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Arithmetic problems concerning Cauchy’s
functional equation *

by

I. J. Schoenberg

Introduction

This is a brief report on a paper with the same title written
in collaboration with Professor Ch. Pisot and concerning some
modifications of Cauchy’s equation f(x+y) = f(x)+f(y) (See [4]).
The background of the problem is a result of Erdôs on additive
arithmetic functions. An arithmetic function F(n ) (n = 1, 2, ... )
is said to be additive provided that F(mn) = F(m)+F(n) when-
ever (m, n) = 1. In [2] Erdôs found that if the additive function
F(n) is non-decreasing, i.e. F(n)  F(n+1) for all n, then it

must be of the form F(n) = C log n. This result was rediscovered
by Moser and Lambek [3] and recently further proofs were given
by Schoenberg [5] and Besicovitch [1].

Erdôs remarkable characterization of the function log n raises
the following question: Let pl, P2, ..., px be a given set of k

distinct prime numbers (k &#x3E; 2). Let F(n) be defined on the set A
of integers n which allow no prime divisors except those among
Pi, ..., px and let F(n) be additive, i.e.

If we assume F(n) to be non-decreasing over the set A, is it still
true that F(n) = C log n?
Communicating this problem to Erdôs, I received from him in

reply a letter dated February 13, 1961, in which Erdôs states, with
brief indications of proofs, that the answer to the above question
is affirmative if k ~ 3 and negative if k = 2. When Professor Pisot
came to the University of Pennsylvania during the academic year
1961- 62 as member of an Institute of Number Theory, I had
forgotten about Erdôs’ letter and we investigated these questions
as if they were still open problems. In a way my lapse of memory
was fortunate for we would otherwise never have studied these

* Nijenrode lecture.



170

problems of which the case when k = 2 turned out to be particu-
larly rewarding.

Let us change our notations. Setting F(ex) = f(x), ai = log Pi
we find

and (1) becomes

The object of our study are the solutions, in particular monotone
solutions, of this functional equation under various assumptions
concerning the number k and the components oci, which are assumed
to be given positive numbers. The simplest case is obtained if
the a; have a common measure and may therefore be taken as

natural integers. For a discussion of the solutions of (2) under
this assumption we refer to [4, § 1]. Here we restrict ourselves
to the cases when k = 3 and k = 2.

1. The 3-dimensional module

Assuming that k = 3 we may rewrite (2) as

(1.1) f(u03B1+v03B2+w03B3) = f(u03B1)+f(v03B2)+f(w03B3), (u, v, w ~ 0),

where oc, 03B2, y are given positive numbers such that the ratios oc/f1,
03B1/03B3 and flJy are irrational. Solutions f(x) of (1.1) are defined in
the set

S = (x = uoc+vf1+wyl u, v, w integers &#x3E; 0}.
The main result is

THEOREM 1. Il f(x) is a solution of (1.1) which is non-decreasing
in the set S then f(x) = Âx for x E S (Â constant &#x3E; 0).
Here is a sketch of the proof: f(x) being a non-decreasing

solution of (1.1), we show first that

exists. Next we define by

the function co(x) which evidently enjoys the properties
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Moreover, (1.3) being non-decreasing we also have

Now (1.4) and (1.5) allow to derive from (1.6) by a process
which may roughly be described as "amplification" the following
fundamental inequality: If u, u’ are given integers &#x3E; 0 and h, k
are arbitrary integers, then

provided that the denominator of the fraction does not vanish.
All of our results are essentially based on this inequality

and its 2-dimensional analogue (2.10). To complete our proof:
Given u &#x3E; 0, we select u’ = 0 and (1.7) becomes

Given e &#x3E; 0 we can find integers h and k such that 0  uoc+hp+
ky  03B5 because pjy is assumed to be irrational. Now (1.8) shows
that m (uoe ) ~ -Ae. Since e is arbitrary we conclude that 03C9(u03B1) ~ 0.
Similarly we can select h, k such that 0 &#x3E; uoc+hp+ky &#x3E; -e and
then (1.8) gives 03C9(u03B1)  03BB03B5 and finally co (uot)  0. Thus co (uoc) =0
and similarly, because of the symmetry in oc, p, y, we can show
that 03C9(v03B2) = 0, 03C9(w03B3) = 0. Fina.lly (1.4) shows that 03C9(x) = 0
and (1.3) implies Theorem 1. This also implies Erdôs’ result on
additive functions for k = 3.

2. The 2-dimensional module

For k = 2 we write (2) as

(2.1) f(u03B1+v03B2) = f(u03B1)+f(v03B2), (u, v integers ~ 0),
where oc, fi are given positive numbers such that 03B1/03B2 is irrational.
Solutions f(x) of (2.1) are defined on the set

(2.2) S = (tt = u03B1+v03B2|u, v integers &#x3E; 0}
and we wish to study those solutions f(x) which are non-decreas-
ing on S.
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We commence by constructing such solutions as follows: Taking
the numbers (vfl) modulo oc we obtain the set

which is everywhere dense and has the period oc. On it we define an
arbitrary function ~(x), of period oc, such that ~(0) = 0, and
having all its difference quotients bounded below, i.e.

Likewise we consider the set

having the period P and on it we define a function 1p(x), of period
(3, such that 1/’(0) = 0, and such that

Observe that 99(x) and 1p(x) are both defined on S = S. r) Se
and are solutions of (2.1). Indeed

and similarly for 1J’(x). If 03BB is constant it is clear that also

is a solution of (2.1). If we now select A such that

then (2.7) defines a non-decreasing solution of (2.1). Indeed, by
(2.7), (2.4), (2.6) and (2.8) we find, if x, y e S,

We finally observe that ~(x) is bounded, because (2.4) and
~(m03B1) = 0 imply that |~(x)|  03BC03B1 (x e Sa), hence ~(x) = o(x) as
z - 00 (x e S). Similarly 1p(x) = o(x) and finally (2.7) shows that

THEOREM 2. The above construction gives all non-decreasing solu-
tions of (2.1) in the following sense: If f(x) is such a solution then Â,
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defined by (2.9), exists, and also tzvo uniquely defined functions ~(x)
and 03C8(x) exist, enjoying all the properties described above, in partic-
ular (2.4), (2.6) and (2.8), such that the representation (2.7) holds.
The uniqueness of both ~(x) and 1J’(x) might at first glance seem

puzzling and for this reason 1 add the following remarks: First
(2.9) is established and then the "reduced" solution 03C9(x) is defined
by f(x) = 03BBx+03C9(x). This then allows to define

Now the fundamental inequality (1.7) comes in, which in our
case reduces to

If t = u03B1+n03B2, s = u’03B1+n’03B2 are two distinct numbers in S, and
if we set h = n-n’ then y(t) = 03C9(u03B1), y(s) = 03C9(u’03B1) and (2.10)
shows that

But then the infinum defined by (2.6) is surely finite and a similar
argument shows that p, defined by (2.4), is also finite. The proof
of the inequality (2.8) is somewhat deeper and for this we refer
to [4, § 8].

3. Extending the solutions

A study of the functional equation (2.1) suggests a similar
discussion of the unrestricted functional equation

whose solutions F(x) are defined on the module

In particular the following question arises: Let f(x) be a non-
decreasing solution of (2.1); can f(x) be extended to a function
F(x), defined on the module E, satisfying (3.1) and such that F(x)
is non-decreasing on 27?

Let f(x) be a non-decreasing solution of (2.1) and let (2.7) be its
representation as furnished by Theorem 2. Observe that 99(x)+px
is non-decreasing in the dense set S.. But then ~(x-0) and
99(x+o) exist for all real x and ~(x-0) ~ ~(x+0). Similarly
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V(x-0)  03C8(x+0) for all real x. Now we can easily solve the
extension problem by the following

Construction: Define 0(x) on 03A3 by the following three rules
1. 0 (x) = ~(x) if x e Sa.
2. If 0  x  03B1, x ~ 03A3-S03B1, we select the value of 0(x) at will

such that 99(x-0)  0(x)  99(x+O).
3. Extend 0(x) to all of 1 so as to have the period oc.

Similarly we define 03A8(x) by
l’. 03A8(x) = 03C8(x) if x e S,6;
2’. If 0  x  03B2, x e 03A32013S03B2, we select the value of 03A8(x) at will

such that V(x-0)  03A8(x) ~ 03C8(x+0).
3’. Extend 03A8(x) to all of 1 so as to have the period (J.
It follows from this construction that 0(x) and 03A8(x) share

with ~(x) and V(x), respectively, all the properties of the latter
throughout the module X, for instance 0(x)+,ux and 03A8(x)+vx
are non-decreasing and so forth. But then it is easily seen that

is a non-decreasing solution of (3.1) such that F(x) = f(x) if x E S.
We can therefore always perform the required extension. A

direct study of the monotone solutions of the unrestricted equa-
tion (3.1) allows to prove the converse

THEOREM 3. The above construction gives all non-decreasing
solutions F(x) of (3.1) which are extensions of a given non-decreasing
solution f(x) of f (2.1).

In particular we have the

COROLLARY 1. The above extension F(x) of a given f (x) is unique
if and only if cp(x) is continuous in 03A3-S03B1 and 1p(x) is continuous
in 03A3-S03B2.

Let us close with a few examples which illustrate these possi-
bilities.

1. Let

which is non-decreasing in S, in fact for all x. The function f(x) is
a solution of (2.1) because (2.7) holds with

where 99(x), 1J’(x) have the periods oc and P, respectively, ~(0) =
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V(O) = 0, while y = 1/oc, v = 1/03B2, 03BB = u+v. Observe that 99(x)
is discontinuous at x = ma which points are all in Sa. Likewise
1p(x) is discontinuous at x = nfl which are all in Sp. Thus 99(x)
and 1p(x) are continuous in the sets 1-S,,, and I-Sp, respectively,
and by Corollary 1 we conclude that there is a unique monotone
extension P(x), solution of (3.1), which is evidently also given by
the formula (3.2).

2. Let

Again (2.7) holds with

where p and y have the periods a and fl = 1, respectively, 99(o) -
03C8(0) - 0, Il = 1/03B1, v = 1, 03BB = 03BC+03BD. However, 03C8(x) is discon-
tinuous at x = -ex ~ 03A3-S03B1. We conclude by Corollary 1 that
f(x) (x E S ) has infinitely many monotone extension F(x), solu-
tions of (3.1), which can all be easily ,described.
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