
COMPOSITIO MATHEMATICA

N. B. SLATER
Distribution problems and physical applications
Compositio Mathematica, tome 16 (1964), p. 176-183
<http://www.numdam.org/item?id=CM_1964__16__176_0>

© Foundation Compositio Mathematica, 1964, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1964__16__176_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


176

Distribution problems and physical applications *

by

N. B. Slater

Introduction

This paper describes some problems of asymptotic distribution
with relations to physical theory. In section 1, results are given
for the asymptotic frequency with which a trigonometric sum passes
through a specified value. Section 2 begins with a brief account of
the application of these results to determine the rate of unimolec-
ular decomposition of a gas; the section continues by indicating
how a refinement of the physical theory poses the more difficult
problem of the distribution of the gaps or recurrence times of the
trigonometric sum. In section 3 a simpler form of this problem is
examined, namely the nature of the gaps between the integers N
for which the point with coordinates the fractional parts of
vi N (i = 1, 2 ..., n-1) lies in a specified region of the unit cube
of (xl , ..., xn-1) space.

1. The frequency of zeros of a trigonometric sum

Consider the finite trigonometric sum

where ai &#x3E; 0, vi &#x3E; 0, 0 ~ 03C8i  1 and y denotes the set yi, ..., 03C8n.
This sum may represent a sum of dynamical vibrations, or of
alternating currents, with t the time elapsed and ai , vi and Vi the
amplitude, frequency and "phase" of a component. Alternatively
f(0; 1p) is the projection of a random walk of steps ai on to the
direction 03C8i = 0. In the former cases there is interest in the aver-
age behaviour of f(t; y ) over a long time-interval. Attention will
be confined to the case where 03BD1, 03BD2, ..., 03BDn are linearly independent
in the field o f rationals; then the long-time average behaviour of

*) Nijenrode lecture.
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f(t; 1p) is the same as that of f(t; 0), and may be represented also
by the phase-average, over an equidistribution in (0, 1) of the
phases 1pi’ of the behaviour of f(t; 1p) or equally of f(0; 03C8). For
example, M(q), the asymptotic proportion of time for which
f(t; 0)  q, is also the probability that the projection f(0; 1p) of
a random walk has a value not exceeding q. For this there is the
well-known formula

which may be replaced by a Fourier series [1] which also leads to
extensions of Nielsen’s identity for Bessel functions [2].
As a more relevant example, let Gq(T; 1jJ) be the number of

up-zeros (that is, zeros with df/dt positive) of f(t; 1jJ)-q in the
range 0  t  T. The asymptotic frequency of these up-zeros is

The v, being linearly independent, L,, does not depend on the ip,,
and equals the phase-averaged frequency for any fixed T, namely

For this M. Kac found 3)

where Z2 i = x2+403C02 03BD2i y2. This also may be put as a Fourier series [5] .
An approxtrùate f ormula for (3) had been found [4, 5] for the case

where q is near i ai. This case will be of interest in a later section,
and so will be briefly sketched here. As time-averaging will be
used, the phases Vi in (1) will be set zero. Let

where h2 is small. Zeros of f(t; 0)-q then require all the cosines in
(1 ) to be near unity, so that we make here the basic approximation
of replacing cos 2nv, t by 1-203C02{vit}2, where {x} denotes x minus
the nearest integer, so that -1 2  {x}  1. To this approximation,
f(t; 0)-q is positive only when
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For convenience let the largest of the v, be ’Vn = 1; also let {t} = y,
so that t = N+y with N the nearest integer to t. Then where (7) is
satisfied the left hand side is

For given N, the minimum of (8) occurs when y = -A-1 03A3n-11
aivi{viN} where A = 03A3n1 aiv2i; and the minimum is ~({vN}) where

and x, {vN} are abbreviations for the sets (xl, ..., xn-1) and
({v1N}, ..., {vn-1N}). To the approximation represented by (7),
there is now seen to be one up-zero of f(t; 0)-q near each N for
which the point {vN} lies in the hyperellipsoid

where (x) are cartesian coordinates in n-1 dimensions.
The linear independence of vl, ..., Vn-l’ vn(= 1) implies that

the points {vN} are asymptotically uniformly distributed in the
(n-1)-dimensional "cube" {xi} ~ J. Thus the asymptotic propor-
tion of values of N satisfying ~({vN})  h2 is the content V of the
hyperellipsoid (19), which from (9) is

Since each such N is close to one up-zero of f(t; 0 )-q, the required
formula for Lq (approximate because of the cosine approximation
in(7))is

The result (12), (11) is formally unaffected by the restriction
03BDn = 1.

2. The relation of distribution problems to unimolecular
décomposition theories

Formulas (5) and (11), (12) have been used to calculate rates of
unimolecular decomposition of gases on classical [6] and quantum
mechanical [7] models. It will be a sufficient illustration here to
summarize one calculation, namely that of classical high-pressure
decomposition, and then to pass to a theory which involves new
distribution problems.
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A polyatomic molecule is pictured as a vibrating system of
atoms which decomposes when some internal coordinate (such
as an interatomic stretch) reaches a critically high value q. This
internal coordinate behaves to a fair approximation as a sum of
"normal-mode" vibrations like f(t; 03C8) in (1), so that Lq defined
as in (3) or (4) represents the decomposition probability per
second, for vibrations of given amplitudes ai. These amplitudes
are of the form

where the oci are calculable constants and ei is the energy in the ith
mode of vibration; the molécule is thus capable of decomposition
(or "energised" ) if f(t; 1p) can reach the value q, that is if

At high pressures, the proportion of molecules with energy

(03B5i, 03B5i+d03B5i) in the ith mode has effectively the equilibrium value
03B2 exp(-03B203B5i)d03B5i, where 1/03B2 is proportional to the absolute temper-
ature of the gas. Thus the high-pressure rate constant k~ (the
proportion decomposing per unit time) is

the integral being over positive ei satisfying (14).
If Kac’s formula (5) is used in (15), we find the exact result

where v = (y oc 2v2/1 OC2)i is a mean frequency, and Eo = q2/03A3 a2
is the minimurri total energy satisfying (14). The approximation
(11), (12) has been used to extend this result to lower-pressure
rates [8], on the assumption that the decomposition process occurs
randomly in time - that is, that the zeros of f(t; 0)-q are randomly
spaced.

Further problems. New distribution problems arise in a more
careful formulation [9] of low-pressure decomposition rates. Let cv
be the number of energy-transferring collisions per molecule per
second; 03C9 is proportional to the pressure of the gas. Although at
low pressures collisions are not sufficiently frequent to maintain
the equilibrium distribution of energised molecules (as used in
(15)), it is still reasonable to assume that the proportion of

molecules raised by collisions (in unit time) to energized states
(êi, ei+dei) with phases (Vi, 03C8i+d03C8i) is
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A molecule energised at time t = 0 will decompose if it suffers no
de-energising collision before the time t = t, of the first up-zero
of f(t; 1p)-q (when it is ready to decompose). The probability
of no collision in the interval (0, tl) is e-wtl, the incidence of
collisions being assumed random. Thus the rate constant k (the
proportion decomposing per second) is the integral of e-1111 times
the expression (17), over the range (14). This may be written

where

This phase-average of tl, the time to the first up-zero of 1(t; y) -q,
may be replaced by the asymptotic average of s(t), the time from
t to the next up-zero of f(t; 0)-q, namely

With a slight change of notation, if tl , t2 , t3 , ... are now the up-
zeros of f(t; 0)-q then for tr ~ t  tr+1 we have s(t) = tr+1-t; so
by dividing the integral in (20) into ranges (tr, tr+1) we find

where L. = limm~~ (m/tm) is as in (3), and

where Ír = tr+1-tr is a gap between successive up-zeros. The

averaging in (22) is over gaps, so that similarly

The general decomposition rate is now given by (18) and (21);
as m - oo it tends to the previous formula (15).
The distribution problem posed in (22) is the determination of

an asymptotic distribution function h(r), namely the proportion
of gaps up to length r. If we assumed the up-zeros occurred

"randomly" like collisions in the gas, we should have (compare
(23))



181

so that in (21) g(m) = Lq03C9/(Lq+03C9); this puts the rate (18) in a
form like that of standard theories based on "random" decomposi-
tion.
A related assumption (again leading to tractable forms of (18))

is that the gaps have a Gamma-type distribution with parameter
u, namely

The case (24) is the extreme, u = 1, of (25); the other extreme,
namely u ~ oo, corresponds to regular (equal) gaps. Some fairly
extensive calculations of the zeros of f(t; 0)-q for the case of
n = 7 vibrations showed distributions well represented by the
form (25). It was found, however, that the best-fitting parameter
u decreases steadily from a value 6.7 for q = 0 to a value near 2
for q &#x3E; -1 Y a,; this indicates an increasing "randomness" of gaps
with increasing q.

3. Problems of gaps

The preceding general problem of the distribution of gaps
between up-zeros of f(t; 0 ) -q will be examined here in the simpler
case where q is as in (6) with h2 small. Up-zeros t,. are then widely
separated, and are very near those integers N for which ~({03BDN}) 
h2 (compare (9): {vN} again stands for the set {v1N}, ..., {vn-1N}
with vl , ..., vn-1 and 1 linearly independent). We therefore replace
the problem of the gaps tr+1-tr by the problem: what are the gaps
Li between the successive integers N for which {vN} lies in the
hyperellipsoid (10)? There is some fairly extensive numerical
evidence for cases up to n = 7. In these cases the calculations show
n basic gaps Li = Dl, ..., Dn and others which can all be ex-
pressed in the form

where the Âsu are zero or positive integers [9].
General theory. A generalization of the above problem is to seek

the gaps d between the successive N for which the point {vN} lies
in a closed convex region S within the "unit cube" |xi| ~ 1 2
(i = 1, 2, ..., n-1). Some simple notes will be given here on this.
For a given positive ô, there exists an integer N’ (depending only
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on v1, ..., vn-1 and 03B4) such that for any point x in the unit cube
there is an N  N’ making |{viN+xi}|  03B4 for all i = 1, ..., n -1.
This result implies that the gaps L1 (for a given S) are bounded;
suppose they are (in increasing size) 03941, d2, ..., dm. (The con-
vexity and extent of S affect the 4’s and their relations; for ex-
ample a gap L1s cannot be a multiple kL1r of another unless k is at
least of the order [1 /h’] where h’ is the minimum diameter of S
for coordinate directions x1, ..., xn-1).
We may now subdivide S into distinct subregions Sr correspond-

ing to the dr and such that for x in S,. the point {xi+pvi} is not in S
for p = 1, 2, ..., dr-1 but is for p = 0394r; so if {vN} lies in Sr
the next gap is dr. For a large range N ~ M, the numbers of points
{vN} in S and Sr are asymptotic to MV and MV,., where V and V,.
are the contents of S and S, respectively. Thus the numbers of
gaps of lengths 03941, ..., 0394m are asymptotic to MV1, ..., MVm.
The mean gap length is 1 j V ( V = 03A3m1Vr), so that

The case n = 2 has been solved in terms of continued fractions

[10] but a simpler approach has been indicated by Florek [11].
The problem is of the gaps between N satisfying

where we shall take h  1. If a and b are the smallest positive
integers such that

then the only gaps are

and these occur with relative frequencies

respectively. These quantities (31 ) are the V, for this one-dimen-
sional S; and here (27) takes the form

The result (30) is seen to agree with the empirical formula (26).
The result (30) leads in fact by induction to the formula (26)

for general n, although this method does not prove that the As"
are all non-negative. Without this condition the theoretical result
is of course very weak. It would seem that the "basic" gaps Du
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for (26) should be chosen to be the smallest gaps L1 for which there
are identities

with all the 03BCu &#x3E; 0. The corresponding sets 03BBsu in (26) would then
be expected to be predominantly positive; the experimental
suggestion that they are all positive is open to suspicion.

I am indebted to Mr. A. J. Mitchell for doing most of the
calculations mentioned, and to Dr. J. W. S. Cassels for helpful
correspondence.
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