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Boundary value problems in diffraction theory
and lifting surface theory

by

J. Boersma

§ 1. Introduction

The present paper deals with a number of boundary value
problems in diffraction theory and wing lifting surface theory
with special reference to circular disks and apertures and to slits.
The problems of the diffraction of an incident wave (scalar or

electromagnetic) by a circular disk, circular aperture, strip or
slit have received considerable attention during the last decades.
For a survey of the various methods of solution the reader is

referred to the review articles of Bouwkamp [8] and of Hônl,
Maue and Westpfahl [19]. In this paper we are especially in-
terested in low-frequency expansions for the field quantities, valid
when ka or kb is small, where k is the wave number, a is the radius
of the disk or aperture, 2b is the width of the strip or slit. These
expansions will be obtained from Fredholm integral equations
of the second kind, the kernels of these integral equations being
small when ka or kb is small.
The reduction of the scalar diffraction problem for a circular

disk or circular aperture to Fredholm integral equations has been
performed bye several authors. We mention Magnus [34], Jones
[23], Bazer and Brown [2], Bazer and Hochstadt [3], Heins and
MacCamy [17], Noble [41], Collins [9e, f] and Williams [51].

Bazer and Brown [2], Bazer and Hochstadt [3], Collins [9e, f]
start from certain integral representations for the transmitted or
scattered wave. These integral representations which contain an
unknown function, are designed to satisfy all conditions of the
problem but one. The latter condition leads to a Fredholm in-
tegral equation of the second kind for the unknown function. A
related integral equation with the same kernel was derived before
by Jones [23], using a very complicated method. The above-
mentioned integral representations may be considered as generali-
zations of similar representations exploited to solve some problems
in potential theory, compare Love [31], Green and Zerna [14],
Collins [9]. In an appendix to [3b] Bazer and Hochstadt show
their integral representations to be related to a representation for
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axially symmetric solutions of the wave equation due to Bate-
man [1].
The central feature in Heins and MacCamy’s [17] method of

solution is the fact that an axially symmetric solution of Helm-
holtz’ equation is determined uniquely by its values on the axis
of symmetry according to a representation due to Henrici [18].
Combining this representation with the Helmholtz representation
for the total wave, Fredholm integral equations are derived with
a Jones-type kernel. These integral equations are, however,
different from those stated by Bazer and Hochstadt [3]. Heins
[16] applied the same method of solution to the diffraction of a
normally incident plane wave by a soft circular disk.
The Fredholm integral equation derived by Magnus [34]

contains a kernel completely different from the kernel obtained
by Jones [23]. The back-ground of the difference between the
integral equations with kernels of Magnus-type and of Jones-
type has been discussed by Noble [41].

Williams [51] formulates the diffraction problems for a soft or
rigid circular disk in terms of Fredholm integral equations of
the first kind. By means of a general method, presented in [50],
these equations are reduced to Fredholm integral equations of the
second kind, the kernels of these integral equations being small
when ka is small. In the case of an axially symmetric incident
wave, these kernels will again be of Magnus-type or of Jones-type.
The Fredholm integral equations derived by Bazer and Hoch-

stadt [3] and by Heins and MacCamy [17] suffer from the dis-
advantage of containing a number of arbitrary constants which
must be solved afterwards from a system of linear equations.
On the contrary, the integral equations stated by Williams [51]
do not contain such arbitrary constants. In § 2 of this paper we
present a modification of Bazer and Hochstadt’s method leading
also to Fredholm integral equations, in which no arbitrary
constants occur. These integral equations are however completely
different from those derived by Williams. The modified method
has been elaborated for the case of plane-wave excitation.

Finally, we mention some other methods of solution, leading
to low-frequency expansions and presented by Bouwkamp [5],
Magnus [33], de Hoop [20]. Bouwkamp [5] treats the diffraction
of a plane normally incident wave by a circular aperture in a soft
screen. The problem is formulated in terms of an integro-dif-
ferential equation for the aperture field. This equation is ex-

panded in powers of k leading to a recursive system of integro-
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differential equations which may be solved. Magnus [33], de Hoop
[20] reduce the same diffraction problem to infinite systems of
linear equations by means of Levine and Schwinger’s variationa,l
principle. These infinite systems are investigated especially for
small values of ka.
The first rigorous solutions to the problem of the diffraction

of a plane electromagnetic wave by a conducting circular disk
were presented by Meixner [35], Meixner and Andrejewski [37],
the latter solution being the simplest. Meixner and Andrejewski
[37] derived the scattered wave from an electric Hertz vector.
The components of this Hertz vector were represented by series
containing products of spheroidal wave functions. Low-frequency
expansions for the solution of the present diffraction problem were
given by Bouwkamp [6] for the special case of normal incidence.
Bouwkamp derived a pair of Fredholm integral equations of the
first kind for the currents induced in the disk. These equations
were expanded in powers of k leading to a recursive system of
integral equations, which could be solved. Similar methods were
presented by Grinberg and Pimenov [15 ], Eggimann [11] for the
case of an arbitrary incident wave. Kuritsyn [27] applied Grinberg
and Pimenov’s method to the special case of plane-wave excitation.
A reduction of the electromagnetic diffraction problem to

Fredholm integral equations of the second kind was performed by
Lebedev and Skal’skaya [28], Lur’e [32], Benkard [4], Williams
[52].
Lebedev and Skal’skaya [28] consider the diffraction of a plane

normally incident electromagnetic wave by a circular disk. The
scattered wave is derived from a magnetic Hertz vector. The two
non-zero components of this Hertz vector are expressed as

Hankel transforms containing certain unknown functions. The
boundary conditions in the plane of the disk lead to dual integral
equations for these unknown functions. These equations are

solved by expressing the unknown functions in terms of new
unknown functions satisfying Fredholm integral equations of
the second kind. The kernels of these integral equations are of
Magnus-type and will be small when ka is small. Lur’e [32]
extended Lebedev and Skal’skaya’s method to the case of

arbitrary plane-wave excitation.
Benkard [4] also treats the diffraction of a plane electromagnetic

wave by a conducting disk. His method consists in decomposing
the vector wave equation in cylindrical coordinates into a sequence
of independent pairs of equations which are solved by means of the
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method presented by Heins and MacCamy [17]. Williams [52]
reduces the electromagnetic diffraction problem to well-known
scalar diffraction problems treated in [51].

In § 3 of this paper we present another method of reducing
electromagnetic diffraction problems for the circular disk to

Fredholm integral equations of the second kind. We only treat
the case of plane-wave excitation. Starting from the formulation
of the diffraction problem as presented by Meixner and Andrejewski
[37], we substitute Bazer and Hochstadt [3]-type integral represen-
tations for the components of the electric Hertz vector. The

boundary condition on the disk will lead to Fredholm integral
equations of the second kind for the unknown functions occurring
in the integral representations. When ka is small, these integral
equations may be solved by iteration yielding low-frequency
expansions in powers of ka for the solution. According to Meixner
and Andrejewski [37] the boundary conditions on the disk will
contain certain unknown coefficients which follow from the edge
condition. In our method of solution a direct application of the
edge condition to the Hertz vector leads to simple formulae for
thèse unknown coefficients. The present method has been worked
out in detail for the case of normal incidence. Expansions in powers
of ka were derived for the scattered field on the disk and in the
wave zone and for the scattering coefficient. The presented results
have been checked in the following independent manner. Starting
from the formulation of the problem as presented by Lebedev
and Skal’skaya [28], the components of the magnetic Hertz
vector are represented by suitable integrals of the Bazer and
Hochstadt [3]-type. The unknown functions involved in these
integral representations are derived to satisfy Fredholm integral
equations of the second kind. For small values of ka these integral
equations have been solved by iteration, leading ultimately to
low-frequency expansions for the scattered field on the disk and
in the wave zone and for the scattering coefficient.

Finally, we remark that a similar method may be presented for
the case of an arbitrary incident wave. The materials for this
method are the formulation of the diffraction problem as presented
by Meixner [36] and the integral representations due to Bazer and
Hochstadt [3].
The problems of the diffraction of a two-dimensional scalar wave

by a slit in a soft and in a rigid screen may be solved rigorously
in terms of Mathieu functions, compare Morse and Rubenstein
[39]. Low-frequency expansions to the solutions of these problems
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in the case of a plane normally incident wave were presented by
Sommerfeld [43], Bouwkamp [7], Müller and Westpfahl [40].
These authors formulate the diffraction problems in térms of an
integro-differential equation or of a Fredholm integral equation
of the first kind for the field in the slit or its normal derivative.
This equation is expanded in powers of kb, leading to a recursive
system of integral equations which may be solved. An extension
of this method to the case of an obliquely incident plane wave,
is due to Millar [38].

Another approach to the above-mentioned problems was made
by de Hoop [21]. Assuming plane-wave excitation, de Hoop
formulated variational principles for both types of two-dimen-
sional diffraction problems, similar to Levine and Schwinger’s
principles as corrected by Bouwkamp [7]. By means of these
principles both diffraction problems were reduced to infinite

systems of linear equations. Expansions in powers of kb and
log kb were derived for the solutions of these systems.

Jones and Noble [24] consider the scattering of a plane wave
by a soft strip. A rigorous result in terms of Mathieu functions is
derived for the scattering coefficient. Expanding this result for
small values of kb, the uncommon character of the expansion is
made clear.

In § 4 of this paper a new method is presented, which reduces
the diffraction problems for a slit in a soft and in a rigid screen
to Fredholm integral equations. For that purpose we state integral
representations. for the transmitted wave similar to the integrals
presented by Bazer and Brown [2], Bazer and Hochstadt [3].
These integral representations which contain an unknown func-
tion, are designed to satisfy all conditions of the problems but
one. The latter condition leads to a Fredholm integral equation
of the second kind for the unknown function, the kernel of this
equation being small when kb is small. In the latter case the

integral equation may be solved by iteration yielding an expansion
in powers of kb and log kb for the unknown function. The present
method has been elaborated for the case of plane-wave excitation.
Expansions were derived for the far fields, the transmission coef-
ficients and the fields in the slit.

It may be remarked that the problem of the diffraction of a
two-dimensional electromagnetic wave through a slit in a con-

ducting screen is equivalent to the scalar diffraction problems
treated above. Two cases must be distinguished according to the
electric vector of the incident wave being polarized parallel or
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perpendicular to the edge of the slit. In the case of parallel polariza-
tion the electric field has only one component which vanishes on
the screen. In the case of perpendicular polarization the magnetic
field has only one component, the normal derivative of this
component being zero on the screen. Hence, these two cases
correspond to the scalar diffraction problems for a slit in a soft
and in a rigid screen respectively.
The boundary value problems in lifting surface theory, treated

in this paper, deal with aerofoils of circular and elliptic planform
in incompressible and compressible flow. The problem of the
determination of the pressure distribution, forces and moments
on an aerofoil of circular planform in steady incompressible flow
has been solved by Kinner [25], van Spiegel [44]. Both authors
formulate the problem in terms of a velocity potential and an
acceleration potential, these potentials being solutions of Laplace’s
equation. According to linearized aerofoil theory the normal velocity
and the normal acceleration are prescribed on a circular disk, which
replaces the aerofoil. Introducing oblate spheroidal coordinates,
Laplace’s equation may be solved by separation of variables.
Kinner [25] defines two kinds of solutions of Laplace’s equation

viz. potential functions of the first kind and of the second kind.
The potential functions of the first kind are everywhere finite
and will vanish at the edge of the disk. The potential functions
of the second kind become infinite at this edge, while their normal
derivative is zero on the disk. The acceleration potential is now
represented by a combination of these potential functions in such
a way, that the following conditions are satisfied. First, the normal
velocity on the disk corresponding to the combination should
have the prescribed value. Secondly, the acceleration potential
should remain finite along the trailing edge of the disk according
to the Kutta condition. The equations following from these con-
ditions, are reduced to an infinite system of linear equations,
which has been solved by truncation to a finite system. However,
Kinner performed the reduction in an unsuitable way, this fact
being the real cause of the discrepancies between Kinner’s [25]
and van Spiegel’s [44] results. When the equations are reduced in
the same way as a similar pair of equations occurring in § 5 of
this paper, Kinner’s results for lift and moment are in complete
agreement with van Spiegel’s values.
Van Spiegel [44] states a representation for the acceleration

potential consisting of a regular term and a singular term. The
regular term vanishes at the edge of the disk and yields the
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prescribed normal acceleration on the disk. The singular accelera-
tion potential is expressed by an integral containing Green’s
function of the second kind for the boundary value problem and
an unknown weight-function. This integral is designed to be zero
along the trailing edge and to be infinite along the leading edge
of the disk, while its normal derivative vanishes on the disk. The
stated representation will satisfy all conditions of the problem
with the exception of the requirement of the prescribed normal
velocity on the disk. Expanding the weight-function in a Fourier
series, the latter condition leads to an infinite system of linear

equations for the Fourier coefficients. The infinite system, which
has a dominating diagonal term, has been solved by truncation
to a finite system. No investigation has been made concerning
the validity of this procedure and concerning the convergence of
the Fourier series for the weight-function.

In § 5 of this paper we present another method of solution to
the boundary value problem stated above. First, we determine
the regular part of the velocity potential. This regular part is

finite everywhere and its normal derivative on the disk agrees
with the prescribed normal velocity. A differentiation of this
regular velocity potential with respect to the coordinate in the
flow direction yields the corresponding part of the acceleration
potential, which will become infinite at the edge of the disk.
Secondly, we determine the singular part of the acceleration
potential. This singular part becomes infinite at the edge and its
normal derivative on the disk will vanish. The actual determination
of these potentials is performed using suitable integral representa-
tions of the Bazer and Hochstadt [3]-type. The correct acceleration
potential is now given by the sum of the derivative of the regular
velocity potential and the singular acceleration potential, provided
that the following conditions are satisfied. First, the acceleration
potential should remain finite along the trailing edge according
to the Kutta condition. Secondly, the normal velocity on the disk
corresponding to the singular acceleration potential should be zero.
The equations following from these conditions, have been reduced
to a pair of infinite systems of linear equations. It has been shown
that these infinite systems may be solved by a truncation to
finite systems of linear equations. A further investigation of these
infinite systems has revealed various properties for their solutions.
Using these properties, the hitherto formal reduction of the

boundary value problem to infinite linear systems may be per-
formed once more in a rigorous manner. The final results presented
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for lift, moment and induced drag are of a simpler form than the
corresponding formulae stated by van Spiegel [44]. Numerical
results have been derived for a number of prescribed downwash
distributions on the wing.

Recently, Levey and Wynter [29] treated the special case of a
plane circular disk at a finite angle of attack in steady incom-
pressible flow. Their method, which also leads to an infinite

system of linear equations, is related to Copson’s [10] method
for the problem of the electrified disk.

Schade [42], Krienes and Schade [26] extended Kinner’s theory
to the problem of the harmonically oscillating circular wing in in-
compressibleflow. Thesameproblemwastreatedbyvan Spiegel [44],
but only the case of low frequency was elaborated. Following the
same method as for the steady case, the Fourier coefficients of the
weight-function were expanded in powers of the reduced frequency,
taking into account only the terms of zeroth and of first order.
Both terms were derived to be solutions of infinite systems of linear
equations. Similar expansions were stated for lift and moment.

In § 6 of this paper we examine the more general problem of a
harmonically oscillating elliptic wing in compressible flow. The
shape of the elliptic planform is connected with the Mach number.
In the case of a Mach number zero, the present problem will
reduce to the problem of the oscillating circular wing in incom-
pressible flow. After a suitable transformation of coordinates the
transformed velocity potential and acceleration potential will

satisfy Helmholtz’ equation, while the normal derivatives of these
potentials are prescribed on a circular disk. Hence, the transformed
problem may be solved by a similar method as presented in § 5.
The final equations, following from the Kutta condition and the
requirement of the prescribed normal velocity on the disk, are
expanded in powers of the reduced frequency, taking into account
only the first two terms of these expansions. The resulting
equations are reduced to infinite systems of linear equations.
Similar expansions, containing two terms, are presented for lift,
moment and induced drag. The general formula which is given
for the induced drag acting on an aerofoil in unsteady compressible
flow, is believed to be new. Numerical results have been derived
for some simple modes of oscillation.

Finally, we remark that the solutions of the above-mentioned
boundary value problems in lifting surface theory are especially
of interest for checking the accuracy of approximation methods,
compare van Spiegel [44], Zwaan [53].
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§ 2. Diffraction of a scalar wave by a circular aperture

2.1. In their papers [2], [3] Bazer and Brown, Bazer and
Hochstadt treat the problem of the diffraction of a harmonie
scalar wave by a circular aperture in an infinite plane screen.
The screen coincides with the plane z = 0, the aperture is defined
by 0 ~ 03C1  a, 0 ~ ~  2n, z = 0, where 03C1, ~, z denote cylindrical
coordinates. The primary wave is given by u(03C1, ~, z), incident
from z  0. Two different problems can be distinguished according
to the screen being perfectly soft or perfectly rigid. The cor-
responding diffraction problems are referred to as the first and
second boundary value problem respectively. A time dependence
of the form e-i03C9t is assumed throughout.

According to Bouwkamp [8] the diffraction problems may be
formulated in the following way. In the case of the first boundary
value problem the total field is given by

where 03A61, to be defined for z &#x3E; 0 only, has the following prop-
erties :

(i) 03A61 is a solution of Helmholtz’ equation, 0394(03A61+k203A61 = 0,
when z &#x3E; 0;
(ii) 03A61 = 0 on the screen i.e. when z = 0, p &#x3E; a;

(iii) 03A61 satisfies Sommerfeld’s radiation condition at infinity;
(iv) ~03A61/~z = ~u/~z in the aperture i.e. when z = 0, 0  p  a;

(v) 03A61 is everywhere finite;
(vi) grad 03A61 is quadratically integrable over any domain of three-
dimensional space, including the edge of the aperture.

In the case of the second boundary value problem the total
field is given by

where 03A62, also defined for z &#x3E; 0 only, has similar properties to
f/J1 except that (ii) and (iv) should be replaced by
(iiy ~03A62/~z = 0 on the screen i.e. when z = 0, p &#x3E; a;

(iv)’ f/J2 = u in the aperture i.e. when 2=0, 0  p  a.

Bazer and Brown [2] assume the incident wave to be axially
symmetric, whereas Bazer and Hochstadt [3] assume an excitation
of the form,
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Hence, Bazer and Brown’s problem corresponds to Bazer and
Hochstadt’s case m = 0. Bazer and Hochstadt state the following
integral representations for the functions 03A61,2(03C1, ~, z),

valid for z ~ 0. The unknown functions f(m)1(t) and f(m)2(t) are
required to be odd and even functions of t respectively, to be
regular functions of t for Itl ~ 1+0394, d arbitrary small and

positive, and to satisfy the conditions,

The functions 03A6(m)1,2(03C1, z), as given by (2.4) satisfy all the con-
ditions of the problems with the exception of the aperture con-
ditions (iv) and (iv)’. From these conditions Bazer and Hoch-
stadt derive Fredholm integral equations of the second kind for
the functions /(’) (1). The kernel of these integral equations is small
when ka is small, in which case the equations may be solved by
iteration yielding expansions in powers of ka for the functions
f(m)1,2(t). However, the integral equations and hence also the solutions
contain m arbitrary constants. These constants have to be solved
from a system of m linear algebraic equations following from the
conditions (2.5). In practice the solution of the integral equations
is therefore only possible for small values of in. We remark that
in their later paper [3b] Bazer and Hochstadt avoid this diffi-
culty and determine the functions 1(’)(t) in another way without
solving a system of linear equations.

In the following we present a modification of Bazer and Hoch-
stadt’s method leading to Fredholm integral equations of the
second kind for the functions f(m)1,2(t)/(1-t2)m, in which no arbitrary
constants occur. However, the kernels of these integral equations
will be more complicated than the kernel of Bazer and Hoch-
stadt’s equations. In sections 2.2, 2.3 we treat the first and
second boundary value problem respectively, while in section
2.4 the modified method is elaborated for the case of plane-wave
excitation.

Finally, for reference we quote Bazer and Hochstadt’s formulae
describing the behaviour of 03A6(m)1,2(03C1, z) and its derivatives near
the edge of the aperture. In a point with coordinates p = a+03B4 cos y,
z = d sin y, ô &#x3E; 0, 0 ~ 03B3 ~ n, the following expressions hold for
small values of ô,
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2.2. According to Bazer and Hochstadt [3] the aperture con-
dition (iv) for the first boundary value problem leads to the
equation,

where we introduced the following abbreviations,

Opposite to Bazer and Hochstadt we continue the first integral
in the left-hand side of (2.8 ) over the complete interval [0, 1 ]. At
the same time we make the substitutions,

then we obtain the relation,
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where

The square root 03BE-~ in the right-hand side of (2.11) is defined
in the following way,

In accordance with this definition we use the notation f for the
integral, denoting that the path of integration has an infinitesimal
indentation passing above the point 8 = ~.

Let the right-hand side of (2.11) be called G(~), then the
equation (2.11) can be solved by means of the convolution

theorem for Laplace transforms. Owing to (2.5), (2.12) F(8 ) will
contain a factor e-, hence the first m derivatives with respect
to q of the integral in the left-hand side of (2.11) vanish for
q = 0. A formal application of the Laplace transformation to
(2.11) yields,

where

Inversion of {F} from (2.14) leads to the solution,

([13], form. 4.9(39), 4.14(30) were used). The present reduction
is only valid when the Laplace transforms {F} and {G} exist.
However, it can easily be shown by substituting (2.15) into (2.11),
that the solution (2.15) is certainly correct on the conditions
stated for 1(l)(t).

In (2.15) we substitute G(03BC) as given by (2.11). The first term
of the resulting expression may be reduced to
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where

The function M(03B1; e, ?î) is determined in the following way. First,
when e &#x3E; ~ we start from Lommel’s expansion (cf. [47], § 5.22),

valid for 0 ~ 03BC  e. Substituting this expansion into (2.17), a
term by term integration yields the result,

where we used [47], form. 12.11(1), 8.6(10). The result (2.18)
may be simplified by a differentiation with respect to oc. Using
[47], form. 3.2(6), 3.6(9) we obtain the derivative,

From (2.18) one can easily derive,

From (2.19), (2.20) we obtain the result,
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The case e  r¡ may be treated in a similar manner, leading to the
same result (2.21) enlarged with a term (-1)mi03C0(03B1/2)m+1 2.

Substituting (2.21) into (2.16), we are led to

where

The integral sign f denotes that the Cauchy principal value of
the corresponding integral is meant. It may be remarked that the
integral (2.23) can be determined explicitly. However, the ex-
pression (2.23) is more suitable for expansion in powers of 03B1.

Ultimately, the relation (2.15) leads to the following equation,

Now we make the substitutions

After some elementary calculations we obtain the following
singular integral equation for the function



219

valid for -1  t  1, where

The equation (2.27) is of a well-known type and is often called
the aerofoil equation. Its explicit solution may be quoted from
Tricomi [45] leading ultimately to the following Fredholm

integral equation of the second kind for the function g(m)1(t),

valid for -1 ~ t ~ 1, where

The arbitrary constant C, occurring in the solution of the aerofoil
equation, is equal to zero, because g(m)1(t) is an odd function of t.

It can easily be shown that the function Kim)(ex; 8, t) is a con-
tinuous function of s for -1 ~ s ~ 1 and an odd regular function
of t for all values of t. When a is small, K(m)1(03B1; s, t ) will be of
order ex2. Assuming that the function u(m)1(03C1) is an even function
of p, regular for |03C1| ~ a(1+0394), L1 &#x3E; 0, ’- ) (cf. Bazer and Hoch-
stadt [3]) it follows, that the function H(m)1(t) is an odd function
of t, regular for |t| ~ 1+0394. When a is sufficiently small, the
Fredholm integral equation (2.29) will have a unique continuous
solution g(m)1(t), which will be an odd function of t. Moreover,
because the integral occurring in (2.29) is an entire function of

1) In all practically important cases this assumption is fulfilled. Introducing
rectangular coordinates x = p cos ~, y = p sin 99 the assumption is equivalent to the
functions u(x, y, 0), 8u(r, y, 0)/~z (cf. (2.3)) being regular for x2+y2 ~ a2(1+0394)2,
compare Heins and MacCamy [17].
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t, the function g(m)1(t) will be regular for |t| ~ 1+0394. Hence the
corresponding function 1(’)(t) satisfies all the required conditions.

2.3. For the second boundary value problem, the aperture
condition (iv)’ leads to the equation,

where

Again we continue the first integral in (2.33) over the complete
interval [0, 1] and make the substitutions (2.10),

where

Denoting the right-hand side of (2.35) by G(~), the equation
(2.35) can be solved by means of the convolution theorem for
Laplace transforms, yielding

Substituting G(03BC) as given by (2.35) into (2.37), the reduction
may be performed in a similar manner as for the first boundary
value problem. Ultimately we arrive at the following singular
integral equation for the function
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The aerofoil equation (2.39) can be solved according to Tricomi
[45], leading to the following integral equation for g(m)2(t),

valid for -1  t  1, where

C is an arbitrary constant. According to (2.41) the function
g(m)2(t) will be defined for t = ±1, provided that the following
condition is satisfied,
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Substituting (2.45) into (2.41) we obtain a Fredholm integral
equation of the second kind for the function g(m)2(t), viz.

It can be shown that the function K(’) (oc; s, t)V1-s2 is a

continuous function of s for -1 ~ s ~ 1 and an even regular
function of t for all values of t. When 03B1 is small, K(m)2 (a; s, t) with
m &#x3E; 1 will be of order oc2, whereas K(0)2(03B1; s, t) is of order oc.

Assuming that the function u(m)2(03C1) is an even function of p,

regular for |03C1| ~ a(1+0394), 11 &#x3E; 0, (cf. Bazer and Hochstadt [3])
it follows, that the function H(m)2 (t) is an even function of t,

regular for |t| ~ 1-t-J. Hence, similar to the first boundary value
problem, when oc is sufficiently small, the integral equation (2.46)
will have a unique continuous solution g(m)2(t), this function being
even in t and regular for |t| ~ 1+0394.

2.4. The present method of solution has been elaborated for
the case of an obliquely incident plane wave described by the wave
function

(2.50) u(03C1, ~, z) = exp {ik(03C1 sin y cos 79 + z cos 03B3)}.
This wave function can be expanded in a Fourier series yielding
the following expression for the mth mode of the incident wave,

(2.51 ) u(m) (p, z) = im8mlm(kp sin 03B3) exp (ikz cos 03B3),
where 03B50 = 1, 03B5m = 2 when m ~ 1. Substituting the corresponding
values of u(m)1(03C1), u(m)2(03C1) into (2.30), (2.47), the integral equations
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(2.29), (2.46) can be solved by iteration, when ce is sufficiently
small. Expansions in powers of oc up to relative order as have
been calculated for the functions (m)1,2(t). However, these ex-

pansions being rather lengthy, we only state the following partial
results,

Kronecker’s symbol 03B4m,n is defined by 03B4m,n = 1 when m = n,
03B4m,n = 0 when m ~ n. The function f(0)2 (t) can better be determined
by means of the original method of Bazer and Hochstadt [3].
According to Bazer and Hochstadt [3] the following formulae

hold for the transmitted wave at a large distance from the aperture
and in the aperture:

valid for 0 ~ e Ç 03C0/2 and large values of R;
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valid for 0 ~ p  a. Substituting the expansions (2.52), (2.53)
into these formulae we obtain the following results,

where a= V1-(p/a)2. The results (2.59), (2.61) hold for
m = 0,1, 2, ..., while (2.60), (2.62) are valid for m = 1, 2, 3, ....
The transmission coefficients t(m)1,2 are given by (cf. Bazer and

Hochstadt [3]),

Starting from the complete expansions for f(m)1,2(t) up to relative
order 03B16, the following results were derived with respect to t(m)1,2,
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these expansions being valid for m = 0,1, 2, ... and m = 1, 2, 3, ...

respectively.
The preserited results constitute an extension of the solutions

given by Bazer and Hochstadt [3], Williams [51]. Williams
treats the complementary problem of the diffraction of a scalar
wave by a perfectly soft or a perfectly rigid circular disk. Fol-
lowing quite a different method Williams reduces both boundary
value problems to Fredholm integral equations for a pair of
unknown functions. These functions can be shown to be pro-
portional to our functions

§ 3. Diffraction of a plane electromagnetic wave
by a circular disk

3.1. In the present paragraph we treat the diffraction of a
plane electromagnetic wave by a perfectly conducting circular
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disk. Introducing rectangular coordinates r, y, z and cylindrical
coordinates p, g, z connected by x = p cos 99, y = p sin cp, the
circular disk will be determined by 0  p  a, 0 ~ ~  203C0,
Z = 0.

We start from the formulation of the diffraction problem as
given by Meixner and Andrejewski [37]. Let a monochromatic
plane-polarized electromagnetic wave, denoted by ( Ei, Hi)
impinge upon the disk. The vectors Ei, Hz will show a time
dependence e-i03C9t, this factor being omitted in what follows. The
wave number is given by k = 03C903B503BC, where - and p are the
dielectric constant and the magnetic permeability of the medium
surrounding the disk.
Both the incident wave (Ei, Hi ) and the scattered wave

(E8, H8) are derived from electric Hertz vectors II z and 03A0s

respectively viz.

where rationalized Giorgi units have been used. These Hertz
vectors may be chosen in such a way that their z-components
vanish. The Hertz vector for the total wave will be denoted by
II - 03A0i+03A0s.

According to Meixner and Andrejewski [37] the boundary
condition

on the disk, leads to the following conditions for the components
of 77,

where

The unknown coefficients U m will follow from the edge condition.
From (3.3), (3.4) the following Fourier series can be derived for
IIae,1I on the disk,
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Next we expand the Hertz vectors IIi and II8 in Fourier series
with respect to tp, 

where the vectors 03A0i,sm will have the components (Ilmx, 03A0i,smy, 0).
The functions 03A0smx(03C1, z), 03A0smy(03C1, z ) are now required to satisfy
the following conditions:
(i) 03A0smx, Ilmv are solutions of Helmholtz’ equation, viz.

(ii) ~03A0smx/~z = ~03A0smy/~z = 0 when = 0, p &#x3E; a ; this condition

follows from the functions llmx, 03A0smy being even in z;
(iii) II.., 03A0smy satisfy Sommerfeld’s radiation condition at infinity;

(v) Meixner and Andrejewski [37] present the following edge
condition for the Hertz vector H8: Near the edge of the disk the
components H’. and IIÿ remain finite. Further, in a point at
distance ô from the edge the expansion of 03A0sx cos q+1I§ sin ~ in
powers of ô does not contain a term with bi. Hence, 03A0smx, 03A0smy
remain also finite near the edge of the disk, while the sum

considered in a point at distance ô from the edge, has an ex-
pansion in powers of ô which does not contain a term with bi.

In analogy with Bazer and Hochstadt’s [3] second boundary
value problem, we introduce the integral representations,

valid for z ~ 0, where m is an integer. For z ~ 0 we define
F(1,2)m(03C1, z) = F(1,2)m(03C1, -z), Gm(03C1, z) = Gm(03C1, -z). The unknown
functions f(1,2)m(t), gm(t) are required to be even functions of t,
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to be regular for |t| ~ 1+0394, L1 &#x3E; 0 and to satisfy the conditions,

The functions F(1,2)m(03C1, z ), Gm(03C1, z) have to assume the following
boundary values,

valid for 0  p s a. Using the method described in § 2, section
2.3, the conditions (3.12) lead to Fredholm integral equations
of the second kind for the functions f(1,2)n(t)/(1-t2)m, gm(t)/(1-t2)m.
When « = ka is sufficiently small, these integral equations may
be solved by iteration yielding expansions in powers of oc for the
above-mentioned functions. We remark that gm(t)= (-1)mg-m(t)
as follows easily from (3.12).
From (3.12) and the condition (iv) it is obvious that 03A0smx,

03A0smy are represented by

It can easily be shown that the functions 03A0smx, llmy as given by
(3.13), (3.14) satisfy the conditions (i) to (iv) and the first part
of (v). Using formula (2.7), expansions in powers of 03B4 can be

derived for 03A0smx,y considered in a point with coordinates

p = a+03B4 cos 03B3, z = 03B4 sin 03B3, ô &#x3E; 0, 0 ~ 03B3 ~ 03C0 near the edge of
the disk. When these expansions are substituted into (3.8), the
term with ôi may be set equal to zero in agreement with the
condition (v), yielding the following explicit results for the

coefficients Um,

where D = dldt and the omitted argument of the various derivatives
must be taken equal to 1. Hence, the diffraction problem is es-
sentially solved.
According to Bazer and Hochstadt [3] the functions F(1,2)m(03C1,z)

and Gm(p, z) assume the following asymptotic values at large
distances from the disk,
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where

valid for 0 ~ 03B8 ~ 03C0 and large values of R. From (3.17) expansions
in powers of a can be derived for the functions A(1,2)m(03B8), Bm(03B8).

Using (3.7), (3.13), (3.14), (3.16) similar asymptotic values
can be stated for H§§ , 03A0sy valid at a large distance from the disk.
Now we introduce spherical coordinates r, 0, cp, defined by

Then the components of H8 in spherical coordinates considered in
a point (R, 03B8, ~) are represented by the following asymptotic
values,

where the argument 0 in A(1,2)m(03B8) and Bm(03B8) has been omitted.
From (3.1) the leading terms of the components of the scattered

field in the wave zone can be derived, viz.

Hence in the wave zone the scattered field behaves as an outgoing
transverse spherical wave. Low-frequency expansions in powers
of ce follow from the corresponding expansions for A(1,2)m(03B8), Bm(03B8).
The scattered energy E,c is found by integration of Poynting’s

vector over a sphere with radius R and taking the limit for
R ~ oo. Using (3.20), (3.21), (3.22) we obtained
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The scattering coefficient, T, is defined as the ratio of the scattered
energy and the incident energy with the disk’s area as basis.

By means of (3.23) a low-frequency expansion in powers of a
may be derived for T.

Finally we state the following formulae for the scattered field
on the disk. On the positive side of the disk the components of
Es, Hs in cylindrical coordinates are given by

where we used (3.1), (3.2), (3.7), (3.13), (3.14).
The current density I and the surface-charge density a induced

in the disk are related to the scattered field on the disk, viz.
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where Hs03C1 , Hs~, Esz are given by (3.24), (3.25), (3.27).
Low-frequency expansions in powers of 03B1 to the scattered field

on the disk can be derived from the following relations due to
Bazer and Hochstadt [3],

valid for 0  p C a.

Concerning the plane incident wave (Ei, Hi), Meixner and
Andrejewski [37] distinguish two cases according to the electric
vector Ei being polarized perpendicular or parallel to the plane of
incidence of the wave. For these two cases the foregoing results
may be simplified considerably.

3.2. In this section the presented method is worked out in
detail for the special case of a normally incident plane wave with
rectangular components,

The corresponding Hertz vector IIi will have the components,

Hence it follows from (3.’ï), (3.9), (3.12) that all functions f(1,2)m(t)
are equal to zero except the function f(1)0(t). According to (3.15)
the only coefficients Um, which do not vanish, are given by

So the only functions to be determined are tô1) (t), 90(t), g2(t).
By means of the method of Bazer and Brown [2] the following
Fredholm integral equations can be derived for the functions
tô1) (t), go(t),
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valid for -1 ~ t ~ 1. The integral equation (3.33) was solved
by Hurd [22] yielding an expansion in powers of oc for f(1)0(t) up
to and including terms of relative order 03B112. The integral equation
(3.34) is identical with Bazer and Hochstadt’s [3] equation for
their function f(0)2 (t) in the case of plane-wave excitation with
y = 03C0/2. These authors derived an expansion in powers of a for
the function f(0)2 (t) up to relative order ex5. We extended this ex-
pansion up to relative order 03B18. A Fredholm integral equation
for the function g2(t)/(1-t2)2 follows from (2.46) with m = 2
and u(2)2(03C1) = J2(k03C1)/03C12 to be substituted into (2.47). The same
integral equation holds for the function f(2)2(t)/(1-t2)2, occurring
in section 2.4, when y = n/2. An expansion in powers of a was
derived for the function f(2)2(t) up to relative order 0e6.

From the expansions for the functions f(1)0 (t), go(t), g2(t) up to
relative orders ag, 03B18 and 03B16 respectively, corresponding results
were found for the scattered field at a large distance from the
disk and on the disk and for the scattering coefficient. These
results were in complete agreement with the expansions stated
by Bouwkamp [6]. Later on we extended the previous results by
calculating one further term in the expansions of lô1) (t), go(t),
g2(t). Adding this term we obtained expansions for the scattered
wave in the wave zone and the scattering coefficient, containing
one extra term with respect to Bouwkamp’s results. However,
the latter expansions will not be presented here, because in section
3.3 still more extensive results will be derived.

3.3. In this section we present another solution to the diffraction
problem in the case of normal incidence. Following the formulation
of the problem as given by Lebedev and Skal’skaya [28] the
incident wave (Ei, Hi ) and the scattered wave (Es, Hs) are
derived from magnetic Hertz vectors *77* and *03A0s respectively, viz.

The Hertz vector *77* corresponding to the incident wave (3.30)
will have the rectangular components,
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According to Lebedev and Skal’skaya the components of the
Hertz vector *7P may be represented by

where the functions 0(p, z) and 1JI(p, z) are required to satisfy
the following conditions:
(i) 0(p, z) and 03A8(03C1, z) sin ~ are solutions of Helmholtz’ equation,
hence,

(ii) OE = 0, ~03A8/~z = 0 when z = 0, p &#x3E; a ; this condition follows

from the funetions 0 and W being odd and even in z respectively;
(iii) 0, W satisfy Sommerfeld’s radiation condition at infinity;
(iv) ~03A6/~z = C-E/(iro), P = Cp, when z = 0, 0 ~ 03C1  a; C
is an arbitrary constant which will follow from the edge condition;
(v) the edge condition prescribing the behaviour of the magnetic
Hertz vector *H8 in the neighbourhood of the edge of the disk
has the same form as the edge condition for the electric Hertz
vector; therefore, according to Meixner [36] the edge condition
can be formulated in the following way: Near the edge of the
disk the components *03A0sx, *Il:, *03A0sz remain finite. Further, in a
point with coordinates (p, rp, z), where p = a+03B4 cos y, z = à sin y,
03B4 &#x3E; 0, -03C0 ~ 03B3 ~ 03C0, the expressions

will have an expansion in powers of ô, in which no term with bi
occurs. Hence, for the funetions 0 and ll’ the edge condition will
read: 0 and 1J’ remain finite near the edge of the disk. In a point
with coordinates (p, ~, z) as stated above, the expansions of

in powers of ô do not contain a term with 03B41 2.
Similar to Bazer and Hochstadt [3] we introduce the following

integral representations for 0 and
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valid for z &#x3E; 0. For z ~ 0 we state 0(p, z) = -03A6(03C1, -z),
f(p, z) = 1J1(p, -z). The unknown functions f(t) and g(t) are
required to be odd and even functions of t respectively and to
be regular in t for |t| ~ I+J, L1 &#x3E; 0. Moreover g(t) must satisfy
the condition g(l) = 0.

It can easily be shown that the representations (3.39), (3.40)
satisfy the conditions (i) to (iii) and the first part of condition (v).
The conditions (iv) will lead to Fredholm integral equations for
the functions f(t) and g(t)/(I-t2). Using the method of Bazer
and Brown [2] the following integral equation will hold for the
function f(t),

The same integral equation holds for Bazer and Brown’s [2]
function 11(t) in the case of normal plane-wave incidence. These
authors derived an expansion in powers of oc for their function

11(t) up to relative order 03B110. A Fredholm integral equation for
the function g(t)f(1-t2) follows from (2.46) with m = 1 and
u(1)2(03C1) = 1 to be substituted into (2.47). Solving this integral
equation by iteration, we obtained the following expansion
for g(t),

(3.42)

Using formulae (2.6), (2.7), expansions in powers of ô may be
derived for f/J, 1JI and their derivatives in a point with coordinates
p = a+03B4 cos y, z = c5 sin 03B3, 03B4 &#x3E; 0, 0 ~ 03B3 ~ 03C0. When these

expansions are substituted into (3.38), the term with 03B41 2 must
be set equal to zero in agreement with the condition (v), leading
to the relation,
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where a prime denotes differentiation. Substituting the ex-

pansions for f(t) and g(t) into (3.43), we obtain the value of the
coefficient C, viz.

According to Bazer and Hochstadt [3] the funetions 0 and 03A8
as given by (3.39), (3.40) assume the following asymptotic values
at large distances from the disk,

where

valid for 0 ~ 0 ~ 03C0 and large values of R. Low-frequency ex-
pansions in powers of oc for the functions A(03B8), B(0) can be
derived from (3.46).
Using spherical coordinates in accordance with (3.18), the

components of *03A0s éonsidered in a point (R, 0, p) are represented
by the following asymptotic values,

From (3.35 ) the leading terms of the components of the scattered
field in the wave zone can be expressed in these asymptotic
values, yielding ultimately the following low-frequency expan-
sions,
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where s = sin 0. Compared with Bouwkamp’s [6] results the

expansions (3.51), (3.52) contain three new terms.
Finally we present the corresponding expansion for the scattering

coefficient T. According to (3.30) the energy incident on the disk
will be given by 1 203B5/03BC03C0a2E2. Hence, using (3.23) the following
formula holds for r,

Substituting the expansions (3.51 ), (3.52) we obtain the result,
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The first three terms of (3.54) are given by Bouwkamp [6], the
last two terms of (3.54) are believed to be new.

§ 4. Diffraction of a scalar wave by a slit

4.1. Let x, y, z be rectangular coordinates. An infinite screen
coinciding with the plane z = 0, contains a slit defined by
- oo  x  oo, - b  y  b, z = 0. The screen will be perfectly
soft or perfectly rigid. We are now concerned with the diffraction
of a scalar wave u(y, z), incident from z  0, through the slit.

Because the incident wave is independent of x, both the soft
screen and the rigid screen diffraction problems will be two-

dimensional. In the sequel these diffraction problems will be
referred to as the first and second boundary value problem
respectively. A time dependence of the form e-io" is assumed

throughout.
According to Bouwkamp [8] the diffraction problems may be

formulated in the following way. In the case of the first boundary
value problem, we have for the total field,

where 03A61, to be defined for z &#x3E; 0 only, has the following properties:
(i) 03A61 is a solution of Helmholtz’ equation, 039403A61+k203A61 = 0,
when z &#x3E; 0;
(ii) 01 = 0 on the screen i.e. when z = 0, Iyl &#x3E; b;
(iii) 03A61 satisfies Sommerfeld’s radiation condition at infinity;
(iv) ~03A61/~z = ~u/~z in the slit i.e. when z = 0, IYI  b;
(v) 01 is everywhere finite;
(vi) grad 03A61 is quadratically integrable over any domain of
three-dimensional space, including the edge of the slit.

In the case of the second boundary value problem, the total
field is given by
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where 03A62, also defined for z &#x3E; 0 only, has similar properties to
01 except that (ii) and (iv) should be replaced by
(ii)’ ôC/J2/ôz = 0 on the screen i.e. when z = 0, Iyl &#x3E; b;
(iv)’ tP2 = u in the slit i.e. when z = 0, ’y’  b.

We now present integral representations for the functions 03A61,
fP2 similar to those stated in the case of a circular opening by Bazer
and Brown [2], Bazer and Hochstadt [3]. For that purpose we
split the incident wave u(y, z) and the functions 03A61,2(y, z) in an
even and an odd part with respect to the variable y, viz.

where the superscripts e, o stand for even, odd respectively.
Then the functions 03A6e1,2(y, z), 03A601,2(y, z ) will be represented by
the following integrals,

valid for z ~ 0. The unknown functions fi’, 2(t)l ft 2(t) are required
to satisfy the following conditions:
(i) ff(t), 10(t) are odd functions of t ; 1’(t), 10(t) are even functions
of t; 
(ii) all functions are regular in t for |t| ~ 1+0394, 0394 arbitrary small
and positive;
(iii)

The square root y2+(z+ibt)2 is fixed by requiring that,

It can be shown that the functions 03A6e1,2, 03A6o1,2 as given by (4.5),
(4.6) are indeed even and odd functions of y respectively and that
they satisfy all the conditions (i) to (vi) listed above with the
exception of the conditions (iv) and (iv)’. In order to verify the
conditions (v) and (vi), the behaviour of the integrals (4.5),
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(4.6) near the edge of the slit may be investigated in a similar
manner as presented in appendix I of Bazer and Brown’s paper
[2a]. It can be proved that in a point with coordinates

y = b+03B4 cos 03B3, z = 03B4 sin 03B3 03B4 &#x3E; 0, 0 ~ 03B3 ~ 03C0, the following
expansions hold for small values of c5,

while similar results can be stated for the functions 03A6e2, CPt 2 and
their derivatives.

In the following sections, starting from the conditions (iv)
and (iv)’ Fredholm integral equations of the second kind will be
derived for the functions fe1,2(t), fo1,2(t). Successively we treat the
first and second boundary value problem for the case of an incident
wave even in y and odd in y.

Similar to Bazer and Hochstadt [3] we introduce the following
abbreviations,

It is assumed that the functions Ut2(Y) and uo1,2(y) are even
and odd functions of y respectively and that these functions are
regular in y for |y| ~ &#x26;(1+J), L1 &#x3E; 0.

4.2. For the first boundary value problem with an incident
wave even in y, the condition (iv) becomes,

Starting from (4.5), the derivative ~03A6e1/~z may be represented by

valid for z &#x3E; 0. Assuming 0 ~ y  b, we let z approach zero and
make use of (4.8) and [47], form. 3.7(8), 3.71(18). Then the
condition (4.11) leads to the following equation,



240

valid for 0 ~ y  b, where P = kb. The second integral in the left-
hand side of (4.13) is continued over the complete interval [0, 1].
At the same time we make the substitutions,

then we obtain the relation,

where

The square root 03BE-~ in the right-hand side of (4.15) is defined by

In accordance with this definition the notation is used, denoting
that the path of integration has an infinitesimal indentation
passing below the point 8 = q.

Let the right-hand side of (4.15) be called G(~), then the
equation (4.15) can be solved by means of the convolution
theorem for Laplace transforms. A formal application of the
Laplace transformation to (4.15) yields,

where {F} is defined by (2.14a). Inverting {F} from (4.18),
we obtain the solution of (4.15) viz.

([13], form. 4.14(25), 4.16(14) were used). The derivation of
(4.19) is only valid when the Laplace transforms {F}, {C}
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exist. However, by substituting (4.19) into the left-hand side of
(4.15), it can easily be shown that the solution (4.19) is correct
on the conditions assumed for the function f((t).

Substituting G(q) as given by (4.15) into (4.19) the resulting
expression will consist of two terms. The first term may be

reduced to

where

First we determine M(03B2; 03BE, ~) in the case e &#x3E; ~. We make use
of Lommel’s expansions (cf. [47], § 5.22),

valid for 0 ~ 03BC  e, and the integral,

which follows by an expansion of the Bessel functions Il, Ir in
power series. Another application of the expansions (4.22) will
then yield the result,

Differentiating this expression with respect to 03B2, using [47],
form. 3.71(5), (6), we obtain,
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From (4.23) it follows easily that

Hence we finally obtain the representation,

In a similar manner it can be shown that in the case e  ~,

M(fl; e, ~) is given by (4.26) enlarged with a term + 1. Substituting
the result for M(fl; 8, q) into (4.20), we obtain

where

The integral sign f denotes that the Cauchy principal value of
the corresponding integral is meant.

Ultimately, the solution (4.19) leads to the following equation,

In the equation (4.29) we make the substitutions

After some elementary calculations we obtain a singular integral
equation for the function 1’(t), viz.
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valid for -1  t  1, where

The integral sign S in (4.31 ) denotes that arg s in the correspond-
ing integral has to be chosen according to

(4.33 ) arg s = 0 when s &#x3E; 0, arg s = -n when s  0.

Further, we used [47], form. 3.71(18). The integral (4.32) may
be evaluated explicitly, however the expression (4.32) is more

suitable to expand in powers of fl.
The integral equation (4.31 ) is again the aerofoil equation.

Using the explicit solution of the latter equation as given by
Tricomi [45], we are led to the following Fredholm integral
equation of the second kind for the function fi(t),

valid for -1 ~ t ~ 1, where

Arg s in the right-hand side of (4.34) must be chosen as stated
in (4.33). The arbitrary constant C occurring in the solution of
the aerofoil equation vanishes, because fi(t) is odd in t.

For practical calculations the function K¡(f3; s, t) is replaced by

owing to the function fl(s) being odd in s. It can easily be shown
that the function sK1(03B2; s, t) is a continuous function of s for

-1 ~ s ~ 1 and an odd regular function of t for all values of t.
When f3 is small, Kl(f3; s, t) will be of order P2 log 03B2. Similarly,
the function ui(y) being an even regular function of y for

Iyl  b(1+0394), it follows that the function Hi(t) is an odd function
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oi t, reguiar loir |t| ~  Finally, wnen p is sufficiently Smal!,
the integral equation (4.34) will have a unique continuous

solution 1’(t), this solution being odd in t. Substituting this

function into the integral in the right-hand side of (4.34), this
integral will be an entire function of t. Hence, the solution fe1(t)
will be regular in t for |t| ~ 1+0394 and all conditions, assumed
about the function fe1(t), are satisfied.

4.3. Next we treat the second boundary value problem. In the
case of an incident wave even in y, the condition (iv)’ becomes

Assuming 0  y  b, we let z approach zero in the integral
representation (4.5) for 03A6e2. Using (4.8) and [47], form. 3.7(8),
3.71(18), the condition (4.39) leads to the equation,

valid for 0 ~ y  b. The second integral in the left-hand side of
(4.40) is again continued over the complete interval [0, 1]. At
the same time we make the substitutions (4.14), then we obtain
the relation,

(4.41 )

where

and the square root VE-rj in the right-hand side of (4.41) is
defined as stated in (4.17).

Denoting the right-hand side of (4.41) by G(~), it is obvious
that the integral equation (4.41) only has a solution if G(0) = 0,
viz.
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We substitute e = s2 and use [47], form. 3.71(18), then (4.43)
reduces to

where arg s must be chosen in accordance with (4.33).
By means of the convolution theorem for Laplace transforms

we derived the following solution to (4.41),

valid provided that the condition (4.44) is satisfied. Substituting
G(03BC) as given by (4.41) into (4.45), the first term of G(03BC) will
yield a contribution,

where

The function M(03B2; 03BE, ~) is closely related to M(03B2; 03BE, ~) as given
by (4.21 ).
The further reduction of the solution (4.45) runs along the same

lines as described in section 4.2 for the first boundary value
problem. Ultimately, we obtain the following singular integral
equation for the function fe2(t),
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valid for 20131  t  1, where

and arg s is chosen according to (4.33). The aerofoil equation
(4.48) may be solved, using Tricomi [45] and we are led to the
following Fredholm integral equation of the second kind for the
function f2(t),

valid for -1 ~ t ~ 1, where

C is an arbitrary constant which is to be determined by means
of (4.44).
For practical calculations the function K2(03B2; s, t) is replaced by

(4.54) K2(f3; s, t) = 1 2{K2(03B2; Isl, t)-K2(03B2; |s|e-03C0i, t)} sign s,

owing to the function f2(s) being even in s. It can easily be shown
that the function SK2(f3; s, t) is a continuous function of s for

-1 ~ s ~ 1 and an even regular function of t for all values of t.
When P is small, K2(03B2; s, t) will be of order fJ2. From the function
u’(y) being an even regular function of y for |y| ~ b(1+0394), it
follows easily that the function Hz(t) is an even function of t,
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regular for |t| ~ 1+J. When P is sufficiently small, the integral
equation (4.50) will have a unique continuous solution f2(t),
this solution being even in t. Substituting this function in the
right-hand side of (4.50), it is obvious that fg(t) is regular in t
for |t| ~ 1+0394. Finally, when P is sufficiently small, the con-
dition (4.44) determines the constant C uniquely, as can easily
be shown.

4.4. For the first boundary value problem with an incident wave
odd in y, the condition (iv) reads,

(4.55) ~03A6o1/~z = ui(y), when z = 0, |y|  b.

Starting from the integral representation (4.6) for 03A6o1, the con-
dition (4.55) may be reduced to an equation similar to the

equation (4.13), viz.

valid for 0  y  b. Integration of (4.56) with respect to y
yields an equation which is of exactly the same form as (4.13).
Hence, the method of section 4.2 can be applied leading ul-

timately to the following Fredholm integral equation of the
second kind for the function fl(t),

valid for -1 ~ t ~ 1, where

K1(03B2; s, t), Go(fl, t) are given by (4.36), (4.37). C is an arbitrary
constant, which is to be determined by means of the condition (4.7).
The equation (4.56) can also be reduced in a direct manner

similar to the procedures followed in sections 4.2, 4.3. Omitting
the details of the derivation, we only state the resulting Fredholm
integral equation of the second kind for the function fo1(t),
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valid for -1 ~ t ~ 1, where H(t), 1 K2(fJ; s, t) are given by
(4.58), (4.52). The arbitrary constant C is again determined
from the condition (4.7).

Strictly speaking the integral equation (4.59) is not a common
Fredholm integral equation, because K2(fJ; s, t) becomes infinite
of order ils when s - 0 (cf. form. (4.52)). However, 1’(t) being
odd and regular in t, this function may be replaced by 1 ,t), leading
to a correct Fredholm integral equation for the function fo1(t).

It can be shown that, if fl is sufficiently small, the integral
equations (4.57), (4.59) have a unique solution fi(t), satisfying
all the conditions stated in section 4.1.

4.5. Finally we treat the second boundary value problem with
an incident wave odd in y. Then, the condition (iv)’ reads,

Similar to section 4.4 the following pair of Fredholm integral
equations of the second kind can be derived for the function 1’(t),

both valid for -1 ~ t ~ 1, where

K1(03B2; s, t), K2(03B2; s, t), G1(03B2, t) are defined by (4.36), (4.52), (4.53).
The arbitrary constants C and C* occurring in (4.61), are

determined from the condition (4.7) and a condition related to
(4.44), viz.
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The arbitrary constant C in (4.62) is determined from the con-

dition (4.7).
Again it can be shown, that for sufficiently small values of fl

the integral equations (4.61), (4.62) have a unique solution f2(t),
satisfying all the conditions assumed in section 4.1.

4.6. In this section ivre present special integral representations
for the transmitted field at a large distance from the slit and in
the slit.

Consider a point with coordinates y = R cos 0, z = R sin 0
where 0  03B8 ~ n. For large values of R the following asymptotic
expansions hold (cf. [47], form. 7.2(l»,

Hence, at a large distance from the slit, the functions 03A6e1,2, 03A6o1,2
as given by (4.5), (4.6) will assume the following asymptotic
values,

where

The following integral representations can be derived for the
transmitted field or its normal derivative in the slit,
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valid for -b  y  b.

4.7. The present method has been worked out for the case of
an obliquely incident plane wave, described by the wave function

where oco = cos 00, 0 ~ 03B80 ~ 1’(;. According to (4.3) the even and
odd part of u(y, z) are given by

Substituting the corresponding functions Ut2(Y)’ uo1,2(y) into

(4.35), (4.51), (4.58), (4.63) the Fredholm integral equations
for the functions fe1,2(t), fo1,2(t) may be solved by iteration yielding
expansions in powers of f1 for these functions, the coefficients of
these powers being dependent on log 03B2. In this manner we cal-
culated expansions up to orders P9 and P8 for the functions
fe1(t), fo1(t) and fe2(t), fo2(t) respectively. By means of (4.68) to
(4.75) similar expansions have been derived for the transmitted
field at a large distance from the slit and in the slit. The various
results, which will not be presented here, are, apart from some
slight deviations, in agreement with Millar’s [38] values.
The transmission coefficients t1, t2 for the first and second

boundary value problem are defined to be the ratio of the energy
transmitted through the slit to the incident energy with the
slit’s area as basis. The following formulae hold for t1,2’

Substituting the expansions for Ae1,2(03B8), Ao1,2(03B8), we derived the
following expansions for t1, t2, 
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in which q = log (fly/4) and log y = 0.577215 ... (Euler’s con-
stant). The results (4.79), (4.80) are in complete agreement with
Millar’s [38] values. Moreover, the result (4.80) for t2 was checked
by an independent calculation using the method of Jones and
Noble [24].

§ 5. The circular wing in steady incompressible flow

5.1. Consider an aerofoil of circular planform moving with
constant velocity U in an incompressible and non-viscous medium.
Rectangular coordinates r, y, z with coordinate axes fixed to the
wing are used. The positive direction of the x-axis is taken op-
posite to the direction of motion of the wing; the y-axis is taken
in the spanwise direction. The projection of the aerofoil on the
plane z = 0 is a circle having radius a with its centre at the origin
of the coordinates.
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Following the formulation of the boundary value problem as
presented by van Spiegel [44], the velocity vector q of the medium
with respect to the x, y, z-system is derived from a perturbation
velocity potential 0, viz.

In the same way, the acceleration vector of the medium may be
derived from an acceleration potential 1Jf. In linearized aerofoil

theory, for the case of steady flow, the potentials 0 and 111 are
connected by the relations,

The acceleration potential 03A8 is related to the pressure p, viz.

where po and po denote the pressure in the undisturbed medium
and the density of the medium respectively.
The boundary value problem can now be formulated in terms

of 0 and 03A8. The potentials 0 and Y are required to satisfy the
following conditions:
(i) 0, 03A8 are solutions of Laplace’s equation, viz.

(ii) C/J, 1Jf are continuous outside the circular disk z = 0,
x2+y2 ~ a2, except that 0 possesses a discontinuity across the
linearized wake i.e. the surface determined by x &#x3E; il’a2-y2,
lyl  a, z = 0;
(iii) 03A8(x,y,z) = 0 for (x, y, z ) at infinity;
(iv) ~03A6/~z = w(x, y) for z = :f::0, x2+y2  a2;
(v) grad lP, 1Jf are quadratically integrable over any domain of
three-dimensional space, including the edges of the circular disk
and of the linearized wake; according to the Kutta condition
the pressure p and therefore (cf. (5.3)) the acceleration potential
1Jf must remain finite at the trailing edge of the circular disk.
The downwash distribution w(x, y ) will be a given function.

At the present formulation the so-called lifting problem is con-
sidered. From the condition (iv) it is obvious that 0 is an odd
function of z. Owing to (5.2) and (ii) 03A8 too will be an odd function
of z and 03A8 = 0, when z = 0, x2+y2 &#x3E; a2. The Kutta condition
will determine the discontinuity of 0 across the linearized wake.
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We introduce cylindrical coordinates p, q, z with

The velocity potential 0 (p, ~, z) is split into a regular part oreg
and a singular part 0,,ing,

Concerning 03A6reg(03C1, ~, z), this function is required to satisfy the
following conditions:
(i) 03A6reg is a solution of Laplace’s equation, viz. 039403A6reg = 0;

(ii) 03A6reg = o, when z = 0, p &#x3E; a;

(iii) rpreg = 0 for (p, 99, z ) at infinity;
(iv) ~03A6reg/~z = w(03C1, ~), when z = 0, 0  p  a;

(v) 0,,eg is everywhere finite.
Hence rpreg(p, ~, z) will be an odd function of z.
Now we expand w(p, 99) and çpreg(p, cp, z ) in Fourier series with

respect to ~. It is assumed that the downwash distribution

w(03C1, cp) is even in q, hence the Fourier series for w(03C1, ~) and
Oreg(p, cp, z ) may be represented by

The case of a downwash distribution w(03C1, ~) odd in q will be
treated in section 5.5. Further we assume that the functions

wn(03C1)/03C1n are even functions of p, regular for |03C1| ~ a(1+0394) with
LI arbitrary small, positive and that the series (5.7) are in fact
finite sums i.e. the functions wn(p) will vanish for n sufficiently
large. For the downwash distributions which are of interest in
practice, these assumptions are certainly fulfilled.

Following Bazer and Hochstadt [3] we state the integral
representation,

valid for z &#x3E; 0. For z ~ 0 we define, cpr;g(p, z ) = -03A6regn(03C1, -z).
Compared with Bazer and Hochstadt’s original integral represen-
tation the wave number k has been set equal to zero. The unknown
function In(t) is required to be an odd function of t, to be regular
in t for |t| ~ 1+0394, L1 &#x3E; 0 and to satisfy the conditions,
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It can easily be shown that 03A6regn as given by (5.8) satisfies all
the conditions (i) to (v) except the condition (iv), which may be
written as

According to § 2, section 2.2 the condition (5.10) leads to the
Fredholm integral equation (2.29) (m being replaced by n) for
the function fn(t)/(I-t2)n with u(n)1(03C1) = wn(p)/pn to be sub-
stituted into (2.30). However, because k has been set equal to
zero, the parameter a and the kernel of the integral equation
will vanish, hence, the function fn(t) can be solved immediately,

The result (5.11) being rather complicated, we present another
expression for f n(t). Using Bazer and Hochstadt’s [3] original
method, the condition (5.10) leads to an integral equation for the
function f n(t). When a is set equal to zero in this integral equation,
it can easily be derived that

The equivalence of (5.11) and (5.12) may be verified in an in-
dependent manner. Finally, according to Bazer and Hochstadt
[3] the velocity potential on the disk is given by

valid for 0 ~ p ~ a, where the latter result has been derived by
integration by parts using the conditions (5.9).

Similar to (5.6) the acceleration potential 03A8 will be split
according to

(5.14) p = 03A8reg+03A8sing

where 03A8reg is defined by (compare form. (5.2))
(5.15) 03A8reg = U~03A6reg/~x.
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Contrary to its name P"g becomes infinite at the edge p = a,
z = 0 of the disk. According to (2.6) the following expansion
holds for P’eg(p, ~, z) when p = a+03B4 cos y, z = 03B4 sin y, ô &#x3E; 0,
201303C0 ~ 03B3 ~ 03C0,

valid for small values of c5. f(n)n(1), denoting the derivative

dnfn(1)/dtn can be represented by

owing to (5.9), (5.12).
The function psing (p, ç, z) is required to satisfy the following

conditions:

(i ) psing is a solution of Laplace’s equation, viz. 039403A8sing = 0;
(ii) tpsing = o, when z = 0, p &#x3E; a;

( üi ) ~03A8sing/~z = 0, when 2=0, 0 ~ p  a;

(iv) psing becomes infinite at the edge p = a, z = 0 of the disk;
psing is quadratically integrable over any domain of three-

dimensional space, including the edge of the disk.
03A8sing(03C1, ~, z) is expanded in a Fourier series,

Owing to the condition (iv) we modify Bazer and Hochstadt’s
integral representation by stating,

valid for z &#x3E; 0, whereas for z 0 we define P,,,"9(p, z ) =
-03A8singn(03C1, -z). The unknown function gn(t) is required to be
an even function of t, to be regular in t for |t| ~ 1+0394, d &#x3E; 0

and to satisfy the conditions,
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It can easily be shown that the representation (5.19) satisfies
the conditions (i), (ii), (iv). The condition (iii) which may be
written as ~03A8singn/~z = 0 for z = 0, 0  p  a, can be reduced to

hence,

valid for 0  p  a, where Cn is an arbitrary constant. Ac-
cording to § 2, section 2.3 the condition (5.21) leads to the Fred-
holm integral equation (2.46) (m being replaced by n) for the
function gn(t)/(1-t2)n with u(n)2(03C1) = Cn to be substituted into
(2.47). However, the parameter a being equal to zero, the function
gn(t) can be solved immediately from the integral equation, viz.

where C,. is an arbitrary constant (related to Cn). Substituting
this value of g.(t) into (5.19) the resulting integral can be
evaluated explicitly. Introducing oblate spheroidal coordinates
03BC, ~ defined by

we derived the following formula for 03A8singn(03C1, z),

where the dimensionless constant A n is given by

A proof of (5.24) will not be given here. It may be remarked that
the functions 03A8singn(03C1, z ) agree with Kinner’s [25] potential
functions of the second kind.

In the plane z = 0 and in the neighbourhood of the edge p = a,
z = 0 of the disk, the following special results hold,
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valid for -03C0 ~ 03B3 ~ i, à sufficiently small, positive. The latter
result can be derived from formula (2.7).
The part o,ing of the velocity potential 0, introduced in (5.6),

will be derived from 1jIsing according to (compare form. (5.2))

We are especially interested in the normal derivative ~03A6sing/~z
on the disk z = 0, x2-f-y2  a2. Differentiating (5.29) with respect
to z and taking the limit for z ~ +0, assuming x2+y2  a2,
the resulting integral will be divergent. However, it can be

shown that the common integral sign may be replaced by the
sign * f denoting that the finite part (in the sense of Hadamard)
of the divergent integral is meant. Hence, we obtain the result,

where x2+y2  a2. Substituting for ôtpsing/ôz its Fourier series
with the nth term given by (5.27), the integration will be performed
term by term. Therefore we consider the integral, 

where p = VE2+y2, 99 = +i-arc sin (y/03C1) according to y  0,
-a  y  a. Introducing p into (5.31) as the new variable,
the resulting integral can be integrated by parts. Omitting the
infinite contribution of the lower limit p = a, we obtain

In (5.32) we make the substitution 03C12-y2 = -%/a2-y2 cosh u,
leading to
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owing to [12], form. 3.7(12), 3.4(9). Using the real part of (5.31),
(5.33) we obtain the result,

valid for x2+y2  a2.

The velocity potential 0, as given by (5.6), will solve the

boundary value problem, provided that the following conditions
are satisfied:

(i) According to the Kutta condition the acceleration potential
W must remain finite at the trailing edge of the wing yielding the
equation,

for 201303C0/2 ~ ~ ~ n/2, which we derived from (5.16), (5.17),
(5.18), (5.28). In the sequel the second term in (5.35) will be
shortly written as 03A3~n=0 Bn cos n~ where Bn, like An, is dimension-
less.

(ii) ~03A6sing(x, y, +0)/~z = 0, when x2+y2  a2. Integration of

(5.34) leads to the equation,

for -a  y  a.
Using the orthogonality properties of the trigonometric func-

tions and of the Legendre polynomials (cf. [12J, form. 3.12(18),
(19), (21 ) ) the equations (5.35), (5.36) may be reduced to the
following infinite systems of linear equations,
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where" ço = 2, En = 1 when n &#x3E; 1 and

By elimination of A2n or A 2n+1 we obtain infinite systems of
linear algebraic equations for the coefficients A with even and
odd subscripts, viz.

where n = 0, 1, 2, ... and

The matrix elements Â:m, Â:m associated with the infinite systems
(5.39) are found by summation of certain series of a similar type
as occurring in van Spiegel’s thesis [44], section II.12, viz.
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where 03C8(z) = 0393’(z)/0393(z).

5.2. In this section we investigate the infinite linear systems
(5.39). First, we present two theorems concerning infinite systems
of linear equations. These theorems are proved by means of
methods from functional analysis, cf. Ljusternik and Sobolew [80J.

THEOREM 1. Let the infinite system S of linear equations,
xi+03A3~k=1 aikxk = ri, (i = 1, 2, ... ) satisfy the following con-

ditions :

(1) 03A3~i=1 Iri ( is convergent; (ii) supk=1, 2,... 03A3~i=1 laikl = M  1.

Then the system S will have a unique solution x1, x2, ... and
03A3~i=1 |xi| will be convergent.

PROOF: The Banach space II consists of all sequences
x = {x1, x2,...} with 03A3~i=1 |xi| convergent. The norm of an
element x of l1 is defined by ~x~ = 03A3~i=1 |xi|. We introduce the
operator A, which transforms an element x of l1 into a séquence
y viz. y = Ax according to yi = 03A3~k=1 aikxk. · The sequence y
will be an element of l¡, for

and the latter series is convergent. The inequality (5.43) can also
be represented by IIYII=IIAxll s M~x~, hence, the operator A
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is bounded with ~A~ ~ M. The infinite system S can now be
written as (I+ A )x = r, where I denotes the identity operator viz.
Ix = x and r is an element of Il. Owing to ~A~ ~ M  1, the

operator (I+A) will have an inverse operator (1 +A )-1 (cf. [30],
§ 20) and the system S will have a unique solution in li,
x = (I+A)-lr. Hence the series !:1 xi ( will be convergent.
THEOREM 2. Let the infinite system S of linear equations,

xi+03A3~k=1 aikxk = ri, (i = 1, 2, ...) satisfy the same conditions
as stated in theorem 1. Then the solution of the truncated system
S(n) of linear equations, xi+03A3nk=1 aikxk = ri, (i = 1, 2, ..., n)
converges to the solution of S when n - 00.

PROOF: We introduce the operator A(n), which transforms an
element x of 11 into a sequence y viz. y = A(n)x according to
yi = 03A3nk=1 azxxx (i = 1, 2, ..., n), Yi = 0 (i = n+1, n+2, ... ).
It is obvious that the operator A(n) is bounded with ~A(n)~ ~ M.
The truncated system S(n) can be written as {I+A(n)}x = r.
According to theorem 1 this system has a unique solution in l1.

It can easily be shown that the sequence of operators A(n)
converges weakly to the operator A i.e. for every element x

of 11 we have ~{A-A(n)}x~ ~ 0 when n - oo. We denote the
inverse operators (I+A)-1, {I+A(n)}-1 by B, B(n), respectively.
Let x be an arbitrary element of ll, then we have

and

hence,

Wfien n - oo the right-hand side of (5.44) converges to zero.
Consequently the sequence of operators B(n) converges weakly
to the operator B and for the solutions of the systems S, S(n),
which are given by Br, B(n)r, respectively, we have B(n)r - Br
when n - oo.
The theorems 1 and 2 will be applied to the systems (5.39),

written in the form,
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where 03B4nm denotes Kronecker’s symbol and £0 = 2, En = 1

when n &#x3E; 1. Starting from (5.41) and using the inequality,

valid for q &#x3E; p &#x3E; 0, which may be derived from Binet’s second

expression for log 0393(z) (cf. [49], §§12.32, 12.33), we proved the
following results,

It follows easily from (5.41 ) and the asymptotic behaviour of the
function y(z) (cf. [12], form. 1.18(7)) that

where k is a fixed integer, ~ 0. Further it follows by calculation
that 0  03BBe00/2  03BBe11. Hence, (5.47) may be supplemented to

According to these inequalities the following estimate can be made,

valid for m = 0, 1, 2, .... The upper limit 0.5051 was obtained
from a closed form result for 03A3~n=1 Â:o, whereas {201303A3~m=1 03BBe0m} was
estimated upwards.

Similarly we proved for the elements 03BBonm,

(5.51) 0  03BBo00  03BBonn  03BBon+1,n+1  1 (n ~ 1), 03BBonm  0 (n ~ m).

The following series appeared to be summable in closed form,

As the latter result decreases with m increasing, we have
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Finally, we consider the right-hand sides of the systems (5.39)
viz. P2.1 03B32n+1. According to their definition (cf. (5.35)) the

coefficients B n will vanish for n sufficiently large and

03A3~n=o (-1)nB2n = 0. Hence, it is obvious from (5.38) that

fl2n = O(1/n2) for n ~ oo and 03A3~n=0 |03B22nI will be convergent. The
representation (5.40) for y2n+1 may be transformed by substituting
fJ2n from (5.38), yielding

Both series occurring in (5.54) are in fact finite sums. Using the
property I:=o (-1)nB2n = 0 and the asymptotic behaviour of
Â:m for n ~ oo, m fixed, the first and second sum are of order
O(1/n3) and O[(log n)/n3] for n ~ ~, respectively. Hence,
03A3~n=0 |03B32n+1| will be convergent.
The systems (5.39) satisfy the conditions stated in theorems

1 and 2. Therefore these systems will have a unique solution and
the series 0 |A2n|, 0 |A2n+1I will be convergent. Further,
these systems may be solved by truncation to a finite system,
the solution of this truncated system being convergent to the
solution of the infinite system.

In a similar manner it can be shown, that even the series

03A3~n=0 n|A2n+1| and 03A3~n=1 n log n |A2n+1| are convergent. Con-

cerning the coefficients A2n, the first equation (5.37) with 03B22n
substituted from (5.38), may be written as follows,

(5.55)

valid for n ~ 1. Introducing

it can be shown that A2n may be represented by

valid for n &#x3E; 1, where 03A3~n=1 nlA2nl will be convergent.
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In a similar manner we proved that there exist constants

Ll, ,L2 such that

valid for n ~ 1, where 03A3~n=1 n2lÃ2n+ll will be convergent.

5.3. Using the results of the preceding section it can be shown,
that the reduction of the boundary value problem to the infinite
linear systems (5.39), which has been performed in section 5.1
in a purely formai way, is completely correct. First, according
to (5.18), (5.24) the acceleration potential 1jIsing is given by

Owing to the convergence of 03A3~n=0 |AnI the series in (5.59) will
be uniformly convergént everywhere. Due to the factor 03BC/(03BC2+~2),
03A8sing will be defined and continuous everywhere except at the
edge p = a, z = 0 or 03BC = ~ = 0 of the disk. Further, in each
point not on the edge, the right-hand side of (5.59) may be
differentiated term by term and it can easily be shown, that 1f/sing
satisfies all the conditions stated in section 5.1. The behaviour
of 1f/sing in a point ( p, ~, z) with p = a+t5 cos y, z = t5 sin y,
t5 &#x3E; 0, -03C0 ~ 03B3 ~ 03C0 near the edge of the disk, can be derived
from (5.59), using the convergence of 03A3~n=0 n|A2n+1| I and

03A3~n=1 nlÃ 2nl (cf. (5.57)), viz.

Hence, the edge singularity of tpsing is indeed given by the series
formed by the singularities of 03A8singn (compare (5.28)) and con-
sequently the equation (5.35) will be correct. Similarly, the

correctness of the limit procedure, leading to the finite part
(5.30) of a divergent integral, and of the resulting equation (5.36),
can be verified. Finally, the reduction of the equations (5.35),
(5.36) to the infinite systems (5.37), (5.39) may be set on a
rigorous foundation.
The velocity vector grad 0 becomes infinite at the leading

edge p = a, 03C0/2 ~ |~| ~ i, z = 0 of the wing and along the
edges x ~ 0, y = -4- a, z = 0 of the linearized wake. The following
expansions will hold in the neighbourhood of these edges:
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valid in a point (p, ~, z) with p = a+03B4 cos y, 03C0/2 ~ |~| ~ 03C0,

z = 03B4 sin 03B3, 03B4 &#x3E; 0, 201303C0 ~ 03B3 ~ 03C0;

valid in a point (x, y, z) with x ~ 0, y = ± (a+03B4* cos y*),
z = 03B4* sin y*, ô* &#x3E; 0, -03C0 ~ 03B3* ~ 1l. R(q) stands for the left-
hand side of (5.35), viz.

K is given by (5.56).
The expansion for bolbx = PlU follows from (5.16), (5.17),

(5.60). At the trailing edge of the wing bolbx will be finite ac-
cording to the Kutta condition (cf. (5.35)). The proof of the
expansions for 001by, ~03A6/~z, which uses the convergence prop-
erties of the sequences {A2n} and {A2n+1} as stated in (5.57),
(5.58), will not be given here.

5.4. The pressure difference lI between the lower and upper
side of the aerofoil follows from (5.3), viz.

A Fourier series for 03A8(03C1, ~, +0) can be derived from (5.13),
(5.15), (5.26),

valid for 0 ~ p  a. Integration of the pressure difference over
the wing surface yields the following expressions for the lift L
and the moment about the y-axis, Mv,
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According to Ward [48] the induced drag D, being the x-

component of the aerodynamic force acting on the wing, can be
represented by

(5.67) D = po f fs {1 2(grad 03A6)2 cos (n, x)-(~03A6/~x)(~03A6/~n)}dS,
where S is an arbitrary surface enclosing the disk z = 0,
0 ~ p  a. n denotes the outer normal to S. (n, x) represents
the angle between n and the positive direction of the x-axis.
It can easily be shown that the integral (5.67) is invariant for
changes of S. The vector grad 0 being infinite at the leading
edge of the wing and along the edges of the linearized wake, we
choose S to be a surface consisting of both sides z = ::i::0 of the
disk and of an arbitrary part of the linearized wake plus small
tube-like surfaces of radius ô which enclose the above-mentioned

edges. The contributions to the integral from the linearized wake
and from the tubes around its edges become zero when ô ~ 0
owing to (5.62). On the tube around the leading edge the following
expansion holds,

according to (5.61). Taking the limit for 03B4 ~ 0, we obtain the

following formula for D,

The first integral in (5.69) may be determined by replacing
, +0), w(03C1, ~) by their Fourier series (5.64a), (5.7). The
remaining integration with respect to p deals a.o. with integrals
of the following type,
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the latter result being derived by substituting power series ex-
pansions for the functions wn(p), wn+1(03C1), while corresponding
expansions following from (5.12), (5.13), will replace 0"9(p, +0),
oreg j(p, +0) and their derivatives. The first term of the second
integral in (5.69) will vanish. The second term of this integral
has been determined by substituting for the two factors R(p),

respectively, and using the integral,

The relations (5.71) which are valid for 03C0/2 ~ |~| ~ 03C0 follow
from (5.35); formula (5.72) can be proved by induction.

Ultimately we derived the following simple formula for D,

5.5. For a downwash distribution w(03C1, ip) odd in 99, the boundary
value problem can be solved in the same manner as described
in section 5.1. In the various Fourier series cos nq must be

replaced by sin nq2. The final equations (5.35), (5.36) will change
into

for -a  y  a. C is a constant which disappears at the further
reduction.

Denoting the second term in the left-hand side of (5.74) by
03A3~n=1 Dn sin np, the equations (5.74), (5.75) can be reduced to the
following infinite systems of linear equations,
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Similar properties as stated in section 5.2 can be derived for the
infinite linear systems (5.76).

Finally we present the following expressions for the moment
with respect to the x-axis, Mx, and for the induced drag D,
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5.6. For some simple downwash distributions numerical results
were derived for lift, moment and induced drag. The infinite
linear systems (5.39), (5.76) were truncated to finite systems
of order 5, 10, 15, ..., 35. The solutions of these systems showed
a sufficiently rapid convergence to yield accurate values for lift,
moment and induced drag 2).
(i) Downwash distribution, w(x, y ) == -ocU.
According to (5.35) the coefficients Bn are given by BI = -203B1/03C0,
while all other coefficients vanish. The following results were
calculated,

(ii) Downwash distribution, w (x, y) = Uxfa.
According to (5.35) the coefficients Bn are given by Bo = B2 =

2/(303C0), while all other coefficients vanish. The following results
were calculated,

(iii) Downwash distribution, w(x, y) = Uy/a.
According to (5.74) the coefficients Dn are given by D2 --- 2/(303C0),
while all other coefficients vanish. The following results were
calculated,

Mx = -0.384786 po U2a3, D = 0.188535po U2a2.

(iv ) Downwash distribution, w(x, y) = Ux y/ a2.
According to (5.74) the coefficients Dn are given by Dl = D3 =
4/(1503C0), while all other coefficients vanish. The following results
were calculated,

Mx = -0.1806993 po U2a3, D = 0.0482754 po U2a2.
Our results are more accurate than the corresponding values
presented by van Spiegel [44J. The agreement between the
numerical values occurring in My and L for the downwash
distributions (i) and (ii), respectively is a consequence of the

reciprocity relation, cf. van de Vooren [46].
2 ) The numerical calculations in sections 5.6 and 6.4 were performed on the

digital computer ZEBRA. The programming was done by Mr. A. van Deemter.
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§ 6. The elliptic wing in unsteady compressible flow

6.1. We consider a wing of elliptic planform which moves with
constant velocity U in a compressible, non-viscous fluid and

performing at the same time harmonie oscillations of small am-
plitude in the transverse direction. Similarly as in § 5 we use
rectangular coordinates x1, yi, z, with coordinate axes fixed to
the aerofoil. The positive direction of the xl-axis is again taken
opposite to the direction of motion of the wing; the y,-axis is
taken in the spanwise direction. Further, we introduce the Mach
number M, given by M = U/co, where co is the speed of sound
in the undisturbed medium. The motion of the aerofoil will be

subsonic, hence, M  1. The projection of the aerofoil on the

plane zl = 0 is an ellipse with semi-axes a and al Vi - M2 in the
directions of the xl-axis and of the y1-axis, respectively. The
time will be denoted by tl.
The velocity vector q of the medium is again derived from a

perturbation velocity potential 03A61 viz.

According to van de Vooren [46] the function 03A61(x1, yi, z1, tl )
satisfies the linearized equation,

Let the equation of the wing surface be given by

where v denotes the frequency of the oscillating wing. Then the
linearized boundary condition for CP1 reads,

for z1 = ± 0, x21+(1-M2)y21  a2. From the condition (6.4) it
is obvious that 03A61 is an odd function of zl , whereas 03A61 depends
on t1 through a factor e-ivtl. Hence, we substitute

leading to the boundary condition,
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Similarly we introduce an acceleration potential,

which satisfies the same equation (6.2). In linearized theory
01,0 and 03A81,0 are connected by

Application of a Lorentz transformation,

changes the functions 03A61, 03A81 into 0, 03A8, viz.

while a similar result holds for Pl and 03A8. Then the function

0(x, y, z, t ) satisfies the equation,

the same equation holding for 1JI(x, y, z, t).
Introducing dimensionless quantities,

the functions 0, f will depend on t through a factor

exp (-ixtla). Hence, we write

The functions 0,(e, y, z), 03A80(x, y, z) will be solutions of Helmholtz’
equation,

The function 03A80(x, y, z ) satisfies the boundary condition,

(6.15) ôlPo/ôz = w(x, y) for z = :1::0, x2+y2 C a2,
where
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It can easily be shown that 00 and 1JIo are connected by

where

Integrating (6.17) we obtain the inverse formula,

Finally, for later reference we state the following relation between
0l’o and 00,

while a similar result holds for 03A81,0 and 1Jfo.
The boundary value problem formulated in terms of 03A60 and

1Jfo can be solved in a similar way as described in § 5. The solution
will be presented in the form of a series expansion in powers
of 00. Two terms of this expansion have been calculated. It is

obvious that such a solution is only valid for small values of 00.
We introduce cylindrical coordinates p, ~, z as stated in (5.5).

The function 00(p, ~, z) is split into a regular part 03A6reg0 and a
singular part 00 sing

The function 03A6reg0(03C1, ~, z ) is required to satisfy the following
conditions:

(i) 03A6reg0 is a solution of Helmholtz’ equation, viz.
039403A6reg0 + (~/a)203A6reg0 = o;

(ii) 0oeg = 0, when z = 0, p &#x3E; a;

(iii) 0oeg satisfies Sommerfeld’s radiation condition at infinity;
(iv) ~03A6reg0/~z = 03C9(03C1, ~), when z = 0, 0  p  a;

(v) 03A6reg0 is everywhere finite.
The functions w(p, ~) and 03A6reg0(03C1, ~, z ) are again expanded in

Fourier series with respect to ~. In this section we confine our-
selves to the case of a downwash distribution w(p, ç) even in 99,
hence, the Fourier series may be represented by
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The case of a downwash distribution w(p, lp) odd in 99 will be
treated in section 6.3. It is assumed that the functions wn(03C1)
vanish for n sufficiently large and satisfy the same conditions as
stated in § 5.

According to Bazer and Hochstadt [3] we present the following
integral representation for 03A6regn(03C1, z),

n = 0, 1, 2, ..., valid for z ~ 0. For z ~ 0 we define n =

-03A6regn(03C1, -z). The unknown function fn(t) is required to satisfy
the same conditions as in (5.8).
The representation (6.23) satisfies all the conditions (i) to (v)

except the condition (iv), which may be written as

According to § 2, section 2.2 the condition (6.24) leads to the
Fredholm integral equation (2.29) (m being replaced by n) for
the function fn(t)/(1-t2)n with u(")(p) = wn(p)/pn to be sub-
stituted into (2.30). The parameter a must be replaced by x.
The kernel of the integral equation being of order x2, it is clear
that the solution fn(t) of the integral equation is given by (5.11)
multiplied by a factor {1+O(~2)}. The formula (5.12), being
equivalent to (5.11) remains also valid after multiplication by
this factor. Similarly, according to Bazer and Hochstadt [3]
we have,

valid for 0  p  a, cf. (5.13).
Similar to (6.21) the function Yfo(p, 99, z) will be split according to

where 03A8reg0 is defined by (compare form. (6.17))

Near the edge p = a, z = 0 the expansion (5.16) holds for 03A8reg0.
The function 03A8sing0(03C1, ~, z) is required to satisfy the same con-
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ditions as the function 03A8sing(03C1, ~, z) considered in § 5, except that
03A8sing0 is a solution of Helmholtz’ equation, 039403A8sing0+(~/z)203A8sing0 = 0.
The function 03A8sing0(03C1, ~, z) is expanded in a Fourier series,

Similar to (5.19) we state the integral representation,

n = 0, 1, 2, ..., valid for z ~ 0, whereas for z ~ 0 we define

1JI:ng(p, z ) = ....... tp:ng(p, -z). The unknown function gn(t) is

required to satisfy the same conditions as in (5.19). The represen-
tation (6.29) satisfies all the prescribed conditions except the
condition, ôp:ng/ôz = 0 for z = 0, 0  p  a. Similar to (5.21),
the latter condition can be reduced to

valid for 0  p  a, where Cn is an arbitrary constant. Ac-
cording to § 2, section 2.3 the condition (6.30) leads to the Fred-
holm integral equation (2.46) (m being replaced by n) for the
function gn(t)/(1-t2)n with u(n)2(03C1) = Cnln(xp/a)/pn to be sub-
stituted into (2.47). The parameter oc must be replaced by x.

It can easily be shown, that the solution gn(t) of the integral
equation is given by (5.22) multiplied by a factor {1+O(~2)}.

Substituting this value of gn(t) into (6.29), we state the fol-
lowing results for 03A8singn and ~03A8singn/~z in the plane z = 0, viz.

where Anis given by (5.25). The formula (6.31) follows from



275

The formula (6.32 ), valid for p &#x3E; a can be derived by considering
the integral,

Using [12], form. 7.11(3), (9) we obtain the derivative,

valid for j = 1, 2, 3, .... Substituting this derivative with

i = n+1, j = n-f-2 into (6.34) and expanding exp (ix t2 )
according to

the integral In changes into
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The integrals occurring in (6.37) can be evaluated by expanding
the denominator of the integrand in a binomial series, leading
ultimately to the result (6.32). In the preceding derivation we
have avoided to use the common power series expansion for

exp (i~(03C1/a)22013t2), because the remainder term of this expan-
sion will become large when p is large. For the expansion (6.36)
this objection does not hold, because {(03C1/a)2-t2-(03C1/a)2-1}
is bounded for p &#x3E; a, 0  t ~ 1. For the rest no investigation
has been made concerning the dependence on p of the remainder
term in (6.32) and in the resulting expansion for ~03A8sing0/~z.

According to formula (2.7), the expansion (5.28) multiplied
by a factor {1+O(~2)} holds for 03A8singn in the neighbourhood of the
edge 03C1 = a, z = 0.
The part o,ing of the function 00, introduced in (6.21), will be

derived from 03A8sing0 according to (compare form. (6.19))

(6.38) 03A6sing0(x, y, Z) = (1/U) exp(ikx/a) x-~ 03A8sing0(03BE,y,z) exp (-ik03BE/a)d03BE.
The normal derivative ~03A6sing0/~z on the disk 2=0, x2+y2  a2
is again represented by the finite part of a divergent integral, viz.

(6.39 )

Substituting for ~03A6sing0/~z its Fourier series with the nth term

given by (6.32 ), the integration will be performed term by term.
Hence, we consider the integral,

where p = 03BE2+y2, ~ = ±03C02013arc sin (y/03C1) according to y  0,
- a  y  a. Introducing p into (6.40) as the new variable,
the resulting integral can be integrated by parts, yielding

(6.41) 
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The first term in the right-hand side of (6.41) must be treated
with some care. The contribution of the upper limit p = oo will

vanish. The contribution of the lower limit p = a will be determined

from the expansion,

When 03C1 ~ a, the first term of this expansion becomes infinite and
is omitted, hence, there remains only the term ix/a. The integral
in the right-hand side of (6.41) can be reduced in the same
manner as a similar integral examined by van Spiegel, cf. [44],
section 111.3. We obtain the result,

where

Substituting

The integral (6.45) is certainly defined for n = 0, 1, 2, ...,
x &#x3E; 0, k ~ 0 except for the combination n = 0, x = k = 0. It
can be shown, using [12], form. 7.12(17) that the following
expansion holds for Io(x, k) when 03C9 is small i.e. when x and k
are small (cf. (6.12), (6.18)),

where y denotes Euler’s constant. Similar to van Spiegel, the
recurrence relation,
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which is valid for n &#x3E; 1, m ~ 0, k ~ 0 except for n = 1, " = k = 0,
may be integrated with respect to k and applied n times, yielding
the representation,

valid for n ~ 1, ~ ~ 0, k ~ 0. The right-hand side of (6.48) is

expanded in powers of co, taking into account only the terms
of order (»0 and co. Starting from the expansion,

(cf. [12], form. 3.7(12)) where n ~ 2, we obtain

valid for n ~ 1. Substituting (6.50) into (6.43) and using [12],
form. 3.8(5), 3.4(9) we are led to the following expansion for
Rn(y),

valid for n ~ 1. A prime denotes differentiation with respect to
the argument. It follows easily from (6.43), (6.46) that (6.51)
also holds for n = 0. It can be verified that the remainder term
in (6.51 ) is of order w2 for n &#x3E; 1 and of order w2 log Co for n = 0.

Splitting (6.51) into a part even in y and a part odd in y, the
even part leads to the following expansion for bO"’9(x, y, +0)/~z
on the disk x2+y2  a2,



279

The function 00, as given by (6.21), will solve the boundary
value problem, provided that the following conditions are satis-
fied :

(i) According to the Kutta condition the pressure must remain
finite at the trailing edge of the elliptic wing. The same con-
dition holds for the acceleration potential 03A81 and for the function
1J’o, the latter remaining finite at the "trailing edge" p = a,
|~| (  03C0/2, z = 0 of the circular disk. This condition leads again
to the equation (5.35).
(ii) ~03A6sing0(x, y, +0)/~z = 0, when x2+y2  a2. Integration of

(6.52) yields the equation (cf. [12J, form. 10.10(15»),

for -a  y  a.
The second term in (5.35 ) will be written shortly as 03A3~n=0Bn cos ngg.

Then the coefficients Bn may be expanded in powers of co. As-
suming that the expansions consist of only one term, of order col,
we substitute

where A(0)n, A(1)n depend on ro only through a factor roi. The

equations (5.35), (6.53) may be split by collecting terms con-
taining the same power of k,
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Similar as in § 5 the equations (6.55), (6.56) may be reduced to
infinite systems of linear equations, viz.

where n = 0, 1, 2, ..., i = 0, 1. AIm, 03BBonm, 03B2(0)2n, 03B3(0)2n+1 are given
by (5.41), (5.42), (5.38), (5.40), the latter formula with P2,,,
replaced by 03B2(0)2m. Similarly we have,

If the expansions of the coefficients Bn contain more than one
term, each of these terms may be treated in the manner described
above. The final results for the coefficients A n will follow by
superposition.
The solutions of the infinite linear systems (6.57) will have

similar properties as stated in section 5.2. Using these properties
it can be shown, that the vector grad 00 becomes infinite at the
"leading edge" p = a, 03C0/2  |~| ~ i, z = 0 of the circular disk
and along the edges x ~ 0, y = ±a, z = 0 of the "linearized
wake". In the neighbourhood of these edges the expansions (5.61),
(5.62) hold for the derivatives of 00e the expansions (5.62) being
multiplied by a factor exp (ikaeja).
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6.2. For the original problem of the oscillating elliptic wing
moving in a compressible medium, the pressure difference II
between the lower and upper side of the aerofoil is given by
(cf. (5.64))

according to (6.20). po denotes the density of the undisturbed
medium. A Fourier series for 03A80(03C1, q;, +0) can be derived from
(6.25), (6.27), (6.31). Replacing the function exp (-ixMx/a) by
the first two terms of its expansion, viz. {1-i~Mx/a}, we obtain
approximate values for the lift L and the moment about the

yl-axis, My,

where Il denotes the elliptic disk x21+(1-M2)y21 ~ a2, zi = 0.
We now derive a general formula for the induced drag acting

on a three-dimensional aerofoil in compressible flow. Similar to
Ward (cf. [48], § 4.6) we consider an arbitrary aerofoil moving
with a velocity U in a compressible medium in a direction opposite
to the positive direction of the x-axis, where x, y, z will be rectan-
gular coordinates with coordinate axes fixed to the aerofoil. t
represents the time. The velocity vector of the medium, denoted
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by u, is derived from a velocity potential 0, u = grad 0. In-
tegration of the equation of continuity and the equation of
motion, viz.

(p, p are the density of the medium 3) and the pressure, respectively )
over an arbitrary volume V, bounded by a closed surface S,
inside which there are no sources, yields

where denotes the outer normal to S. Let S consist of the surface
of the aerofoil, E*, any surface Si, which completely encloses
the aerofoil and a surface a*, which lies close to both sides of the
wake between X* and SI. Since p is continuous across the wake
and u . n = q · n on 03A3**, where q denotes the velocity of the
aerofoil due ’to the oscillation, we obtain the following expression
for the aerodynamic force F acting on the aerofoil,

where V, is the volume contained between Si and 03A3*+03C3*. The
normal n is directed outward from the volume Vl, hence for
1*, n is the inward normal.
The formula (6.65) will now be linearized. Introducing a

linearization parameter s, it is assumed that the distance of both
sides of the aerofoil to the plane z = 0 and the velocity 1 are of
order e. The velocity potential 0 and the velocity vector u are
expanded with respect to e,

where the subscripts I, II refer to terms of order a and E2 respec-
tively. According to Ward [48] §§ 1.8, 1.9 the functions

3) Only in this section the symbol p stands for the density of the medium.
In the other sections p denotes the cylindrical coordinate as given by (5.5).
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03A6II satisfy linear partial differential equations, the boundary
conditions being prescribed on both sides z = ±0 of the surface
1, which is the projection of 03A3* on the plane z = 0. In fact 03A6I
is the common perturbation velocity potential, which satisfies
an equation similar to (6.2). 03A6I, 03A6II are discontinuous across

03A3+03C3, where a is the projection of 03C3* on the plane z = 0.
From (6.66) and Bernoulli’s equation (cf. van de Vooren [46J,

form. (2.2)) the following expansions can be derived for p and p,

where

c denotes the speed of sound defined by c2 = dpldp. A subscript
0 refers to values assumed in the undisturbed medium.

Substituting the expansions (6.66), (6.67), (6.68) into (6.65),
we first collect the terms of order e, yielding

It can easily be derived that the x-component of FI is given by

where n is the inward normal to 1* and (n, x ) denotes the angle
between n and the positive direction of the x-axis. It is obvious
that the result (6.71) is of order E2.

Secondly the terms of order 82 are collected yielding III. It
can easily be shown, that the x-component of FII is given by
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The latter result may be simplified. Let the equation of 1* be
given by z = g(x, y, t), both for the upper and lower side of the
aerofoil. Then we have on 03A3*.

where the upper and lower sign refer to the upper and lower side
of 03A3*. In (6.73) n will be the inward normal to 03A3*. Substituting
these results the integrals over 1* and a* in (6.71), (6.72) may
be replaced by integrals over 1 and a, the errors being of order
e3. Similarly, V, may be taken as the complete volume enclosed
by the surface 51. Using the oddness in z of the function 01,
we ultimately obtain the following result for the induced drag D
i. e. the sum of (FI)x and (FII)x,

where we introduced the downwash and the acceleration

potential W given by

In (6.74) the subscript I in Wi has been omitted. n is the outer
normal to Si and M = U/co . 27+, a+ are the upper sides z = +0
of 1 and or. Owing to the funetion 0 satisfying an equation similar
to (6.2), the formula (6.74) for D will be invariant for changes
of Si as can easily be shown.
For the oscillating elliptic wing in compressible flow, as con-

sidered in section 6.1, the induced drag is given by (6.74) with a
subscript 1 to be attached to 0, 1J’, w, g, x, y, z, t. 03A3+, a+ change
into 03A3+1, ori i.e. the upper side z, = +0 of the elliptic disk Il
and of the linearized wake 03C31 within Sl. The complete linearized
wake is determined by x1 ~ a2-(1-M2)y21, IYll  a/1- M2,
zl = ±0.
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According to (6.3), (6.4), (6.5), (6.7) the equation of the wing
surface, the downwash, the velocity potential and the acceleration
potential contain a complex time factor e-ivtl. Only the real part
of the corresponding functions has a physical meaning. Therefore,
in order to calculate D, all complex quantities in (6.74) must be
replaced by their real parts. This replacément can be performed
using the identity Re w, - Re w2 = l Re(w1w2+w1w2), valid for
any two complex numbers w1, w2 where Re stands for real part
and a bar denotes that the complex conjugate quantity is meant.

Application of the Lorentz transformation (6.9) to the integral
(6.74) changes the surface Si into a surface S enclosing the
circular disk E, x2+y2 ~ a2, z = 0. The singularities of the
vector grad 00 being the same as in the incompressible case, the
surface S is chosen as stated in section 5.4. Omitting the details
of the derivation, we present the following final result, similar
to (5.69),

where

(6.76)

where R(~) denotes the left-hand side of (5.35). The function
go(x, y) is defined by
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Expanding the exponential functions, the formulae (6.76), (6.77)
may be reduced in a similar manner as stated for (5.69). Ul-
timately, expansions in powers of 03C9 are obtained for D(1), D(2)
consisting of two terms. However, these general results cor-

responding to an arbitrary mode of oscillation of the wing, are
of a very complicated form. Therefore it is easier to perform the
above-mentioned reduction after having substituted concrete

values of go(x, y), w(x, y), t¡lo(x, y, -E-0), R(q) into (6.76), (6.77).

6.3. For a downwash distribution w(p, p) odd in q, the boundary
value problem can be solved in the same manner as described in
section 6.1. In the various Fourier series cos n~ must be replaced
by sin nq. It can easily be shown that the Kutta condition again
leads to the equation (5.74). Denoting the second term of (5.74)
by 03A3~n=1 Dn sin nqJ, the coefficients Dn may be expanded in

powers of 03C9. Let these expansions consist of only one term, of
order 03C9j, then we make the substitution (6.54) where A(0)n, A(1)n
depend on 03C9 only through a factor 03C9j. The equations (6.55),
(6.56) will now change into

Cl and C2 are constants which disappear at the further reduction.
Similar as in § 5 the equations (6.79), (6.80) may be reduced to
infinite systems of linear equations, viz.

where n = 1, 2, 3, ..., n = 0, 1, 2, ... respectively and i = 0, 1.
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03BCenm, ,u:m, 03B4(0)2+1, 03B8(0)2n are given by (5.77), (5.78), (5.79), (5.80),
the latter formula with 03B42m+1 replaced by 03B4(0)2m+1. Similarly we have,

Similar to (6.61), (6.62) the following expansion holds for the
moment about the xi-axis, Mz,

The formulae (6.75), (6.76), (6.77) for D, D(l), D(2) remain valid
provided that R(~) stands for the left-hand side of (5.74).

6.4. For some simple modes of oscillation numerical results
were derived for lift, moment and induced drag. The infinite
linear systems were solved in the same manner as stated in
section 5.6.

(i) Vertical translation, xi = Aae-’°°l,
According to (6.4), (6.16) the "downwash distribution" w(03C1, ~)
is given by

Hence the coefficients B n read,
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The following results were calculated,

(ii) Rotation about the y1-axis, z1 = Bx1e-ivt1.
According to (6.4), (6.16) the "downwash distribution" w(p, cp) is
given by

Hence the coefficients Bn read,

The following results were calculated,

(iii) Rotation about the xl-axis, zl = Cy1e-ivt1.
According to (6.4), (6.16) the "downwash distribution" w(p, p) is
given by
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(6.89) w(03C1, 91) = - i03C9UC 1-M2 {(03C1/a) sin ~+1 2i~M(03C1/a)2 sin 2~}.
Hence the coefficients D n read,

The following results were calculated,

In the special case M = 0 our results for lift and moment agree
with van Spiegel’s [44] values. It has been verified that the lifts
and moments for the translational vibration (i) and the rotational
vibration (ii) satisfy the reciprocity relation, cf. van de Vooren [46].
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