COMPOSITIO MATHEMATICA

WALTER PHILIPP An *n*-dimensional analogue of a theorem of H. Weyl

Compositio Mathematica, tome 16 (1964), p. 161-163

<http://www.numdam.org/item?id=CM_1964__16__161_0>

© Foundation Compositio Mathematica, 1964, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal N$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

An *n*-dimensional analogue of a theorem of H. Weyl *¹

by

Walter Philipp

It is wellknown that for any fixed basis a > 1 almost all real numbers x are normal with respect to a. An equivalent statement is the following: For any fixed integer a > 1 the sequence $\{a^n x\}$ is uniformly distributed mod 1 for almost all x. This is a consequence of a theorem due to H. Weyl [4]: If $\{l_n\}$ is an increasing sequence of real numbers which does not increase too slowly in a sense to be determined later then $\{l_n x\}$ is uniformly distributed mod 1 for almost all x.

In another lecture contained in this volume *Cigler* (see also [1]) states the following

THEOREM 1: Let A be a nonsingular $m \times m$ -matrix with integral entries such that no eigenvalue of A is a root of unity then the sequence of m-dimensional vectors $\{A^n z\}$ is uniformly distributed mod 1 for almost all vectors $z \in R^m$.

This is a consequence of a result of *Rochlin* [3] who proved that the transformation $A\mathfrak{x}-[A\mathfrak{x}]$ is ergodic and measure preserving with respect to Lebesgue measure if A is a matrix with the above properties. But theorem 1 also follows from the following theorem which can be deduced from Weyl's criterion.

THEOREM 2: Let $\{A_n\}$ be a sequence of nonsingular $m \times m$ matrices with integral entries and for fixed n and k = 1, ..., nlet $h_k^{(n)}$ be the number of integers $j \ (1 \le j \le n)$ such that det $(A_j - A_k) = 0$. If there are two positive constants ε and csuch that

$$\max h_k^{(n)} = h^{(n)} \leq \frac{c \cdot n}{(\log n)^{1+\varepsilon}}$$

then $\{A_n \mathfrak{x}\}$ is uniformly distributed mod 1 for almost all \mathfrak{x} .

Taking $A_n = A^n$ Theorem 1 follows immediately.

^{*} Nijenrode lecture.

¹ The results of this lecture are published in [2].

Walter Philipp

Replacing \mathfrak{x} by $1/N\mathfrak{x}$ where N is a positive integer we see that the conclusion of the theorem holds also if $A_n = N^{-1}B_n$ with an arbitrary integral B_n with the above properties. We now can prove the following:

THEOREM 3: Let A be a real symmetric matrix with m rows whose eigenvalues λ_i $(1 \leq i \leq m)$ are all > 1 and let further $\{l_n\}$ be a sequence of real numbers increasing not too slowly, more precisely: Let there be two positive constants ε and c with the property that l - considered as a function of the index - increases at least by c as the index increases from n to $n+(n/(\log n)^{1+\varepsilon})$; under these conditions the sequence $\{A^{l_n} \mathbf{z}\}$ is uniformly distributed mod 1 for almost all \mathbf{z} . Moreover if A is an arbitrary real squarematrix whose eigenvalues λ_i satisfy $|\lambda_i| > 1$ the same conclusion is true if one supposes that the l_n all are integral.

The example $A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ shows that the assumption $|\lambda_i| > 1$ cannot be replaced by a weaker one.

For the proof of the theorem we write $A = U^{-1}\Delta U$ where $\det(U) = \pm 1$ and $\Delta = [I_{\rho_1}(\lambda_1), \ldots, I_{\rho_r}(\lambda_r)]$ is a Jordan quasidiagonal matrix (in the case where A is symmetric we have even a diagonal matrix). Thus in each case A^{l_n} is defined in an obvious way.

If $X = (x_{ij})$ is a square-matrix with *m* rows we write $||X|| = m \cdot \max|x_{ij}|$. For two matrices *X* and *Y* we have $||X+Y|| \leq ||X|| + ||Y||$ and $||XY|| \leq ||X|| ||Y||$ and for any vector \mathfrak{x} we have $|X\mathfrak{x}| \leq m^{\frac{1}{2}}||X|| |\mathfrak{x}|$ with $|\mathfrak{x}| = (\sum x_i^2)^{\frac{1}{2}}$.

Now let N be a positive integer. We take now matrices A_n whose elements are rational numbers, all with the same denominator N such that

$$||A_n - A^{l_n}|| \leq \frac{m}{2N} \quad \text{or} \quad ||A_n - U^{-1} \Delta^{l_n} U|| \leq \frac{m}{2N}.$$

For $l_k \neq l_j (1 \leq j, k \leq m)$ and for fixed n we now put

$$\Omega_{kj} = (\Delta^{l_j} - \Delta^{l_k})^{-1} (UA_j U^{-1} - UA_k U^{-1}).$$

If $l_j - l_k \geq c$ we have $||\Delta^{l_j} - \Delta^{l_k}|| = 0(1)$.

So we have $||\Omega_{kj} - E|| = 0(N^{-1}) (E \dots \text{unit matrix})$. Therefore det $(\Omega_{kj}) = 1 + 0(N^{-1})$. We have $|\det (\Delta^{l_j} - \Delta^{l_k}) - \det (A_j - A_k)| = |\det(\Delta^{l_j} - \Delta^{l_k})||\det(\Omega_{kj}) - 1|$. So we can choose N large enough to yield $|\det(A_j - A_k)| \ge \frac{1}{2} |\det(\Delta^{l_j} - \Delta^{l_k})| \ne 0$ for those values j which satisfy $l_j - l_k \ge c$. But there are at most

$$rac{2k}{(\log k)^{1+arepsilon}} \leq rac{2n}{(\log n)^{1+arepsilon}}$$

such numbers j such that $l_j - l_k < c$. Therefore

$$h_k^{(n)} \leq rac{2n}{(\log n)^{1+arepsilon}} \qquad \qquad k=1,\ldots,n.$$

Because one can show in the same manner that det $(A_n) \neq 0$ for all *n* Theorem 2 applies. So we have

(1)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n e(\mathfrak{f}^*A_k\mathfrak{x}) = 0$$

for almost all \mathfrak{x} where $e(x) = e^{2\pi i x}$ and \mathfrak{f}^* is the transposed vector of an arbitrary integral vector $\mathfrak{f} \neq 0$. For real r_j , s_j , x_j $(1 \leq j \leq m)$ the following inequality holds

$$|e(\sum r_j x_j) - e(\sum s_j x_j)| \leq 2\pi \sum |r_j - s_j| |x_j|.$$

From this it follows easily that

(2)
$$\frac{1}{n}\sum e(\mathfrak{f}^*A_k\mathfrak{x}) - \frac{1}{n}\sum e(\mathfrak{f}^*A^{l_k}\mathfrak{x}) = 0(N^{-1}).$$

We now denote by \mathfrak{A}_N the set of those \mathfrak{x} for which (1) does not hold. The measure $m(\mathfrak{A}_N) = 0$. Let $\mathfrak{A} = \bigcup_N \mathfrak{A}_N \Rightarrow m(\mathfrak{A}) = 0$. From (2) we conclude that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n e(\mathfrak{f}^*A^{l_k}\mathfrak{x})=0$$

for at least all $x \notin \mathfrak{A}$. This proves the theorem.

LITERATURE

- J. CIGLER
- Der individuelle Ergodensatz in der Theorie der Gleichverteilung mod 1. J. reine angew. Math. 205, 91-100 (1960).
- W. PHILIPP
- [2] Ein metrischer Satz über die Gleichverteilung mod 1. Archiv Math. 12, 429-433 (1961).
- W. A. ROCHLIN
- [3] Über Endomorphismen von kompakten abelschen Gruppen. Izwestija Akad. Nauk SSSR, Ser. mat 13, 329-340 (1949) (russ.).
- H. WEYL
- [4] Über die Gleichverteilung von Zahlen mod 1. Math. Ann. 77, 313-352 (1916).

(Oblatum 29-5-63).