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A polynomial approach to topological analysis
by

Kenneth O. Leland

1

In this paper we show how the basic results of topological
analysis including power series expansions may be obtained for
twice continuously complex differentiable functions without the
use of any type of integral, measure theory, topological indexes
[6], or algebraic topology, by making use of elementary methods
and the Stone-Weierstrass Theorem. As a byproduct we obtain
the theory of harmonic functions in the two dimensional case,
including the existence of conjugate harmonic functions and the
resolution of the Dirichlet problem for the circle. To extend our
results to complex differentiable functions in general, we need
only make a single application of Whyburn’s Maximum Modulus
Theorem [6].
Our basic tools are the complex polynomials. In Theorem 1,

we prove the Maximum Modulus Theorem for the elements of
the family A of all continuous functions on the closure U of the
unit disc U, which are twice continuously differentiable on U.
In Theorem 2, àpplying Theorem 1, we adapt a theorem of
Porcelli and Connell [5] to show that all functions which are
uniform limits on U of sequences of polynomials lie in A and are
infinitely differentiable on U.
The key to the paper, Theorem 4, makes use of a simple

auxiliary function to obtain growth rate estimates for polynomials
which depend only on the magnitude of their real parts.
Employing the Stone-Weierstrass Theorem we show that every

real valued continuous function on the boundary B of U may be
extended to a function on U which is the uniform limit on U of the
real parts of a sequence of polynomials. Applying Theorem 4, we
show that these sequences must converge on U to complex dif-
ferentiable functions.

Given a twice continuously differentiable function f on U, we
then readily obtain a polynomial sequence approximating f on U.
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Simple arguments of the author [2] and of Porcelli and Connell
[1] are then used to convert this sequence into a power series
expansion for f on U.

2

Let K denote the complex plane and û) the positive integers.
For x ~ K and ô &#x3E; 0, set U(03B4) = {z e K; Izi  03B4} and set

B(03B4) = U(03B4)-U(03B4). For real numbers a and b, set R(â+bi) = a
and I(a+bi) = b. Set U = U(1) and B = B( 1 ).

3

THEOREM 1. Let f e A, and set u = Rf and v = If. Then

for xeU:

PROOF. By direct computation ux = vy, uy = -vx (Cauchy-
Riemann equations), and uxx+uyy = vyx-vxy = vxy-vxy, = 0 on
U, where ux(x) = ~u/~x|z for z e U. Let 03B5 &#x3E; 0, set r(z) = 4-103B5|z|2
for z e tJ, and set w = u+r. Then by direct computation
wxx+wyy = 0+rxx+ryy = e on U.
Assume that for some x e U, w(x) ~ N = sup {w(t); t e B}.

Then there exists xo e U, such that w(x0) = sup {w(t); t e U}.
Now wx(x0) = zo"(xo) = 0 and wxx(x0) or wyy(x0) &#x3E; 0. But then
either zv restricted to the real axis or w restricted to the imaginary
axis must have a minimum at xo. Since e is arbitrary, we have 
u(x) ~ sup {u(t); t e B} for all x e U. A similar argument holds
for minimum values and thus (1) is proven. The argument for
(2) is similar.
Assume there exists xo e U, such that f(xo ) | &#x3E; M. Set g = f/M.

Then |g(x0)| &#x3E; 1 and |g(x)| s 1 for all x e B. Now there exists
n ECO, such that lg(xo)"l &#x3E; 2. Clearly g" e A. But then from (1)
and (2),
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THEOREM 2. Let Pl, P2, ... be a sequence of polynomials, which
converges uniformly on U to a limit function f. Then f E A and all
derivatives o f t on U exist.

PROOF. Without loss of generality we take P;(0) = 0 for i e cv.
For i e cv and x e K, set Qi(x) = Pi(x)/x for x 0, and set

Qi(x) = P;(0) for x = 0. Then Q1, Q2’ ... is a sequence of

polynomials which converges at least pointwise to f(x)/x for
all x e U, x ~ 0, and which converges uniformly on B.
From Theorem 1, the sequence QI’ Qz, . · · must converge

uniformly on TI to a limit function Qo. Hence /’(0) exists and is
equal to Co(0) = limn~~ Q"(0) = limn~~ P’n(0). Thus f is dif-
ferentiable on U.

Let x E U(1/2) and m, n e 03C9. Then from Theorem 1,

Thus the sequence of polynomials Pi, P2, ... converges uniformly
on compact subsets of U to f’.
The first part of our argument is adapted from a theorem of

Porcelli and Connell [5].

THEOREM 3. Let f be an element o f A such that /(0) = 0 and
such that exists a sequence of polynomials Pl, P2, ... which con-
verges uniformly on U(03B4) f or some 0  03B4  1. Then f or x E U,
|f(x)| ~ M . |x|, where M = sup {|f(t)|; t e B}.
PROOF. For x e U, set g(x) = f(x)/x for x ~ 0, and set

g(x) = f’(0) for x = 0. g is clearly twice differentiable at x for
x e U, x ~ 0. Defining Ql, Q2, ... as in the proof of Theorem 2,
we have that Ql, Q2, ... converges uniformly on U(03B4) to g,
and thus g is twice continuously differentiable at 0. Then from
Theorem 1, for x ~ U, x ~ 0, |f(x)/x| = |g(x)|  sup {|g(t)|;
t e B} = sup {|f(t)/t|; t e B} = M, and thus |f(x)| S M - |x|.
THEOREM 4. Let 0  r  1, and let P be a polynomial mch that

P(0) = 0. Then for x e U(r), |P(x)|  2M|x|(1-r)-1, where
M = sup {|RP(t)|; t e B}.
PROOF. For z e U, set g(z) = P(z)[2M+P(z)]-1. Let z E U,

and set A = P(z) and a = RP(z). Then -a  |a| ~ M, and
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hence 0 S M-f-a and 0  4M2 +4Ma; and thus |A|2 ~
4M2+4Ma+IAI2 = (2M+A)(2M+Ã) = |2M+A|2. Then
ig(Z)12 = |A|2|2M+A|-2 ~ 1, and thus Ig(z)1  1.

For z ~ K, n ~ 03C9, set Qn(z) = -03A3np=1 [-P(z)/2M]p. There
exists 0  6  1, such that |-P(z)/2M| ~ 1/2 for all z e U(6).
Then the sequence of polynomials Ql, Qa, ... converges uniformly
on U(6) to -(-P/2M)[1-(-P/2M)]-1=P(2M+P)-1=g.
Let z e U(r). The from Theorem 3, lg(z)l ~ Izi and thus

THEOREM 5. If ~ is a continuous real valued function on B,
then there exists a continuous real valued function h on ÎJ, and a
complex valued function w on U, such that h(x) = ~(x) for all

x e B, all derivatives of w on U exist, and such that h(x) = Rw(x)
for all x e U. Moreover i f f e A, there exists a sequence of polynomials
Pl , P2, ... which converges uniformly on U to f.
PROOF. Let C(B) be the Banach algebra of continuous complex

valued functions on B, and let T be the closed subalgebra of

C(B) generated by functions of the form P(z) and P(z), where
z e B and P is a complex polynomial. Clearly for f e T, Rf and 1 f
lie in T, and hence we may readily verify for a, b e B, a ~ b,
that there exists a real valued element g of T, such that g(a) ~ g(b).
Then from the Stone-Weierstrass Theorem T must contain all

continuous real valued functions on B, and thus T = C(B).
For n, m e 03C9, n &#x3E; m, and z e B, z"z"’ = z"-m and znzm = 2l-1,

and thus there exist sequences of polynomials Pl, P2, ... and
(?D Q2,..., such that IPf(0) =IQi(0) = 0, such that the sequence
Pl-f-Ql, P2+Q2,... converges uniformly on B to ~. Now for
i e 03C9, R(Pi+Qi) = R(Pi-j-Q;). Hence setting h, = R(Pi+Qi)
for i e 03C9, we have from Theorem 1, that the sequence hl, h2, ...
converges uniformly on U to a limit function h such that

h(x) = ~(x) for x e B.
From Theorem 4, the sequence PI+QI’ P2+Q2, ... must

converge uniformly on compact subsets of U to a limit function
w. From Theorem 2, all der.vatives of w on U exist.

Set ~(x) = Rf(x) for x e B. Then from Theorem 1, |Rf(x) -
h(x)| ~ sup0r1{|R[f(t)-w(t)]; t ~B(r)} = 0. Set u = R(/-w)
and v = I(f-w). Then 0 = ux = v" and 0 = uv = -vx on U,
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and hence from the mean value theorem for real valued functions
we readily obtain f-w ~ If(0).
Let e &#x3E; 0. Then there exists 0  Ô  1, such that |f(x)-f(y)|  e/2

for all x, YEU such that |x-y| ~ 1 - ô, and there exists n e co,
such that |f(x) - Pn(x)|  03B5/2 for all x e U(03B4). Set An(x) = Pn(03B4x)
for all x e K. Then 03B4x e U(03B4) for all x e U, and |x-03B4x|=(1-03B4)|x| ~
1-03B4, and hence

4

We observe that since hxx+hyy = 0 on U, that we have
solved the Dirichlet problem for the circle. Iw is called the con-
jugate harmonic function of h.
We also observe that since f is a uniform limit of polynomials

on Îl, that Theorems 1, 2, 3, and 4 apply to f.
If we weaken the differentiability requirements on f, we are

no longer able to apply Theorem 1 to show that f-w ~ If(0).
Instead we must use the topological methods of Whyburn [6].

REMARK. Let P be a polynomial and assume that P has no
roots. Then 1/P is a bounded twice continuously differentiable
function on K. Then from Theorem 3, for z e K and r &#x3E; |z|,

Letting r increase without limit, we obtain IP(z)-P(O)1 = 0.
Thus P is constant and thus we have verified the Fundamental
Theorem of Algebra.

5

THEOREM 6. If P(z) = 03A3n0apzp for z c- K, and |P(z)| ~ 1 for
z EU, then |ai| S 1 for i = 0, 1, ..., n.

PROOF. This theorem and proof are due to Porcelli and Con-
nell [1]. Trivially the theorem holds for polynomials of degree
zero. Suppose for n e co, it holds for polynomials of degree n or
less and P(z) = 03A3n+10 apzp is a polynomial of degree n+1, such
that IP(z)1 ~ 1 for z e U.

Let 0 eK, 101 = 1 and set Q(z) = 2-1[P(z)-P(03B8z)]. Then



296

Q(o) = 0. Set Qo(x) = Q(x)/x for x ~ 0 and set Qo(x) = Q’(0)
for x = 0. Then Qo is a polynomial and from Theorem 1,
|Q0(x)| ~ sup {|Q0(t)|; t e B} = sup {|Q(t)|; t e B} ~ 1. By the
induction hypothesis, |2-1ap+1(1-03B8p+1)| ~ 1 for p = 0, 1, ..., n.
Taking 0 such that 0-P = - 1, we have 1 a, 1 for p =1, 2, n + 1
Finally |a0| = |P(0)| ~ 1.

THEOREM 7. Let f be a twice continuously dif ferentiable function
on U. Then there exi8ts a power series T(z) = 03A3~0 apzp, which
converges uniformly on compact subsets of U to f.

PROOF. Let n e ce. Then from Theorem 5, there exists a sequence
of polynomials Pl, Pz, ..., which converges uniformly on

U(1 -1/n) to f. Let p be a positive integer such that |Pp(x)- f(x)| 
1/2"-1 for x e U(1-1/n) and set Q. = Pp. Then for n s m and
i, j e 03C9, i, j ~ n, |Qi(X)-Qj(x)| ~ 1/2" for all x e U(1-1/n), and
hence from Theorem 6, |aip-ajp| ~ [2"(1-1/n)p]-1 for all

p e col where {aij}i,j ~ 03C9 is a sequence in K such that Qj(z) =
03A3~0 ajpzp for j ~ 03C9.
Thus for p e col there exists a, e K, such that for n e cv,

|ap-aip| ~ 2[2n(1-1/n)p]-1 for all 1 h n, i e co. Let p e to.
Then for all ne CO, |Pn(x)| ~ 1+1/2n+1 for all x E U(1-1/n).
Whence from Theorem 6, |anp| ~ (1 + 1/2n+1) (1-1/n)w for all
n e co, and hence |ap| = limn~~ |anp| ~ 1.
Thus the power series T(z) = 03A3~0 apzp converges uniformly on

compact subsets of U. Let z e U. Then for n ~ 03C9 such that

n &#x3E; 2(1-|z|)-1, we have |z|(1-1/n)-1  (n-2)/(n-1)  1 and

Thus f(z) = limn~~ Q"(z ) = T(z) for all z e U.
This argument may be found in [2].

THEOREM 8. (Open Mapping Theorem) Let f be a non-constant
twice continuously differentiable function on U. Then f(U) is an
open set.

PROOF. From Theorem 7, f can be expanded in a power series
03A3~0 apzp. There exists n e 03C9, such that an ~ 0 and f(z) = ao+
03A3~n apzp for z e U. Set g(z) = Igo an+pzp for z e U. Then

f(z) = a0+zng(z) for z e U, and g(0) = an ~ 0. Now there exists
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0  03B4  1, such that g(x) ~ 0 for all x e U(03B4). Hence f(x)-a0 =
xng(x) ~ 0 for all x e U(03B4), x ~ 0, and thus f(0) ~ f[B(03B4)].
Assume that /(0) is a boundary point of M = f[U(03B4)], and

set r = inf {|t-f(0)|; t ~ f[B(03B4)]}. Let w be a point of K-M
such that |03C9-f(0)|  r/2 and set r’ = inf {|t-w|; t e M}. Then 
0  r’  r/2 and there must exist zv’ e M such that |w-w’}=r’.
Then |f(x)-w| ~ r’ for all x e U(03B4) and |f(x)-w’| &#x3E; r-r’ &#x3E; r’

for all x e B(ô).
For x ~ U(03B4), set g(x)=[(f(x)-w)/r’]-1. Then g is twice con- 

tinuously differentiable on U(03B4), sup {|g(t)|; t e B(03B4)}  1, and
there exists xo e U(03B4) such that 1(xo) = w’ and hence |g(x0)| = 1.
But this contradicts Theorem 1.

THEOREM 9. Let h be a continuous function on U such that h is
harmonic on U and h(O) = 0. Let 0  r  1. Then for x E U(r)
and n e 00,

where M = sup {|h(t)|; t e B}, and

where A (0") is the n-th derivative of h at 0.

Moreover if for some n e 00, lim._,o h(x)/|x|n = 0, then

Let F be the family of harmonic functions on open subsets of
K into R. Then from (1) in the terminology of [3] F is an LN
family for some N &#x3E; 0. From [3] the elements of LN families are
expandable at lèast locally in power series. (2) and (3) insure the
full radius of convergence of expansions of elements of F.

PROOF. Let k be the conjugate harmonic function and set
w = h+ik. Then from Theorem 4, for x E U(r),

From Theorem 7, w can be expanded in a power series Y-000 anzn.
From Theorem 6, for n ~ w, and z E U(r ),
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and thus ~A(n)0~ ~ 2M(1-r)-1r1-n.
For n e 03C9 and x e U(r/2),

Assume (3) holds. Then for x e B(r/2),

and thus limx~~ w(x)/|x|n = 0. It then readily follows that

ai = 0 for i = 0, 1, ..., n, and hence for z E U(r),
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