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On distribution of arithmetical functions
on the set prime plus one

by

I. Kátai

1. Introduction

P. Erdôs proved the following theorem [1].
Let f(n) be a real valued additive number-theoretical function,

and put

Put

Then the distribution-functions FN(x) tend for N - + co to
a limiting distribution function F(x) at all points of continuity
of F(x), if the following three conditions are satisfied:

It has been shown also by P. Erdôs that F(x) is continuous if
and only if the series 03A3f(p) ~ 0 1/p diverges.
New proof of this theorem has been given by H. Delange [2]

and by A. Rényi [3].
A multiplicative function g(n) is called strongly multiplicative,

if for all primes p and all positive integers k it satisfies the con-
dition

H. Delange proved the following theorem [4].
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If g(n) is a strongly multiplicative number-theoretical function
such that Ig(n)1 |  1 for n = 1, 2, ..., and such that the series

converges, then

exists and

A new proof of this theorem has been given by A. Rényi [5].
Throughout the paper p, q denote primes, and 03A3p and Wp denote

a sum and a product, respectively, taken over all primes. Let
further li x = ~x2 du/log u.
The aim of this paper is to prove the following statement.

THEOREM 1. Let g(n) be a compler-valued multiplicative function
such that |g(n)|  1 f or n = 1, 2, ..., and such that the series

converges. Let N(g) denote the product

Then

From this theorem easily follows the

THEOREM 2. Let f(n) be a real valued additive number-theoretical
function which satisfies the conditions 1, 2, 3, of the theorem of
Erdös.
Put

Then the distribution-functions Fv(y) tend for N ~ oo to a

lintiting distribvtron-function F(y) at all points of continuity
of F(y).

Further F(y) is a continuous function if and only if
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2. Deduction of Theorem 2 from Theorem 1

In what follows c, cl , C2’ ... denote constants not always the
same in different places.
For the proof of Theorem 2 we need to prove only that the

sequence of characteristic functions

converges to a function ~(u), which is a continuous one on the
real axis.

It is easy to verify that from the conditions 1/2/3 it follows that

converges for every real u. Using now Theorem 1 with g(n) = eiuf(n)
we obtain that q;N(U) - ~(u), where

The continuity of (2.3) is guaranteed by the continuity of (2.2),
which follows from the conditions 1/2/3 evidently.
For the proof of the continuity of F(x) in the case

we remark the following.
P. Levy proved the following theorem [8].
Let X1, X2, ..., X n , ... be a sequence of independent random

variables with discrete distribution and suppose that there exists
the sum

with probability 1. Let

Then the distribution function of X is continuous if and only if
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Let now the Xf)’s be independent random variables with charac-
teristic functions

and let

It is evident from (2.3) that X has the distribution function
F(x), and so this is continuous if and only if

3. The proof of Theorem 1

We need the following Lemmas.

LEMMA 1. Let g(p) be a complex-valued function defined on the
primes, for zvhich ig(p)j  1 and

converges. Then

for every positive constant c, further

and

PROOF. The assertion in (3.4) is an immediate consequence of
(3.3) since

further 03A3x1/2px 1/p is bounded, and the second sum on the
right hand side tends to zero because of (3.3).

Let us put
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From the convergence of (3.1) it follows that

converges too. This sum has positive terms and the inequality
|arg g(p)| &#x3E;c involves that 1-Re g(p) &#x3E; c1(&#x3E;0). Hence (3.2 )
follows.

From the inequality |a+bi|2 ~ 2(laI2+ Ib12) it follows that

The first sum on the right hand side evidently converges since

It is sufficient to prove that

Using the inequality

we have (3.5).

LEMMA 2. Let Nk(x) denote the number of solutions of the equation

in primes p, q. Then

f or k  x, where c is an absolute constant.
For the proof see Prachar’s book [6], Theorem 4.6, p. 51.
Let n(x, k, l) denote the number of primes in the arithmetical

progression ~ l (mod k) not exceeding x.

LEMMA 3. (Brun-Titchmarsh). For all k  x1-03B4, 03B4 &#x3E; 0

where ca is a constant depending on c5 only.
For the proof see [6J.
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LEMMA 4. (E. Bombieri [7]).

where Y = xi (log x)-B; B &#x3E; 2A + 23, A arbitrary constant.
Let i(n) be the number of divisors of n.

LEMMA 5.

where c is a constant.
The proof is very simple and so can be omitted.
Let us define the multiplicative function gK(n) by putting

By other words we put for any natural number n

Let us put further

where d runs over all (positive) divisors of n and 03BC(n) is the

Môbius function. Then hK(n) is also a multiplicative function,
hK(p03B1) = gK(p03B1)-gK(p03B1-1); hK(p) = 0 for p &#x3E; K; hK(p) = 0 for
p03B1-1 &#x3E; K, oc ~ 2.

Let further h(n) be defined by

Let us introduce the notation

Choose now K1 = (1 4 - 03B5) log x, .K2 = x1 4, Ka = ael-8, where B
and 03B4 are suitable small positive numbers.
We shall prove the following relations:



284

Theorem 1 follows if we choose 03B4 = 03B4(x) tending to zero so

slowly that the right hand side of (3.8) is o(li x).
First we prove (3.6). We have

where

Using the prime number theorem, we obtain that hK1(d) = 0
for d &#x3E; ae!-8/2 because

if x is sufficiently large.
Since ig(n)l  1, so |hK1(p03B1)| ~ 2 and IhKl(d)1 S r(d).
For the estimation of R, we split all of the d’s, d  ael-8/2

into two classes H1, 212 as follows:
d belongs to 3ti or H2 according to that 03C4(d) ~ (log x)5 or

a(d) &#x3E; (log x)5, respectively.
Using Lemma 3 and Lemma 5 we have

Otherwise, using the Bombieri’s result (Lemma 4), we have
that the sum

not exceed

Hence
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Further we have

From the convergence of the series 03A3 (g(p) - 1)/p it follows that
the product on the right hand side tends to N(g) for x ~ + ~.

So (3.6) is proved.
Let now g(n) be a multiplicative function defined by

It is evident that g(n) = g(n) except eventually those n’s
for which there exists a q, q &#x3E; Kl , such that q2Bn. So

From (3.10)

follows. Using the formulas

if all primdivisor q of p+1 in the interval K,  q  K2 satisfies
the relation larg g(q)1  n/2. Let H3 denote the set of the p’s
possessing this property, and H4 the other p’s.
We can easily estimate the sum

since



286

and by (3.2 )

Let

From (3.11) we have that

Using (3.3) in Lemma 1 and Lemma 3 we have

Further, from the Cauchy’s inequality

Using Bombieri’s result we have that

since

So we proved that

whence (3.7) follows.
Similarly we have
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Using Lemma 3 and (3.4) in Lemma 1 we have that

Further using (3.3) and (3.2) we obtain that

Hence (3.8) follows.
Finally using Lemma 2 we have

because

So the inequality (3.9) is proved, and from (3.6 )-(3.9) our
theorem follows.

4. Some remarks

1. From our Theorem 2 it follows evidently that if g(n) is a

positive valued multiplicative number-theoretical function such
that

then putting
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the distribution functions FN(y) tend for N - +~ to a limiting
distribution function F(y) at all points of continuity of F(y).
Hence it follows especially that the functions

(a(n) denotes the sum of the divisors of n) have limiting dis-
tribution functions.

2. Recently M. B. Barban, A. I. Vinogradov, B. V. Levin proved
that all results of J. P. Kubilius theory (see [9]) are valid for
strongly additive arithmetic functions belonging to the class H,
when the argument runs through "shiffed" primes {p-l}, (see
[10], [ll] ).
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