of the measures y, e V,. on G’’ onto the
component G8 of G’’ = G" X G, X Gs+1 X ... X Gr-1.
By T we shall denote the shi f t transformations

in G°°. In other words, if 0 e G°° and T0 = 0’ then the r-th
coordinate 0§ of 0’ is equal to the (r+ 1 )-th coordinate 03B8r+1 of 0,
(r = 0, 1, 2,...).
By (5.10), we can write (5.9) as

where

Similarly, (5.7) can be written as
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provided we identify the function f = /(9o, ..., 03B8r-1) on G’’ with
th e function f(03B8) = f(03B80, ..., 03B8r-1) on G°° which is independent of
the coordinates 03B8r, 03B8r+1, ... of 0.
For f = f(03B8) = f(OO, 01, ... ) as any function on G°°, let us define

Because T is an open and continuous map of G°° onto G°°, we have

Tf e C(G°°) if and only if f e C(G°°). Further, Tf ~ 0 if and only
if f &#x3E; 0. Finally, by (5.2) and (5.11),

It follows that each limit point floo of {03BC~,n}, that is, each
probability measure floo E V~{xnk} satisfies

for all f e C(G°°); interpreting 03BC~,n and 03BC~ as an integral, (5.13)
and (5.14) even hold for any bounded and Borel measurable
function /(0) on G°°.
A measure 03BC~ on G~ satisfying (5.14) will be called an in-

variant measure. The collection of all invariant probability
measures on G°° will be denoted as I~. We thus have proved that
(5.1) and (5.2) imply

This result has important consequences.
But let us first take up the question whether to each 1100 E I~

there corresponds a double sequence {xnk} such that

At this point, if desired, the reader could also turn to section 7.

6. Sequences having a preassigned complete distribution

In this section, we shall only require that A = (ank) is a real
matrix satisfying

and (5.2), (M &#x3E; 1 denoting a fixed constant); we shall also write
an,k ’- an(k).
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Note that, by (5.3) and (6.1), tn ~ 0 where

Hence, there exists a sequence 0 ~ no  ni  n2  ... of integers
such that

Therefore, the following result implies that the question (5.16)
has always a positive answer.

THEOREM 6.1. Suppose that

Let 03BD~ ~ I~ be arbitrarily given. Then there exists a sequence {03B8k}
of points in G such that the simple sequence {xnk = 03B8k} has a (unique)
complete A-distribution equal to 03BD~.

If A and A’ are two real and regular summation matrices, they
are said to be consistent for bounded sequences if a bounded

sequence {un} is A -summable to u whenever it is A’-summable to
u and conversely. Clearly, Theorem 6.1 applied to two such

matrices yields two equivalent conclusions. For instance, the

ordinary Cesaro summation method A = (C, 1) is known to be

consistent for bounded sequences with many other summation

methods, compare [2].
Assume that (6.3) holds. We may also assume that

(6.4) ank = 0 for k &#x3E; A(n), where 03BB(n) ~ 03BB(n+1), 03BB(n) ~ oo.

For, if (6.4) does not hold, choose 03BB(n) such that

(n = 0, 1, ... ). Then the summation method

is consistent with A for bounded sequences. Moreover, (5.2) and
(6.3) imply the corresponding relations for (ank).
Now, Let M, (r = 1, 2, ... ) be a given sequence of positive

integers (to be chosen in a suitable manner), and put
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thus, Nr ~ oo. Let further

where r = 1, 2, ... and h = 1, ..., M,.. By (6.5), the Ir(h) define
a partition of the nonnegative integers into disjoint intervals.

LEMMA 6.2. For p = 1, 2, ..., let J, denote the set of nonnegative
integers k such that the p integers k, k+1, ..., k+p-1 all belong
to one and the same interval Ir(h). Then, f or each p = 1, 2, ...,

Proot. If p = 1 then Jp contains all nonnegative integers. Thus,
let p ~ 2 be fixed. By (6.6),

By (5.3), it suffices to show that limn~~ dnq = 0 for each fixed
q = 1, 2, ..., where

From (5.2), (5.3), (6.1) and (6.5), one easily sees that

for each q k 1, while

Thus, for q and Q as fixed positive integers,

showing that dnq ~ 0 as n ~ oo.

LEMMA 6.3. The sequence {Mr} o f positive integers catI, be chosen
in such a r,cay that, f or some .sequence {03B5n} o f positive numbers
converging to zero, one has

Here,



121

Proof. By (6.3), there exist integers 0 = hl C h2  ... such
that

Define en = j-1 for h, ~ n  hj+1, thus, e,,, - 0. Further, given
the Mg with 1 ~ s C r, choose Mr so large that the Nr defined by
(6.5) satisfies

Clearly, (6.10) implies (6.8) provided one has, for each fixed

i ~ 1, that hj ~ n  h,+, implies un ~ itn; (for, then 03B5n/un ~ i-2/tn
by the definition of e,,). Hence, by (6.2), (6.4) and (6.9), it

suffices to show that

together imply k &#x3E; 03BB(n), (thus, ank = 0). Indeed, in this case one
has

by (6.11) and 03BB(m) S 03BB(m+1).
REMARK. The above proof shows that {03B5n} can be chosen as any

nullsequence such that Y- exp(-03B5n/(~ntn))  00 for some sequence

{~n} tending to infinity; (for the ordinary (C,1 )-summation method
this means 8n ~ 0, n03B5n/log n ~ oo ). For, choosing

one has un ~ ~ntn; (if r &#x3E; ~(n) and k ~ Nr-1 then k &#x3E; 03BB(n) thus
ank = 0).

Proof of theorem 6.1. Let 03BD~ E 100 be an arbitrary but fixed
invariant probability measure on

Gk denoting a copy of G. Let v,. denote its projection onto the
component G’’ = Go X G1 X ... X Gr-1 of G°°. Because 03BD~ is in-

variant under the translation T, we have, for each 1 ~ p  r ~ o0
and 0 ~ j ~ r - p, that the projection of the measure v,. on G’’ onto
the component G, X G;+l  ... X Gj+p-1 of G’’ is precisely equal to
03BDp in the sense that
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for every bounded and measurable function f(03B80, ..., (2)-1) on G°.
Now, choose {Mr} as any fixed sequence of positive integers

which has the property mentioned in Lemma 6.3. For r = 1, 2, ...
and h = 1, ..., M,., let us consider the r-fold direct product

In view of (6.5), the space (6.12) may be regarded as the direct
product

We now define a probability measure (/00 on G°° obtained by
assigning to each component G’ the measure v,.; afterwards, we
take the direct product of these measures. In other words, the
measure space ( G°°, 03C3~) is defined as the direct product

of the measure spaces (Gh, 03BDr).
We assert that, f or almost all [03C3~] points 0 = (00, 03B81, (J2’ ...)

in G°°, the corresponding sequence {03B8k} of points in G has a

unique complete A-distribution which is equal to the given 03BD~.

Thus, there is at least one such sequence, proving Theorem 6.1.
We must show that, for almost all [03C3~] points 03B8 E G°°,

holds for each f e C(G°°). In fact, we may restrict f to a denumer-
able collection {fi} spanning a dense subset of C(G~); (such a
collection exists because with G also G°° is second countable).
The f can moreover be chosen as functions depending only on a
finite number of coordinates 0,. After all, from the definition
of the product topology, we have for each continuous function
f = f(03B80 , 03B81, ... ) on G°° that

holds uniformly in 0 ; (xo E G fixed).
Thus, let p be a fixed positive integer and let f(03B80, ..., 03B8p-1)

be an arbitrary but fixed bounded and measurable real-valued
function on the p-fold direct product G X ... X G. It suffices to
prove that, for almost all [03C3~] points 0 = (03B80, 01, ...), one has
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(compare (6.13)). By (6.1), this certainly holds when f is a con-
stant function, thus, without loss of generality we may assume
that

By Lemma 6.2, the summation in (6.18) may be restricted to
k e Jp. Thus, it remains to show that, for almost all 0, one has

Here,

where,

with Nf’,h = Nr-1+(h-1)r; (compare (6.5), (6.15) and the defini-
tion of Jp). Now notice that Z(n)r,h(03B8) depends only on the coordi-
nates Ot with k ~ Ir(h). Recall that the intervals Ir(h) are disjoint.
Hence, by (6.14) and the definition (6.16) of (/00’ the measurable
functions Z(n)r,h (r = p, p+1, ... ; h = 1, ..., Mr) are independent
real-valued random variables relative to the probability space
( G°°, 03C3~), (compare (3.1)). Moreovcr, by (6.13), (6.16), (6.19) and
(6.22 ),

for all r &#x3E; p, 1 ~ h ~ M,.. Finally, by (6.19), (6.22) and Cauchy’s
inequality,

By (6.5) and (6.9),

It follows by (6.21) and Lemma 4.2 (with {ckZk} replaced by
{Z(n)r,h}) that

for all ô &#x3E; 0. Choosing ô = 203B5n/un, we obtain from (6.8) that
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This in turn implies that, for almost all [03C3~] points 0 E G°°,
there exists an integer no(0) such that

But {03B5n} converges to zero, thus, (6.20) holds for almost all [03C3~]
points 0.

REMARK. At least for A = (C, 1), the special case of Theorem
6.1, where 03BD0 is ergodic with respect to T, is also an immediate
consequence of the individual ergodic theorem.
On the other hand, suppose that the invariant probability

measure "00 is not ergodic with respect to T. Then there exists a
measurable subset W of G°° such that 0  03BD~(W)  1 while 0 e W

if and only if TO e W. If f(0) = 1 or 0, depending on whether 0
does or does not belong to W, then the left hand side of (6.17) is
always equal to f(0), thus, (6.17) holds for no 0 e G°° whatsoever.
What we have shown is that (6.17) is true for many points 0,

more precisely, for almost all [03C3~] points 0 e G°°, whenever f(03B8) is

a fixed bounded and measurable function on G°° which depends on
only finitely many coordinates ok, thus, also when f(0) is the
uniform limit of a sequence of such functions, in particular,
if f e C(G°°).

7. A general moment problem

Here, the assumptions and notations are those of section 5. By
L( G ) we shall denote the real linear vector space consisting of all
the real-valued and continuous functions f on G. We further put

Be given any subset

of L°°, (no restrictions on the cardinality of the index set Do).
Let further

be any real-valued function on Do. Finally, let {xnk} be a given
double sequence of points in G satisfying
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In view of (5.1), we may and will assume that for some distin-
guished element 0 ~ D0, say, we have

In many applications, the condition (7.2) will arise as follows.
Let Q be a given index set. For each q e Q, let TQ be a given com-
pact metric space and gq = gq(03B8) a given continuous mapping of G°°
into TQ; (for example, if G is an additively written compact group,
let Tq = G and gq(03B8) = 03B8q - 03B80, q = 1, 2, ... ). Further, put

and assume that, for each q E Q, the double sequence {y(q)nk} of
points in Ff1 has a given probability measure ’J’f1 an Tf1 as its (one-
dimensional) A-distribution, that is,

for each q e Q and each fa e L(0393q).
Returning to the general condition (7.2), let g e L°° be a further

real and continuous function on G°°. What then can be said
about the set of accumulation points of the sequence

(n = 0, 1,...)? More generally, if

is a given subset of L(G°°), find all the real-valued functions

on Dl such that there exists a double sequence {xnk} of points
in G satisfying (7.2) and, further, for some Poo E V~{xnk},

Note that a double sequence {xnk} satisfies (7.2) if and only if

and all 03BC~ e V~{xnk}.
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By (5.16), each Poo e V~{xnk} belongs to the collection I~ of
invariant probability measures on G°°. Thus, if {xnk} satisfies

(7.2) then, for a given function a, on Dl, (7.3) can happen for
some 03BC~ e V~{xnk} only if there exists at least one 03BC~ e 100
satisfying both (7.3) and (7.4). Note that this (necessary) condi-
tion is completely independent o f the original summation method
A = (a,,k), (which is assumed to satisfy (5.1) and (5.2)).

In most applications, for instance, if A = (C, 1), one has

In this case, the above condition is also su f f icient. For, suppose
that the real function 03C3j on Dl is such that there exists a Poo e I~
satisfying both (7.3) and (7.4); let this Poo be fixed. By (7.5) and
Theorem 6.1, there exists a simple sequence {xnk = xk} of points
Xk in G such that V~{xk} is the one-element set {03BC~}. In particular,
by (7.3) and (7.4),

and

In this way, we arrive at the following:
Fundamental moment problem. Given {fi ~ L°°, i ~ D0}, {gj E L~,

j ~ D1} and the real numbers p,, i e Do, what are the necessary and
sufficient conditions on the set of real numbers {03C3j, j e D1} in order
that there exists at least one Poo e 100 satisfying both (7.3) and
(7.4)?
A complete (though not always useful ) answer to this problem

is given by the following Theorem 7.1, whose proof is based on
the Hahn-Banach theorem.

Let K denote the cone in L°’ consisting of all f e L°° satisfying
f(03B8) &#x3E; 0 for all 0 e G°°. Let further K’ denote the cone consisting
of all f e L°° which in at least one way can be written as

We shall write

This defines a partial ordering in L°°, ( f ~ f while f ~ g, g - h



127

imply f ~ h), which is invariant under addition and under multi-
plication by a nonnegative real number; (one can show that

f ~ 0 ~ f if and only if f is of the form f = h-Th).
Next, for each g e L°°, put

(each sum finite, that is, all but finitely many a, equal to zero).
Note that, by f0(03B8) = 1, po = 1,

THEOREM 7.1. A necessary and sufficient condition for the

existence of a Poo eloo satisfying (7.4) is that Q (0 ) = 0.
A necessary and sufficient condition for the existence of a Poo el 00

satisfying both (7.3) and (7.4) is that

f or each choice of the real numbers 03B2j, j e Dl, all but f initely many
(J i equal to zero.
In particular, given gEL 00 and a real, there exists a 03BC~ ~ I~

with 03BC~(g) = 03C3 i f and only if

where

(oc and P ranging over the constant functions); a = q(g) is even

attained by an ergodic 03BC~ ~ I~.
The proof of Theorem 7.1 and certain related results will be

given elsewhere. In applying Theorem 7.1, one of the main diffi-
culties lies in the difficulty of computing the quantity Q(g), more
precisely, in the question whether a given function g e L°° satisfies
p(g) ~ 0. The easiest case is that where g(0) depends on only
finitely many coordinates 00, Bl, ..., °"-1. For, then p(g) ~ 0 can
be shown to hold if and only if

whenever 03B8n+k = 03B8k for k = 1,..., r -1.
As an illustration, take G = {0, 1, 2, 31 as the group of integers

modulo 4. Using the latter criterion, one finds that there exists
a 03BC~ ~ 100 satisfying
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if and only if |03C3"| ~ 1 2 and ja’I + |03C3"| ~ 1.
As to (7.9), one usually has p(g)  q(g). It can be shown that

p(g) = q(g) implies that

holds for all 0 e G°° in a uni f orm fashion. This result is related to
the work of Lorentz [17].

8. Strictly stationary stochastic processes

As we have seen in section 7, many problems on the asymptotic
distribution of a double sequence {xnk} are equivalent to a problem
of the following form. Given that e 100 satisfies

( F and the complex-valued function p( f ) on F given), what then
can be said about the values 03BC~(f) when f e C(G~), / 0 F?

This problem may in turn be formulated as a problem in the
theory of probability, namely, by taking (G°°, 03BC~) as the under-
lying probability space. Then each measurable function X = X(03B8)
on G°° may be regarded as a random variable. If X is complex-
valued, one would usually write 03BC~(X(03B8)) as E(X). Note that
the component functions

are random variables taking values in the compact space G.
Because Poo is invariant under the translation T, the so-called

joint probability distribution

of Xk, Xk+1,..., Xk+r-1 is the same for all k &#x3E; 0; (here, B denotes
any measurable subset of the r-fold direct product G X ... X G).
For this reason, the sequence of random variables {Xk} is said to be
a (strictly) stationary stochastic process, (see Doob [7], chapters
10 and 11, Loève [16], chapters 9 and 10). Clearly, any moment
problem of the type (8.1) is equivalent to a problem for the
stationary stochastic process {Xk}.
As an illustration, let U(x) denote a fixed function from G into
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the ring 0393 of all s X s complex-valued matrices, (s fixed, 0393 =

complex numbers if s = 1), such that each element uij(x) of
U(x) is a bounded and measurable function on G. Then, ,

defines a stationary process of random variables taking values in 0393.
Its so-called correlation function is defined by

h =..., -1, 0, 1,... ; (R(h) ~ 0393 is independent of k ~ max
(0, -h)). Here, if V is a matrix then V* denotes its adjoint
(= transposed conjugate of V). In particular,

We assert that the R(h) cannot be small without

being also small. More precisely, let m and q dénote positive
integers and consider the nonnegative definite matrix

Integrating V(03B8) over all of G°° with respect to the nonnegative
measure ¡.too, and using (8.4), one obtains that for each choice
of the positive integers m and q

here, V « W denotes the property that the matrix W -V is
nonnegative definite. In particular, using (8.5), one has 03A6 = 0
whenever

for some choice of the séquences of positive integers {qj} and
{mj} with mi tending to infinity.
In certain problems, (where Poo e V~{xnk}), the measure Poo is in

a natural way equal to the average of certain measures 03BC(0)~, ...,
03BC(L-1)~ in I~, (03BC(j)~ e V~{xn,kL+j}). Applying (8.7) with 03BC~ replaced by
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p,!:1 and then addmg over j, one finds that (8.8) implies not only
03A6 = 0 but even

In the remainder of this section, let us consider the special case
that G is an additively written compact group, (not necessarily
commutative). The random variables Xk e G are said to be

uniformly distributed if their (common) distribution Pl (B) coincides
with the normalized Haar measure on G. As is well-known, this is
the case if and only if

for each irreducible non-trivial unitary representation U = U(x)
of G; (by a unitary representation of G we mean a continuous
mapping U(x) from G into some group r consisting of all s X s
unitary matrices, such that U(x-y) = U(x)U(y)*).
By (8.3) and (8.4), we have for each such representation that

thus, R(h) = 0 if Xk+l,-Xk c- G is uniformly distributed. Conse-
quently, by (8.7), we have the following result.

THEOREM 8.1. Let {Xk} be a strictly stationary stochastic process
o f random variables taking values in the additive compact group G.
Suppose further that Xqh-X0 e G is uni f ormly distributed f or all

h = 1, 2, ..., (q a fixed positive integer). Then Xo itself is uni-
f ormly distributed, (hence, also the other Xk).
The above result characterizes the Haar measure, (for, consider

Xk = Xk+c with c E G constant). One may regard Theorem 8.1 as
the probabilistic counterpart of the following generalization,
essentially due to Hlawka [9] and Cigler [4], of the van der Corput
[6] difference theorem. Here, A - (ank) is as in section 5.

THEOREM 8.2. Let {xnk} be a given double sequence of points in G.
Suppose that, f or each h = 1, 2, ..., the double sequence

has the uniform distribution on G as its asymptotic A-distribution.
Then so has the original double sequence {xn,k}.

Proof. Let 03BD1 denote the uniform (= Haar) measure on G of
mass 1. It is given that
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for each f e C(G) and each h &#x3E; 1. Let g e C(G) be given. We
must prove that the sequence

converges to 03BD1(g). Draw first a convergent subsequence and then
a further subsequence with indices nj, say, such that the limit

exists for each function f(0) = f(03B80, 01, ...) in C(G°°). We must
prove that 03BC~(g(03B80)) = vi(g).
By (8.9),

(8.10) 03BC~(f(03B8qh-03B80)) = 03BD1(f) for each f e C(G), each h &#x3E; 1.

By (5.15), !-too E I~. Consequently, with (G°°, 03BC~) as the underlying
probability space, the sequence of random variables Xk(O) = 03B8k
(k = 0, 1, ... ) satisfies the conditions of Theorem 8.1. It follows
that Xo is uniformly distributed, thus,

proving Theorem 8.2.
In fact, the two theorems may be considered equivalent. In

deriving Theorem 8.1 from Theorem 8.2, we start with a y.
satisfying (8.10 ) and Poo ~ I~, and then consider a sequence {xnk =
xk} having the complete distribution Poo’ (say, with respect to
A = (C, 1 )). That such a sequence exists follows from Theorem 6.1.
By (8.7), (compare (8.8 ) ), it is possible to weaken considerably

the conditions of Theorem 8.1. In an obvious way, compare the
above proof, this allows us to weaken in turn the conditions of
Theorem 8.2. A direct proof of an even more general result is

given in [12].

9. Normal numbers

Let a &#x3E; 2 denote a fixed integer and take G as the finite set

G = {0, 1, ..., a-1}.
Let further K denote the additive group of real numbers modulo 1,
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(0 and 1 identified). Each number e in K has a unique expansion

provided we do not allow (as we will) an expansion with aek(E) =
a - 1 for all large k.
The number e is said to be normal to the base a if, for each

choice of the positive integer r and the elements yo , ..., Yr-i
in G, one has

As usual, let

denote the compact space of points

Then

defines a mapping from K into G°°. The only points 0 not in the
range of ~ are those for which ok = a - 1 for all large k. The
set of these points 0 e Goo will be denoted as Sa. As is easily seen,
~(03BE) has only denumerably many discontinuities, namely precisely
those points e in K admitting an expansion (9.1) with xk(03BE) = 0
for all large k. The set of these points will be denoted as Qa.

Let us furthèr define

which is a continuous mapping from G°° onto K. Clearly,

except that the latter is not true when 0 e S,,. The homomorphic
mapping e - a03BE (mod 1 ) of K unto itself will simply be denoted
as ae. If further T denotes the shift transformation in G°° it is
clear that

Recall that y is continuous and that has only denumerably
many discontinuities. Using (9.5), it is easily seen that the
formulae
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and

establish a 1 : 1 correspondence between the probability measures
Il on K and the probability measures ,u’ on G°° satisfying 03BC’(Sa) = o.
Usually, we shall drop the prime, thus, denoting corresponding
measures by the same symbol. In this way there corresponds
to the Lebesgue measure on K the measure 03BD~ on G°° which is
the product of the uniform measures on the components Gk,
that is,

Hence,. by (9.2), the number e in K.is normal if and only if the
sequence of points {xk(03BE)} in G has a complete asymptotic distribu-
tion equal to 03BD~; (in the sequel we shall take A = (C, 1), though
any A satisfying (5.1) and (5.2) would do).
We shall prefer to call the number e instead a poo-normal

number (to the base a). In the same way, if y. is any invariant
probability measure on G°° the number e will be said to be /-loo-
normal if the sequence {xk(03BE)} has a complete asymptotic distribu-
tion equal to /-loo. Given /-loo e I~ there always exists such a
number e. This result due to Pyateckii-Sapiro [18] is in fact an
immediate consequence of Theorem 6.1; (in a similar way,
introducing an appropriate product space, one arrives at a new
proof of a more general result due to Cigler [3] p. 95). In the
special case that /-loo is ergodic with respect to T one even has,
by the individual ergodic theorem, that almost [03BC~] all numbers
1 are 03BC~-normal, (to the base a).
Note that, by (9.6) and (9.8), a measure /-loo in I~ corresponds to

a probability measure on K satisfying

Further, for 03BE to be normal relative to 03BC~ e I~ it is necessary and
sufficient that

for all f e C(G°°).
Similarly, the sequence {ak03BE} has (mod 1) the asymptotic dis-

tribution Poo if and only if
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for all g e C(K), or equivalently, for all bounded functions g on K
continuous at almost all [03BC~] points 03BE.

Hence, by (9.6) and the continuity of 03C8, if e is p’ normal then
{ak03BE} has modulo 1 the asymptotic distribution Poo defined by (9.8).
Conversely, by (9.6) and the continuity ouf 99 at each point e e Qa,
if {ak03BE} has modulo 1 the asymptotic distribution Poo such that
(Qa) = 0 then e is p£-normal (y" 00 defined by (9.7)). This
generalizes a result of Wall [20]. If ttoo e 100 satisfies Poo(Qa) &#x3E; 0

it may happen that {ak03BE} has modulo 1 an asymptotic distribution
while {xk(03BE)} has no complete distribution at all; (for instance,
take long blocks xk(e) = 0 followed by long blocks xk(03BE) = a-1).
The following result due to Pyateckii-Sapiro [18] (and a

generalization to ergodic Poo due to Cigler [3] ) plays a useful role
in the theory of normal numbers; see [3] and [5].

Let {xk} be a given sequence of points in G and put

Then {xk} has the complete asymptotic distribution 03BD~ (= Lebesgue
measure) provided

for each choice of the positive integer r and the y, in G.
Here, c &#x3E; 1 denotes a fixed constant. I claim that the same

conclusion holds if in (9.5) we replace c by a constant 1  cr ~ oo
in such a way that

(say, c,, = exp(rl-e) with 0  e  1). The condition (9.6) can
hardly be weakened; for, consider a sequence {xk} having a
product measure different from "’00 as its complete distribution.

Proof. Let 03BC~ e V~{xk} be fixed; by (5.15), c- We must
prove that 03BC~0 coincides with 03BD~. Let 03BCr denote the projection
of 03BC~ onto G’’ = Go X ... X Gr-1, (Gk a copy of G). Similarly, let
03BDr = vi X ... X vi denote the projection of 03BD~ onto G’’.

It follows by (9.5), (with c replaced by cr), that the density
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satisfies Ir ~ c,,. Thus, the quantity

satisfies

That Hr ~ 0 follows easily from the convexity of the function
z log z ; in fact, H,. = 0 if and only if 03BCr = v,..

Finally, it is known, compare [15 ] p. 48, that 03BC~ ~ I~ implies

This together with (9.6) and (9.7) gives that H,. = 0 for all r,
thus, "’1’ = v,. for all r, thus, "’00 = 03BD~.
The idea which lies behind the above result is the fact that

a 03BC~ ~ I~ which is absolutely continuous with respect to an
ergodic "00 (for instance the Lebesgue measure) must coincide
with "00’ compare [3]. After all, the density f(03B8) of 03BC~ relative
to 03BD~ is an invariant function and thus, constant for almost [03BD~]
all 0.
For the benefit of the reader, we present the following simple

proof of (9.8) (which applies equally well to the more general
case that G is any measurable space, "’00 and 03BD~ invariant proba-
bility measures on G°°, with "00 a product measure).
By 03BC~ e 100 the two functions

have their voo-integral equal to 1, while

Here, 1p(z) = z log z-z+1 (z ~ 0, 03C8(0) = 1), is clearly nonnegative,
thus, (9.8) obtains.
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