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The theory of asymptotic distribution modulo one*
by 

J. F. Koksma

§ 1.

The theory of asymptotic distribution (mod 1), having its
roots in Kronecker’s investigations on the behaviour of the
fractional parts of linear forms with integer variables, more or
less directly originates from work by B o h 1 on secular perturbations,
Sierpinski on irrational numbers, Borel and F. Bernstein
on probability and Hardy-Littlewood on diophantine approx-
imations and Fourier series. Their ideas focussed in W e y l’ s
papers’ of 1914 and 1916, where by à simple définition, he coined
the general notion of unitorm distribution (mod 1 ) (equipartition or
equidistribution modulo 1) of a séquence of real numbers and, as
the first gave a necessary and sufficient criterion.
One can ’t say that before Weyl in this field there was a lack

of ideas which would justify here Go e t h e’ s word: "Denn eben wo
Begriffe fehlen, da stellt ein Wort zur rechten Zeit sich ein", but
nevertheless, it was the introduction of the general notion of
uniform distribution (mod 1), be it together with the practicable
criterion, which opened the door to a would of new problems.
Thus it cannot wonder that after the appearance of W e y l’ s
paper in Mathematische Annalen 77 (1916), his work got an
essential impact on the f ields where it originated from [1]. If
nowadays some one would try to compile a complete bibliography
on our subject he would have to check each issue of say the
Mathematical Reviews, green covered as well as red covered, as
also is shown by the lists of participants and lectures in our
symposium and as e.g. one glance in the récent survey by Cigler
and Heimberg will make clear [2].

* In 1962 a Nuffic International Summer Session in Science dedicated to "Asymp-
totic distribution modulo one" was organized at Nijenrode Castle in the Netherlands.
The papers presented there will be published collectively in this volume and are all
marked "Nijenrode lecture". The above paper aims to give a général introduction to
the contemplated field. The papers of this series are quoted hère simply by name
of author and number of page in this volume.
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§ 2.

But this is not all which can be said of W e y l’ s Annalenpaper
of 1916: It is remarkable that several germs (if not to say: most
germs) of future developments already can be traced there. For,
like in many of his publications, with a minimum of calculation
Weyl with mastership, indicates several ways to which his ideas
give access, obviously without having the need of carrying out
further developments himself.

Let me give some examples.
a. Firstly, the definition. Take a sequence (un):

of real numbers and their fractional parts (residues mod 1)

which ah are situated in the unit interval

and take a fixed interval

(4) j: 03B1 ~ u  03B2; J C E.

Let N’ = N(.f ) denote the number of those among the first N
numbers (2) which fall into z. Then i f and only i f f or each f ixed
JcE:

the sequence ( 1 ) will be called uniformly distributed (mod 1 ) (equi-
distributed mod 1; gleichverteilt mod 1; équirépartie mod 1.)
For N" we may write

where 0(u) denotes the characteristic function off continued
periodically along the real axis with period 1. If we put

(5) asserts that the "remainder"

Now already from the beginning W e y 1 shows that if a sequence
(1) suffices (5), the formula (5) will hold uniformly with respect
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to the choice off in E. Here obviously we have an introduction
de facto of the later so called discrepancy of a sequence (1 ), i.e.

the number D(N) defined by

and the proof that for any sequence (1) which is equidistributed
(mod 1 ) automatically holds

It is clear that one has to choose which number one will call

discrepancy: one might have given that name also to ND(N)
in stead of D(N) and some authors do [3].
The close relation between the discrepancy of a sequence (1)

and the way in which the numbers (2) are distributed over E
may be illustrated by the following simple formula [4] in which the
N numbers {ul}, ..., {uN}are supposed to be arranged in order
of non-decreasing magnitude:

the left hand member is s (ND(N »2 according to (9). We shall
return to D(N) later and remark that Hlawka’s first lecture
(p. 83) is dedicated to this notion, whereas it also plays an essen-
tial rôle in his second one on numerical methods (p. 92) and in
Erdôs’s paper (p. 52).

b ) Secondly, the criterion. It is obvious that reduction modulo 1
of real numbers maps the real axis into the circonference of a
circle with radius 1/2n and replaces the numbers u" of (1) by the
vectors

It is to be expected that the more regularly the numbers un are
distributed modulo 1 the smaller the absolute value of the sum

will get for increasing values of Nez oo. (fig. 1 ).
w e y l’ s introduction of e211iu by the words: the proper invariant

o f the number classes modulo one implicitly points at notions of
greater generality and at abstract analoga, say groups and oper-
ators. Several such generalizations have been given later (e.g.
Bundgaard, Eckmann) [5]. We return to this topic later. The
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Figure 1

papers of Hartman (p. 66), Helmberg (p. 72, 196), Kem-
p e r m a n (p. 188 ) will deal with their investigations of this kind.
As to the criterion itself, i.e. the statement that the relation

f or each f ixed integer h =1= 0 is sufficient and necessary f or the

uniform distribution (mord 1) o f the sequence ( 1 ), it can be said
that it caused a real "hausse" in the theory of exponential and
trigonometrical sums as shows the older work of H a r d y - L i t t 1 e-
wood, van der Corput, Vinogradoff, Chowla, Walfisz
a.o. [6], a topic which is most vital still today and certainly will
turn up in several of our symposium lectures.

c ) Thirdly, the actual proof of the criterion (14) in the one part
("sufficient" ) gives a link with the theory of Fourier series and in
the other part ("necessary" ) deals with integrals by means of the
relation

which is derived there for each fixed periodic function f (x) e R
with period 1. Both aspects give way to various investigations.

d) Fourthly, Weyl’s first example of a uniformly distributed
sequence (1) (mod 1), viz (an) for each fixed irrational ce, with its
more dimensional generalizations refines the statements of
Kronecker’s theorem [7] and will play an important rôle in the
analytic theory of numbers (e.g. concerning the R i e m a n n Zeta
function ) and in B o h r’ s concept of almost periodic functions.
But W e y 1 moreover derives his inequality, which enables us to
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jump from (0153n) to (0153nl) etc. and is a germ for a lot of later work
centering around what van der Corput called the fondamental
inequaliiy which in its simplest form states that f or a given real
function f(n) of the integer n in a S n  b (a and b integers with
b-a = N &#x3E; 1) and for each integer p (2 S p ~ N,), one has

and from which easily follows that the sequence f (1 ), f (2 ), ... will
be uniformly distributed (mod 1), if the sequence of differences

for each fixed integer h # 0 is uniformly distributed (mod 1 ), a
fact which later by Vinogradoff, van der Corput-Pisot,
Cassels also was proved and refined with elementary methods
(i.e. without use of the transcendental function e203C0iu) and which
recently inspired Hlawka to his investigations of "hereditary
properties". C i g 1 e r’ s first paper (p. 29) will be dedicated to
this inequality which plays a rôle in several of our papers, a.o.
in those of Bertrandias (p. 28) and Kemperman (p. 188).

e ) Fifthly, W e y l’ s application to mean motion suggests im-
portant opportunities of the theory of uniform distribution for
the theory of dynamic systems and other physical domains,
especially in its links with probability theory. Here may be
pointed at S 1 a t e r’s paper (p. 176).
But his application to mean motion also is important from the

standpoint of pure mathematics, as Weyl introduces here the
notion of uniform distribution of f unctions f (t ) of a real continuous
variable which is interesting in itself and exactly in our days gives
way to various new investigations [8]. Namely 1 think of L.
Kuipers’ work.

f ) W e y l’ s theorem that the sequence (Ân0153) for each sequence
of integers

is uniformly distributed (mod 1) f or almost all oc, derived from
his criterion (14) by means of the formula

generalizes B o r e l’ s notion of normal numbers and puts it in the
right light: the number N’ of those among the first N residues
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{ex2n} which are C 2 is precisely the number N’ of the zero’s
among the first N digits in the dyadic expansion of a and thus we
get a very special case of an equidistribution problem (mod 1)
when we ask for normal numbers a, i.e. such numbers in the

dyadic expansion of which the number of zero’s asymptotically
equals the number of ones. W e y l’ s treatment of this problem
opens the way for numerous metrical investigations. His method
(which already formerly lead him to the proof of the Riess-
Fischer theorem and here to the deduction of (14) from ( 19 ) )
would later, refined by Menchoff, Plancherel, Rademacher,
Erdôs, a.o. [9] become the source of many results in the large
domain where measure theory, probability theory and ergodic
theory meet with number theory, culminating in a steadily in-
creasing variety of cases where the law of the iterated logarithm
can be proved to hold [10]. Our speakers de Vroedt (p. 191),
Erdôs (p. 52), Kemperman (p. 106), Cigler (p. 35), Philipp
(p. 161) and Volkmann (p. 186) will touch these subjects.
I do not know, whether in 1916 Weyl expected such a spectacular
development, exactly in this domain and whether he later would
have stuck still to his words, when speaking of "almost-all"-
theorems : "Ich glaube dass man den Wert solcher Sätze nicht
eben hoch einschätzen darf" [11].

, § 3.

After this tribute to Weyl, let us turn to the definition of
uniform distribution as such. The first question which presents
itself, is to apply that notion to a given sequence (1). Now it is
obvious that if (1) increases slowly, like e.g. the sequences

the problem will be easier to deal with than if (1) increases more
rapidly like the sequences

in the first case one can follow the fractional parts so to speak
on their paths, but in the latter those small fractional parts
mostly are to well hidden behind the large integer parts [12].
Now the theorem (16) and its application based on the behaviour
of (17) enables us to move upward, but unfortunately the practical
possibilities remain quite restricted, viz mainly to functions f(n)
which roughly spoken increase like polynomials
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etc. Nevertheless, as van der Corput already proved in the
twentieths in his hitherto unpublished part III [ 13] of "Diophan-
tische Ungleichungen", one can construct entire transcendental
functions

with positive coefficients ah, such that the sequence

is uniformly distributed (mod 1), whereas

But in fact mostly no one knows whether for a given irrational
constant 8, like e, x, e03C0, ..., the sequence 

fulfills the criterion (14) or not.
On the other hand the theorem that (14) holds for almost

all 6 &#x3E; 1 gives a clue and the investigations of Pisot, Salem,
Vijajaraghavan and others brought several results on (26).
See the joint paper by Pisot-Salem (p. 164). Even for rational
6 = a/b &#x3E; 1 there are various interesting problems here, as e.g.
Mahler’s work shows [14].

§ 4.

It is obvious that one cannot expect every sequence (1) to
fulfil the criterion (14), even if the numbers (2) lay dense in E.
Nor even may exist a distribution function 99(y):

i.e. a function such that for each fixed interval f = (0, y) C E

where N’ = N’(J) is defined like before (§ 2a with a = 0). But
in any case we can consider the limits

ç and 0 being functions of the kind (27) with
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which are called the lower resp. the upper distribution function

(mod 1) of the sequence (1). If q ~ 03A6 we simply call 99 the
distribution function, a case thoroughly investigated by S c h o e n-
berg[15], who a.o. also proved an analogue of Weyl’s criterion:
the sequence (1) then and only then has the distribution function
(mod 1) ~(03B3), if 

-

f or each lixed integer h =1= 0.
Interesting examples of sequences (1) for whieh ~  0 are

furnished by slowly increasing functions like loglog x and log x
(cf. [12]). Instances of sequences (1) having a continuous distribu-
tion function ~(03B3), but not equidistributed (mod 1), are found
if one develops certain irrationals 0 as a regular continued fraction
8 = (bo, bl, ...) and considers the sequence of corresponding
irrational residues 0.:

This topic will be treated by C. de Vroedt (p. 191). In view
of the variety of problems which one meets in cases like these
where (2 ) is by no means equidistributed, for our symposium the
name "asymptotic distribution mod 1", was preferred over the
name "uniform distribution mod 1."

§ 5.

If one does not succeed in proving final results like (5) or (28),
one should try to find surrogates; if one does succeed, one should
not consider (5) or (28) to be really final, but attempt to replace
those qualitative formulae by stronger, quantitative, ones.

It therefore may not wonder that there are in existence several
variants of the main notion of asymptotic distribution (mod 1 ),
simplifications, complications, as well as sophistications. Without
trying to give an exhaustive survey, 1 may list some examples.

a ) A first one is to restrict oneself to the simpler question whether
for a given sequence (1) the numbers (2) lay everywhere dense
in E or not, thus weakening the notion asymptotic distribution
but still maintaining the words modulo 1. Exactly this problem
covers the original question of diophantine approximation:
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whether a given set of inequalities (mod 1) has infinitely many
solutions in integers or only a finite number. In the work of van
der Corput and his school around 1930 the investigation of
this problem was the main purpose and Weyl’s theorem was
only a welcome tool which gave more than was àsked for [16].
Its applicability is clear: if one knows that for a certain sequence
(1) holds (10), then for each integer N and each pair of real
numbers aN and 03B2N with

the inequality

has at least one integer solution n in 1 S n s N, if

which follows immediately from

where N’ is the number of Un (1 ~ n ~ N) sufficing (34).
Now consider the interesting case

Then one may try to prove

in view of (5). A general theorem of van der Corput which he
proved already at the end of the twentieths, gives all one may
want here, even in the more dimensional case where one considers
s = s(N) inequalities

for s = s(N) given sequences fj,(n)l instead of one sequence {un}.
The theorem even permits that s turns to infinity with increasing
N.

1 already said that the method gives more than is asked for,
viz (38), that is to say in those cases where it can be applied at all.
On the other hand it fails in many cases, where nevertheless the

problem itself has a clear sense, as e.g. is shown by van der
C o r p u t’ s theory of rhythmic functions [ 17]. This restricted appli-
cability of uniform distribution (mod 1) is due a.o. to the fact that
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that notion is neither invariant against addition of the considered
sequences, nor against other simple operations, e.g. differentiation
of the fonctions f(x) which furnish sequences {f(n)} by putting
n = 1,2,....

Also other more direct methods are preferable over Weyl’s
method and its modifications, if one restricts the problem in the
mentioned way. Namely such is the case for the metrical problems
which arise when one tries to generalize K h i n t c h i n e’ s theorem,
that for almost all real numbers 0 the inequality

has an infinity o f integer solutions n, i f 1 ~(n) diverges and only
a finite number o f such solutions, i f y 99(n) converges.

Several authors [18] proved that one can replace in (40) the
function On by other functions f(03B8, n). It is remarkable that in
contradistinction to "individual" cases most "metrical" problems
are easier to deal with when f(03B8, n) for fixed 0 grows rapidly
with n (lacunary case). De Vries considered with success several
non-lacunary cases e.g.

where P(n) is a polynomium in n. He moreover dealt with the
refined case that the Lebesgue measure is replaced by the Haus-
dorff dimension [19].

b) A second simplification of totally other kind is to omit the
words modulo one by assuming from the beginning that the se-
quence (1) already lies in E, or, as the interval is irrelevant now,
in any other interval say (A, B) or even (-~, ~). Then the
investigations concern the general idea of distribution functions
and although bereft of one of their main charms, viz the arithm-
etical one, nevertheless may lead to important results, which
also in the "modulo 1 case" may find useful applications. 1 remind
you of van der Corput’s results in thisfield [20]; he a.o. proved
that any sequence (1) lying dense in E may be ordered in such a
way that any pair of distribution functions 99 and 0 with (80)
may act as lower and upper distribution function of the sequence
and similar theorems which once more illustrate that the asymp-
totical distribution of a sequence is not merely a matter of the set
(1) as such, but much more of the way in which it is ordered.
A very hard question which had been posed in 1935 by van der

Corput[20],wasansweredbyMrs van Aardenne-Ehrentfest
in 1945. Her answer was refined later by K. Roth [21]. The
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question is whether a "just", la democratic" distribution exists;
i.e. does a sequence

exist, such that for some constant c. &#x3E; 0

The answer is "No" and had been conjectured already in view
of the fact that the result nearest to (43) that ever had been
found is

(e.g. for the special sequences of the form un = {03B8n}, where 0
denotes an irrational number such that the partial quotients bi
in its development (32) as a regular continued fraction are bound-
ed.) R o t h’ s proof that (43) can hold for no sequence (42) whatso-
ever follows from his theorem that for any N-tuple of points
P. = (un , Vn) (n = 1, 2, ..., N) in the unit square

the relation

holds, where the absolute constant c2 does depend neither on N
nor on the considered points PA and where in analogy to (7)
R(x, y; N) (the remainder) in this two dimensional case is defined
by

N’ denoting the number of those among the points Pi, ..., PN
which satisfy the simultaneous inequalities

Comparing (45) and (11) one sees that there consists a striking
difference between the one dimensional case and the two dimen-
sional case. Now in order to study (42), for arbitrary N ~ 1,
Roth puts v. = n/N and remarks that for the N points (un, n/N)
(n = 1, 2, ..., N), the expression (46) differs at most 1 from the
expression R0,x([yN]) defined by (7) for the numbers ui, U2, ...,
U[,Nl from (42). Hence by (45)
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for at most one couple x, M with 0 ~ x ~ 1, 1 S M S N.
There remains a gap between (44) and (45a). But in any case

(45 ) in a certain sense is best possible as was shown by D a v e n -
port [22].

It is to be remarked that dealing with problems of the kind,
where u. e E (like in (42)) is assumed beforehand, one in Weyl’s
criterion might replace his sequence of functions

by any other, say orthonormal and complete sequence

In this respect it is to be reminded that various important generali-
zations of the notion of uniform distribution modulo 1 belong to
this category, if from the beginning the space or group concerned
as a whole plays the rôle of the unit interval: one might as well
omit the words modulo one then.

c ) Let us return to the real one dimensional case and consider a
third modification, which can act as a simplification as well as as a
complication. 1 mean the notion of asymptotic distribution

(mod 1) with respect to a given sequence of intervals in which
the numbers u" of (1) are defined

in stead of the natural séquence of intervals used originally:

This conception which from the start systematically was used
by van der Corput and his school [28] has some useful features:

a) a fixed sequence (1) automatically being defined -in all
intervàls (47) may have different distribution functions for differ-
ent sequences (47),

fi) one may consider more than 1 sequence (47) at the time,
e.g. replace (48) by

If one asks that {un} be uniformly distributed in all of the se-
quences (49) and moreover uniformly in m one gets P e t e r s e n’ s
définition of a well distributed sequence (mod 1), which will be
considered in Erdôs’s paper (p. 52).

y) One may define u" in a different way for each individual
interval (47). Taking e.g. (48) one may define a function fN(n) on
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(48), which depends on N. Then one defines ~(03B3) and 0(y) in
the usual way by (29) denoting by N’ = N’(N) the number of
values n for which 1 ~ n ~ N and

Thus e.g. one may study the asymptotic distribution functions
(mod 1) in the intervals (48) of the zero’s IN(l), fN(2), ..., fN(N)
of the N-th eigenfunction gN(x) of the orthonormal system {gN(x)}
belonging to a Sturm-Liouville differential equation with
boundary conditions for 0 ~ x S 1.

d) A fourth modification, a kind of weighted uniform distribu-
tion (mod 1) has been introduced by Tsuji [24]. By using the
weights

he replaces in the definition (5) the expression

Most known theorems can be carried over then also for this case.
This concept can be generalized still further by introducing
arbitrary summability matrices as has been done by Hlawka
and Cigler [25] and about which from the last named a paper
will appear in this volume (p. 44).

e) A fifth modification is that of complete distribution (mod 1)
due to Koroboff [26]: a sequence (f(n)) is called completely
uniformly distributed (mod 1), if and only if for each set of fixed
integers s ~ 1, al, ..., ae ~ 0, ..., 0 the sequence of numbers

is uniformly distributed (mod 1). Mark that fors = h-E-1, al = -1,
as = +1, au = 0 (2 ~ a  s-1) we have the special sequence
(17) considered by Weyl and van der Corput. 

f ) A sixth modification due to LeVeque is the notion of
distribution of a sequence (1) modulo a subdivision of the positive
real axis [27]. It will be mentioned in Erdôs’s paper (p. 52).
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g) In § 2e 1 already mentioned the problem of studying the
asymptotic distribution (mod. 1) of functions of a continuous
variable. Most modifications of the "discrete" theory, also can be
applied to the "continuous" case [28].

h) Considering (1), one may study as well the behaviour of the
numbers [un], instead of {un}. Such is done in Niven’s paper
(p. 158).

§ 6.

Let us now, returning to the sequence (1) and to the original
definition, consider the problem of replacing (8) by preciser results.
Then we ask for estimates of

like in § 5b or more general of

for a given (periodic) function f(t) belonging to some integrability
class. Now for each 1(t) of bounded roariation the formula

holds, if suitable interpreted; it learns

where T denotes the total variation of f(t) in (0, 1). Analogously
we have

if f is contïnuous with measure of continuity w(h) (i.e.
|f(t+h)-f(t)| ~ oi(jhi». Applying (56) for f = e203C0it one finds

which gives a lower bound of ND(N) by means of an exponential
sum of the Weyl-type.
To find an upper bound for ND(N), one can apply the under-

lying idea of Weyl’s proof of the criterion (14): Approximating
the characteristic function e(u) of J by trigonometric sums,
it is possible to express an upper bound for |R03B1,03B2(N)| in terms of
exponential sums of the type occurring in (14).
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This idea was worked out in the thirtieths by v a n d e r C o r p u t
and the author of this paper in a joint proof of a general, more
dimensional, theorem [29] : 0 was approximated by the partial
sums of the Fourier series of an auxiliar function 0* which was
constructed in such a way that e and e* were identic except
near the endpoints oc, P (mod 1) and that e* was derivable in-
finitely often. The theorem has been applied several times.
The idea also was worked out in a different way in 1949 by

Erdôs and Turán [30]. Instead of introducing an intermediary
function e* they used as trigonometric sums the Dunham Jack-
son means of the discontinuous function 0398(u) itself and proved
a beautiful one dimensional theorem, which is simpler and sharper
than ours. The method also proved to be useful to attain a
satisfactory more dimensional theorem [31 ]. In the one dimensional
case it runs as follows: For any sequence (1), any N &#x3E; 1, any
M &#x3E; 1 and any -* C E we have:

with

§ 7.

In the literature several estimates of expressions (53) or (54)
for special classes of sequences can be found, derived by various
methods.
Another problem is of methodical significance: to estimate

ND(N) by elèmentary methods, i.e. without using transcendental
functions like e203C0iu. Here Vinogradoff, van der Corput-Pisot
and Cassels deduced inequalities [32] which estimate the dis-
crepancy D of the N numbers Ul, U2, ..., uN directly by the
discrepancy F of the N2 numbers un-ume Cas sels proved [33]

A. Drewes applied elementary methods to various problems in
our field [34].

§ 8.

Many investigations concerning D (N ) are ofa metrical character.
1 mentioned already the uniform distribution (mod 1) of the
special sequence
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and its relation to Borel’s notion of normal numbers Borel’s
statement that for almost all 03B1:

which is included in Weyl’s theorem of § 2f and has been im-
proved successively [35] by Hausdorff to

by Hardy-Littlewood to

and by Khintchine firstly to

and later to his final estimate [36].

With these formulae we touch upon probability theory. From
the beginning Borel’s normal numbers played an essential rôle
in his concept of geometric probability and also Khintchine in
his proof of (65) used the probabilistic language instead of that
of measure theory. His further investigations lead Khintchine
to the law o f the iterated logarithm in probability theory, where it
deals with unlimited sequences of Bernoulli trials (each such
sequence representing an infinite dyadic fraction, if one denotes
success by 1 and failure by 0) with equal probability -1 for success
and failure. However, as further work by Khintchine and
Kolmogoroff made clear, the same law holds in much more
complicated cases concerning random variables, assumed that
certain conditions as to their independence are fulfilled; exactly
in its full generality it reveals the background of the formulae
(61)-(65),which now appear as mere special cases of the main
limit theorems of probability theory in their simplest form [37].
Now in view of such magic tools and with regard to the fact that the
original proofs of (61)-(65) (in a time where probability theory
not yet systematically had been placed on its axiomatic base
of measure theory) did ask considerable efforts, the somewhat
laming feeling might befall a number theorist that most problems
in the field seem to be settled beforehand, that in any case his
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methods are of rather little use here and thus that no work might
be left to him here. But that feeling would be false: Mostly it
appears by no means to be easy to prove in concrete cases that
the assumptions of probability theory are fulfilled and in fact the
kernel of such a problem remains a matter of arithmétical nature.
The more so, if indeed the assumptions are not completely
satisfied, but nevertheless the law may be proved to hold, as e.g.
in the case of exponential tums, which was mastered by Erdôs
and Gál who proved [88]

where 03BB1  03BB2  ... is an arbitrarily fixed lacunary sequence of
positive numbers.
The significance of results of this kind in the light of Weyl’s

criterion (14) and of the theorem (59) is clear.

§ 9.

A similar situation exists with respect to the ergodic theory
and the problem of approximating an integral

by sums

where ul, ua, ... is supposed to be equidistributed (mod 1) and
f(t) to be periodic with period 1.
We know that if t(t) e R, the relation (15) surely holds. But as

the numbers {un} in E only form a nullset, one cannot expect that
(15) also holds for each 1(t) e L. It however becomes a different
question, if Un = un(03B8) also depends on a parameter 8, which
e.g. on the real axis ranges from A to B and if one asks whether

(15) holds almost everywhere (a.e.) in the segment A S B S B.
Thus Raikoff proved that if t e L

if a ~ 2 is a fixed integer. But as M. Riess pointed out this result
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is an instance of the so called individual ergodic theorem [39].
The individual ergodic theorem and its number theoretical applica-
tions form the subject matter of one of Cigler’s papers (p. 35).
The same individual ergodic theorem is the source of two results of
Khintchine [40], resp. Ryll-Nardzewski [41]. Khintchine
proved for f e L

if oc is a fixed irrational. Ryll-Nardzewski proved

where for each real 0 the sequence On = 0.(0) is defined by (32).
Now it is remarkable that for other, rather simple, functions

un(03B8) instead of those appearing in (69), (70), (71) one did not
succeed till now in proving (15) for f(t) e L. Thus the case un(03B8) =
On which already long ago was investigated by Khintchine[42]
who even in the simplified case that f(x) is the characteristic

function of a measurable set S C E only could prove (15) under
some additional conditions as to the nature of S. Also one might
conjecture that (70) would remain true, if one would replace
(ocn) there by an arbitrary sequence (un) which is equidistributed
(mod 1) sufficiently regularly, i.e. for which the discrepancy D(N)
would turn to 0 very fast with increasing N. But also here one
meets with serious difficulties, which appear to be essential in
the light of some important counter examples, due to Erdös [43] :

1 ) Take {un} uniformly distributed (mod 1) with a discrepancy
as small as possible. Then there exists always a function f(t) e 7.
even bounded (and thus e Lp; p ~ 1) such that

2) There exists a sequence of integers Â1  03BB2  03BB3  ..., even

lacunary, together with a function f(x) E LP (p &#x3E; 1 arbitrary),
such that almost everywhere

Although in the light of these counter examples several generaliza-
tions of (69) and (70) certainly are impossible, they do not cover
the rather simple case
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T do not know a final result as to the question for which f(t) the
relation

is true [44], and also in the cases un(03B8) = OÂ., un(03B8) = un+03B8 there
remain several unsolved problems. Cf. also Erdôs’s paper [8].

I remark that in probabilistic language (69), (70) and (71)
are instances of the law o f large numbers. One might try to prove
stronger results by estimating the error

and casually hope for an estimate according to the law of the
iterated logarithm.

§ 10.

As I already mentioned, several papers will be dedicated to
the more abstract generalizations of asymptotic distribution
modulo one.
A first kind of generalization is to replace the reduction (mod 1)

by other operators T(x) operating on the real numbers or on the
complex numbers and which preferably form a measure pre-
serving group. One may use this concept to develop a theory of
great generality, but also one can pose concrete problems here:
Take the upper half plane H of the complex z-plane and its

division by a modular group with main domain Do. Reduce the
numbers of a given sequence zi, z2, ... E H by taking the represent-
atives {z1}, {z2} ... e Do and study their distribution there.
An other kind of generalization is to replace the real numbers

themselves by an abstract space or group in which a measure or
integral can be defined. Here also various concrete problems may
be posed like for the field of P-adic numbers a, where each
number can be developed in a Laurent-series

and where e.g. as reduction may be chosen: replacing of a by
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But of course all such concepts may be varied and generalized
in numerous ways. In my eyes preferably the arithmetical under-
ground of Weyl’s conception should be preserved.
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