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Introduction

The regular minimal sets were introduced in [3]. These are defined to
be ’universal’ minimal sets for ’admissible’ properties; that is, every mi-
nimal set satisfying the admissible property is a homomorphic image of
the universal minimal set. Another characterization, which we will use
in this paper, expresses a kind of homogeneity of regular minimal sets:
a minimal set (X, T) is regular if and only if, whenever x, y E X, there
is an endomorphism ç of (X, T) such that ~(x) is proximal to y. The class
B(T) of regular minimal sets with phase group T is a complete lattice,
where the partial ordering is defined by the existence of a homomorphism
([3], theorem 5).

In this paper, we will intensively study the proximally equicontinuous
regular minimal sets. Proximally equicontinuous means that the proximal
relation P is a closed equivalence relation, and that the quotient minimal
set (X/P, T) is equicontinuous, ([3], [4]). It is shown in § 1 that proxi-
mally equicontinuous is an admissible, divisible property. The main re-
sults are contained in § 2, where the structure of proximally equicontin-
uous regular minimal sets with phase group discrete abelian is comple-
tely determined. From a proximally equicontinuous regular minimal
set (X, T) one obtains, in a natural way, a compact Hausdorff space C,
a compact abelian group G, and a class of subsets of G satisfying certain
conditions (theorem 2). Conversely, (theorem 3) if such a C, G and sub-
sets of G satisfying these conditions are given, a proximally equiconti-
nuous regular minimal set may be constructed. Unfortunately, these con-
ditions are extremely complicated. They are applied in § 3 to the case
G = S’ and C a finite set. The concluding sections examine the relation
between proximal equicontinuity and local almost periodicity, and also
consider homomorphisms of proximally equicontinuous regular minimal
sets.

* Research supported by National Science Foundation Grant GP-5313.
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1. Admissibility and divisibility

In this section we show that the class of proximally equicontinuous
regular minimal sets is a reasonable subclass of all regular minimal sets.

THEOREM 1. (i) ’Proximally equicontinuous’ is an admissible, divisible

property.

(ii) The proximally equicontinuous regular minimal sets form a sublat-
tice of Q(T).

PROOF. Note that (ii) is an immediate consequence of (i) and the de-
finition of the lattice operations in B(T), ([3], theorems 6 and 7).
To prove (i) we require two lemmas:

LEMMA 1. Let (Xi, T) (i e S) be a family of transformation groups such
that P(Xl) is an equivalence relation, for each i E J. Let X =  i~f Xl, and
let x = (xi), y = (yi) be in X. Then (x, y) E P(X) is and only if (xi, Yi) E
p (Xi) (i e If) -

PROOF. The necessity is obvious. We prove sufficiency. Since each
P(Xi) is an equivalence relation, so is P(X), ([1], theorem 2). Let 03C0i :
X ~ Xi be the natural projection, and let Bi : E(X) - E(Xi) be the in-
duced homomorphism of the enveloping semigroups. Let I, Ii be the
unique minimal right ideals in E(X), E(Xi) respectively, ([6], theorem 2).
Now if (x;, x’i) E P(Xi)(i e f), x = (xi), x’ = (x’i), in x iXi, and p e I,
then 7ri(xp) = xi0i(p) = x’i 03B8i(p) = 7ri(xp). Since this equality holds for
each i e S, xp = x’p and (x, x’) e P(X).
LEMMA 2. Let (X, T) and (Y, T) be minimal sets, let n : (X, T) ~ (Y, T)

be a homomorphism, and let ft : (X x X, T) ~ (Yx Y, T) be the induced
homomorphism. Then (P(X)) = P(Y).

PROOF. It is clear that lt(P(X» - P(Y). Let (y1, yz) e P(Y). Then there
is an idempotent u’ in a minimal right ideal l’ of E(Y) such that y2 = yl u’.
Let 0 : E(X) ~ E(Y) be the semigroup homomorphism induced by 03C0,

let 1 be a minimal right ideal in E(X) such that 0(1) = l’, and let u be an
idempotent in I with 0(u) = u’. Choose xi E X such that 03C0(x1) = yl and
let xz = Xl u. Then (x1, X2) E P(X), and 03C0(x2) = 03C0(x1 u) = 03C0(x1)03B8(u) =
y1 u’ = Y2. Thus (x1, X2) = (y1, y2).
Now we return to the proof of (i) in theorem 1. We show that ’proxi-

mally equicontinuous’ is productive. Since it is clearly hereditary, this
will show admissibility. Now, each P(Xi) is closed, hence by lemma 1

P(X) is closed and is therefore an equivalence relation, [1]. Now
( x iXi/P(Xi), T) is a product of equicontinuous transformation groups,
and is therefore equicontinuous. Moreover, if x = (xi) E X, the ho-
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momorphism x--. ([x;]) of X onto x iXi/P(Xi) (where [xi] is the image
of x in Xi/P(Xi)) induces a homomorphism [x] - ([xi]) of X/P onto
x iXi/P(Xi) which, with the aid of lemma 1, is easily seen to be one to
one. Hence (X/P, T) is isomorphic with ( x iXi/P(Xi), T), and is therefore
equicontinuous.
To prove divisibility of ’proximally equicontinuous’, let (X, T ) and

(Y, T) be minimal with (X, T) proximally equicontinuous, and let

7c : X ~ Y be a homomorphism. P(X) is a closed equivalence relation.
Then P(Y) = it(P(X» (lemma 2) is closed and hence an equivalence
relation. Then x induces a homomorphism û : X/P(X) - Y/P(Y).
Since X/P(X) is equicontinuous, so is Y/P(Y), and the proof is completed.
A theorem similar to theorem 1 is proved in [4]. Lemma 2 is also

proved in [8].

2. The structure of proximally equicontinous regular minimal sets

In this section it is assumed that T is discrete abelian. We first discuss

briefly the equicontinuous minimal sets. For convenience we suppose
that T acts effectively. If (X, T) is an equicontinuous minimal set, then
the enveloping semigroup E is an abelian group of self homeomorphisms
of X, and is identical with the automorphism group A(X) of (X, T), [2].
Since E(X) = A(X) acts transitively on X, (X, T) is certainly regular.
Indeed, in this case, (X, T) may be given the structure ol a compact
abelian group in which T is embedded in a one-one continuous manner
as a dense subgroup. We may choose any point xo as the identity, define
multiplication on the orbit of xo by (xo t)(xo t’) = xo tt’, and then use the
assumed equicontinuity of (X, T) to extend the multiplication to all of X.
Thus the study of equicontinuous minimal sets is reduced to the study

of compact abelian groups of the type described. Our basic strategy in
the study of proximally equicontinuous minimal sets is to use the natural
projection il : X ~ X/P, to ’pull back’, as much as possible, the desirable
properties of (X/P, T) to (X, T).
Now, let (X, T) be a proximally equicontinuous regular minimal set.

Then, if x E X, 11-1(I1(X» = P(x), the set of points proximal to x. Il ~
is an automorphism of (X, T), then it is easy to see that ~(P(x)) = P(~(x)
for x e X. (This shows that all the ’fibers’ P(x) are homeomorphic.)
Moreover, since ~1, (p2 ~ A(X) with cpl ~ ~2 implies ~1(x) and ~2(x)
are distal ([2], theorem 2), it follows that, if x, y ~ X, there is exactly one
~ E A(X) such that (~(x), y) E P.
Now, choose an identity element e in XIP, and let G denote the topo-

logical group obtained by this choice. We may identify G with A(X) as
follows. If 9 e G, x e X, we define g(x) = ~(x), where ~ is the unique
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element of A(X) for which ~(~(x)) = g~(x) (the group product in G). If
t E T, g~(xt) = 9~(x)t = ~(~p(x))t = ~~(xt), so if y E X, g~(y) = ~~(y),
and (p depends only on g. It is easily verified that this correspondence
defines an (algebraic) isomorphism of G with A(X).

Let C = ~-1(e) c X. Consider the map 03C8 : X - G x C defined by
03C8(x) = (~(x), ~(x)-1(x)). It is easily verified that is one to one and
onto, so that, set theoretically, X may be identified with G x C. Now, if
t E T, 03C8(xt) = (~(x)t, ~(x)-1(x)). Since xT is dense in X, for each x E X,
03C8 is not continuous (unless C consists of one point).
Looking at this in another way, if we identify X with G x C as in the

preceding paragraph, and define the action of T on G x C by (g, c)t =
(gt, c), there is a topology for G x C (obviously not the product topology)
such that, for every (g, c) E G x C, the orbit of (g, c), (g, c) T =
[(gt, c) 1 t E T] is dense in G x C. Using this representation, the action of G
as the automorphism group of (G x C, T) is given by g’(g, c) = (g’g, c).

Thus, we have determined the set theoretic, or ’algebraic’ structure of
proximally equicontinuous regular minimal sets. We now turn to the dis-
cussion of their topological properties.

LEMMA 3. Let {gn}, {xn} (n E D) be nets in G and X respectively, such
that gh ~ g E G, and xn ~ x ~ X. Then gn(xn) ~ P(g(x)).

PROOF. It is sufficient to show ~(gn(xn)) ~ ~(g(x)). Now 17(gn(xn»
= gn~(xn), and n(g(x» = g~(x). Since ~ is continuous, and G is a topo-
logical group, the conclusion follows immediately.
Let u denote the uniformity of X, and let j/ be the uniformity which

C acquires as a subspace of X. If ce E e, c, c’ E C, consider the subset

0,,(c, c’) of G which is defined by 0,,,(c, c’) = [g E GI(g(c’), c) E a].

THEOREM 2. The sets 0,,,(c, c’) have the following properties:

1. e E Oa(e, c) for all c E C and all oc E dII.
2. If 03B1 ~ dII, e’ e C, let Oa(e’) = Ucec 01.(Cl CI), O03B1* = ~c’~CO03B1(c’),

and O03B1 = Uc’eC 0«(C’) =1 Uc,c’ec O03B1(c, c’). Then, both (O*03B1}03B1~u and

{O03B1}03B1~u constitute fundamental systems of neighborhoods of e.
3. If 03B2, y E u, c E C, then there is an 03B1 E e such that 0,,(c, c’) c

O03B2(c,c’)~ O03B3(c, c’) for all c’ ~ C.
4. If c, cl, c2 ~ C, then O03B1(c, Cl) n O03B1(c, C2) meets every orbit in

(G, T).
5. If Cl, C2 E C with c1 ~ c2 , then there is an a E dII such that 0,,,(cl, c)

n 0,,,(C2, C) = 0for all c E C.
6. If a e 0?/, c, c’ E C, and g E O03B1(c, c’), then there is a fi E dII such

that gO03B2(c’, C") ~ O03B1(c, c"), for all c" E C.
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7. If a E Où, then there is a fl E Où, and a ô E V such that if c, c’, c" E C
with (c’, c) E ô, then 0,,(C’, c") c O03B1(c, c").

8. Let c1, ···, ck ~ C, 03B11, ···, 03B1k~u such that for all c’ ~ C, e ~ Uj= 1, ..., k
O03B1j(cj, c’). Then there is an oc E u such that if c E C, there is a j, 1 ~ j ~ k,
such that 0 a( c, c’) c O03B1j(cj, c’), for all c’.

PROOF. The proofs of 1, 3, 5, 7 and 8 follow easily from the definition
of the sets O03B1(c, c’), the facts that X and C are compact Hausdorff spaces,
and elementary properties of uniformities.

If g ~ G, c1 , c2 ~ C, then g(cl ) and g(C2) are proximal. This implies 4.
We prove 2. Note that 0: consists of those g E G for which all g(c’)

are in an ’03B1 neighborhood’ of the set C, and Oa consists of those g such
that some g(c’) has this property. Since 0: c Da, it is sufficient to show
that 0: is a neighborhood of e, and that if V is any neighborhood of e,
there is an a e 4Y such that Oa E V.

If 0: were not a neighborhood of e, there would exist a net {gn} in
G, with gn ~ e such that gn ~ 0: . Then there would be c’n E C such that
(gn(cn’), c) rt a, for all c E C. But this contradicts lemma 3.
Now, let U be a neighborhood of e in G, and let an E Où such that

n an = L1 the diagonal of X x X. If no 0 an is contained in U, then there
are cn, c’n E C and gn E o«n(Cn, c) with g. e U. We may suppose gn ~
g E G- U. Then (g.(c.), cn) E (Xn. Suppose c. ~ c E C. Then gn(c’n) - c.
But then, by lemma 3, gn ~ e, and g = e. This is a contradiction.
To prove 6, choose ao ~ u such that if (z, g(c’)) e 03B1o, then (z, c) E a.

Let fi E Où such that (x, y) ~03B2 implies (g(x), g(y)) E oco. Now let

g’ E O03B2(c’, c"). Then (g’(c"), c’) E fi, and (gg’(c"), g(C’)) E (Xo. Since

g E O03B1(c, c’), we have (g(c’), c) E a, and therefore (gg’(c"), c) E a.
That is gOp(c’, c") c 0,,,(c, c’’). The proof is completed.
Note that properties 1- 8 are expressed entirely in terms of the topo-

logical group G, and the compact Hausdorff space C. Now, suppose we
are given such a G and C, and a collection of subsets O03B1(c, c’) of G which
satisfy 1 - 8. The next theorem shows how to construct a proximally
equicontinuous regular minimal set (X, T) out of G and C. That is, the
sets 0,,,(c, c’) completely determine the structure of the minimal set.

THEOREM 3. Let T be a discrete abelian group, and let (G, T) be an
equicontinuous minimal set. Let G be given the structure of a compact abe-
lian group. Let C be a compact Hausdorff space, with uniformity Y. Sup-
pose there is an index set Où, such that, for all ce E Où, c, c’ E C, there are
subsets O03B1(c, c’) of G with properties 1- 8 of theorem 2. If (h, c) E G x C,
let N,(g, c) = [(g’, c’)lg-lg’ E 0,,,(C, c’)].

Then, the sets N,(g, c) constitute a base for a compact Hausdorff topo-
logy of X = G  C. If T acts on X by (g, c)t = (gt, c), then (X, T) is a
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proximally equicontinuous regular minimal set, with each P(x) homeomor-
phic to C, and (XIP, T) isomorphic with (G, T).

PROOF. To show that the sets N03B1(g, c) are a base for a topology on X,
we first observe that (h, c) E N03B1(g, c) if and only if g- lh E 0,,,(c, c’). For,
(h, c’) E N03B1(g, c) means that h = ggo, where (go, c’) E N03B1(e, c) and this is
equivalent to 90 E O03B1(c, c’) or g-lh E O03B1(c, c’).
Now, suppose (h, c’) ~ N03B1(g, c) or g-1 h ~ O03B1(c, c’). By 6, we may

choose 03B2 c- 0?/ so that g-1hO03B2(c’, c") ce 0,,,(c, c"), for all c" E C. Now, let
(k, c") E N,(h, c’). Then h-1k E 00(c, c"), and g-lk = g-1hh-1k E g-l
hO03B2(c’, c") c Oa(c, c"), or (k, c") E N03B1(g, c). That is, Np(h, c’) c N03B1(g, c).

If (h, c") E N03B1(g, c) n N,(g’, c’), choose 03B2, g E u such that Np(h, c")
~ N03B1(g, c) and Ng(h, c") c Ny(g’, c’). Now choose 03BB ~ e, so that

O03BB(c", co) c O03B2(c", co) ~ Og(c’’, co), for all Co E C (property 3). It

follows that Nx(h, c") c N,(h, c") n Ng(h, c") c N03B1(g, c) n Ny(g’, c’).
This shows that the Na(g, c) define a topology on X = G x C. We show

that this topology is compact Hausdorff. Suppose (g, c) ~ (g’, c’). If

g ~ g’, choose a E 0/1 such that gOa n g’O03B1 = 0. Now, if (h, c" ) E N03B1(g, c)
n N03B1(g’, c’), then h E gO03B1(c, c") n g’O03B1(c’, c") ce gO03B1 n g’Da; hence

N03B1(g, c) and N03B1(g’, c’) must be disjoint. If g = g’ but c :0 c’, choose
a e QY such that O03B1(c, c") n O03B1(c’, c") = 0, for all c" E C. Then it follows
that N03B1(g, c) n Na(g, c’) = 0. Thus the topology is Hausdorff.
To prove compactness, suppose first that (gn, c’) is a net in G x C such

that gn ~ e. Let ce E u. We show that there is a c E C such that (g., cn) E
N03B1(e, c), for n ~ no. Let f3 E 0/1, b E GIC, as in 7. Since Op is a neighborhood
of e, gn E 00 for n ~ no. Then gn e O03B2(c’n) and gn E Op(cn, c’n), for some
cn ~ C. Suppose cn ~ c ~ C, so (cn, c) E b, for n ~ n1 ~ no. By 7,
O03B2(cn, Cn) c O03B1(c, c’n), and (gn, c’n) E N03B1(e, c).
Now, suppose no subnet of (gn, cn) converges. Then if c E C, there is an

ot(c) E GlC and an no E D such that (gn, c’n) ~ N03B1(c)(e, c) or gn ~ O03B1(c)(C, cn),
for n ~ no.
Now {e} x C c ~c~C N03B1(c)(e, c). From property 7, it follows easily

that {e} x C is homeomorphic with C, and is therefore compact. Let
Ci, ’ ’ ’, Ck in C such that {e} x C = ~j=1, ···, k N03B1j (e, cj) = N*, where we
write 03B1j for 03B1(cj). Then there is an n l E D such that (gn , c’n) ~ N* for
n ~ nl. Let oc ~ u be chosen to satisfy 8. Then, if (g, c’) E Na(e, c),
g E O03B1(c, c’ ) c O03B1j(cj, c’), for some j (1 ~ j ~ k), by 8, and (g, c’) E N,,,
(e, cj). That is, ~c~C N03B1(e, c) c N*. But the preceding paragraph tells
us that (gn, cn) E Na(e, c), for some c, and therefore (9n, cn) E N*, for all
n ~ no. This is a contradiction, and therefore a subnet of (gn, Cn) - (e, c),
for some c E C.

Finally, let (gn, cn) be any net in G x C. We may suppose gn ~ g in G.
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Then hn = g-lgn --+ e, and, by the discussion just concluded, a subnet of
(hn, c») - (e, c). It follows immediately that the corresponding subnet of
(gn, Cn) (g, c).

Let 7r : X ~ G be the first coordinate projection. Then is continuous.
For, let {(gn, cn)} be a net in X with (gn, cj ~ (g, c). If a E u, the
net {(gn, c,)l is eventually in Na(g, c). Therefore, g-1gn ~ 0,,,,(c, cn) C Oa,
for n ~ no. Since a is arbitrary, and the {O03B1} are a fundamental system of
neighborhoods of e, by 2, we have g-1gn ~ e, or gn --+ g.

It is immediate that the maps (g, c) - (g, c)t = (gt, c) are continuous.
Now let g, h E G, co, c, c’ E C, and a E Cft. By property 4, there is a t E T
such that h-1 gt E Oa(co, c) n Oa(co, c’). This says that (g, c) t E Na(h, co)
and (g, c’)t E Na(h, co). This shows that (g, c) and (g, c’) are proximal,
and also that (X, T ) is minimal.

Conversely, if (g, c) and (g’, c’) are proximal, then if (h, co) E X, there
is a net {tn} in T such that (g, c)tn ~ (h, co) and (g’, c’)tn ~ (h, co). Then
gtn ~ h and g’tn ~ h. This can only happen if g = g’. This shows that
P(g, c) = {g} x C.
From this it follows easily that proximal is a closed equivalence re-

lation and that (X/P, T ) is isomorphic with (G, T). Finally, if h E G, it
defines an automorphism of (X, T) by h(g, c) = (hg, c). Thus, if (g, c),
(g’, c’) E X, then g’g-1(g, c) = (g’, c) is proximal with (g, c). This shows
(X, T ) is regular, and the proof is completed.

3. Examples

In order to use theorem 3 to construct proximally equicontinuous reg-
ular minimal sets, we must construct the sets O03B1(c, c’) for a given G and
C. We do this when G = S1, and C is a finite set with the discrete topol-
ogy.
An example of a minimal set on Si is obtained when T = Z, the addi-

tive group of integers, and a generating homeomorphism is a rotation
through an irrational multiple of 03C0.

Since it is only necessary to define the sets Oa(c, c’) in a neighborhood
of the identity of G = S1, we may work with a neighborhood of 0 on
the real line.

Let C = {c1, ···, cn}, where n ~ 2, and let k be an integer with
1 ~ k  n. Let Ci = {c1, ···, ck} and CI = {ck+1, ···, cn}. Consider
two sequences of real numbers, {air} and {bir} (i = 1, ···, n, r = 1, 2, ...)
which approach 0 as r - oo, and which satisfy

and
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Let Iir be the open interval (air, bir).
We are now almost ready to define the sets Oa(c, c’). The index set

will in this case be the set N of natural numbers. If m ~ N, and 1 ~ i ~ n,
let 0*(ci) = ~r ~ m hr. This is illustrated for n = 5 and k = 3 in figure 1.

Figure 1

The sets Om(ci, cj) are to be O*m(ci) together with certain endpoints of
the intervals Iir. To be precise, let

That is, to obtain Om(ci, cj) from O*m(ci), we add left endpoints of Iij
if cj e Ci and right endpoints if Cj e C2. Also, 0 is included in every
Om(Ch c,).
We verify that properties 1- 8 of theorem 2 are satisfied. Property 1

(that 0 E Om(ci, ci)) is true by construction. To see that property 2 is
satisfied, note that Om(Cj) = ~i=1, ···, n Om(ci, Cj) = [ak+1, m , b1,m) or

(ak+1,m, b1,m] according as cj is in Ci or C2. Thus 0: = n j Om(cj) =
(ak+1,m,b1 m) and Om=~i,j Om(ci,cj) = [ak+1,m,b1,m]. For 3, let

m, m’ e N, and choose m" &#x3E; m and m’. Property 4 holds, since

Om(c, Cl) n Om(c, c2) ~ O*m(c), which has non empty interior.
Let 1 ~ i ~ j ~ n. If i ~ k  j, then clearly Om(ci, c) n Om(cj, c) = ~.

Suppose 1 ~ i  j ~ k or k + 1 ~ i  j ~ n. Then, by definition

O*m(ci) ~ O*m(cj) = 0. so it is only necessary to check the added points.
Note that 0 is in at most one of the sets Om(ci, c) and Om(cj, c). Moreover,
the endpoints which are added are all left endpoints or all right end-
points (depending on whether c is in Ci or C2), so in these cases also
°m(Ci, c) n Om(cj, c) = 0. Therefore 5 holds.

Before proving 6, we rephrase it in additive terminology. We must show:
if m E N, c, c’ e C and g e Om(c, c’), then there is a k E N such that
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g + Ok(c’, c") c Om(c, c"), for all c" E C. If g = 0 or if g is an interior
point of Om(c, c’), this is easy. If g is an endpoint of one of the intervals
Iir, there are two special cases to consider. If c’ E Cl , then g is a left
endpoint and Ok(C’, c") is a subset of R+, the positive reals (or, if c" = c’,
of R+~ {0}). Then, if k is chosen sufficiently large, 9 + Ok(C’, c") c
0.(C, c"). If C’ E C2 then g is’ a right endpoint, and Ok(C’, c") c R- or
R- u {0}. Again, for sufficiently large k, g+Ok(c’, C") c Om(c, C")’
Thus 6 is proved.

Since C is discrete, 7 is immediate. Finally, we verify 8. If

O ~ ~j=1, ···, s Omj(cij, c’) for all c’ E C, we must have s = n, and there
fore the set {cij} ( j = 1, ..., n) is equal to all of C. Let m = max mj.
Then Om(c, c’) c O.j(c, c’), and the proof is completed.

4. Proximal equicontinuity and local almost periodicity

A transformation group (X, T) is said to be locally almost periodic if, for
every x E X and neighborhood U of x, there is a syndetic subset A of T
and a neighborhood of x such that VA c U, ([7], 3.38). Locally al-
most periodic transformation groups are proximally equicontinuous
([6], theorem 3). The converse is not true, even for minimal sets, as we
will show. However, the examples constructed in § 3 are locally almost
periodic. This is a consequence of a general theorem (theorem 5), and
partially answers a question of Ellis ([5], remark 9). In this section we do
not require T discrete abelian, or (X, T) regular.
LEMMA 4. Let (X, T) be a transformation group for which P is a closed

equivalence relation. Let x E X and let U be a neighborhood of P(x). Then
there is a neighborhood Ut of P(x) such that y E Ul implies P(y) c U.

PROOF. If the conclusion is false, then there are nets xn ~ P(x) and
yn E P(xn) such that y. 0 U. We may suppose Xn ~ x’ E P(x), and
yn ~ y’ ~ X. Since P is closed, (x’, y’) E P, so y’ E P(x’) = P(x) c U.
This is a contradiction.

LEMMA 5. Let (X, T) be minimal, let proximal be an equivalence rela-
tion in X, and let x1, ···, Xn be a finite set of mutually proximal points.
Suppose U is a non empty open set in X. Then there is a t E T such that

xjt~U(j= 1, ···,n).
PROOF. Let I be the unique minimal right ideal in E(X). Since xl = X,

for all x E X, there is a p ~ I such that xnp E U. Then xl p = x2 p = ···
= xnp E U. Since I c E, which is the closure of T in XX, there is a
t E T for which xJ t E U ( j = 1, ···, n).
THEOREM 4. Let (X, T) be minimal and proximally equicontinuous.
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Suppose there is an x E X for which P(x) is finite. Then (X, T) is locally
almost periodic.

PROOF. It is sufficient to show that T is locally almost periodic at x
([7], 4.11). Let U be a neighborhood of x, and let t E T such that P(xt)
= P(x)t c U. Let Ui be a neighborhood of P(xt) such that P(U1) =
~y~U1 P(Y) c U.
Now, let ~ : (X, T) ~ (X/P, T) be the natural projection. Let y = il(x).

Since P(xt) c Ul, it follows easily that U* = il(Ul) is a neighborhood of 
yt. Since (X/P, T) is almost periodic ([7], 4.38), it is locally almost pe-
riodic. Let V* be a neighborhood of yt and A a syndetic subset of T
such that V*A c U*. Let = ~-1(V*) c X. Then VA ~ ~-1(U*) =
~(U1) c U. Now, V is a neighborhood of xt, so Vt-1 is a neighborhood
of x. Then Vt-1tA = VA ~ U. Since tA is syndetic, this shows that T is
locally almost periodic at x.

Here is an example of a proximally equicontinuous regular minimal
set which is not locally almost periodic. Let X = S1, and let T be the total
homeomorphism group of X. (Let T be given the discrete topology.) Note
that P(X) = X x X so that (X, T) is proximally equicontinuous and re-
gular. Let x E X and let U be a connected neighborhood of x with interior
(X - U) ~ 0. Let V be a connected open neighborhood of x and let
A = A(V) = [t ~ T|Vt c U]. We show that A is not syndetic. For
this it is sufficient to show if K is a finite subset of T (say K = {k1, ···, kn}),
then T ~ AK. That is, we are to find a t E T such that tkj-1 ~ A, or,
what is the same thing, ht et: Ukj ( j = 1, ···, n). For j = 1, ···, n, let
Wj be open connected and non empty, such that Wj ci X- Ukj and such
that arc length Wj  1/2j. Let t E T such that Vt = Wj ( j = 1, ···, n).
Then certainly Vt ~ Ukj(j = 1, ···, n). The proof is completed.

5. Homomorphisms

In this section we assume again that T is discrete abelian. The next
theorem describes the structure of homomorphisms of proximally equi-
continuous regular minimal sets. The proof is completely straightforward,
and is therefore omitted.

THEOREM 5. Let (G, T ) be an equicontinuous minimal set. Suppose that
C and D are compact Hausdorff spaces. Let {O03B1(c, c’)l and {O03BB(d, d’)}
(a E ô/t c, À. E uD, c, c’ E C, d, d’ E D) be subsets of G which satisfy prop-
erties 1- 8 of theorem 2. Let G x C and G x D be topologized as in theo-
rem 4. (So (G x C, T) and (G x D, T) are proximally equicontinuous re-
gular minimal sets.) Then

(i) Every homomorphism of (G x C, T) to (G x D, T) is of the form
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n(g, c) = (03C8(g), 03C3(c)), where 03C8 is an automorphism of (G, T) and a: C
~ D is continuous and onto.

ii) If 03C8 is an automorphism of (G, T) and 03C3 : C ~ D is continuous and

onto, then x : G x C - G x D as defined in (i) is continuous if and only if,
for every 03BB ~ GIID, there is an a E uC such that 03C8(O03B1(c, c’)) c O03BB(03C3(c), 03C3(c’)).

Now, let G = SI and let C be a finite set. Define sets {Om(c, c’)} and
{m(c, c’)} satisfying 1- 8 so that, for no Cl, c2, c3, C4 E C and for no po-
sitive integers m and r is it the case that either Om(c1, C2) c Õr(C3, C4) or
Õr(C3, C4) c 0,(Cl, c2). (This can be achieved, for example, by defining
sequences of real numbers {air}, {bir}, {ir, and {ir} such that air 
âir  bi,  Sir and then defining 0.(ci, Cj) and Ô.(ci, cj) as in § 3).
Then, if we denote by ff 1 and F2 the topologies defined on G x C (as
in theorem 3) from Om(c, c’) and ôm(c, c’), theorem 5 tells us that the
minimal sets (G x C, F1, T) and (G x C, F2, T) are not isomorphic.
Thus, G and C do not uniquely determine a proximally equicontinuous
regular minimal set. Indeed, it is easy to see that infinitely many non-
isomorphic minimal actions can occur.
We may also use theorem 5 to obtain a positive result on homomor-

phisms, and thereby to construct a new regular minimal set.
Let C and D be finite sets, and let C = Ci u C2, D = D 1 u D2, where

Ci n C2 = Dl n D2 = 0. Let u : C - D such that J(C;) = Di (i = 1, 2).
Using the decomposition C = Cl U C2, let Om(c, c’) be defined as in
§ 3, and topologize SI x C so that (SI x C, T) is a proximally equiconti-
nuous regular minimal set. For d, d’ E D, let Om(d, d’) = u [Om(c, c’)Iu(c)
= d, 03C3(c’) = d’]. It is readily verified that the sets Om(d, d’) satisfy
properties 1- 8. (The condition 0’( Ci) = Di is necessary for property 7).
Then, by theorem 5 (if S’ x D is topologized appropriately) the map
(g, c) ~ (g, a(c» is a homomorphism from (S1 x C, T) to (S1 x D, T).
Now, for n &#x3E;- 2, let Cn be a set with cardinality n, let Cn = C1n ~ C2n ,

where Cin n C2,, = 0 and let an: Cn+1 ~ Cn such that 03C3(Ci, n+1) = Ci, n
(i = 1, 2). Then if Xn = S1 x Cn , there are, by the discussion in the pre-
ceding paragraph, homomorphisms 03C0n : (Xn+1, T) - (Xn, T). We may
regard the collection of minimal sets and homomorphisms {(Xn, T), 03C0n}
as an inverse system. It is easy to see that the inverse limit of this system,
namely, the subset of  n= 2, 3,··· Xn of points (x2 , x3 , ···) satisfying
1tn(Xn+l) = xn is a minimal set, and therefore, by theorem 6 of [3 ], is the
regular minimal set (v Xn , T).

Let X* = v Xn, and let 03C8n : X* ~ X ,, be the nth projection. We may
represent points of X* by X* = (g, c2 , c3, ···) (g E S1, cj ~ Cj with
03C31(cj+1) = cj). It follows from lemma 1 that P(x*) consists of those points
y* = (g, Ci, c’, ... ) in X* with c’j E Cj. Clearly P(x*) is compact, self-
dense, and metrizable. Moreover, P(x*) is totally disconnected. For if
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y* = (g, 2, c’3, ···) and z* = (g, c’’2, c’’3, ···) are in a connected com-
ponent of P(x*), then 1/In(Y*) = 1/In(z*), for n = 2, 3, ... and y* = z*.
Therefore P(x*) is homeomorphic to the Cantor discontinuum.
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