
COMPOSITIO MATHEMATICA

GILBERT HELMBERG
A class of criteria concerning uniform
distribution in compact groups
Compositio Mathematica, tome 16 (1964), p. 196-203
<http://www.numdam.org/item?id=CM_1964__16__196_0>

© Foundation Compositio Mathematica, 1964, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utili-
sation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1964__16__196_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


196

A class of criteria concerning uniform distribution
in compact groups *

by

Gilbert Helmberg

1.

Let X be a compact topological group satisfying the second
axiom of countability. Let OE be the Banach space (with respect
to uniform norm) of continuous complex-valued functions on X
and let * be the conjugate space of . We identify bounded
linear functionals on OE and regular Borel measures of finite total
variation on X as elements of * by means of the equation
03BD(f) = fx f(x)dv(x) for all f E . Let B E * be the set of non-
negative normed measures and let IÀ be Haar measure on X.
A sequence (xn) in X is called summable, if limN -+00 IIN 03A3Nn=1 f(xn)

exists for all f e OE. Given a summable sequence (xn), this limit
defines a bounded linear functional v e lll. Referring to this

particular functional v we shall also call the sequence (xn) v-

summable. A p-summable sequence (xn) will be called uniformly
distributed (in X).
As usual, we define convolution of two measures vl, V2 e * by

v1v2(f) = XX f(xy)dv1(x)dv2(Y) for all f E . It is well known that
with convolution as multiplication B becomes a compact semi-
group in the weak topology. Haar measure Il may be characterized
as the (unique) zero element of this semigroup, i.e., a measure
1 e ? coincides with p if and only if Âv = A for all v e ? [6].
The intention of this note is, in the first part, to characterize

in a similar way among all sequences in X those that are uni-

formly distributed and, in the second part, to extend these results
to functions of a real parameter s with values in X. The proofs of
the theorems will only be sketched as the results of the first part
are essentially contained in a paper already in print [3] and as
the results of the second part are proved in a similar way.

In order to achieve this goal, we want to associate with every
ordered pair of sequences (xn) and (Yn) in X a new sequence (zn)

* Nijenrode lecture.
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in X such that, if (xn ) and (Yn) are vl- and v2-summable respec-
tively, then (zn) is VlV2-summable. If the sequences (xn) and (Yn)
are (statistically) independent, i.e. if the sequence (xn, Yn) is

summable with respect to product measure vl X v2 in X X X, then
ordinary multiplication Zn = xnyn would meet these requirements.
Since, however, we do not want to restrict our attention to pairs of
independent summable sequences, we define the sequence,

(zn) = (aen) X (Yn) by

An ordering of this type has already been used in connection with
uniform distribution in [5] and [2] (cf. also B. Volkmann "An
application o f uni f orm distribution to additive number theory") 1.
The following theorem states the desired relation between com-

position of sequences and convolution of measures:

THEOREM 1: Let (xn) and (yn) be vl- and V2-summable sequences
in X respectively. Then (zn) = (Xn) X (yn) is a VlV2-summable
sequence.

PROOF: Let {D(03BA) : K ~ 0} be a complete system of inequivalent
continuous irreducible unitary representations of X. By D(O) we
denote the trivial representation of X. By Weyl’s criterion we
have only to show

This is done by straightforward computation, using the well known
matrix norm ~A~ = (03A3i,k laikI2)! for A = (aik) (cf. [4]).

In particular, if v1 v2 = ,u, then (Zn) is uniformly distributed.
This is the case, for instance, if X is the direct product of closed
subgroups X1 and X 2, and if vi is obtained from Haar measure Pi on
X by means of the equation vi ( E ) = 03BCi(E n Xi ) for every Borel set
E C X (i = 1, 2). A slightly less trivial example is provided by
the dihedral group of the circle group X1 (or, more general, of
any compact abelian group). Let x ~ x’ be a homeomorphism
of X1 onto a set X’1 and let multiplication in X = X1 u X’ be
defined by the additional relations

1 This is the title of a Nijenrode lecture not submitted for this Volume.
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(in particular we have x’2 = e = identity for all x’ e XI’). Then X
is a non-discrete non-commutative compact group with two
connected components Xl and Xi. Let X2 = {e, e’}. For any
function f ~  we have 03BC(f) = 1 2(X1 f(x)d03BC1(x)+X1 f(x’)d03BC1(x)) =
vlv2( f ) where vl and v2 are obtained from Haar measure on XI
and X2 as indicated above. If (xn) is a uniformly distributed
sequence in Xl (e.g. the multiples of an irrational number mod 1)
and if yn = e"’ for all n &#x3E; 1, then (xn) and (yn) are vi and v2-
summable respectively in X and therefore (zn) = (xn)  (yn) is

uniformly distributed in X. In this case, composition of the two
sequences essentially amounts to alternatingly taking elements of
two sequences, uniformly distributed in the obvious sense in Xl
and Xi .

Reformulating the characterization of Haar measure as zero
element in the compact semigroup SB we obtain the following propo-
sition : a summable sequence (xn) in X is uniformly distributed if
for every summable sequence (Yn) the sequence (xn)  (yn) is
summable with respect to the same measure as (xn ). Of course,
this statement does not contain any new information. Also,
attention is again restricted to summable sequences in this result.
The next theorem is both sharper and more general:
TFIEOREM 2: The following statements are equivalent:
a ) The sequence (xn) is uniformly distributed.
b) The sequence (xn) X (Yn) is summable for every sequence (y,,,).
c) The sequence (xn) X (yn ) is uniformly distributed f or every

sequence (yn).
d ) The sequence (xn) X (x-1n) is uniformly distributed.
e) The subsequence o f (Xn) X (x-1n) consisting o f all products

XiXj1 (i &#x3E; j) is uniformly distributed.

PROOF : a) ~ c) Direct computation as in the proof of theorem 1.
c ) ~ b ) Trivial.
b) =&#x3E; a) If (xn) were not uniformly distributed, then either

(xn ) is not summable at all or (xn ) is v-summable and v ~ 03BC. In the
first case choose yn = e for all n h 1 and let (zn) = (xn) X (e). It
is easy to see that, for N ~ co, 1/N 03A3Nn=1 D(03BA)(zn) diverges for at
least one index K. In the second case, combining the sequence
(e) as used above and a uniformly distributed sequence (Yn), one
may construct a sequence (Y.) such that, for (zn) = (xn) X (yn)
and as N ~ ao, 1/N 03A3Nn=1 D(03BA)(zn) oscillates between 0 and v(D(03BA))
for every 03BA ~ 0. Thus, (Zn) cannot be summable.

a) ~ e) Direct computation, using the fact that the sequences
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(xx-1n) (x E X) are equi-uniformly distributed.
e ) ~ d) If the subsequence in question is uniformly distributed,

then so is the subsequence formed by the products , xix-1i =
(xix-1j)-1 (i &#x3E; j). Combining these two sequences and inserting a
sequence of asymptotic density 0 we obtain the sequence (aen) X
(x-1n).
d) ~ a) If A(03BA)n = 1/N 03A3Nn=1 D(03BA)(xn) and if A(03BA)*N is the corre-

sponding adjoint matrix, then the hypothesis d) implies limN~~
A(03BA)N A(03BA)N* = 0 and therefore limN~~~A(03BA)N~ = 0 for all K =1= 0. 

~

We add a few remarks:

ad b), c): An inspection of the proofs shows that the quantifier
"for all sequences (yn)" may be replaced by "for all not summable
sequences (yn)".
ad d) : An estimate due in its sharpest formulation to Cassels [1]
shows that, in the case of reals mod 1, if the discrepancy of the
n2 differences xi -xi (1 ~ i, j  n ) tends to zero as n - oo, then
so does the discrepancy of xl, ..., Xng i.e. the sequence (xn) is

uniformly distributed. In the case of a compact group X in general,
there is no handy concept of discrepancy. Still, by d), if the

sequence (xn)  (x-1n) formed by the "differences" aeixjl is uni-

formly distributed, then so is the sequence (xn).
ad e ) : By van der Corput’s fundamental theorem as transferred
by Hlawka [4] to the compact group case, if every row of the
infinite matrix

is uniformly distributed, then so is the first (and therefore every)
column and the sequence (xn). By e), uniform distribution of
(xn), i.e. of every column, is equivalent to uniform distribution
of the sequence obtained by joining the (finite) secondary
diagonals.
The second axiom of countability accounts for the countability

of the complete system of inequivalent irreducible continuous
representations D(03BA) and for the existence of at least one uni-

formly distributed sequence. This fact, however, has only been
used in the proof of the implication b) ~ a) and is not essential
even there. As a consequence, all results remain valid if this
axiom is omitted. The same is true if X is taken to be any group
(possibly without any topological structure) and if OE is replaced
by any full module of almost periodic functions on X. Convolution
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of measures, then, has to be replacer by convolution of bounded
linear functionals on this module and Haar measure by mean
value. An application of this fact has been given by Hartman
(cf. S. Hartman "Remarks on equidistribution on non-compact
groups". This Vol. p. 66).

2.

It seems worth while to ask whether similar criteria for uniform
distribution may be obtained for functions of a real parameter s
as studied extensively (in the case of reals mod 1) by Kuipers,
Meulenbeld, Hlawka, and others. We denote by R and by
R’ the real line and the non-negative real half-line respectively.
Let x(s) be a Borel-measurable function on R’ with values in a
compact topological group X (no countability axiom is assumed).
The function x(s) is called (v-)summable if limS~~ IIS fs f( r(s )) ds
exists (and equals v(f)) for all f e OE. A ,u-summable function x(s)
will again be called uniformly distributed.

If we want to apply without substantial changes the method
used in part 1 it seems appropriate to consider not just single
functions x(s) but pairs {x(s), (sn)} where

1) x(s) is a measurable function on R’ with values in X;
2) (sn) is an increasing sequence in R’ such that the ratio

sn/n has a positive limit for n - oo;

Any pair {x(s), (sn)} satisfying these three conditions will be
called admissible. By 3), if the function x(s) is v-summable,
then so is the sequence ae(sn). We shall call an admissible pair
of this type (v-)-summable.

Let {x(s), (sn)} and {y(t), (tn)} be admissible pairs. Without
loss of generality we may assume si - t1 = 0. Let us consider the
graph consisting of countably many copies of R’ used as non-nega-
tive s- and t-axes and as abscissas and ordinates with endpoints
Sn and tn on the s- and t-axis respectively (cf. fig.1). If we omit the
open intervals ]s2n, s2n+1[ and ]t2n-1, t2n[ on the s- and t-axis

respectively (n &#x3E; 1), then the remaining graph may be traced
as shown in fig. 1, starting in (0, 0) and using length u of the
path 8 as parameter. Let un be the values of this parameter corre-
sponding to consecutive corners of 8. If the point of 8 corre-
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Figure 1

sponding to the parameter value u has abscissa 8 and ordinate t
we define z(u) = x(s)y(t). Thus,

It is easy to verify that {z(u), (un)} is again an admissible pair.
We write {z(u), (un)} = fx(s), (sn)} {y(t), (tn)}. Furthermore, we
denote by {x(s), (sn)}  {y(t), (tn)} the admissible pair {z(u), (un)}
obtained in the.following way: we omit the part of 8 lying above
the "diagonal" jôining the points (sn, tn) (n &#x3E; 1) (dotted line in
fig. 1). The remaining pieces may be joined in the points (s2n, t2n)
so as to form a single path 3. Let us denote length of this path
by u and let ün be the values of the parameter u corresponding to
the corners of j. The element z(u) is defined on 3 exactly as z(u)
has been defined on 8. If x(s) and y(t) are continuous functions
of the parameters s and t respectively, then z(u) and 2(u) are
continuous functions of the parameter u.
The proofs of the theorems given below follow the same lines

as the proofs of theorems 1 and 2.

THEOREM l’ : Il {x(s), (sn)} and {y(t), (tn)} are vl- and v2-summable
pairs respectively, then {z(u), (un)} = {x(s), (sn)} X {y(t), (tn)} is
VlV2-summable.

THEOREM 2’: Let {x(s), (sn)} be an admissible pair. The following
statements are equivalent:
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a’) The pair {x(s), (sn)} is uniformly distributed.
b’) The pair {x(s), (sn)} X {y(t), (tn)} is summable for every

admissible pair {y(t), (tn)}.
c’) The pair {x(s), (sn)} x {y(t), (tn)} is uniformly distributed

for every admissible pair {y(t), (tn)}.
d’) The pair {x(s), (sn)}  {x-1(s), (sn)} is uniformly distributed.
e’) The pair {x(s), (sn)}  {x-1(s), (sn)} is uniformly distributed.
So far nothing has been said about the existence of admissible

pairs. Let (xn ) (n &#x3E; 0) be a summable sequence in X and let [s]
dénote the largest integer in s. Then obviously {x[s], (n)} is a
summable pair (this fact has been used in the proof of b’) ~ ai».
We close by exhibiting a class of continuous summable functions
x(s) on R’ with values in X for which admissible pairs may be
constructed. The size of this class depends on the size of the class of
continuous functions on R into X. Let g(s) be a continuous real-
valued almost periodic function on R in the sense of Bohr. Let
h(t) be a continuous function on R with values in X. Then x(s)
= h o g(s ) is a continuous function on R into X. For every f e OE,
the function f(x(s)) is continuous and almost periodic and there-
fore has a mean value M( f ) = limS~~ 1/S fo f(x(s))ds. As a
consequence, x(s) is summable with respect to a measure v on X.
If g(s) ~ 03A3~m=1 y. exp(203C0i03BBms) is the Fourier expansion of g(s),
let ce be any real number that is rationally independent of the set
of Fourier exponents Âm (m ~ 1) and let 9t be the full module of
almost periodic functions on R generated by g(s). The sequence
(n/ot) is dense and therefore uniformly distributed in the almost
periodic compactification of R induced by 91. Also, we have

f(x(s)) = (f  h)  g(s) ~ U for every f e . Combining these facts,
we get

1.’(f) = lim 1 S S0 f(x(s)) ds = M(f  h  g) = lim 1 N  f(x(n 03B1))
for all f ~ . Therefore {x(s), (n/03B1)} is a v-summable admissible

pair.
REFERENCES

CASSELS, J. W. S.,
[1 ] A new inequality with application to the theory of Diophantine approximation.

Math. Ann. 126, 108-118 (1953).
HELMBERG, G.,
[2] A theorem on equidistribution in compact groups. Pacific J. Math. 8, 227-241

(1958).
[3] Eine Familie von Gleichverteilungskriterien in kompakten Gruppen. Monatsh.

Math. 66, 417-423 (1962).



203

HLAWKA, E.,
[4] Zur formalen Theorie der Gleichverteilung in kompakten Gruppen. Rend.

Circ. Mat. Palermo II 4, 33-47 (1955).
VOLKMANN, B.,
[5] On uniform distribution and the density of sum sets. Proc. Amer. Math. Soc.

8, 130-136 (1957).
WENDEL, J. G.,
[6] Haar measure and the semigroup of measures on a compact group. Proc.

Amer. Math. Soc. 5, 923-929 (1954).

(Oblatum 29-5-63)


