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Probability theory and intuitionism

Discrete state-space

by

J. G. Dijkman

0. Introduction

0.1 The purpose of this paper is to give an intuitionistic treat-
ment of probability theory in the case the state-space is a numer-
able species. To this aim the idea of an event is defined and the
basic properties of the theory are derived. Two kinds of stochastic
variables are introduced. The basic results from classical theory
- as there are Tchebichev - and Kolmogorov-inequality,
Bernoulli’s law of large numbers and Borel’s law of large numbers
- are proved.
In section 5 we define the notion of "strong event" and compare

its properties with those of an event.
0.2. For the intuitionistic nomenclature the reader is referred

to Heyting1), whereas for the classical results of probability
theory the reader may consult Loève 2 ), from which book many
theorems are rewritten in an intuitionistic formulation.

1.1. Let Sz be a numerable species of mathematical entities.
This species 03A9 will be called the state-space. We number the
elements of S2 and denote them by En, so the space Sz can be
represented by {E1, E2, ...}. The number of elements may be
finite, infinite or even unknown.

We introduce the following assumption:
to every element Ei ~ 03A9 a real number pi is assigned such that

(03B11): (VEi E 03A9)(0  pi  1)
l«2)· (~k)(~N)(~n)(EN+n ~ 03A9 =&#x3E; 0  1-03A3N+ni=1 pi  2 -k)
1.2.1. A subspecies of 03A9 consisting of only one element will be

called an elementary event.

1) A. Heyting, Intuitionism, An Introduction, North-Holland Publishing Compa-
ny, Amsterdam, 1956.

2) M. Loève, Probability Theory (Second Edition), D. van Nostrand Company.
New York, London, 1960.
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1.2.2. Definition.
A species 0393 ~ 03A9 is called an event if the following condition is
satisfied:

Note that, if 0393 is an event, this definition does not require that

is true for every E, e 0393. The disjunction is only required for those
elements of 9 to which a real number pi is assigned such that
pj # 0. Trivially an elementary event is an event.

1.3.1. Definition.
If r is an event then the number P(0393) is defined by

This number P(l’) is called the probability of the event 0393.
1.3.2. To justify the definition of p(r) we have to show that

for every event l’the series

is defined i.e. it can be calculated as accurately as desired. To
prove this we consider the event T and choose a natural number

kl. On account of a2 (cf. 1.1.) we can calculate a natural number
NI such that

hence we have

(2)

Now we prove that

can be calculated as accurately as desired. We, therefore, consider
the real numbers p1, p2, ···, pN1 and apply the theorem3):
If a and b are real numbers such that a # b, then

(a # c) v (b # c) for every number c. ·

Taking
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we then have:

and from a  b it follows that for every i S Ni we can prove at
least one of the inequalities: p, &#x3E; a or p,  b.
The species of the elements El, E2, ..., EN1 is partitioned

into two disjoint species Kl and K2 such that

More than one partition may be possible but then one of the
possible ones is chosen.

Evidently:

For every Ei c- K. it follows: pj &#x3E; a, so pi # 0, hence

which implies:

is well defined. Combining the latter result with (2) and (3) it is
found:

and these inequalities prove that (1) can be calculated as accurate-
ly as desired.

1.3.3. If f is a species such that

is positively convergent, then l’ is an event.

PROOF. Let p,, # 0, then we have to prove:

Putting s = IE,Erpi we can calculate ? as accurateJy as desired
i.e. for every natural number k we can indicate an interval with
rational endpoints, with length less than 2-kw, and containing s.
Let k be chosen such that pv &#x3E; 2-x. From the positive convergence
it follows that a natural number N can be calculated such that
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and hence

Relation (3) implies Ev ~ 0393 if v &#x3E; N; if v S N the disjunction

is a consequence of (2). The latter results prove the statement.
1.3.4. Definition.
The event 03931 implies the event F2 (notation: rI ~ r2) if

Two events ri and I’2 are called equivalent if they imply each
other; this will be denoted by: 03931 ~ rI.

REMARK. In classical probability theory the event ri implies
the event r2 if 03931 C 03932. In stead of this classical notation the nota-
tion 7B ~ ri is preferred here because condition (1) only speaks of
states Ej with pj # 0.
Note that in classical theory two events, which imply each o ther,

consist of the same elementary events. In the present theory this
property cannot be proven.

1.8.5. If 03931 and F2 are two events then

PROOF. The proof of

runs along the same lines as in section 1.8.2.

2. Properties of events

2.1.1. If 03931 and F2 are events, then 03931 u r2 is an event.

PROOF. Let Ej be an element of 03A9 with pj # 0, then

hence

2.1.2. In the same way we have:



76

If ri and r2 are events, then 7B n 7g is an event ,
2.1.3. 03A9 is an event and P(03A9) = 1.

PROOF. The first part of the statement is obvious and the
second part is evident on account of OC2 (1.1.).

2.2.1. Definition.
If 0393 is an event, then P is defined as the species of elements El

with Ej ~ T. 
_

2.2.2. If 7’ is an event, then P is an event.

PROOF. From pj # 0 it follows

hence

2.2.3. If l’ is an event, then 0393 ~ r.
PROOF.

2.3.1. Let {0393n} be a sequence of events such that Fl and
FI have no common element for every i and i with i ~ j. Let
03A3~n=1 P(0393n) be positively convergent, then we have

PROOF. We choose a state Ej with pj # 0. On account of the
positive convergence of 03A3~n=1 P(0393n) we have:

Let NI be a natural number satisfying (1), then

From pj # 0 it follows that

can be solved for n = 1, 2, ..., Nl, hence we have

The results (2) and (3) prove that U~n=1 0393n is an event.
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The proof of the second part is now easy.
2.3.2. The sequence {03A3nv=1 P(Tv)} is monotonely non-decreasing

and bounded, which implies the convergence of IP(Fn) in classi-
cal mathematics. However, from the intuitionistic point of view
the properties "monotone" and "bounded" are not sufficient to
guarantee the positive convergence of 03A3P(0393n) and the necessity
to formulate explicitly the positive convergence of Y P(F.), as
we did in section (2.3.1.), can be illustrated by the following
example.
We consider the decimal expansion of a.
Let 03C4 be the sequence 0 1 2 ... 9. We suppose that p1 # 0.

(This is no restriction). We define the event rk by

if among the first k decimals of n the sequence 03C4 does not occur,
but if 03C4 occurs and if 03BB is the index of the digit 9 in the first se-
quence t that occurs, then we define

Every element 0393n of the sequence {0393n} is an event, but we cannot
prove (nowadays) that U~n=1 0393n is an event for we have no proof
for either the occurrence or the nonoccurrence of T. It is easily
seen that the series 03A3~n=1 P(0393n) is twofold negatively convergent 4)
with limit values 1 and 1-pl.

2.3.3. Let the sequence {0394n} of events L1n be defined by

then

(definition

hence {0394n} is a monotonely decreasing sequence of events. It is,
however, not allowed to say that ~~n=10394n is an event, for we have
no proof of the disjunction

From this example it becomes clear that it is not allowed to state
that the intersection of a monotonely decreasing sequence of

4) For the definition of this notion of convergence cf. J. G. Dijkman, Recherche
de la convergence négative dans les mathématiques intuitionistes. Proc. Akad.
Amsterdam 51, p. 681- 692 = Indagationes math. 10, p. 232-243.
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events is an event. From the classical point of view the statement
is true:

2.3.4. In the same way as in section 2.3.1. we can prove:
Let {0393n} be a sequence of disjoint events with the property that

there exists a natural number k such that ~~n=k 0393n is an event, then

is an event

2.8.5. Let l’ be an event which can be decomposed into the
sequence {0393n} of disjoint events hn (n = 1, 2,...), then

The proof is simple and will be omitted, but note that

follows from F = U~n=1 0393n and not from the fact that hn (n = 1, 2,
...) is an event, for in the définition of an event we have only
required

and it may happen that E, E 0393 with pi =A 0 without having a
proof of pi # 0.

2.4.1. Let F be an event, then P(0393 u F) = 1.

REMARK. Note that it may happen that for some Ej E S2 we
have no proof of E, E ru T. For this reason 2.3.5. cannot be
applied here.

THEOREM 2.4.1. is a special case of:
2.4.2. Let r be an event such that 03A9B0393 = ~, then we have:

PROOF. Let k be a natural number, then a natural number N
can be calculated such that

For every i = 1, 2, ..., N with pi # 0, we have El E T and for the
remaining elements Ej, for which we have no proof of pj # 0 it is
allowed to state:
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From (1) and (2) it follows:

The natural number k was chosen arbitrarily, hence P(0393) = 1.
2.5. Let rl and r2 be events with 03931 ~ r2, then

The proof of this statement is simple and can be given as well
directly as indirectly. However, we cannot use the usual classical
proof, which runs as follows:

for it is not allowed to apply the classical rule : 03932 = rI u (F2-rl).
2.6. If {0393n} is a descending sequence of events and r = ~~n=10393n

is an event, then we have

The proof, which runs along the same lines as in section 2.8.1. is
omitted, but note that we have to require the condition:

is an event".

From the classical point of view this condition is always satisfied.
2.7. Remarks.
1. In the modern set up of classical probability theory (cf.

Loève l.e. or Doob 6 )) the triple (03A9, U, P(-» is introduced, where 03A9
is the state-space, 21 a a-field and P(·) a normed, nonnegative and
03C3-additive measure function on 9î. In our treatment we have defined
the function Pi ) for every state Ei e Q with P(Ez) = p, and the
définition of an event r was chosen in such a way that P(0393) can
be calculated by additivity.

In section 2.3.2. we saw that it is not allowed to say that the

species of all events is a a-field. It is true, that the species of all
events is a field. The same remark is true for strong events
(cf. 5.1.1.).

2. The properties 2.1.1., 2.1.2., 2.1.3. (excepted P(03A9) = 1),
2.2.2. and 2.2.3. are independent of (03B12) and depend only on (oc,)
and the definition of an event.

5) Doob, J. L., Stochastic Processes. John Wiley &#x26; Sons. New York (1953).
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3. If condition (a2) is replaced by the weaker condition

we meet difficulties in defining the probability of an event r.
Assuming condition (oc’) the series

will not be positively convergent for every event l’ and hence it
does not define a real number in general.

In the latter case a sequence {Pn(0393)} can be introduced by

for every event r. 
The sequence {Pn(0393)} is bounded and monotone, hence it is

non-oscillating (cf. Heyting l.c. p. 110, theorem 4).
In the case the theory is based on ( a2 ) it is preferable to define

an event by the property given in 1.3.8. This set up of the theory
will not be developed in this paper.

3. Stochastic variables

3.1.1. Definitions.
A real-valued function xi ) defined for every element Ei ~ 03A9,

is called a stochastic variable if for every i and i with E, E 03A9 and
Ej E S2 we have :

The range of x(·) will be denoted by {x1, x2, ...} with x(Ei) = xi
(i = 1, 2,... ).
By {En : x( En )  À) or shortly by {x  03BB} is understood the

species of elements En E 03A9 which satisfy the inequality x(En)  03BB.

3.1.2. Remarks.
1. It is required that the subspecies of the range of a stochastic

variable x(·) corresponding to those elements En ~ 03A9, for which
we have a proof of pi # 0, is an ordered species 6). Note that the
definition of a stochastic variable does not imply that the range of
it is an ordered species.

6) cf. Heyting: l.c. p. 106.
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2. If x(·) is a stochastic variable then from the classical point
of view xn(·) is a stochastic variable for every natural number n.
From the intuitionistic point of view we cannot prove this proper-
ty. This becomes clear from the following counter-example.

Let Sl consist of only two elements El and E2 with pl = P2 = 2
and let x(.) by defined by

where p is a real number for which we have not (yet) a proof of

Evidently x(·) is a stochastic variable but in this case it is not
allowed to state:

In this case it is not allowed to say that {En : x2  1} is an event
for we have no proof of

At the same time the counter-example shows that if x is a stocha-
stic variable, then lx need not to be a stochastic variable, but it is
trivially true that if Ixl is a stochastic variable then x is a stochastic
variable. It is easily seen that if ixl is a stochastic variable then
x" is a stochastic variable for every natural number n.

3.2.1. If x(·) is a stochastic variable then the species

is an event for every fixed i with E, E 9.

PROOF. We have to prove:

Let us choose a natural number i such that p, # 0, then (i = j ) v
(i ~ j) is true for every fixed i.

If i = i, then from z, = xf it follows that E, e {En : x  xi}.
If j ~ i, then the definition of a stochastic variable implies

Combining (1) with:

then we obtain
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3.2.2. In the same way it is proven:
If x(·) is a stochastic variable then the species

is an event for every fixed i.
A simple proof can be given by applying 2.2.2.
8.3.1. Definition.
The function x(. ) is called a weak-stochastic variable if

(i) x(En) is defined for every element En e Sz for which we have
pn ~ 0

(ii): pi+pi # 0 =&#x3E; [x(E,) = x(Ej)] v [x(Ei) # x(Ej)] under the
condition that x(E,) and x(Ef) are defined.

8.3.2. Remarks.
1. Let d C S2 be the species of elements Ej s S2 with pj # 0.

Then the weak-stochastic variable x(.) is defined for evey ele-

ment E, e A, but it is possible that x(·) is defined on a species A’
with A’ ~ . This depends on the defining law of x(·).

2. It should be noted that the definition of x(·) does not require
that pi+pj # 0 implies that x(Ei) and x(E,) are defined. In general
it is only allowed to say that in this case at least one of these
symbols is defined.

8. The range of x(·) will be denoted by .9 (x). From 03B12 (cf. 1.1.)
it follows that Bl(x) contains at least one element.

4. The following statement is evident.
A stochastic variable x(·) is a weak-stochastic variable.
3.8.8. Let A be the domain of the weak-stochasic variable x(·),

then

(i): d is an event,
(ii): P() = 1.

PROOF.

(i): pj # 0 =&#x3E; x(E,) is defined =&#x3E; E, e A.
(ii): Let kl be an arbitrarily chosen natural number, then accord-
ing to 03B12 (cf. 1.1.) a natural number NI can be calculated such that

From the spread consisting of the numbers pl, p2, ..., PNI we
select the elements pv1, pp2, ..., py such that
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The latter result implies

The natural number kl was chosen arbitrarily, hence P() = 1.
3.3,4. Let x(-) be a weak-stochastic variable.
If x e 8l(x), then the species {En : x(En)  x} is an event.

PROOF. x E R(x) ~ (3i)(x(Ei) = x). Starting from this remark
the proof can be rewritten from 3.2.1.

3.3.5. The definition of a weak-stochastic variable as given in
section 3.3.1. enables us to interprete the characteristic function
x0393(·) of an event F as a weak-stochastic variable. This is the con-
tent of next theorem.

THEOREM. For every event F the function xr(.), defined by

is a weak-stochastic variable.

PROOF. Let pj # 0, then we have

for 0393 is an event, hence x(Ej) is well defined.
If x(E,) and x(Ej) are defined, then evidently 

3.8.6. From 3.2.1. and 3.3.4. it follows that

are defined for every i and every x e R(z), where x and z are
stochastic resp. weak-stochastic variables. It is clear that this can
be extended to the following statement:

are defined for every real number 03BB resp. ,u with the property

resp.

Let us define the functions Fx(03BB) and Gz(y) by
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resp.

for every number A resp. p which satisfies (1) resp. (l’).
The following counter-example illustrates that this definition of

Fx(À) resp. Gz(u) does not allow us to pretend that Fx(03BB) and
Gz(p,) can be defined for every real number 03BB resp. 03BC.

Counter-example.
Let p, # 0 (such a value of i can be calculated) and let be a

real number for which we have no proof of

In this case {En : x  03BB} is not an event and P(x  03BB) is not de-
fined.

3.8.7. Let DFx be the domain of Fx(03BB), where Fx(03BB) is defined as
in 3.3.6,. then Djp contains at least one real number.
PROOF. On account of (03B12) we have

Let i be an integer satisfying (1), then

is an event,

hence Fx(x;) = P(x  xi) is well defined, which implies

8.8.8. Let F x(.) and Dy be defined as in 8.8.6. and 8.8.7.
If

then

PROOF. We choose an arbitrary natural number kl and calculate
a natural number N1 according to «2 (cf. 1.1.) such that

From Pl’ p2, ···, PN1 the éléments pv1, pv2, ..., pvr are selected
such that
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Let 03BB0 be defined by: 03BB0 = max[xv1, xv2, ..., xvr], then

for every Â e DFx with 03BB &#x3E; 03BB0, from which the assertion follows.
3.8.9. Let F*(R) be defined by F*(Â) = P(x  Â), where x(.)

is a stochastic variable and Z satisfies (1) (3.3.6. ).
Then we have:

The proof runs in the same way as in section 3.3.8.
3.3.10. In the same way we obtain:

If F(03BB) resp. F*(R) is defined for 03BB = 03BB1 and Â = A. then from
Â,  Â2 it follows:

3.3.11. From the classical point of view the sum of two measur-
able functions is a measurable function or in probability language
translated: the sum of two stochastic variables is a stochastic
variable. This theorem, however, has not been proved in intuitio-
nistic mathematics (cf. A. Heyting, l.c. page 85).

In our set up we have evidently:
Let x and y be stochastic variables with range {xi} resp. {yi}.

Then x-f-y is a stochastic variable if

and x-y is a stochastic variable if

8.3.12. The statements in section 3.3.11. remain true if "sto-
chastic" is replaced by "weak-stochastic".

4. Expectation

4.1. Definitions.
4.1.1. Let x(·) be a function defined on some subspecies  C.Q.

As before xi means x(Ei) if Ei E A.
If the series

is positively convergent then the real number defined by

is called the expectation of x(·) with respect to A.
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The expectation of x(·) with respect to  (if it exists) will be
denoted by E{x(·)} or shortly by E{x} and we write E(x) if
 = 03A9.

REMARK. On account of the absolute convergence of the series
which defines the expectation, the definition is independent of the
order which has been chosen in numbering the state-space S2.

4.1.2. By  ~ 03A9 we express that  is a subspecies of S2 such that

THEOREM. Let x(·) be defined on Q and let  be a species such
that

(i)  ~ 03A9
(ii) E{x} exists,

then: E{x} = E{x}.

PROOF. We define the sequence {sn} by

On account of:

contradicting  ~ 03A9, it follows: 

Now let us suppose:

then we have:

(1) and (2) constitute a contradiction, hence (ii) follows.
4.1.3. On account of 4.1.2. it is allowed to write E(x} in stead of

E{x} if  ~ Sl and if x(·) is defined on Q.
4.2.3. The function x(·) defined on  C Q is called bounded if



87

4.2.1. A bounded stochastic variable has a finite expectation.
PROOF. Evident, but remember that by definition (3.1.1.) a

stochastic variable is defined for every element of 0.

4.2.2. A bounded weak-stochastic variable has a finite expecta-
tion with respect to its domain.

PROOF. Let x(. ) be a bounded weak-stochastic variable with
domain l’, then we know:

Let k be an arbitrarily chosen natural number, then from (1) and
a2 (cf. 1.1.) it follows that a natural number NI can be calculated
such that

and this relation proves the positive convergence of the series

03A3Ei~0393|xi|pi on account of Cauchy’s general convergence principle,
hence E0393{x} exists.

4.2.3. Let x0393(·) be the characteristic function of the event 0393

(cf. 3.3.5.), then

PROOF. Let  be the domain of x r(. ), then A -- 9 (cf. 3.3.3). On
account of 4.2.2. we know that E(x0393} exists and from the defini-
tions (1.3.1.) and (4.1.1.) it follows:

4.2.4. Though the sum of two stochastic variables need not be a
stochastic variable we can speak of the expectation of the sum of
two stochastic variables. The absolute convergence of the series

occurring in the definition of expectation implies

under the restriction that both expectations in the righthand
member exist.

It is trivially true that the same remarks apply to the sum of
two weak-stochastic variables.

4.3. Many theorems can be translated from the classical theory
into the intuitionistic theory with only slight modifications. We
give some of them.

4.3.1. Tchebichev-inequality.
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Let Ixl be a stochastic variable and let 03BB # 0 be a real number

such that

is an event, then

under condition that E{x2} exists.

PROOF. Let us put 1 = {En : Ix(En)1 &#x3E; 03BB}, then tll is an event
and the same is true for 2 = li (cf. 2.2.2.). This implies:

hence

REMARKS.
1. The modification is:
We have to require that lxi is a stochastic variable and it is
not sufficient to know that x is a stochastic variable.

2. E{x2} occurs in the righthand member of the inequality. It
is allowed to speak of the stochastic variable x2 (cf. 3.1.2. ).

3. Obviously the inequality can be formulated for weak-sto-
chastic variables.

4.3.2. Definitions.
The events 03931, .r2, ...., 0393n (n 2) are independent if the

following equality

holds for every choice of the natural numbers 1 ~ v,  v2 ...
C vx S n with k = 2, 8, ..., n.
The sequence {0393n} is a sequence of independent events if 03931, ...,

0393k are independent for every k.
The stochastic variables x and y are independent if

for every xi and yj belonging to the range of x resp. y.
4.3.8. Let x and y be independent stochastic variables then

The proof is simple and will be omitted, but note that x , y need
not to be a stochastic variable in general.
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If x and y are stochastic variables then x - y is a stochastic
variable if

4.3.4. Let 7B, 03932, ..., 0393n be independent events and let us
replace some or all Tv by 0393v, then the new séquence of events
consists of independent events, as can easily be proven by calcu-
lation.

4.4. Bernoulli’s law of large numbers.
Let us suppose that {0393k} is a sequence of independent events

such that P(0393k) = p (k = 1, 2,... ) and let  be the species con-
sisting of the elements El ~ 03A9 with pj # 0.

According to the définition of an event we have

which enables us to define the sequence {xk(·)} of functions by

From (3.3.5. ) it is clear that xk is a weak-stochastic variable for
every k and (4.2.2.) implies that E{xk(·)} exists, satisfying

Now we define the function Sn(·) by

for every natural number n. Evidently, the functions Sn(.) are
weak-stochastic variables with  as domain.

By {03B5n} we indicate a sequence of real numbers with the proper-
ties :

for every natural number n and we introduce the species Ân,k
(n, k = 1, 2, ...) consisting of those elements E, E S2 for which
Sn(Ej) is defined and which satisfy:

It is easily seen that 03BBn,k is an event for every pair of natural
numbers n and k, which implies that
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is well defined. Furthermore it is true that the species, consisting
of those elements E, for which we have

is an event. The independence of the sequence {0393k} then implies:

which leads to:

Now it follows:

hence

Furthermore we have:

Combining (1) and (2) we get

which proves

4.5.1. Let {|xn|} be a sequence of weak-stochastic variables
which satisfies the following conditions:

(i) there exists a sequence {03B5n} of positive numbers with
limn~~03B5n = 0 and such that
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is an event for every pair of natural numbers n and m;

then we have

PROOF (j). d is an event if

Let us take a pi # 0 then x(E;) is defined (cf. 3.3.1.) and (ii)
implies:

(jj). From the implication

and 03B12 (cf. 1.1.) it follows

hence P(L1) = 1.
4.5.2. Borel’s strong law of large numbers.
Let {0393n} be a sequence of independent events with p(rn) = p

(n = 1, 2, ... ). If there exists a sequence {03B5n} of positive real
numbers with limn~~03B5n = 0 such that p±03B5n # m/n (m = 0, 1,
..., n ) for every natural number n, then

where Sn(·) is defined as in section 4.4.

PROOF. The proof can be rewritten (using 4.5.1.) from Loève
(l.c. page 19) with only slight modifications.

4.5.3. Kolmogorov-inequality.
Let lxi be a weak-stochastic variable with |x|  1, and let e be

a positive real number such that

is an event, then
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PROOF. Remark 2 of section 3.1.2. applies to weak-stochastic
variables, hence x2 is a weak-stochastic variable with the same
domain ’ as Ixl and according to 4.2.2. the expectation E{x2}
is well defined. Let ’’ represent the event

and {xi} the range of lxi, then it is easily seen that

5.0. The purpose of this section is to investigate an other notion
of event and to compare it with the results obtained in the fore-

going sections.
5.1.1. Definition.
The species  C S2 is called a strong event if the following

condition is satisfied

5.1.2. The method developed in 1.8.2. can be applied to prove:
The series IBIEAPl is positively convergent and defines a real

number which we shall indicate by P(l). The number P() will
be called the probability of the strong event A.

5.1.3. A strong event is an event.

PROOF. This is an immediate consequence of: pj # 0 =&#x3E; pj ~ 0.
5.1.4. The converse of 5.1.3. cannot be proven from the in-

tuitionistic point of view because we can construct real numbers p
with p ~ 0, but for which we are not able to prove p # 0 7).

5.1.5. Let ll be a strong event and let 0393 be defined as the sub-

species of A, consisting of the states E, e  with pi # 0, then
(i) l’ is an event

(ii) P(r) = P(A).
PROOF. (i) The implications

and the définition of l’ prove the statement.

’ ) cf. L. E. J. Brouwer: Essentieel negative eigenschappen. Proc. Akad. A’dam
51 p. 963 - 965 = Indagationes Math. 10 p. 822-824.
D. van Dantzig: Comments on Brouwer’s theorem on essentially negative predi-

cates. Prov. Akad., A’dam 52, p. 949 - 957 = Indagationes Math. 11, p. 347-355.
Heyting (I.c. chapter VIII) discusses both papers.
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(ii) From (i) it follows that P(0393) is a well defined real number
and from the proof given in (1.3.2. ) it is easily seen that p(r) =
P().
Note that this theorem states, that every strong event contains

an event which possesses the same probability.
5.1.6. The following properties are easily verified.
1. If 1 and 2 are strong events, then 1 ~ d2 and 1 n 2

are strong events (cf. 2.1.1. and 2.1.2.)
2. If  is a strong event then 2f is a strong, where the definition

of  is given in the same way as in 2.2.1. 
3. If  is a strong event, then (E, e ) ~ (Ej e ).
REMARK. Note that (Ej ~ ) ~ (Ej ~ ) need not to be true,

for let Ej be a state such that we have no prove of: (p, = 0) v
(pi ~ 0) an let  be the species consisting of those elements
En e Q for which

Applying the theorem: 
For every real number a we have: -, -, [(a = 0) v (a ~ 0)],

it follows: E, ~ , but we have no proof of El e A.
Evidently the following statement is true:

5.1.7. Comparing the foregoing sections 5.1.... with those

concerning events it becomes clear that events and strong events
possess analogous properties and at a first glance there is no

reason to prefer the concept of event to that of strong event.
However, in 2.3.1. an important property of events was proved
but a counter-example illustrates that strong events do not possess
that property.

Counter-example.
Let El be a state such that p1 ~ 0, but we suppose that we have

no proof of pl # 0. Furthermore we consider the decimal expan-
sion of 03C0 and to 03C4 the same meaning as in 2.3.2. is given.
The strong-event An is defined by:

if n is not the index of the digit 9 in the first sequence 1: (if it
exists) in the decimal expansion of n, 
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if n is the index of the digit 9 in the first sequence T occuring in
the decimal expansion of 03C0.

We cannot prove (nowadays) that

is a strong event for we have no proof of

though p1 ~ 0.
On the other hand 03A3~n=1 P(n) in positively convergent. This

counterexample shows that theorem 2.3.1. does not remain true if
"event" is replaced by "strong event".

5.1.8. From the intuitionistic point of view the theorems 2.3.1.
and 2.8.4. are equivalent and from the classical point of view the
requirement are even superfluous, but, surprisingly the equiva-
lence of these theorems cannot be proven if we replace "event" by
"strong event" for theorem 2.3.1. is not true for strong events.
On the other hand theorem 2.3.4. remains true under this replace-
ment as is expressed by the following theorem:

Let {n} be a sequence of disjoint strong events. If there exists
a natural number k such that U~n=kn is a strong event, then

(i ) U~n=1 n is a strong event

PROOF. (i). Let pi :A 0 and let us define the species  and ’ by

Evidently

(1)

From

and

it follows in connection with (1):

which proves that  is a strong event.
Applying (2.3.1.) and (5.1.5.) the second part (ii) is easily

proven.
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5.1.9. Up to section 5. a theory has been built up with definition
(1.2.2.) of an event as starting point. As becomes clear from sec-
tions (1.2.2.), (1.3.1.), (1.3.2.) and (1.3.3.) a completely equivalent
theory is obtained if theorem 1.3.3. is chosen as definition of an
event.

However, this equivalence is broken up if "event" is replaced
by "strong event", for let d be a species such that

is positively convergent, then this positive convergence does not
imply that the species L1 is a strong event.

Acknowledgement

I wish to thank Prof. dr. A. Heyting for his help during the
preparation of this paper.
The interesting comments of Prof. dr. ir. J. W. Cohen were of

great value for me.

(Oblatum 27-2-63). Technological University Delft
Department of Mathematics.


