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Introduction

Throughout this paper the symbol R will be used to denote a
finite associative ring with a multiplicative identity 1 :A 0. We
use the notation GR for the multiplicative group of the invertible
elements of the ring under consideration. The symbol S will be
used to denote an arbitrary ring - not necessarily finite, and not
necessarily possessing an identity element. The term "subring" is
used to mean a subring containing the identity element, when one
exists, of the larger ring. Also by "subfield" we mean a subring
which, when regarded by itself, is a field (commutative). As is
usual, Z denotes the ring of all integers and p denotes any prime
integer greater than or equal to 2. We use F to denote the Galois
field GF(q) where q = pr. Finally, for any set A we use |A| to
denote the cardinal number of elements in that set.

In this paper we determine the structures of prime-power rings,
(i.e. ) rings whose orders are powers of primes, under various condi-
tions. For this purpose we begin by considering, in § 1, a set W1
which is simultaneously a left vector space and a right vector
space over the same field P, and which is subject to the condition
that a(xb) = (ax)b for all a, b in P and for all x in W1. When W1 has
only a finite number of elements we show that it will have at
least one "distinguished basis" - for definition, refer to the body
of the paper - over the field P, and remark as to how this result
can be used to give a proof of the well-known theorem of Wedder-
burn on finite division rings. Two generalisations of this theorem
to the case of completely primary rings with a finite number of
elements are also given in the later sections of this paper. (Cf.
Ths. 5 and 7.)

1 This is a revised version of the thesis submitted by the author for a Doctorate
degree of the Annamalai University, under the guidance of Professor V. Ganapathy
Iyer. This work was supported in part by the Government of India through a
Scholarship.
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In § 2 we consider the situation where the zero divisors of the
ring R form a group under addition. After noting that the ring
must then be a completely primary ring (not necessarily commuta-
tive), we exhibit R, in two special cases, as a ring of matrices over
a field. (Cf. § (2.4).)

In § 3 we study a special class of rings which includes the
Galois fields and the rings Z/(pn). It seems appropriate to call
these rings by the name Galois rings. For their definition see
§ (3.1) and for some of their properties refer § (3.8) and § (3.9)
below.

In § 4 we consider the situation where a ring R contains a sub-
field F. After noting that |R| = (|F|)n for some positive integer n,
we describe (in Ths. 10 and 11 ) the structures of all such rings
when n = 2 and when n = 3.

In § 5 we consider a problem posed by Ganesan [1, Remark 1,
p 216] and generalised by Eldridge in two private communications
to Ganesan. The problem may be stated as follows: "S is any ring
with N2 elements exactly N of which are left zero divisors in S.
To find all the possible structures of the ring S." A complete
solution of this problem may be found in Th. 12 below. One special
case of this theorem may however be mentioned here. If such a

ring S does not possess an identity element, then S will be iso-

morphic to the ring of all 2 X 2 matrices of the form a o) with
a, b ranging over a finite field. 

In the final section of this paper we determine the structures of
all rings (not necessarily possessing identity) with p2 elements, and
the structures of all rings, possessing identity, with p3 elements,
where p is any prime. It is found, in particular, that (i) there is
essentially only one noncommutative ring of order p2, e.g. a ring
which is isomorphic or anti-isomorphic to the ring of all 2 X 2
matrices oi the form (a0 ô with a, b in the field GF(p), and (ii) to
within isomorphism there is only one ring of order p3, with identity,
which is not commutative, e.g. the ring of all 2 X 2 upper triangular
matrices over the field GF(p).

In conclusion the author wishes to thank Professor V. Ganapathy Iyer for his

encouragement and guidance during the preparation of this paper. Thanks are due
to N. Ganesan for having shown the author the two communications received from
Eldridge, referred to above. Special thanks are due to J.-E. Bjôrk (of Stockholm
University) for having gone through an earlier version of this paper and for giving
some suggestions which enabled the author to make some improvements in the
contents, as well as in the presentation, of the paper.



197

Section 1

(1.1) In this section we consider a set 9N which is, at the same
time, a left vector space and a right vector space over a field P,
and which is subject to the condition that a(xb) = (ax)b for all
a, b in P and for all x in 3R. Thus M is a ( P, P )-unital module with
P a field. We now give two definitions which will be convenient
in the sequel.

DEFINITIONS. Let m be a (P,P)-unital module with P a field.
(i) If x is an element of 3R such that there exists an automorphism
a of the field P with xa = a03C3 · x for all a in P, then x is to be called
a distinguished element of 9N over P. (ii) Let {xi : i ~ I} be a basis
of 3R regarded as a left vector space over the field P. If each
element of this basis is a distinguished element over P, then the
set {xi : i E Il is to be called a distinguished basis of W1 over the
field P.
The following comments are in order. First of all we remark that

there is no point in these definitions if 3K = (0), or if 3R is one-
dimensional over P, or if we had presupposed that xa = ax for all
a in P and all x in m. We may, therefore, neglect these rather
trivial cases. Secondly we note that, in Definition (i), if the ele-

men t x were not zero, then the automorphism 03C3 will be uniquely
determined by x so that a may be called the automorphism of P
associated with the distinguished (nonzero) element x of W1. Third-
ly, we remark that, in Definition (ii), the automorphisms associated
with any two distinct elements of a distinguished basis may be
different from each other. Finally, we note that a distinguished
basis of 9N is a basis for 9N also when it is regarded as a right vector
space over P - but it is clear that the notion of "distinguished
basis" is more special than that of a "two-sided-basis".
The question that naturally arises now is whether there exists

a distinguished basis for any two-sided unital module M over any
given field P. The following theorem shows that when M has a
finite number of elements - the case which is more than adequate
for applications in the present paper - the answer is in the
affirmative.

THEOREM 1. Let WC be a f inite-dimensional ( F, F)-unital module,
where F is the Galois field GF(q). Then W1 possesses at least one
distinguished basis over the field F.

PROOF. We suppose that m ~ (0), and start with an arbitrary
basis {y1, ···, yn} of 3R regarded as a left vector space over F. Let



198

g be a fixed cyclic generator 2 (= a generator of the cyclic multi-
plicative group of the nonzero éléments) of the field F, and let

for some elements gij in F. We can have these n equations together
in the matrix form Yg = GY, where Y = (Y1’...’ Yn)T is the

transpose of the row matrix formed by the basis elements yi, and
G = (gij) is an n X n matrix over the field F. We then get
Y . gk = G k. Y for every positive integer k. Now, for arbitrary
n X n matrices A, B over F, the equation A Y = BY implies that
A = B, since the set {y1, ···, yn} is left linearly independent over
F. This observation shows that G(q-1) equals the identity matrix
of order n over F, and that the mapping

is a ring isomorphism. So we see that the zero matrix of order n
and the powers of the (nonsingular) matrix G form a field L (say)
of order q. As the minimal polynomial of the matrix G splits over
the field F into distinct linear factors, there is a nonsingular
matrix Q of order n such that Q ’ G ’ Q-1 = diag (g1, ···, gn ) - D
(say) is a diagonal matrix over the field F. For each fixed i, and
for arbitrary integers s, t we find that the equation gsi = g’
implies that Gs - Gt is a singular matrix belonging to the field L
obtained above, and hence that Gs = Gt. From this we can con-
clude that, for each fixed i, the mapping

is an automorphism of the field F.
If X = Ç ’ Y is the transpose of the row matrix (x1, ···, xn ) of

elements xi in m, then as Xg = DX and as g is a cyclic generator
of the field F, we see that (xi , ..., xn} is a distinguished basis of
3R over F.
This completes the proof of the theorem.

(1.2) REMARK. We can use the above theorem to give a proof of
the celebrated theorem of Wedderburn on finite division rings.
More specifically, we may use the above theorem in the place of the

2 The author owes this terminology to Mr. Bjôrk.
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last theorem in a paper of Zassenhaus [5] in order to complete the
proof of Wedderburn’s theorem.

Section 2

(2.1) The following easily proved results, due to Ganesan [2],
are needed for our purpose, and so are stated here for convenient
reference.

Let S be a finite associative ring, not necessarily possessing a
multiplicative identity. Then the following results hold:

(i ) 1 f there is an element x in S which is not a left zero divisor,
then the ring S possesses at least one left identity.

(ii) Il there is an element x which is a right zero divisor but is
not a left zero divisor in S, then every element in the ring S (== x - S)
is a right zero divisor in S.

(iii) Il S possesses a multiplicative identity, then every non-
invertible element of S is a two-sided zero divisor in S.

(2.2) Let R be a finite ring with identity 1 =1=- 0, and let J
denote the set of all the zero divisors in R. Obviously we need
consider only the case where 1 =1=- (0), and we assume this in this
section. A consideration of the situation where 1 is an additive
group is found to be fruitful. As an immediate consequence we
have the result that R will, then, be a completely primary ring
with i as its radical. For, as R cannot have one-sided zero divisors,
we see that J will be an ideal in R - in fact, J will be the unique
maximal left ideal in R, so that J will be the Jacobson radical of
the ring. As every element of R not in J is an invertible element,
we see that the quotient ring R/J is a division ring, so that R is
a completely primary ring.
We proceed to obtain some more properties of such a ring R in

the following theorem which is fundamental for the purposes of
the present paper.

THEOREM 2. Let R be a f inite ring with multiplicative identity
1 =1=- 0, whose zero divisors form an additive group J. Then

(i) J is the Jacobson radical o f R;
(ii) I RI - pnr, and III = p(n-1)r for some prime p, and some

positive integers n, r;
(iii) Jn = (0); 3

3 In an earlier version of this paper, this was given as: x c- j implie s xn = 0. The
present form is due to Mr. Bjôrk.
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(iv) the characteristic of the ring R is pk for some integer k with
1  k ç n; and

(v) i f the characteristic is pn, then R will be commutative.

PROOF. We have already proved (i) and noted that Rj J is a
division ring. As R/J is finite, we see that it is the Galois field

GF(pT) for some prime p and some positive integer r. As the ele-
ment p - 1 belongs to the nil ideal J, we find that the additive
order of 1 is pk for some positive integer k. This implies that
|R| ( = pN, and then that |J| = ?’JN-r for some positive integer N
(greater than r). So we have only to prove that r N in order to
complete the proof of (ii). For this purpose we choose a fixed
element gl in R such that (g1+J) is a cyclic generator of the field
R/J ~ GF(pr). As the invertible elements of the ring R form a
multiplicative group GR of order (pr-1) · pN-r, we see that the
multiplicative order of gl is (pr-1) · ps. for some nonnegative
integer s. Wiiting g = gle’ we find that we have obtained an
element g with the following properties:

(A) g is an element of GR with multiplicative order (pr-1),
(B) for integers ce, fl the statement (ga_gP)EJ implies ga = g .

(A) is obvious, and (B) then follows from the fact that (g + J) also
is a cyclic generator of the field R/ J. The existence of an element
g with the above-mentioned properties will be found useful on a
number of occasions in the sequel.

If we now ivrite x - y for x, y in R when, and only when
x = g’ - y for an integer «, we see that ~ is an equivalence relation
on the elements of R. As, for any nonzero element x of R the

équation g03B1 · x = e - x implies (g03B1-g03B2) E J and therefore that
g03B1 = g03B2, we see that the pN-1 nonzero elements of R split into
equivalence classes where each class contains exactly pT-1
elements. It follows that (pr-1)|(pN-1) and then that riN. If we
write N = nr, we see that the proof of (ii) is complete.
The argument of the previous paragraph shows also that the

number of elements in any left ideal in R is a power of pr. So in the

strictly descending sequence J, J2, ... ,Jm of the powers of the
nilpotent ideal J we must have m  n, and in any case, we have
Jn = (0). Thus (iii) is proved, and (iv) follows immediately.

In order to prove (v) we first form the set

of pr elements and observe that, for elements a, b in F1 the state-
ment a - b ~ J implies a = b. If we now assume that the character-
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istic of R is pn, we can show, by induction on k, that, for elements
ak , bk of Fi the equation 03A3n-1k=0 pk·ak = 03A3n-1k=0 pk - bk will imply that
pn-1 · (ak-bk) = 0, and then that ak = bk for k = 0, ’ ’ , n -1.
This shows that every element of R will be (uniquely) expressible
in the form Y"-l pk · ak with ak in F1, so that R will be a commuta-
tive ring.

This completes the proof of the theorem.

(2.3) In this subsection we collect together a number of mis-
cellaneous properties of a ring of the type considered in Th. 2.
Throughout this subsection the symbols R, J, p, r, n are as in Th. 2.

(i) We first remark that any subring R1 of R is also a ring of
the type considered in Th. 2. For, if x is any element of R, there
exists a positive integer m such that xm = 0 or aem = 1 according
as x does or does not belong to the set J. From this we see that an
element x of the subring R1 will be invertible (a zero divisor) in
R1 if, and only if it is invertible (resp. a zero divis or ) in the larger
ring R, so that the set J’1 of all the zero divisors of Ri is J n R1.
This proves the remark made earlier, and if pi, ri, ni (with
obvious notation) refer to the subring Ri, we have pi = p, and
r1 as a factor of r, because GRl is a subgroup of GR. There seems
to be no such simple relationship between the integers ni and n.
Of course, the characteristic of Ri is the same as that of R.

(ii) We next observe that any homomorphie image R1 -=F (0) of
R is also a ring of the type considered in Th. 2. For, the kernel K of
a nontrivial homomorphism of R is a nil ideal in R, and it can be
easily verified that an element x of R will be invertible in R if, and
only if the element (x+K) is invertible in the quotient ring R/K.
This proves the assertion made above, and if J1’ p1, ri , ni refer to
the homomorphic image R1 ~ (0) of R, we see that pi = p, r1 = r
(this because IKI is a power of pr), n1 ~ n, and Jn1 Ç K. In case
Jn-1 =F (o ) we have actually Jnl = K, from which we can conclude
that there are at least n -1 nontrivial homomorphisms on a ring
of Th. 2 when Jn-1 ~ (0).

(iii) Then we remark that the multiplicative group GR is solvable.
For, as the quotient ring R/J is commutative, we find that
a-1 . b-1 - a - b e {1+J} for all a, b in GR, and as 1+J is a multipli-
cative subgroup whose order is a power of a prime we can con-
clude that GR is solvable.

(iv) Let G1 be the cyclic group of order pr-1 generated by the
element g introduced in the proof of Th. 2(ii). Il G2 is any subgroup
o f order pr-1 in the group GR, then the subgroups G1 and G2 are
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conjugate with each other in GR. This follows from the Sylow theory
of finite solvable groups, since the order of the subgroup G1 is

prime to its index in the (solvable) group GR.
(v) Let G1 be as in (iv) above and let N denote the normaliser

of G1 in the group GR. For elements a in G1, b in N we have
a-1 · b-1 · a · b E G1 n {1+J} = {1}, so that we find that the norma-
liser of the subgroup G1 coincides with the centraliser of G1 in the
group GR .

(vi) Let F1 be the set introduced in the proof of Th. 2(v). Il the
group GR contains a normal subgroup of order pr -l, then the set F1
will be contained in the centre of the ring R.

For, if G1 is the multiplicative group of the pr -1 nonzero
elements of the set F1, the result in (iv) above shows that G1 is
the unique normal subgroup of order p’’-1 in GR, and the result
in (v) above then shows that G1 is contained in the centre of the
group GR. Now, as the statements x E R, x ~ GR imply 1+x E GR,
we see that every element of the ring R commutes with every
element of G1. The desired result now follows.

(vii) In the proof of Th. 2 we introduced the set

of pr elemcnts, whieh looks very much like the field GF(pg). So
we will be naturally interested in knowing as to when this set will
be a subfield of R. The obvious necessary condition - namely
that the characteristic of R should be p - is easily found to be
also sufficient. To see this, assume that the characteristic of R

is p and take two distinct elements a, b of F1 so that a-b E GR .
If R1 is the subring of R generated by the elements of Fl , we see
that G1 (as in (iv) above) is the unique subgroup of order pT-1
in the (commutative) group GR,. As (a-b)q = aq-bq = a-b, and
so (a-b)q-1 = 1, where q = pT, we see that a-b E G1 C F1. Thus
we have proved the first of the following two results:

Let R, p, r be as in Th. 2. Then R contains a subfield of order pr
i f , and only i f the characteristic of R is p. A lso i f Fl , F2 are two
sub f ields of order pr in R, then there is an invertible element a of R
such that a-1 . F1 · a = F2.
The second statement follows from the result in (iv) above.

These results will be generalised in the next section.

(2.4) If R, p, r, n are as in Th. 2 we consider, in this subsection,
the situation where R contains a subfield F of order pr. We

suppose first that F is contained in the centre of the ring R. Then
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(and only then) we can regard R as a linear algebra over the field
F. Once a basis for R over F is chosen we can use the right regular
representation of R to exhibit it as a ring of matrices of order n
over the field GF(pT). This simple process for exhibiting R as a
ring of matrices of (this particular) order n over the field F will not
be available if we do not presuppose that the subfield F of (the
maximal) order pr is contained in the centre of the ring R. The
following two theorems show however that, in two special cases,
it is possible to represent R as a ring of n X n matrices over the
field G F(pT) - even if the subfield F is not contained in the centre
of the ring R.

THEOREM 3. Let R, J, p, r, n be as in Th. 2, and let the character-
istic of R be p. I f J2 = (0), then R is isomorphic to the ring of all
n X n matrices of the form

where hl, f2’ ..., fn range over the field GF(pr), and f or i = 2, ..., n,
hi = h1si with si = pti for some fixed integers ti with 1 ç ti  r.

Conversely, for every choice of the integers ti the ring of matrices
described above is a ring o f the type considered in Th. 2 with character-
istic p whose radical J satisfies J2 = (0).
PROOF. The straightforward proof of the converse part will be

omitted. For the direct part, we suppose that n ~ 2, and note
that the ring R contains a subfield F of order pre Keeping F fixed,
we get a distinguished basis (refer § 1) {x2, ···, xn} of n -1 elements
for y over F. If g is a fixed cyclic generator of the field F, and if
xi = g, we see that {X1, X2’ ..., xn} is a distinguished basis for the
entire ring R over the field F. Let, for each i ~ 2, xi - g = g-i - xi
with si = pti for some integers ti such that 1 ç ti ç r. Our

hypothesis that ,J’2 = (0) implies that xi ’ x, = 0 for all i &#x3E; 2, and

all j &#x3E; 2.
Now we define n square matrices X1, X 2 , ’ ’ ’, X n of order n over

the field F as follows: X1 = G == diag (g, g82, g83, ..., g8n), and for
each i greater than one, X; is the matrix with 1 in the (1, j)-th
entry and zeros elsewhere. The following results are then easily
verified: X i ’ Gk = Gksi · X i , G k. X = gk ’ X i , and X i ’ Xj = 0, for
all i &#x3E; 2, all i ~ 2, and all k ~ 1. The mapping
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is easily verified to be an isomorphism of the field F into the ring
of all n  n matrices over F; we shall denote the image of any
element hl or fj of F under this isomorphism by the corresponding
capital letter (viz) H1 or F, respectively. Then the mapping

as the elements hl, f2’ ..., f n range over the field F, can be verified
to be an isomorphism defined on all of the ring R onto the ring of all
n X n matrices of the form given in the statement of the theorem.

This completes the proof of the theorem.

THEOREM 4. Let R, J, p, r, n be as in Theorem 2, and let the
characteristic of R be p. I f jn-1 A(0), then R will be isomorphic to
the ring of all n X n upper triangular matrices (aij) over the field
GF(pr) which satisfy the condition

where s = pt and t is some fixed positive integer with t ç r.
Conversely, for every choice of the positive integer t, the ring o f

matrices described above is a ring of the type considered in Theorem 2
with characteristic p whose radical J satifies the condition Jn-1 ~ (0).

PROOF. In view of Theorem 3, we may suppose that n &#x3E; 3. We

take a fixed subfield F of order pr in the ring R, and then obtain a
distinguished basis {y2, ···, yn} of J over the field F. We note that
at least one of the basis elements yi does not belong to the ideal
J2 (which is of order p(n-2)r). If y is a distinguished element of J
over F such that y e J’2, then we assert that yn-1 * 0. 4 To see
this, suppose the contrary that yn-1 = 0. Firstly, for arbitrary
elements f1, f2, ···, f n-i of the field F, we have

if yn-1 = 0, since y is a distinguished element over F; and then,
for arbitrary éléments z1, ···, zn-1 of J2 we find

since jn = (0). But as every one of the p(n-1)r elements of J is
uniquely expressible in the form fy+z with f in F and z in J2, the

4 This observation is due to Mr. Bjôrk.
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above shows that the supposition yn-1 = 0 will lead to J’n-1 = (0),
a contradiction. Thus our assertion that yn-1 ~ 0 is proved. Let
now y · h = hs · y for all h in the field F, where s = pt with t a
fixed positive integer (independent of h in F ) such that t  r.
We then take the n X n matrix Y = (yii) with Yij = 1 if j-i = 1
( i = 1, ···, n-1) and yij = 0, otherwise. After this stage, the
proof proceeds exactly as in the previous theorem. More explicitly,
we have to consider the isomorphisms

and

with the convention of the previous theorem. This completes the
proof of the direct part of the theorem.

(2.5) REMARK. For given p, r, n (with n greater than one) we
see that there are at most r mutually nonisomorphic rings of the
type considered in Th. 4, and when r ~ 2 there are at least two
distinct types. For, if we suppose that r is greater than one, we
have for t = 1 (  r) a noncommutative ring, while for t = r (&#x3E; 1)
we have a commutative ring which can also be described as
P[x]/(xn), the ring of polynomials in the indeterminate x over the
field F, modulo the ideal generated by the element xn in it.

(2.6) The following theorem mentions two conditions which are
sufficient to force a ring of Th. 2 to be commutative.

THEOREM 5. Let R, J, p, r, be as in Th. 2. Let (1 ) any two elements
o f J commute with each other, and (2) the multiplicative group GR
of the invertible elements of R contain a normal subgroup of order
p’’-1. Then R will be commutative.

PROOF. Let Fi be the set introduced in the proof of Th. 2. If
the condition (2) of this theorem holds, the result in §(2.3) (vi)
shows that the set F1 will be contained in the centre of the ring R.
As every element of R is uniquely expressible in the form f+x
with f in Fi and x in J, we see that the condition (1 ) of this theorem
will, then, imply that the entire ring R is commutative.

(2.7) REMnRxs. (i) If R, J, p, r, n be as in Th. 2, the ring R will
reduce to the field GF(p’) when / = (0) (i.e.) n == 1. So Th. 5 is
a generalisation of Wedderburn’s theorem to completely primary
rings of finite order. Of course, the proof of Th. 5 makes essential
use of Wedderburn’s theorem.
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(ii) There are two conditions in the hypothesis of Th. 5. The
first of these is obviously necessary for the validity of the conclu-
sion of the theorem. It may be asked whether this condition alone
is sufficient. That the answer to this question is in the negative is
seen in the example of a ring R of Th. 4 for n = 2, r ~ 2, and t = 1.
As J2 == (0), the first condition in the hypothesis of Th. 5 is

satisfied, but this ring is not commutative. (See §(2.5)).

Section 3

(3.1) Let R, p, r, n be as in Th. 2. We have seen that the charac-
teristic of R is pk for some integer k with 1 ~ k ~ n, and in the
previous section we considered two cases where k was the smallest
possible (i.e.) where the characteristic of R was p. In the present
section we will consider the other extreme - the case where the
characteristic is pn. We recall that we have already proved that
the ring must be commutative in this case. When n = 1 (and p, r
are arbitrary) we note that the ring R of Th. 2 reduces to the Galois
field GF(pr), while when r = 1 (and p, n are arbitrary) we note
that the ring of Th. 2(v) is the ring Zj(pn) of integers modulo pn.
More generally we will prove, in the course of this section, that
there exists one and, in the sense of isomorphism, only one ring
of the type considered in Th. 2(v) for any given prime p, and for
any given positive integers n, r. As regards existence, we can
verify that the ring of Witt vectors of length n (refer Jacobson
[3, Ch. III, § 4, especially Ths. Il and 12]) over the field GF(pr)
is a ring of the type considered in Th. 2(v). We shall however
establish the desired results without appealing to the construction
of Witt rings. For this purpose, we begin with a tentative définition.

DEFINITION. Let Z denote the ring of all integers, x an indeter-
minate, p a prime, and n, r arbitrary positive integers. Let

be a monic polynomial of degree r which is irreducible modulo the
prime p, and let (pn, f ) denote the ideal generated by the two
elements pn and f in the polynomial ring Z[x]. Then the quotient
ring

is to be called the Galois ring of order pnr and characteristic pn,
and is to be denoted by the symbol GR(pnr, pn).
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The following remarks are in order. Firstly, we note that if the
numerical values of the order (viz ) pnr and the characteristic (viz)
pn are given, with the understanding that p is a prime, then the
values of p, n, and r are uniquely determined. Secondly, we note
that at least one polynomial f with the required properties exists
in Z[x] for any given prime p, and for any given positive integers
n, and r. To show that the definition makes sense we have only to
prove that the ring R’ is actually independent of the particular
polynomial f used in its construction. This will be accomplished
by showing that the following two statements are true.

( I ) For any particular choice of the polynomial f as in the above
definition, the ring R’ o f the definition is a ring of the type considered
in Th. 2(v).

( II ) A ny ring of the type considered in Th. 2(v) is isomorphic
to the ring R’ (for suitable values of p, r, n) obtained in (I).
While the first statement can be proved straightaway, the proof

of the second one requires some preliminary results (Th. 6 and its
corollaries) which, however, appear to be of independent interest.
We proceed to prove the statement (I), assuming that n is a

fixed integer greater than one. First of all we note that R’ is a
commutative ring with a multiplicative identity, that its character-
istic is pn, and that it has pnr elements. So it remains only to show
that the ring contains exactly p(n-1)r zero divisors, and that these
zero divisors form an additive group. We note that the set

K = p - R’ is a nilpotent ideal of order p(n-1)r in R’. So the proof
of the statement ( I ) will be complete if we show that every element
of R’ not in the ideal K is an invertible element of R’.
We now denote by A the ideal (pn, f ) and by B the ideal (p, f)

in the polynomial ring Z[x]. Then we note that Z[x]/A is the ring
R’ and that Z[x]/B = F is the Galois field GF(pr). As the ideal A
is contained in B, we see that the identity mapping on the ring
Z[x] induces a well-defined homomorphism on R’ onto F whose
kernel is the ideal K in R’. Now if an element a of R’ does not

belong to K, it will be mapped by the above homomorphism into
a nonzero element of the field F; as K is a nil ideal, this implies
that a is invertible in R’. This completes the proof of the state-
ment (1).

(3.2) Throughout this subsection and the next, the symbol x
will be used to denote an indeterminate. For any ring S with
identity, we consider the homomorphism f ~ f s of Z[x] into S[x]
defined as follows: i f f(x) = la, - Xk E Z[x], then
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where 1 is the identity element of S. The use of this notation is found
to be convenient in Th. 6 and its corollaries, in the course of the

proofs of which we use some obvious properties of the mapping
f - f s without explicitly stating them.

Let K be an ideal in the above ring S, and for any element a of S
let ci denote the element (a+K) of the quotient ring S = S/K.
Let f be any given element of Z[x], and suppose that the equation
fS(x) - 0 has a solution, say u, in the ring S. Then the correspond-
ing equation fS(x) = U will have a solution (e.g. u) in the quotient
ring S = S/K. The following theorem shows that, under certain
conditions, a converse of the result just stated is also true.

THEOREM 6. Let S be any ring with identity 1 =1= 0. Let f be any
element of the polynomial ring Z[x], and let f’ denote the formal
derivative of f. Let K be a nil ideal in S, and let i denote the coset
(a +K) for any element a in S.

Il the equation fS(x) = 0 has a solution u in the quotient ring
S = S/K such that f’S(u) is an invertible element in S, then there
exists at least one element 03B1 in the larger ring S with the properties:
fs(al == 0, and o-c = ù.

PROOF. As K is a nil ideal, we note first that an element a of S
will be invertible in S if, and only if the element a+K is invertible
in the quotient ring S. Let u be a particular element of S such that
u = u+K has the two properties mentioned in the hypothesis of
the theorem. Keeping u fixed, we now construct two subrings So,
S1 of S as follows. Firstly, So is the subring of S generated by the
element u and the identity of S. Then all the elements of So and
the inverses (in the ring S ) of all the invertible elements of So are
used to generate the subring Si. (Note: If an element a of the
subring So has an inverse a-1 in the larger ring S, it is not necessary
that a-1 belongs to the subring So ). So we see that S1 is a commuta-
tive subring of S containing So.

If we write a = fS1(u) = fs(u), we easily see that

We now wish to find an element y1 in K ~ S1 such that fS(u+y1) = 0.
If we provisionally assume the existence of such an element y1 and
write oc = U+Y1’ then we get fS(03B1) - 0, and 03B1 = à1, which are

precisely what we want. So we proceed to consider the elements
fS1(u+y) as y ranges over the ring S1. As u belongs to the commu-
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tative ring S, we can expand fS1(u+y) in powers of y as follows:

for all y in S1, where the fi(u), i = 1, ’ ’ ’, r, are independent of
y. The coefficients a, f1(u), ···, /,(u) all belong to the subring So,
and we note that f1(u) = f’S(u) is the formal derivative of the

polynomial fS1(u) in u. By hypothesis, f1(u) - f2(U) - f’S(u) is an
invertible element of the quotient ring S, so that f1(u) ( E So ) is an
invertible element of the original ring S. On multiplying by
(f1(u))-1, which is an élément of the subring S1, the equation (2)
above becomes

for all y in the subring S1, where -b = (f1(u))-1 · a E K n S1, the
coefficients a2, ···, ar belong to Sl, and where the coefficients
b, a2, ···, a, are all independent of y. As K is a nil ideal by our
hypothesis, we have bn+1 = 0 for some positive integer n. Now
with 03B12, ···, oc. as arbitrary elements of the subring S1, let us
substitute the element

of K n S, for y in the relation (3). As bn+1 = 0 the equation (3),
then, becomes

where

and

with C8 as a well defined polynomial in the elements a2l - - -, as and
03B12, ···, 03B1a-1 only with integer coefficients. We note that the
elements c3, - - -, cn all belong to the subring S1 and that these are
all independent of b. We can now successively choose the (so far
arbitrary) elements OC2’ iJ..3’ ..., oc. (in the subring Si) in such a way
that ah the coefficients Pi in the equation (5) above vanish. If yl
is the value of y given by the expression (4) above for this partic-
ular choice of values of 03B12, ···, 03B1n, we find that Y1 E K n S1, and
that fS(u+y1) - 0, from equation (5).

This completes the proof of the theorem.

(3.3) We now give some corollaries to the above theorem. The
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first of these is a partial statement of a wellknown result on
"liftÍllg" an idempotent element form the quotient ring modulo
a nil ideal to the original ring.

COROLLARY 1. Let S be any ring with identity 1 (:A 0) and let K
be a nil ideal in S. If ü = u+K is an idempotent in the quotient ring
S = SIK, then there exists at least one idempotent element oc in S such
such that â = ü.

For, if f(x) = x2 -x E Z[x], we note that f’S(u) is its own inverse
in the ring S.

COROLLARY 2. Let R, J, p, r, n be as in Th. 2, and let

f(x) - xr - ai - xi E Z[x] be a monic polynomial of degree r
which is irreducible modulo the prime p. Then the equation fR(x) = 0
has at least one solution in R which is an invertible element of R.

PROOF. Let P be the prime field contained in the quotient ring
R = R/J ~ GF(pr). The hypothesis implies that the polynomial
f p is of degree r and that it is irreducible over the field P. It follows
that the equation fP(x) = 5 has r roots in the field R/J, each of
which is a simple root. If ü is one of these roots, we see that the
nonzero element f’P(u) is an invertible element of R. A s fP is just
the restriction to P of the polynomial fR, we see that Th. 6 is now
applicable. Also if a is a solution of the equation fR(x) = 0 such
that oc = U, we see that oc is invertible in R, since ü is a nonzero
element of the field R/J.

COROLLARY 3. This is a continuation of the previous corollary.
Let R, J, p, r, n be as in Th. 2, and let the polynomial f be as in the
previous corollary. Let oc be a particular solution of the equation
fR(x) - o. Il the characteristic of R is pk (1 ~ k  n), then the
subring generated by oc will be isomorphic to the ring

of residue classes modulo the ideal A generated by the elements pk and
f in the polynomial ring Z[x]. Also 1 R, | = pkr.

PROOF: The élément = x+j is a zero of the monic polynomial
f p which is irreducible over the prime field P. Thus the minimal
polynomial of &#x26; over P is f p and this is of degree r.
We now assert that for integers ni with 1 ç ni ç pk, the equa-

tion
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will imply ni == pk for each i. (The 1 in the above equation is the
identity element of the ring R.) For, suppose that pP (0 ~ 03B2 ~ k)
is the highest power of the prime p which is a factor of all the
integers ni in (1). If we write ni = p-8 - mi, then at least one of the
integers mi will be prime to p. The equation (1) becomes

As the additive order of every invertible element of R is pk, the
supposition that 0 ~ 03B2 C k will imply that the expression within
parentheses on the left side of (2) must give an element of J, so
that

As at least one of the integers mi is prime to p, the equation (3) is
contradictory to the fact that the minimal polynomial of 03B1 over

the field P is of degree r. This proves the assertion made at the
beginning of this paragraph.
As oc is an invertible element of the (finite) ring R, some positive

integral power of a equals the identity of R. Also, as (x is a zero of
the (monic) polynomial f R, we see that the subring R1 generated
by oc is given by 

The argument of the previous paragraph shows that IR11 = pkr
and this completes the proof of the corollary.

(3.4) The case k = n of the Cor. 3 to Th. 6 proves the statement
(II) made in §(3.1), thus showing that the definition of Galois ring
given there is quite a legitimate one. For purposes of reference we
formally state the following theorem which, in view of our method
of proving that the definition of Galois ring makes sense, is a

tautology. 

THEOREM 7. Let R be a finite completely primary ring with radical
J, so that 1 RI = pnr and I J I - p(n-1)r for some prime p and some
positive integers n, r. Il the characteristic of R is the largest possible
under these conditions, that is if the characteristic is pn, then R will
be commutative - in fact R will be the Galois ring GR(pnr, pn).
The first part of the conclusion is just a restatement of Th. 2 (v) ;

but the second part gives more specific information. It may be
remarked that the above theorem generalises, in a perfect manner,
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Wedderburn’s theorem on finite division rings to the case of com-
pletely primary rings with a finite number of elements. The proof
of this theorem however makes use of Wedderburn’s theorem.

(3.5) It now follows that the Galois ring GR(pn’’, pn) is iso-

morphic to the ring of Witt vectors of length n over the field
GF(pr).

It is not, however, immediately obvious as to how one can prove
that any ring of Th. 2(v) is isomorphic to a Witt ring - without
using Th. 6.

(3.6) We can now generalise the results of §(2.3)(vii) to the
following theorem.

THEOREM 8. Let R, p, r be as in Th. 2. Then

(i) R will contain a subring isomorphic to GR(pkr, pk) if, and
only i f the characteristic of R is pk, and

(ii) i f R2, R3 are any two subrings of R, both isomorphic to

GR(pkr, pk), there will be an invertible element a in R such that

R2 = a-1 · R3 · a.

PROOF. The first statement follows immediately from Cor. 3 to
Th. 6. To prove (ii) it is enough if we show that the subring R1
generated by the element g introduced in the proof of Th. 2 is such
that R1 = b-1 · R2 . b for some invertible element b in R. Let G1
be the cyclic group of order (pr -1) generated by the element g.
The solvable group GR2 contains a subgroup G2 of order (pr-1),
and so G1 = b-1 · G2 - b for some invertible element b of R. (Refer
§(2.3)(iii) and (iv).) So we find that R1  b-1 · R2 · b. Now pro-
ceeding as in the proof of Cor. 3 to Th. 6, we can show that the
subset

of the subring R1 contains pkr distinct elements. It follows that
R1 = b-1 · R2 · b, and so the proof of the theorem is complete.

(3.7) We now take up Th. 6 for further consideration. Through-
out this subsection we will continue to use the notation employed
in the statement and proof of this theorem. Th. 6 provides us with
"at least" one element oc in S with the properties: fS(03B1) = 0, and
03B1 = ü. Naturally we would like to know whether the element 03B1

is uniquely determined by the last-mentioned two conditions. If

S2 is any commutative subring of S containing the subring Si we
can prove that there is only one element a in S2 with the desired
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properties. (We recall that the subring S, depends on the partic-
ular choice of the element u in its coset u+K.) In the particular case
where S is a commutative ring we can then assert the uniqueness o f 
oc in the entire ring S.
We now prove the desired result by showing that, for elements

y, z in K n S2 the equation

will imply that y = z. As S2 is a commutative ring we can expand
the two sides of the above equation in powers of y, z to get

where c = f1(u) is an invertible element of S, and

As (c + d) is an invertible element of the ring S, the above equation
implies y-z = 0, thus proving the desired result.

(3.8) As finite fields and the rings Z/(pn) are special cases of
Galois rings we may expect some of the properties of these special
rings to carry over to Galois rings. The results of this subsection
and the next illustrate this remark. As an immediate illustration
we have the following

PROPOSITION 1. Every subring of the ring GR(pnr, pn) is of the
form GR(pns, pn) for some divisor s of r. Conversely, for every positive
divisor s of r there is a unique subring of R which is isomorphic to the
ring GR(pns, pn).
The first of these two results follows from §(2.3)(i) and Th. 7,

while the second can be proved by using Ths. 6 and 8.
We next consider the set of all automorphisms on a Galois ring.
PROPOSITION 2. The automorphisms of the ring GR(pnr, pn) form

a cyclic group of order r.

PROOF: As the result is obvious for r = 1 (in which case the
ring is Z/(pn)), we may suppose that r &#x3E; 2 in what follows. Let R
denote the ring GR(pnr, pn ) and let g be the element introduced in
the proof of Th. 2(ii), so that we have

Then there exists a polynomial f(x) = xr-03A3r-1i=0 ai · xi ~ Z[x],
irreducible modulo the prime p such that f R(g) - 0. Looking at
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the proof of the Cor. 2 to Th. 6 and the discussion in §(3.7) above,
ive see that the equation fR(x) - 0 has exactly r distinct roots in
the ring R. If h be any one of these roots it is easily verified that
the mapping

is an automorphism on the ring R. Thus we see that there are at
least r distinct automorphisms on R.

Let now ~ be any automorphism of R and let h be the image
under ~ of the element g. As fR(g) - 0, we have fR(h) = 0. If P
is the prime field contained in the quotient ring R = R/J ~ GF(pr),
as fp(g) = 0 = fp(1i), we find that h = (g)"’ for some positive
integer k, so that h = gpk · (1+pa) for some element a of the ring
R. Firstly we note that 1+pa E 1+pR = G2, say, where G2 is a
multiplicative group of order p(n-1)r. If G1 is the cyclic group gen-
erated by the element g, then G1 is the unique subgroup of order
(pr-1) in the group GR. As any automorphism of the ring R will
map G1 onto itself we find that h E G1 and therefore that

ae+pa = g-P . h E G1 n G2 = {1}. It follows that h = gpk · So the
image of the element g under any automorphism of the ring R
can be only one of the r distinct elements gl, gp2, ···, gpr = g. As
the image of the single element g under any automorphism ~ will
completely determine ~, we see, from the observation in the pre-
vious sentence and the result proved in the last paragraph, that
there are exactly r automorphisms on the ring R and that these
form a cyclic group. This completes the proof.

In the above two propositions the Galois rings resemble the
Galois fields. On the other hand, in Prop. 3 and in Th. 9 to follow
the Galois rings will be found to behave like the rings Z/(pn).

PROPOSITION 3. For fixed p and r, let Rn denote the ring
GR(pnr, pn). Then any homomorphic image (~ (0)) o f Rn is the
ring Rm for an integer m with 1  m ç n. Conversely, for every
integer ln with 1 ~ m  n there are exactly r homomorphisms of Rn
onto Rm.

PROOF. The first result follows from the facts that the only
proper ideals of Rn are pm · Rn for m = 1, - - -, n and that
Rn/(Pm · Rn ) is isomorphic to Rm. (See §(2.3)(ii) and Th. 7). The
second result follows from the fact that any homomorphism of Rn
onto Rm is the composition of the canonical mapping followed by
an automorphism of Rm .
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(3.9) The following theorem describes the structure of the multi-
plicative group GR for any Galois ring R.

THEOREM 9. Let G be the multiplicative group of the invertible
elements of the ring GR(pnr, pn), where p is a prime. Then G is the
direct product of a cyclic group G1 of order (pr -1) and a group G2
of order p(n-1)r whose structure is described below.

(1) Il (a) p is odd, or i f (b) p = 2 and n  2, then G2 is the
direct product of r cyclic groups each of order p(n-1).

(2) When p = 2 and n &#x3E; 3, the group G2 is the direct product
of a cyclic group of order 2, a cyclic group of order 2(n-2) and (r-1)
cyclic groups each of order 2(n-1).

PROOF : We may suppose that n &#x3E; 2. To begin with, we suppose
that r &#x3E; 2 also. The modifications in the proof necessary for the
case r = 1 will then be obvious and so will be omitted.

So we assume that R denotes the ring GR(pnr, pn) where n, r are
fixed positive integers both greater than 1. Let j be the Jacobson
radical of R, and let à denote the element a+J in the quotient
ring R = R/J ~ GF(pr), for each element a of R. We note that
1+J is the multiplicative group G2 of order p(n-1)r’. If g is the ele-
ment introduced ill the proof of Th. 2(ii), then G1 is the cyclic
group of order (pr-1) generated by g. We see that the (commuta-
tive) group G is the direct product of the two subgroups G1 and
G2. To determine the structure of G2 we need the following easily
proved lemma.

LEMMA. Let p be an odd prime, and let the nonnegative integers
ak, bk, Ck be the coefficients of xk in the expansions of (1+px)N,
(1+2x)N, (1+4x)N respectively, where N is any positive integer.
Then, for any nonnegative integer oc ’We have the following results:

(i) i f p03B1| N, then p03B1+1| 1 al and pe+2 ak for all k &#x3E; 2;

(ii) i f 2e IN, then 212+1 1 bk for k = 1, 2 and 211+2 1 bk for k ~ 3;
(iii) if 203B1|N, then 203B1+2|c1 and 203B1+3|ck for all k &#x3E; 2.

A lso we have the following trivial result

(iv) 4 1 bk for all k &#x3E; 2.

The proof of the lemma is omitted. If 2a, with oc ~ 1, is the

highest power of 2 which is a factor of N, we note that 2a+1 will
be the highest power of 2 which is a factor of the coefficient b2 .
This fact seems to be the source of the difference between the two

cases - p odd, p even - in this theorem.
We resume the proof of the theorem. First of all, we note that
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every element a of G2 = 1+J = 1+pR satisfies the equation
ap(n-1) = 1. We take r elements gl’ ..., gr in the ring R with
gl = 1 such that the set {g1, ···, gr} is a basis of the quotient ring
R regarded as a vector space over its prime field GF(p).

First we take up the proof of the statement (2) of the theorem.
So hereafter we assume that p = 2, and that ~ 3. We remark
now that there exists at least one element f3 in the ring R such that
the equation x2+x+03B2 = 0 over R has no solution in the field R.
(For, as (0)2+0=(1)2+1, we note that the mapping

is not one-one and, therefore, not onto R. ) We then note
the following results: (-1+2n-1 · g1) E G2, (-1+2n-1 . g1)2 = 1,
(1+403B2)2(n-2) = 1, and a2(n-" = 1 for all a in G2.
For positive integers m, nl, n2, ···, nr with m  2, n1 ~ 2n-2

and ni ~ 2(n-1) four 1 ~ 2, we assert that the equation

will imply m = 2, n1 = 2n-2, and ni = 2n-1 for i &#x3E; 2. To show this,
we will suppose first that m = 1 and obtain a contradiction. Noting
that 2 n-1 is a multiple of 4, and using the result (iv) of the lemma
in expanding the left hand side of the equation (1) we see that (1)
reduces to

for some element a of the ring R. As the additive order of every
invertible element of R is 2n we see that the expression within
parentheses in above gives an element of J, so that we get

Since 1 = gl and g2’ ..., gr are linearly independent over GF(2),
the equation (3) gives the desired contradiction. So we must have
m = 2 in (1) - in which case it reduces to

As we can now get the result 03A3ri=2 ni · gi = 0 we see that each one
of the (r-1) integers n2, ···, nr is even. Let 03B1 be the integer with
0 ~ 03B1 ~ (n-2) such that 2a+1 is the highest power of 2 which is
a factor of all the r even integers 2ni , n2 , n3 , ’ ’ ’, nr . (If we show
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that oc = n-2, then the assertion made at the beginning of this
paragraph will be proved.) We write ni = 203B1 · m1, ni = 21+1 - mi
for i ~ 2 and note that the choice of oc implies that at least one of
the r integers ml’ ..., mr is odd. Now using the result (ii) (with
a+1 in the place of oc ) and the result (iii) of the above lemma, we
can reduce the equation (4) to

for some element b of the ring R. If (03B1+2) were less than n in (5),
we can get from (5) the result

as R is a field with characteristic 2. Our choice of the element 03B2
implies that ml must be even, so that at least one of the remaining
integers mi must be odd. But then (6) gives

both of which are in contradiction to our choice of the elements gi.
Thus we see that the supposition oc  (n - 2 ) leads to a contradic-
tion, so that the proof of the assertion made at the beginning of
this paragraph is complete.

If we set

Ho = {(-1+2n-1 · g1)m : m = 1, 2},
Hl = {(1+403B2)k : k = 1, ..., 2n-2}, and for i &#x3E; 2,

Hi = {(1+2gi)k : k 1, ..., 2n-l il
we can see that H0, ···, Hr are all cyclic subgroups of the group
G2 and that these are of the precise orders indicated by their
definition. (For example, if we had started with m = 2,
1 ~ n1 ~ 2n-2, ni == 2n-1 for all i &#x3E; 2 in the equation (1), we
would have obtained ni = 2n-2. This would imply that the order
of the cyclic group Hl is 2n-2 and not a proper factor of this
integer. ) The argument of the previous paragraph shows that the
product of the r+1 subgroups Hi is direct. So their product will
exhaust the group G2, and we see that the proof of the statement
(2) of the theorem is complete.
We now indicate the proof of the statement (1). When p is an

odd prime we have to consider the equation 03A0ri=1 {(1+pgi)ni} = 1,
and use the result (i) of the lemma. When p == 2 and n = 2, as
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the square of every element of G2 equals 1, we see that G2 will be an
elementary abelian group.

This completes the proof of the theorem.

(3.10) In this subsection we show that any finite ring with
identity will contain at least one Galois ring as a subset. Let R be a
finite ring with identity 1, and let S be any commutative subring
of R. By a well-known result, S can be expressed as the direct sum
of rings S1, ···, Sk (k ~ 1) where each Si is a completely primary
ring. By Th. 8 each Si contains a unique subring Ri which is a
Galois ring. So every finite ring R with identity contains at least
one subset R1 which, under the operations induced on it by R,
is a Galois ring. The identity element of R1 is not the same as
that of R except when the characteristjc of R is a power of a prime
and k = 1.

(3.11) In this subsection, we consider rings which are very
nearly Galois rings. More specifically if R, J, p, r, n are as in Th. 2
and n &#x3E; 3, we consider the possibility where the characteristic
of R is pn-1.

(i) First we describe a process of extending the ring
GR(P(n-1)r, p(n-1)) to a ring of order pnr. Let R1 be the ring
GR(p(n-1)r, p(n-1)) and J1(= pR1) be its radical. We find an
element g of multiplicative order (pr-1) in R1 with the property
that, for integers s, t the statement gs-gt E Il implies gs = gt.
Then we adjoin an element z to the ring R1 in order to get the set
R defined as follows:

Here we assume that the formal sums of the formal products of z
with the elements of R1 satisfy the associative and distributive
laws, and that, in addition, the element z satisfies the conditions

where 1 is the identity element of R1 and b, c, d are some fixed (but
arbitrary) elements of F1. As every element of R1 is expressible
in the form h+py with h in Fi and y in R1 we see that R1.Z = F1.Z
and z - R, = z . F1. We can now verify that the set R is a ring
under the obvious operations. We note that |R| = pnr, that 1 (~ R1 )
is the multiplicative identity for R and hence that the char-
acteristic of R is p(n-1). If we set J = {py+hz : y E R1 and
h E F1}, we see that the set j of order p(n-1)r will be a nilpotent
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ideal in the ring R. As the set {gk+J : k = 1, - - , pr-1} gives
(pr-1) distinct invertible elements in the quotient ring Rf J of
order pl, we see that R/J is a field. Thus R, J, p, r, n are as in
Th. 2 and so we have proved the existence of such a ring R with
characteristic p(n-1).

(ii) We now prove a converse of the result proved above. I f
R, p, n, with n ~ 3, be as in Th, 2 and i f the characteristic of R be
p(n-1), then we can show that the ring R may be obtained by the con-
struction described above. For, let g be the element introduced in the

proof of Th. 2 (ii) and let F1 = {0, gk : k = 1, - - -, pr-1}. Then the
subring R1 generated by g will be isomorphic to GR(p(n-1)r, pn-1).
If y is an element belonging to J but not to R1 we can express
every element of R uniquely in the form a+hy with a in R1 and
h in F1. As J ~ R1 = p · R1 we have p.y=p.a1+h1.y for
some al in R1 and some hl in F1. If hl were not zero, (p-h1) will
be an invertible element of R1 and y = (p-h1)-1 · pal will be an
element of R1, a contradiction. So hl = 0 and if we write z = y - al
we get p - z == 0. Therefore, the element z belongs to J but not to
R1 and we find that R, R1, F1 and z satisfy the relation (1) given
in (i). Since p - z = 0 we find that

for some elements b, c, d, h of FI. We remark that the element h
in above must be zero. If it were not so, then as z - h-1 is nilpotent
and p - z = 0, we will get

a contradiction because the element z does not belong to R1. This
shows that h must be zero, and so the statement made at the

beginning of this paragraph is proved.
(iii) We now specialise the above results for the case n = 3 and

r == 1. Let

where m is any integer. Denoting this set by R(m) and assuming
the obvious operations we see that R (m ) will be a ring of Th. 2
with n == 3, r = 1 and characteristic p2, and conversely that
every ring R of Th. 2 with n == 3, r == 1 and characteristic p2 is
of this form for a suitable integer m. Let R(m1), R(m2) be two
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rings of this form with Zl’ Z2 respectively in the place of z. If a is an
isomorphism of the ring R(m1) onto R(m2) we find that

a (zl) - k . 1 + d - Z2 where k, d are integers such that p|k, while d
is prime to p. As p . m1 · 1 = 03C3(z21) = d2 · z22 = d2. p . m2 · 1, we
get m1 ~ d2 · m2 (modulo p). If we write m1 ~ m2 for ml, m2 in Z
when, and only when ml - d2 . m2 (modulo p), where d is prime
to p, we see that "~" is an equivalence relation on Z, and the
equivalence classes under this are:

(a) Co = p . Z, (b ) C1 = 1-pp ’ Z, and when the prime p is odd
(c) the (nonempty) set C2 which is the complement of Co u Ci
in Z. (In other words, Ci is the set of all quadratic residues, and
C2 of all nonresidues for the prime p.) We can now easily verify
that two rings R(m1), R(m2) will be isomorphic with each other if,
and only if the integers m1, m2 belong to the same class Ci of
integers described above. It follows that the exact number of
mutally nonisomorphic rings R (m ) is 2 or 3 according as the prime
p is even or odd.
The last-mentioned result will be needed in Th. 14 below.

(iv). The rings R(m) considered above are all commutative. We
can generalise the final result of (iii) to the commutative rings of
(ii) above. We can prove the following result:

Let k(n) denote the precise number o f mutually nonisomorphic
commutative rings R of Th. 2 with characteristic p(n-1), where the
integer n is as in Th. 2. Then k(2) - 1, and for n &#x3E; 3, k(n) = 2
or 3 according as the prime p is even or odd.
The result for n = 2 follows from Th. 4 and the remark in

§(2.5). For n ~ 3 we have to use the fact that the order of the
cyclic group formed by the nonzero elements of the set F1 (intro-
duced in Th. 2) is odd or even according as p is even or odd. Further
details of the proof are omitted.

Section 4

(4.1) In this section, we consider the situation where a (finite)
ring R contains a subfield F of order q. (We recall from the intro-
duction that when we use the terms subring, subfield we assume
that these subsets contain the identity element - if one exists -
of the larger ring. ) We begin the discussion by stating some of the
properties of such a ring which are very often used in the course of
this section.

(i) If A is any left (resp. right) ideal in the ring R, then as A is
a left (right) vector space over the field F, we see that (A will be
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a power of |F| = q; if A were equal to q, then A will be a minimal
left (right) ideal in R.

(ii) |R| = qn for some positive integer n. (In this section we
describe completely the structures of all such rings R when n = 2,
and when n = 3. )

(iii) As any nontrivial homomorphism on a field is an isomor-
phism we see that, for any proper ideal K in R, the quotient ring
R/K contains a subfield of order |F| - q.

(iv) If R = A 1 ~ ··· 0 Am is the direct sum of nonzero ideals
A i , then each A i , treated as a ring by itself, will contain a subfield
of order q.
We need also the following

LEMMA. Let Kn denote the ring of all n X n matrices over a field
K = GF(pk). Then Kn will contain a subfield of order pr if, and only
i f rlkn.

PROOF: The "only if" part follows from the remark (i) above
since Kn contains minimal left ideals of order pkn. To prove the
"if " part it is clearly sufficient to show that Kn contains a subfield
of order pkn . For getting this we have only to adjoin to the field of
scalar matrices any particular matrix of order n whose character-
istic polynomial is irreducible over the scalar field K.

(4.2) The following theorem describes the structures of all the
rings of order q2 (with identity) which contain a subfield of order q.

THEOREM 10. Let R be a ring with identity, containing a sub f ield
F of order q = pr where p is a prime. If IRI = q2, then R is isomor-
phic to a ring of one, and only one of the types described below.

(i) GF(q2).
(ii) Il r = 2k for an integer k, then the ring of all 2 X 2 matrices

over the field GF(pk).
(iii) GF(q) C GF(q).
(iv) The ring of all 2  2 matrices of the f orm (a0 bas) with a, b

in GF(pr) where s = pt and t is some fixed integer with 1  t  r.

PROOF: Il 1 is the Jacobson radical of R, then either ..T = (0) or
III - q. In the latter case the quotient ring Rf J of order q is a
field and so R is a ring of Th. 2 with n = 2. Thus if III - q we
see, by using Th. 4, that R is of the type (iv) described above. We
suppose hereafter that R is semisimple. By Wedderburn-Artin
structure theorem, R is expressible as the direct sum of ideals



222

A1, ···, Am where each Ai, regarded by itself, is a total matrix

ring over a suitable (finite) field. As each lA il is a power of q, we
have only m == 1 or m = 2. In the latter case the rings A1, A2 of
order q are fields and so R will be of type (iii). If m = 1, let R be
the ring of all n  n matrices over the field K = GF(pk) so that
Ic - n2 = 2r. By the above lemma, r|kn so that nl2. If n=1, R is
of type (i). n can be equal to 2 only if r = 2k is an even integer.
If r = 2k for an integer k, the above lemma shows that R may be
of type (ii) also.

If Rl, R2 are any rings belonging to two of the distinct types
described above, it is obvious that R1 and R2 will be mutually
nonisomorphic. This remark completes the proof of the theorem.

(4.3) The following theorem describes the structures of all rings
of order q3 (with identity) which contain a subfield of order q.

THEOREM 11. Let R be a ring with identity, which contains a
sub f ield F of order q = pr, where p is a prime. If 1 RI = q3, then
R is isomorphic to a ring of one, and only one of the types described
below.

(i) GF(q3).
(ii) Il r = 3k for an integer k, then the ring o f all 3 X 3

matrices over the field GF(pk).
(iii) GF(q2) ~ GF(q).
(iv) If r == 2k for an integer k, the direct sum of GF(q) with

the ring of all 2 X 2 matrices over the field GF(pk).
(v) G F (q) ~ GF(q) ~ GF(q).
(vi) A ring of Th. 4 with n = 3.

(vii) A ring of Th. 3 with n = 3.

(viii) The direct sum of the field GF(q) with a ring of the type
described in Th. 10 (iv).

(ix) The ring o f all 2 x 2 upper triangular matrices over GF(q).
PROOF. If 1 is the Jacobson radical of R, then either J = (0)

or |J| = q or Ijl == q2.
Suppose first that J = (0) and that R is decomposable into a

direct sum of ideals A, B with 1 A 1 = q2, and |B| = q. Then, as A
is a semisimple ring of Th. 10, we see that R will be of type (iii) or
(iv) or (v) described here. If R were a simple ring, then proceeding
as in the proof of the previous theorem, we can see that R must
be of type (i) or (ii) described above.

Suppose next that 1 is of order q2. Then R is a ring of Th. 2
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with n = 3 so that J3 = (0). So R will be of type (vi) or (vii)
according as J2 ~ (0) or J2 = (0).
We assume hereafter that IJB - q so that the quotient ring R/J

is a semisimple ring of Th. 10. The supposition that R/ J is a field
will (on using Th. 2 ) imply that J contains at least q2 elements, a
contradiction. So R/J can be only of type (ii) or type (iii) given in
Th. 10. "Lifting" idempotents from R/J we get two mutually
orthogonal nonzero idempotents el, e2 in R with e1+e2 = 1. Since
J is a minimal left ideal it follows that J2 = (0) and if Jej (0)
then iei J. So we may (and hereafter, do) assume that je, = (0)
and Je2 = J.
Now we assert that R/J cannot be of type (ii) given in Th. 10.

For, if it were, we can find two elements a, b in R such that

ae1 be2 = e2+x for some element x in J. It follows that

(0) - Je1 = (ja)elbe2 = J(e2+x) = J+(0), a contradiction. So
Rf J is the direct sum of the field GF(q) with itself. This implies
that e1 Re2 Ç J, e2 Re1  J, and that (xy-yx) E J for all elements
x, y in R. As Je1 = (0), we have e2 Re1 = (0).

If el J = (0) also we will have e1 Re2 = (0) - e2 Re1 so that R
will be the direct sum of the two nonzero ideals ei Rei . As the ring
e2 Re2 with radical e2 Je2 = J is of the type (iv) of Th. 10, we see
that R will be of type (viii) in this case.
We assume hereafter that elj = J = je2 = el Je2 . Let g be

a fixed cyclic generator of the field F, and let e3 be a fixed nonzero
element of J. We assert that if g commutes with e3 then g will
commute with el and e2 also. For, if we write el g = gei+x, then,
as the element x (belonging to the set J = Fe3) commutes with
g, we can get elgk = gk . e1+k · gk-1. x, by induction on k. k = p
gives e1 gp = gPe1 and it follows that g commutes with el. This

proves the assertion made earlier.5 Suppose now that g does not
commute with e3 so that (in the order pT of the field F) the integer
r is greater than one. We have e3 g = gs · e3 with s = pt for an
integer t with 1  t  r. As x g gs - x for all elements x of J,
we can easily verify that the element y = (gs-g)-1 · (ge1-e1g) of
J’ satisfies the relation (eae+y) · g = g · (e1+y). If we write

f 1 = e1+y, and f2 = 1-f1, we see that f 1 is an idempotent element
and that J = f1J == Jf2 = f1Jf2. Also, the element g commutes
with the idempotents ti. ·

So, without loss of generality, we may assume that the element
g commutes with the idempotents ei that we started with. We then

5 The proof for the case Il = q upto this stage is due to Mr. Bjôrk.
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get the following table of relations between the elements ei and
the elements of the field F.

and

for all f E F,

where s = pt t for a fixed integer t with 1  t  r. The above
relations imply that {e1, e2, e3l is a distinguished basis of R over
the field F, and then that the mapping

as a, b, c range over F, is an isomorphism of R onto the ring of all
2 X 2 upper triangular matrices over the field F = GF(q).

Let R1 be the ring of the type (ix) and R2 be any ring of type
(viii). For each nontrivial idempotent element e in the ring R1
it can be verified that at least one of the sets R1 e, e R1 is of order
q2. This remark shows that the rings R1, R2 cannot be isomorphic
with each other, and hence completes the proof of the theorem.

(4.4) REMARKS. (i) Let S be any ring with identity 1 and let Sn
denote the total matrix ring of order n over S. If Q - (qij) in S.
is defined by qij - 1 if i+j = n+1 and qij = 0 otherwise we see
that the inner automorphism determined on Sn by the (non-
singular) matrix Q transforms an upper triangular matrix into a
lower triangular one, and vice versa. This explains, in a very

simple manner, as to why we may replace the adjective "upper"
by "lower" in the alternative (ix) of Th. il.

(ii) Supposing r = 1 in Th. Il we can get the following result.
The exact number of mutually nonisomorphic rings of order p3,

with identity and with characteristic p, is seven; only one of these
rings ( namely, the ring of all 2 X 2 upper triangular matrices over the
field GF(p)) is noncommutative.

This result will be used in Th. 14 below.

(iii) If r ~ 2, we remark that each of the alternatives (vi), (vii),
and (viii) of Th. Il contains at least two mutually nonisomorphic
rings. (See §(2.5).)

(iv) Theorems 7, 10, 11 and the remark (ii) of §(3.11) show that
we now know the structures of all rings of Th. 2 for the cases
n == 2 and n =- 3.



225

Section 5

(5.1) In this section we consider the problem of Ganesan and
Eldridge which was described in the introduction. This paper, in
fact, owes its existence to an attempt to solve this problem
completely. In this connection we prove the following theorem.

TAEOREM 12. Let S be a ring with N2 (&#x3E; 1) elements, exactly N
of which are left zero divisors in S. Then the following results hold.

(i ) N = pr for some prime p and some positive integer r.
(ii) The characteristic of S is either p or p2.
(iii) When the characteristic of S is p, either

(a) S is a ring of the type described in Th. 10 (iv), or 
(b) S is isomorphic to the ring o f all 2 X 2 matrices o f the f orm ( p 0)
with a, b in GF(pr).

(iv) When the characteristic of S is p2, S is isomorphic to the
Galois ring GR(p2’’, p2).

PROOF. Let J denote the set of all the N left zero divisors of the
ring S and let J1 be the Jacobson radical of S. It is obvious that the
(nil) ideal Jl is contained in J. To prove the reverse inclusion we
take some fixed, but arbitrary, nonzero element z of J and consider
the homomorphism x ~ x · z of the additive group of S onto that
of the left ideal Sz. If K is the kernel of this mapping, we see that
every element of the two sets K, Sz is a left zero divisor in S,
so that K C J, and Sz Ç J. But then the result BKB.15zl = ISI = |J|2
implies that K = J = Sz and hence that Jz = Kz == (0). As z was
arbitrary in J, we find that J2 = (0) and therefore that the left
ideal J is contained in Jl. It follows that the set of all the N left
zero divisors of the ring S constitutes the Jacobson radical of the
ring S. For any two elements a, b of the ring S with a e J, b ft J,
the definition of the set J shows that a - b ft J. It follows that the
quotient ring Sf J is a (finite) division ring, and then that 51J
(of order N) is the field GF(pr) for some prime p and some positive
integer r. The statement (i) has been proved.
From the results given in §(2.1) we see that we have to distin-

guish between two cases which are discussed below.

Case (1 ). Let S contain at least one element x which is not a right
zero divisor. Then S contains a (two-sided) multiplicative identity,
and (as S/J is a field) S is a ring of Th. 2 with n = 2. It follows
that the characteristic of S is either p or p2. From Ths. 4, 10 and 7,
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we can conclude that only the situations envisaged in the state-
ments (iii) (a) and (iv) of this theorem can occur in this case.

Case (2). Here we suppose that every element of S is a right zero
divisor. Then S cannot have a two-sided identity. But S possesses
at least one left identity, say el. If we show that, in this case, S is

isomorphic to the ring of all 2 X 2 matrices of the form a o)
with a, b in GF(pr) we can see that the proof of the theorem will be
complete.

Initially, the proof proceeds as for Th. 2. If g is a fixed element
of S such that (g+J) is a cyclic generator of the field S/J ~ GF(pr)
and if

we can easily see that every element of the ring S is uniquely
expressible in the form a+b·z with a, b in F1, where z is some
fixed nonzero element of J. In particular, we note that J = F1z.
We now consider the subring S, generated by the element g.

Then Si is commutative and F1  S1. We first suppose that F1 is
a proper subset of Si. Then Si contains an element f+y, where
f E F1 C S1, y ~J and y ~ 0. This implies that y E Si, and so leads
to S = {a+by : a, b E F1}  Sl, a contradiction, because Si is

commutative and S contains one-sided zero divisors. This contra-
diction proves that Fi = Si is a subring of S. As S/J is a field of
order N, we find that gN-g ~ J n F1 = (0). So F1 is a subfield of
S (with gN-1 as the identity for F1 ).
We now show that zS = 0. For, as the element g is a right zero

divisor, there is a nonzero element cz (because the set of all left
zero divisors is J = F1z) such that czg = 0. As 0 ~ c E F1, c ~ J
and so zg = 0. This implies that zS = 0.

Finally, the observation that the mapping

is an isomorphism completes the proof of the theorem.

(5.2) REMARKS. (i) If we replace the adjective "left" by "two-
sided" in the hypothesis of the above theorem, we see that we have
only to change the word "isomorphic" to "isomorphic or anti-
isomorph ic" in the statement (iii) (b) of its conclusion.

(ii) The result proved in Case (2) of the above theorem may
be regarded as a converse of a result given by Ganesan [2, Exam-
ple 1, p 242].
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(iii) From the argument given in the first paragraph of the
proof of Th. 12, we can get the following properties of the set J:
(a ) J is the unique maximal left ideal in S, and then, (b ) J is the
unique minimal left ideal in S.

(iv) In the course of the proof of his Theorem II, Koh [4] has
proved the statement (i) of Th. 12, under an additional hypothesis.
The previous remark shows why this additional hypothesis is

superfluous for proving Th. 12(i). Koh’s proof, however, makes
essential use of this additional hypothesis.

It is to be noted that what is usually known as a left zero
divisor has been called a "right" zero divisor in Koh’s paper.

Section 6

(6.1) In this section, we determine the structures of all rings of
order p2 (not necessarily possessing an identity élément) and the
structures of all rings of order p3 with identity, where p is any
prime. The results are summarised in the following two theorems.

THEOREM 13. There are in all eleven mutually nonisomorphic rings
of order p2, for any prime p. Only two of these are noncommutative -
(e.g ) those which are isomorphic or anti-isomorphic to the ring of all
2 X 2 matrices of the form a ô with a, b in the field GF(p).
PROOF: Let S denote any ring of order p2. If the characteristic

of S is p2, then the cyclic additive group of S will contain a
generator oc such that either oc2 = 0, or 03B12 = cx., or OC2 = pa. This

accounts for 3 mutually nonisomorphic rings (as may be seen, for
instance, by considering the ideals S2 in these rings). Hereafter we
suppose that the characteristic of S is p. If J is the Jacobson radical
of S, then either = (0), or |J| = p, or J - S, and we see that
the first of these gives two rings. If S is a radical ring (with ch. p),
we can embed S in a ring R of order p3 with an identity element
such that S is the radical of R. As R will be a (unique) ring of
either Th. 3 or Th. 4 (with n = 3) we see that there are two and
only two radical rings S of order p2 and ch. p.

Hereafter we suppose that |J| = p (in addition to the fact that
the ch. of S is p). Then J2 = (0), and we find that we have to
distinguish between two cases. Case (1 ). Let every two-sided zero
divisor of S belong to J. Remark (i) of §(5.2) implies that there
are 3 rings in this case. One of these is commutative and the other
two are the noncommutative rings (possessing one-sided identities
only) mentioned in the statement of the theorem. Case (2). Let
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there be a two-sided zero divisor z of S which is not in J. It can be
shown that JS = 51 = (0). The ring S contains a nonzero idem-
potent e and if K = {n · e : n = 0 1, ···, p-1} we see that

S = K ~ J is the direct sum of the field of order p, and the zero
ring of order p.

This completes the discussion and we see that there are in all
3+2+2+3+1 = 11 mutually nonisomorphic rings of order p2.

THEOREM 14. The exact number o f mutually nonisomorphic rings
o f order p3, each possessing an identity element, is eleven or twelve
according as the prime p is even or odd. Only one of these rings is
noncommutative - (e.g.) the ring of all 2 X 2 upper triangular matri-
ces over the field GF p ).

PROOF: Let R denote any ring of order p3, with identity 1 and
with radical J. The characteristic of R is either p or p2 or p3. We
note that J ~ (0) when the characteristic is p2. In view of the
remark (ii) in §(4.4) and the remark (iii) of §(3.11) we need consider
only the case where R has characteristic p2 and is of order p. In
this case R contains mutually orthogonal idempotents e1, e2 with
e1+e2 = 1. In the Peirce decomposition R = Re1 e Re2’ we may
suppose that IRe11 | = p and that IRe2B = p2. As p . e2 = p · 1 ~ 0,
we find that R will be isomorphic to the direct sum of the ring
Z/(p) with Z/(p2) in this case.
So we can conclude that there are in all 7+(1+2)+1 = 11 or

7+(1+3)+1 = 12 mutually nonisomorphic rings of order p3,
each with identity, according as the prime p is even or odd.

6.2) REMARKS. (i) For any prime p it is obvious that there are
only two mutually nonisomorphic rings of order p, namely the
field GF(p) and the zero ring of order p.

(ii) Let N = pn11, ···, p’k be any fixed positive integer where
the pi are distinct primes and the ni are positive integers. It is
known that any ring S of order N is expressible, in a unique
manner, as the direct sum of rings S1, ···, Sk with 15il = Pini for
each i. Also, the ring S will have an identity element if, and only
if all the component rings Si have identity. So we find that we now
know the structures of all rings S of order N when 1 ~ ni ~ 2,
and also the structures of all rings S of order N, each with identity,
when 1 ~ ni ~ 3 for each i.
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