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Remarks on equidistribution on non-compact
groups*

by

S. Hartman

The notion of equidistributed sequence of points in a compact
group G was introduced by Eckmann [2]. We quote this definition
denoting by p the normed Haar measure in G:
A sequence {03B1n} is equidistributed if for every Borel set E C G

whose boundary is of ,u-measure 0

A(N) being the number of 03B1i e E with i  N.
It can be easily proved by means of the individual ergodic

theorem and by the 0-1 law that almost every point of the
cartesian product GN0 represents a sequence which is equidistrib-
uted in G. It was also proved [3] that the multiples ng (n = 1,
2, ... ) of almost every element of a connected separable compact
abelian group form an equidistributed sequence. A sufficient
condition for a sequence (ng} in a compact group to be equi-
distributed is its density and (nal is dense if and only if x(g) ~ 1
for every character x of G which is not identically 1. For a (possibly
non-separable) connected compact abelian group whose topological
character (weight) does not exceed T = 2"0 it can still be stated
that there is a g e G for which {ng} is dense and thus equidistrib-
uted [5].

Cigler has defined equidistributed sequences of measures on the
real line D [1]. We restrict ourselves to equidistributed sequences
of points (i.e. to the case of point measures) but instead of D we
admit an arbitrary locally compact abelian topological group G.
Then fa.1 is called equidistributed if for every continuous character
x ~ 1 of G

* Nijenrode lecture.
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Hence, if G is compact, we obtain by approximation theorem

for every continuous f, which yields (1) by la routine argument.
If G is non-compact, then (2) does not imply (3) for all con-

tinuous functions but it does so for every (uniformly) almost
periodic (a.p.) function. Yet we cannot immediately see how a
condition analogous to (1) could be derived from (3) in this case.
So the above definition of equidistribution does not refer to any
sets which could be "measured" by means of an equidistributed
sequence, more exactly, by means of the relative number of terms
belonging to them. Our aim is now to find an analogon of (1) and
so to establish a closer relation between the Cigler definition and
the classical concept of equidistribution.
For this purpose we use the notion of an R-almost periodic

function. So we call a Haar measurable real function f if for every
e &#x3E; 0 there are two (uniformly) a.p. functions 99 and y so that

and the mean value M(y-q)  e.

In [4] 1 considered R-a.p. functions only on D. Since in this
case we dispose of the classical expression limT~~ 1/2T fT-T f(t)dt
for the mean value, the well-known space of Besicovitch a.p.
functions (B-space) can be introduced as the closure of the set of
ordinary a.p. functions with respect to the B-norm 11/11,9 = M(|f|)
and there is a 1-1 isometric linear map of the B-space onto the

space L(K) of integrable functions on the Bohr compactification
K of D with the normed Haar measure v. As was proved in [4],
a B-equivalence class (i.e. a point of B-space ) contains a R-a.p.
function if and only if the corresponding v-equivalence class (i.e.
a point of L(K)) contains a Riemann integrable (i.e. v-a.e. continu-
ous) function. These results can be carried over to some other locally
compact abelian groups in which the mean value can be expressed
analogously as on D, i.e. by means of limn 1/03BC(Qn) Qnf(t)d03BC(t),
li being the Haar measure in G and {Qn} a fixed increasing
sequence of compact sets. This is possible especially for connected
groups owing to their well-known structure; some conditions
which are sufficient for the sequence {Qn} to be applicable for
the mean value integral formula were established by Struble L8].
We do not insist on this point and we emphasize rather the possi-
bility of interpretation of R-a.p. function by means of Bohr
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compactification regardless whether Besicovitch a.p. functions
are defined on G or not. This can be done in the following way:

(a) if f is R-a.p. on G, 99. and 1Jln are uniformly a.p., ~n ~ ~n+1 ~ f,
03C8n ~ 03C8n+1 ~ f (n = 1, 2, ...) and M(03C8n-~n) ~ 0, then the ex-
tended continuous functions ~*n and 1Jl: on the Bohr compacti-
fication K of G form two monotonie sequences and we define f*
as their common almost everywhere continuous limit function in
L(K). Of course, f * is not uniquely determined. For our purposes
we choose f*(x) = f(x) if x e G and f*(x) = lim. 03C8*n(x) otherwise
(limn ~*n would do the same). Thus f * is an extension of f over K.

Conversely, arguing as in [4], we can show that
(b) if f(x) is a Riemann integrable function on K, then the re-

stricted function f/G on G is R-a.p. if it is ,u-measurable. If not,
we can replace f(x) by sup f(x), i.e. by infu supvEU f(y) where
U runs over a complete system of neighbourhoods of x. Since
sup f(x) is upper semi-continuous, so must be also the restricted
function sup f/G; it is therefore ,u-measurable.
A set in G is called a R-a.p-set if its characteristic function

is R-a.p. It is obvious that if the sequence {03B1n} is equidistributed
and if E is a R-a.p. set, then (1) holds, the right-hand side being
replaced by the mean value of the characteristic function of E.
If G = D, then this mean value is the so-called "relative measure"
of E. On account of the rôle the R-a.p. sets play in the theory of
equidistribution we shall establish some of their properties.

It follows from (a) that every R-a.p. set can be extended to
a Jordan measurable set E* in K, i.e. to a set whose boundary has
v-measure 0, in such a way that E* n G = E. In fact, if we

suppose f in (a) to be a 0-1 function, then the Riemann integrable
function f* can be so modified (if necessary) as to become a 0-1
Riemannian extension f** of f, v-equivalent to f*. We can put
for this purpose f**(x) = 0 whenever f*(x) ~ 1 2 and f**(x) = 1
in the opposite case. But then the set E* = {x : f**(x) = 1}
is the required Jordan extension of the set E = {t : f(t) = 1} C G.
Conversely, it follows from (b) that every Jordan set E in K,
intersected with G, gives raise to a R-a.p. set if this intersection is
,u-measurable. If not, then taking the closure E in K instead of E
itself we obtain a R-a.p. set by intersection with G.
THEOREM 1. The R-a.p. sets form a (finitely additive) field.
This follows by previous remarks from the fact that Jordan

sets in K form a field.
Two R-a.p, sets are called equivalent if their symmetric difference

is a (R-a.p.) set whose characteristic function has mean value 0.



69

THEOREM 2. Every R-a.p. set E is equivalent to a closed and to
an open set in G. If G is non-compact, then a ,u-measurable
change of E within a compact set leads to an equivalent set.
To prove the first part it is sufficient to extend E to a Jordan

set E* in K and then to take E* n G or Int(E*) n G respectively.
The equivalence follows from the obvious remark that a borelian
set in K of Jordan measure 0, intersected with G, becomes a
R-a.p. zero set (i.e. equivalent to the void set). To prove the second
part we use the same remark and the fact that a compact set Z
in G is of Jordan measure 0 in K. To see this it is enough to observe
that Z is of v-measure 0; if this were not true, then there would
be no sequence of disjoint translations of Z. This is, however,
impossible because in view of the non-compactness of G a com-
pact set Z C G always admits a translation disjoint with Z.

THEOREM 3. If the weight of a locally compact connected
abelian group does not exceed 2No, then the group contains an
equidistributed sequence.
PROOF. If G satisfies the assumption, then it is a direct sum

of 1-dimensional vector groups D, (i = 1, ..., r) and of a con-
nected compact group C whose weight is at most 2No. There is an
equidistributed sequence in each Di [1] and there is one in C [5].
Further we need the following notion: a sequence 03B11, OC2, - - . in a

compact group ris called distributed with respect to a Borel measure
m, if for every continuous function

(thus it is equidistributed, if m is the Haar measure).
Helmberg has proved [7] that if a compact group contains

a sequence {xn} distributed with respect to ml and a sequence {yn}
distributed with respect to m2, then it equally contains a sequence
which is distributed with respect to the convolution measure
m1  m2 and consists of elements x; y; . Let us observe that this
theorem can also be deduced from the fact that convolution of
two measures is a weakly continuous operation 1. Let Ki be the
Bohr compactification of D,. The Haar measure in the direct
sum 03A3ri=1 K;+ C is the product measure, and so the convolution,
of Haar measures in Ki and C respectively. Any sequence which
is equidistributed in D, is equidistributed in Ki - this follows from

1 This remark is due to K. Urbanik.
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the definition of equidistribution and from the properties of the
Bohr compactification. Then, according to Helmberg’s theorem,
there exists a sequence {03B1n} equidistributed in 03A3ri=1 Ki+C and
consisting of elements of 03A3ri=1 Di+C = G. But since 03A3ri=1Ki+C
is the Bohr compactification of G, {03B1n} is equidistributed in G.
A set of a.p. functions on an abelian locally compact group

G will be called a countable modulus if it consists exactly of func-
tions which can be approximated by linear aggregates of characters
from a given countable subgroup of the dual 6.
A point sequence {03B1n in G is called relatively equidistributed

with respect to the countable modulus S if

holds for every f E S. An appropriate definition of R-a.p.
functions and of R-a.p. sets with respect to S is obvious. All

R-a.p. sets of such kind form a field and they can be "measured"
by the sequence {03B1n}.
THEOREM 4. Every discrete abelian group H contains a relati-

vely equidistributed sequence with respect to any given countable
modulus S.

PROOF. We consider the Bohr compactification of H relatively
to S, i.e. such compact group Ks that all functions of S and only
these can be uniquely and continuously extended over Ks. 2
It follows from the countability of the modulus S that Ks is a
separable group. It thus contains an equidistributed sequence
{03B1n}. The terms of this sequence are not necessarily in H but
since Ks is metric and H is dense in Ks we can choose points (Jn
in H so as to have 03C1(03B2n, cxn) - 0 p denoting the distance. Obviously,
the sequence {03B2n} is also equidistributed in Ks and so it is relatively
equidistributed in H with respect to S.
Theorem 4 can be applied e.g. to the additive group of rationals

if S is generated by any countable set of characters. It is well-
known that characters of this group need not be continuous
in the ordinary topology although they can all be effectively
computed.

Another situation appears when the group of reals is considered.
Then no discontinuous character can be effectively constructed,
yet we obtain from Theorem 4 the following

2 If S does not separate points of H, then there is only a homomorphic and not
an isomorphic imbedding of H into KS.
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COROLLARY. If h1(t), h2(t), ... are Hamel additive functions
then there exists a sequence of real numbers 03B11, (X2, ... such that

THEOREM 5. If the discrete abelian group H is divisible and fi,
f2, ..., ln are a.p. functions then for every e &#x3E; 0 there is an oc e H

and an integer N &#x3E; 0 such that

PROOF. If S is a countable modulus containing f1, ..., ln then
Ks is divisible and therefore connected (see [6] e.g.). Hence it
contains an equidistributed sequence of the form {mx} (x E Ks;
m = 1, 2, ... ). Taking N sufficiently large and an oc e H suffi-

ciently near to x we obtain the assertion.
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