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The coarseness of a graph1

by

Lowell W. Beineke and Gary Chartrand

Introduction

A graph is planar if it can be drawn in the plane (or on a sphère)
so that no two of its edges intersect. The thickness t(G) of a graph
G, introduced by Tutte [3], is the minimum number of edge-
disjoint planar subgraphs whose union is G. In contrast to the
thickness is the coarseness 2 c(G) defined as the maximum number
of edge-disjoint nonplanar subgraphs contained in G. Obviously,
G is planar if and only if c(G) = 0.
We present some results here concerning the coarseness of a

graph. In particular, bounds on the coarseness of complete graphs
are given.

Basic results

A subdivision of a graph G is a graph obtained from G by re-
placing an edge x = uv of G by a new vertex and the two new
edges uw and wv. Two graphs G, and G2 are homeomorphic if there
exists a graph G3 which can be obtained from each of G, and G2
by a sequence of subdivisions. Following Kuratowski [2], we cal]
a graph skew if it is homeomorphic to either the complete graph
Ks or the complete bigraph K3,3. These graphs are shown in
Figure 1. The classic result of Kuratowski then states that a graph
is planar if and only if it contains no skew subgraph.

1 Research supported by grants from the U. S. Air Force Office of Scientific
Research and the National Institute of Mental Health, Grant MH-10834.

2 This concept was suggested by Professor Paul Erdôs.
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If a graph G has coarseness n, then the n edge-disjoint nonplanar
subgraphs contained in G may all be chosen to be skew, for if
one were not skew, then by Kuratowski’s theorem, some extra-
neous edges could be deleted to obtain a skew graph.
A block of a graph G is a maximal connected subgraph of G

which contains no eut vertices. It is clear that any skew subgraph
of G must be a subgraph of some block of G; thus we arrive at the
following result.

THEOREM 1. The coarseness of a graph is the sum of the coarse-
nesses of its blocks.

This implies that it is sufficient to determine the coarseness of
graphs having no eut vertices. Another observation which can be
made concerns the number of edges in a graph. The smallest
number of edges which a nonplanar graph can possess is 9 (and
then only if the graph is K3,3). Therefore, it immediately follows
that if a graph G has q edges, then

In [1] it was shown that every graph is homeomorphic to a
graph having thickness 1 or 2. As we shall now see, however,
coarseness is invariant under homeomorphism.
THEOREM 2. Homeomorphic graphs have the same coarseness.

PROOF. Let Gi and G2 be homeomorphic graphs. Then there
exists a graph G3 which can be obtained from each of G, and G2
by a sequence of subdivisions. To show that c(G1) = c(G2), it is
clearly sufficient to prove that the coarseness of one of G, and G2,
say G1, equals that of G3 . To prove this, however, it is sufficient
to show that c(G1) = c(G’1), where Ci is a subdivision of Gl. Thus,
there is an edge x = uv of G, which has been replaced by a new
vertex and the two new edges uw and wv to obtain Gi . Assume
c(Gl) - n. Consider a set of n edge-disjoint skew subgraphs of
G1. If none of these subgraphs contains x, then this is a set of
subgraphs of Gi , so c(G’1) ~ n. Should one of these subgraphs H
contain x, then by replacing x by the vertex w and the edges uw
and wv, a skew subgraph H’ of G’ is produced, which together with
the other n -1 subgraphs constitutes a collection of n edge-
disjoint skew subgraphs of G’1. Hence, in any case, c(Gi ) &#x3E; n.

To show that c(Gi ) &#x3E; n is not possible, suppose that G" contains
n+1 edge-disjoint skew subgraphs. If neither of the edges uv nor
ze» is contained in any of these subgraphs, then these skew graphs
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are also subgraphs of Gl, but this cannot happen since c(G1) = n.
Thus, one of these edges, say uw, must belong to some skew
graph S. Because no skew graph contains a vertex of degree 1,
the edge zew is also necessarily in S. But then, a skew graph S’
can be obtained by replacing the edges uw and zew and the vertex
w by the edge x. The graph S’ along with the other n skew graphs
form a set of n+1 edge-disjoint skew subgraphs of Gl, but this
is also a contradiction.

By taking a sufficiently large number of subdivisions of a graph
G with high coarseness, a graph G’ can be obtained whose thickness
is 2. By the previous theorem, however, c(G) == c(G’). We state
this as a corollary.

COROLLARY 2a. For every positive integer n, there exists a
graph G such that c(G) - t(G) = n.
More specifically, consider the nonplanar complete bigraph

K3,3.’ · It is easily observed that K3, 3n is the edge-disjoint union
of K1,3n and K2,3n, each of which is planar. Thus t(K3,3n) = 2.
One also sees that K3, 3n contains n edge-disjoint copies of K3, 3
so that c(K3,3n) ~ n, but since this graph has 9n edges, by in-
equality (1), c(K3,3n) = n. These facts have another, perhaps
somewhat unexpected interpretation: For any positive integer n,
it is possible to find two planar graphs which can be combined
into a graph G, which then in turn can be decomposed into n
edge-disjoint nonplanar graphs.

On the coarseness of complète graphs

The complete graph K p with p vertices has p(p-1)/2 edges;
therefore by (1), we have

In this section we also present lower bounds for c(K,). The deter-
mination of a formula for c(Kp) appears to be a very difficult
problem. The known values for c(Kp) are given in Table 1. Thus
the smallest value of p for which c(Kp) is unknown is 13. Also
unknown is the smallest positive integer n for which there exists
no p such that c(Kf)) = n.
For several of the entries in Table 1, a simple construction and

a degree argument provides the answer. We illustrate this for
p = 9. By dividing the 9 vertices into 3 sets of 3 vertices each,
one sees that every two of these sets induces a copy of K3,3 so that
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TABLE 1

The known coarsenesses of complete graphs

c(K9) ~ 3. Since K9 has 36 edges, it follows, by (2), that c(K9) ~ 4.
However, for c(K9) to have the value 4, it would necessarily have
to contain 4 edge-disjoint copies of K3,3, but each vertex of K9
has degree 8 so at least two edges meeting at each vertex cannot
be in any of these copies of K3,3 implying that 3 is the maximum
number of edge-disjoint nonplanar skew graphs contained in K9.

For p =11 and p =12 an argument similar to that for p = 9 can
be given, but for p = 10 a different technique is employed. We label
the vertices of Kio as v1, v2, ···, v10. Then c(K10) ~ 4 since K1o
contains 4 edge-disjoint skew graphs, e.g., those shown in Figure 2.

Figure 2

By (2), however, c(K10) ç 5. If c(K10) = 5, then, since Klo has
45 edges, K10 must contain 5 edge disjoint copies Gi (1  i  5) of
the graph K3, 3 . Necessarily, each vertex appears in 3 of these
copies. We now relabel the vertices of K10 by ul , U2’ ..., U10 so
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that ul appears in G1, G2 , and G3 and so that the vertices to which
ul is adjacent are as indicated in Figure 3.

Figure 3

The two unlabeled vertices in Gi clearly belong to the set

{u5, U6’ .. -, u10}. If both these vertices are in the set {u5, u6, u7}
or in {u8, U95 U1015 then these two vertices must appear together
in some copy of K3,3 since the edge determined by them is in
some Gi . However, no such graph can exist, for these vertices
must be mutually adjacent to two other vertices in this Gi .
Hence, of the two unlabeled vertices in G1, one must be in

{u5, U6’ u7} and the other in {u8, u9, u10}, say U5 and u8. Similarly,
of the two unlabeled vertices in G2, one must belong to the set
{u2, u3, u4} and the other to {u8, u9 , u10}. However, no vertex of
{u2, u3, u4} can be in C2 since each of these vertices is already
adjacent to u5 in CI. This is a contradiction; thus K1o does not
contain 5 edge-disjoint copies of K3,3 so that c (Klo) = 4. This fact
will be useful in obtaining a lower bound for c(Kp).
THEOREM 3. For the complete graph K p ,

PROOF. For p = 3r, the vertices of Kp can be divided into r
sets of 3 vertices each. Every two of thèse sets clearly détermine
a copy of K3,3’ Since there are 2 such pairs of sets, K3r contains
2 copies of K3,3 and thus c(K3r) ~ (r2).
Assume p = 3r+1. Let v be one vertex of Kp and divide the

remaining vertices into r sets of 3 vertices each. As before, one
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gets (r2) copies of K3,3. However, if one takes 3 triples of vertices
together with v, 4 skew graphs can be obtained as in the decompo-
sition of K1o . These can replace the 3 copies of K3,3 which had
been obtained originally. There are [r 3] disjoint collections of 3

triples, and it is possible to produce an additional skew graph for
each such collection. Hence, c(K3r+1) ~ (r2) + [r 3].

For p = 3r + 2, we again take r sets of 3 vertices each and denote
the remaining vertices by u and v. On one of these sets together
with u and v, a copy of Ks can be formed. Let C denote the col-
lection of 3 [r+24] vertices in [r+2 4] of the remaining r-1 sets.
A skew graph homeomorphic to K5 can then be constructed for
each of the r-1- [r+2 4] still remaining sets by using such a set
with u and and assigning a vertex of C as a vertex of degree 2
between u and v. Since

there are enough vertices to accomplish this. Therefore,

In terms of p, the bounds provided by (2) and Theorem 3 can be
stated as follows:

The inequalities (3) immediately establish an estimate of c(Kp)
for large p.

COROLLARY 3a. The coarseness of the complete graph K p is

asymptotic to p2/18.
The lower bound a(p) and the upper bound b(p) given by (3)

are presented in Table 2 for 1 ç p ~ 40.
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TABLE 2

Lower Bounds a(p) and Upper Bounds b(p) on c(Kp), 1 ~ p ~ 40

The amount by which a(p) and b(p) can differ is now considered.

THEOREM 4. The lower bound a(p) and the upper bound b(p)
of c(Kp), given in (3), satisfy the inequality:

PROOF. We consider the 3 cases p = 3r, 3r+1, and 3r+2
individually.

First, assume p = 3r. Then

Next, suppose p = 3r+1. Then

However, for p = 3r + 1,



297

This inequality is satisfied only when r - 1 (mod 3), i. e., when
r = 3s+1. But then p = 9s+4, in which case

Finally, assume p = 3r+2. Then

and

Because

also, the inequality is satisfied for all p = 3r+2.
Since the difference b (p ) -a (p ) is always an integer, the theorem

follows.
In conclusion, we present bounds for the number c(Km,n).

Since K has mn edges, we have, by (1), c(Km,n) ~ [mn 9].
We now obtain a lower bound for c(Km,n). Assume the vertex set
V’ of Km,n is partitioned as Vl U V2, where [V1] - m, [V2] = n,
and every edge joins a vertex of VI with a vertex of V2. The set

V1 has [m3] distinct triples of vertices while V2 has [n 3] such
triples. Thus, Km, n has at least [m 3] [n 3] copies of K3,3. These
observations are summarized below.

THEOREM 5. For the complete bigraph Km, n,

COROLLARY 5a. If m = n = 0 mod 3, then c(Km,n) = mn/9.
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