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Uniform distribution of sequences of integers *

by

Ivan Niven

Let A = {ai} be an infinite sequence of integers. For any
integers i and m &#x3E; 2 define A(n, j, m) as the number of terms
among ai, a2, a3, ..., an that satisfy ai ~ j (mod m). We say that
the sequence A is uniformly distributed modulo m in case

Further more we say that the sequence A is uniformly distributed
in case A is uniformly distributed modulo m for every integer
m ~ 2. These definitions were introduced by I. Niven; see [1]
in the bibilography at the end of this paper.
For example any arithmetic progression {ax+b; x = 1, 2, 3,...}

is uniformly distributed modulo m if and only if g.c.d. (a, m) = 1.
Such an arithmetic progression is uniformly distributed if and

only if a = 1. The sequence of positive integers 1, 2, 3, ... is

uniformly distributed, as is also the sequence of negative integers
-1, -- 2, -3, .... The sequence of primes is not uniformly
distributed modulo m for any modulus m, whereas the sequence
of composite integers is uniformly distributed.
For any irrational number 0 the sequence obtained by taking

the integer parts of the multiples of 0,

is uniformly distributed. This result is a consequence of the
result of Weyl [2] that the sequence of fractional parts

form a sequence that is uniformly distributed in the unit interval.
(Alternative language for this is that the sequence is uniformly
distributed modulo 1; note that in the definition of uniform distri-
bution of a sequence of integers the modulus is greater than one. )

* Nijenrode lecture.
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S. Uchiyama [3] extended a result of Niven and proved that
a sequence A = {ak} is uniformly distributed modulo m if and
only if

and hence that A is uniformly distributed if and only if (1) holds
for all pairs m, h of positive integers. This is analogous to the Weyl
criterion that a sequence {03B2i} of real numbers is uniformly distrib-
uted modulo 1 if and only if

for all integers t ~ 0.
C. L. Van den Eynden [4] extended the work of Niven and

proved that if {03B2i} is a sequence of real numbers such that the

sequence {03B2i/m} is uniformly distributed modulo 1 for all integers
m =1= 0 then the integer parts {[03B2i]} form a uniformly distributed
sequence; also that a real sequence {03B3i} is uniformly distributed
modulo 1 if and only if the sequence of integer parts {[m03B3i]} is
uniformly distributed modulo m for all integers m h 2. These
results enable one to take many propositions in the theory of
uniform distribution modulo 1 and extend them to propositions
about sequences of integers. For example, if f(x) is a polynomial
with some irrational coefficient (other than f(0)) then the sequence
{[f(n)]; n = 1, 2, 3, ...} is uniformly distributed. Again, if pt denotes
the ith prime, then the sequence {[03B8pi]; i = 1, 2, 3, ...} is uni-
formly distributed for any irrational 0. Another result is that if A
is a normal number to base r then the sequence {[03BBrn]; n = 1, 2,
3, ...} is uniformly distributed. A corollary of this can be obtained
from the paper of Champernowne [5] that the sequence of

integers
1, 12, 123, 1234, 12345, ...

formed from the digits of Champernowne’s number

0.123456789101112131415161718192021 ...

is uniformly distributed.
We conclude with two negative results from [1]. Whereas

if a sequence A is uniformly distributed modulo m it must then be
uniformly distributed modulo d where d is any divisor of m, it is
not true that uniform distribution modulo ml and m2 implies
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uniform distribution modulo the least common multiple of ml and
m2. Also, if f(x) is any polynomial with integral coefficients of
degree ~ 2, the sequence {f(n); n = 1, 2, 3, ...} is not uniformly
distributed.
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