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ON TOPOLOGICAL NEIGHBOURHOODS

by
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COMPOSITIO MATHEMATICA, Vol. 22, Fasc. 4, 1970, pag. 387-424
Wolters-Noordhoff Publishing
Printed in the Netherlands

This paper is concerned with the ’normal bundle’ problem for topolog-
ical manifolds: Suppose M" is a proper, locally flat submanifold of

Qn+r; then what structure can be put on the neighbourhood of M in Q?
If r ~ 2 the problem has been solved by Kirby [22], who has shown that
there is an essentially unique normal disc bundle, while if r ~ 3 then our
counterexample [38] showed that the notion of fibre bundle is too strong
a concept. The notion of topological block bundle [37; § 1 ] seems in-

applicable since M might possibly be untriangulable and a triangulation
of M would be unnatural structure for the problem. The answer we
propose here is the ’stable microbundle pair’. The idea of using micro-
bundle pairs to classify neighbourhoods was introduced by Haefliger
[9, 10] in the pl case and we showed [35; § 5] that his theory essentially
coincides with our theory of pl block bundles.
An r-microbundle pair is a pair eN ce (1 Ir where EN denotes the trivial

microbundle of rank N. Two are equivalent if they are isomorphic after
possibly adding further trivial bundles to both elements and the iso-
morphism restricts to the identity on the trivial subbundles. The equiva-
lence classes form a good ’theory’ with classifying space BToPr =

limn~~(BTopr+n,n). To the manifold pair M c Q we associate the pair
LM EB vM c 03C4Q|M ~ vM , where vM denotes any stable inverse to rm - Our
main theorem (in § 3) asserts that this association classifies the germ of
neighbourhood of M in Q except possibly in the case n = 1, q = 3 (and
n = 2, q = 4 if ~M ~ 0); these ommisions are due to the unsolved
4-dimensional annulus problem.
The main work of the proof is a stability theorem for 03C0i (Topr+n,n)

which is contained in § 2. This we reduce by means of immersion theory
to a statement about straightening handles in the sense of Kirby and
Siebenmann [21, 23], keeping a pl subhandle fixed, which is proved in
§ 1. The proof follows the Kirby-Siebenmann proof for the absolute case
using the relative surgery techniques of [32]. In §§ 4, 5 and 6 we give
some applications of the main theorem.

In § 4 are theorems about existence and uniqueness of normal block
bundles in the case that M has a triangulation not necessarily combina-
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torial. The results hold for any type of block bundle (open, closed or
micro) and are the same as [33; § 4] (existence and uniqueness up to
isotopy) in the following cases: r ~ 5 or ~ 2, r = 4 and M is 1-connect-
ed, r = 3 and M is 2-connected (the omitted cases are again due to
4-dimensional problems).

In § 5 we prove stable existence and uniqueness of normal micro and
disc bundles. The dimensions are the same as obtained in the pl case by
Haefliger and Wall [12] (improved slightly by Morlet [31 ] and Scott [40]).
However we need codimension 5 for our results on microbundles, and
6 for disc bundles.

In § 6 we prove analogues of smoothing theory for submanifolds. There
are two cases:

(a) M and Q are both pl. manifolds and we seek to isotope M to a pl.
submanifold. This is always possible in an essentially unique way if

r ~ 3; and if r ~ 2, n + r ~ 5 there is a well-defined obstruction. (The
codim 3 result was originally announced by Bryant and Seebeck [2] ]
using a result of Homma [15 ] unfortunately the proof of Homma’s result
appears to contain some gaps. Several other alternative proofs have
been given.)

(b) Q is a pl. manifold. Here we have the analogue of the Lashof-
Rothenberg result [28]. M can be isotoped to a pl. submanifold if and
only if the classifying map M - BTop, for the germ of neighbourhood
lifts to BPL,.. If r ~ 3 the problem is identical to the absolute problem
of finding a pl. structure and if r ~ 2 the map lifts in an essentially unique
way by the result of Kirby mentioned above.
We are indebted to A. Haefliger for his unpublished preprint [9] and

for a private communication containing his arguments for classifying
germs of pl. neighbourhoods. We are also indebted to R. C. Kirby for
a copy of his excellent and detailed notes [21 ] on triangulating manifolds.
We plan a further paper which will contain the technical details of

defining transversality for topological manifolds (Hudson showed [17] ]
that a local definition is inadequate). This is done by examining Whitney
sums (defined in § 3 of this paper) along the lines of [34; § 3] and [39];
we then define M to be ’germ transversal’ to W in Q if along M n W the
three germs of neighbourhoods form the Whitney sum decomposition.
A relative transversality theorem in case dim M n W ~ 5 can then be
proved using local pl. structures which exist by Kirby and Siebenmann’s
results.

0. Preliminaries

We use the same basic scheme of notation as in [35; § 0]. Rn denotes
Euclidean n-space and In the double unit cube [-1, +1]n. aln =
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[ - a, 03B1]n, sn-i = DI". d n c Rn is the standard n-simplex with vertices

v0, v1 ··· v,,. There are natural inclusions Rn c Rn+r, In c In+r; and
identifications Rn Rr = R n+r, In Ir = In+r.

Microbundles

We refer to Milnor [30] for basic results on microbundles. We recall
that if M is an unbounded manifold then iM is the microbundle with total

space M x M, zerosection 4M and projection 03C01 (the projection on the
first factor). We often write i(M) for iM. If Mis bounded then we define
zrz = 03C4(M+)|M where M+ = Mu open collar. Suppose 03BEn, ~n+r are
microbundles. We say 03BE is a subbundle of q and write 03BE c 11 if B(03BE) =
B(~), E(03BE) ~ E(~), at least in some neighbourhood of B(03BE), and for ea(,h
x E B(03BE) there exists microbundle charts h : U x Rn -+ E( ç), 9 : U x Rn+r -
E(~) with x E int U, so that

The trival bundle an of rank n is defined by the diagram

An inverse to 03BE is a pair (~, t) where il is a bundle with the same base as
03BE and t: E(03BE 0 q) - E(eN) is a trivialisation. Inverses are unique up to
stable isomorphism of il and bundle homotopy of t, see [30].

A-sets and groups
We refer to [36, 37] for the theory of semisimplicial complexes and

groups without degeneracies. The A-group Topn (resp. PLn) has as

typical k-simplex a germ of homeomorphisms (resp. pl. homeomorph-
isms)

defined in a neighbourhood of jk x {0} and satisfying

(ii) u commutes with projection on dk.

Applying the classifying functor of [37; § 1] we get classifying spaces
BToPn, BPL. which are Kan 0394-sets. BToPn classifies n-microbundles with
base a CW complex and there is a universal microbundle 03B3n/BTopn. (We
recall from [36] that there is a natural bijection between homotopy
classes of d -maps [S(X), Y] and continuous maps [X, |Y|], where X
has the homotopy type of a C W-complex, Y is a Kan d-set and S(X) is
the singular complex. We will denote both these sets by [X, Y]). All



390

topological manifolds have the homotopy type of CW complexes and
thus BTop,, classifies n-microbundles over manifolds. Similar remarks
apply to BPLn .
We define 0394-subgroups Topnr+n, Topr+n,n of Topr+n by the conditions

(iii)1 and (iii)2 respectively

where here Rn is identified with {0} Rn C Rr Rn = Rr+n, PLnr+n,
PLnr+n,n are defined similarly. There are natural inclusions of all the pl.
groups in the corresponding topological groups and of Topr+n,n in
Topnr+n etc.
We now define two suspension maps s and s’ (both injective) in the

diagram

where s( (J) : dk x Rr+n x Ri is defined to be a x id and

is obtained from s( (J) by reordering the last coordinate into the (r + 1 )-st
place and the j-th coordinate to the ( j + 1 )-st place for j = r + 1, ... n.
f is the natural inclusion. The outside square commutes while the tri-
angles do not; however, it is easy to see that they commute up to homo-
topy which is all we require.
We obtain a large diagram of inclusions:
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where the vertical inclusions are s’, the horizontal ones s, and we have
defined Top = u Topr , Topr = u Topr+n,n and Top = u Topr . By
homotopy commutativity we have Top c Top a homotopy equivalence.
Again there are similar definitions for the pl. groups.

If X is a A-set then we denote by X(k) the k-skeleton of X.

Main tools

Apart from microbundles the principal tools will be isotopy extension
and immersion theory, in both pl. and topological categories. An isotopy
of M and Q is locally trivial if it is locally the restriction of an isotopy of
an open subset of Q in Q. All embeddings of manifolds will be locally
flat and all isotopies locally trivial. The isotopy extension theorem (for
locally trivial isotopies) is proved by Hudson-Zeeman [20] in the pl. case
and Edwards-Kirby [4] in the topological case. We also need the theorem
for cubes of isotopies. This is Hudson [16] in the pl. case, while the
topological case follows by combining his methods with those of Ed-
wards and Kirby, see also Kirby [21]. From this last theorem we have
a Kan fibration

where p restricts to the last n coordinates, and the fibre is Top, ln, n -
We will need a doubly relative version of immersion theory, this is

stated in Corollary 2 of the appendix to this paper. The pl. version is
stated but not proved in Haefliger-Poenaru [11 ], see the last three lines
of § 2. However it follows easily from what they do prove by analogous
(rather simpler) arguments to those used in our appendix. Incomplete
versions of topological immersion theory have been given by Lees [29],
Lashof [27] and Gauld [5].

1. Relative handle straightening

Definition of the set Hk(n, i) for k ~ 0, n ~ i ~ 0.
A representative is a pair (h, V) where V is a pl. manifold and

h : dk  Rn ~ V a homeomorphism such that hl DAk X Rn u Ak x Ri is pl.
and h|0394k x Ri i s pl. locally flat. Two such (h1, V1) and (h2, V2) are equiv-
alent if there is a pl. homeomorphism q : V1 -+ V2 defined in a neighbour-
hood of hl (jk x {0}) such that
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commutes up to a topological isotopy which is fixed on ojk X Rn ~ jk x Ri
and defined in a neighbourhood of dk x {0}  I.

Now identify dk with Ik by an orientation preserving pl. homeomorph-
ism then an addition in Hk(n, i ) is defined for k &#x3E; 0 by identifying Ik
with each of Ik-1 x [ -1, 0 ] and Ik-1 x [0, 1 ] and gluing the two re-
presentatives along Ik-1 x {0}. This addition makes Hk(n, i ) into a

group with zero represented by (id., 0394k Rn). This follows from

Proposition 1.1 below and the definition of addition in 7rk(TOPm, q PLm, q).
By ignoring conditions on jk x R. we have a set Hk(n); however in this
case the ’equivalencc’ relation is not transitive since the composition of
q1 and q2 might not be defined and we take the transitive closure of this
relation. This ’absolute’ set is essentially the set of handle problems
considered by Kirby and Siebenmann [23] and the first halves of 1.1 and
1.2 are theirs.

There is a forgetful function f: Hk(n, i ) ~ Hk(n) and a suspension
s : Hk(n, i) ~ Hk(n + 1, i + 1) defined by s(h, V) = (h x id, V x R1 ).

PROPOSITION 1.1. There are bijections

and

which commute with the suspension and forgetful functions, where

m = k+n and q = k+i.
The proof of 1.1 is postponed to § 2.

and i, f ’further n - i ~ 3, then Hk(n, i) ~ Hk(n) and we have a commutative
square of isomorphisms

The cases n - i ~ 2 of the theorem follow easily from Kirby’s results
[22] on codimension 2 embeddings. The proof for n - i ~ 3 is in two
parts; first we show that Hk(n, i) = 0 or Z2 when k = 3 and Hk(n, i) = 0,
if k ~ 3. This is done by relativising the Kirby-Siebenmann ’main dia-
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gram’ [21; 5.1]. Then secondly we show by ’unwrapping’ [21; 5.2] that

Hk(n, i) is actually Z2 in the case k = 3.

Relativisation of the main diagram
Let h : 0394k x Rn ~ Vm be a particular relative handle straightening

problem. It will be convenient to denote the pl. submanifold h(dk x Ri)
by vq and write h : Ak X R n, in vm,q a map of pairs. Consider diagram 1:

Diagram 1

All maps are pl. on boundaries and indicated submanifolds, and by
relative collaring [6] we may also assume that all maps are pl. in a neigh-
bourhood of the boundary. Tn,i0 = Tn, minus a disc pair; a is an immer-
sion of dk x Tô in jk x Rn which respects boundary and immerses A k x Toi
in d k x R. ; Wm,q0 is d k x Tn,i0 with PL structure induced from ha. All the
maps on the left commute with a standard inclusion of 0394k In,i in
dk  Tn,i0. The construction of the diagram is exactly as in [21; pages
71-74] except for two points

a) The construction of g. Let C c ¿jk be an open pl. collar on BAk defined
so that hl C x Rn is pl. Now define
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Let i : Um,q ~ Wm,qc be the identification map (see figure 1). Next

identify the one-point compactification of um,q with 0394k Tn,i by a
homeomorphism which is pl. on U and the identity on dk X In,i. Finally
define g to be the one-pair compactification of i. We claim that wm,q
has a pl. structure extending that of Wm,qc and so that glAk x Ti is pl.
Looking at the end of Wm,qc we see that it is enough to prove a relative
form of the hauptvermutung for sm -1 X R, stated in proposition 1.3

below, and proved at the end of the section.

Figure 1

b) The construction of g’.
We need g’ = g on Ak x Ti as well as on 8(Ak X Tn) as in [21 ]. When

it is possible to find g’ at all the extra condition can also be satisfied.
This follows from a result of [32], stated in 1.4 below:

PROPOSITION 1.3. Suppose ( W m, Wq) is a pl. manifold pair and that
there is a homeomorphism h : ( Wm, Wq) ~ (Sm-1 x R, Sq-1 x R) such
that hl Wq is pl. Then there exists a pl. homeomorphism h’ : W’ sm -1 x R,
extending h| W q, provided m ~ 5 and m-q ~ 3.

PROPOSITION 1.4. Suppose h : Qm,q ~ Wm, q is a homeomorphism of
pairs of compact pl. manifolds such that hl8Qm u Qq is pl. Suppose further
that h is homotopic rel 8Qm to a pl. homeomorphism, then h is homotopic
rel 8Qm u Qq to a pl. homeomorphism provided m ~ 5 and m - q ~ 3.
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PROOF OF THEOREM 1.2. Let (h, h) be the relative problem considered
above and suppose n - i ~ 3 and n + k ~ 5 and further that (h, V) is
straightenable as an absolute problem. Then by 1.3 and 1.4 we can

construct the complete relative main diagram for h. H is the identity on

~(0394k x 2In) and dk x 21’ and hence is isotopic to the identity rel these
subsets by an Alexander isotopy. Restricting to a neighbourhood of
A k x {0} which is embedded in Ak x Rn throughout the isotopy shows that
h is straightenable as a relative problem. Now suppose (h, Tl) is un-

straightenable as an absolute problem, it is therefore unstraighte nable
as a relative problem; but by adding any unstraightenablerelative problem
we get a straightenable absolute (and hence relative) problem. Thus
Hk(n, i) = 0 if k ~ 3, k + n ~ 5, n - i ~ 3 and 0 or Z2 if k = 3. It

remains to show that H3(n, i ) = Z2 in this range.
Consider the commutative diagram (diagram 2):

ex

Diagram 2

The indicated isomorphisms come from 1.1 and [21; theorem 12].
Horizontal maps are suspension and diagonal maps forgetful functions.
They are homomorphisms by 1.1. We have shown that all the groups are
0 or Z2, we will construct a function a which makes the diagram com-
mute, it then follows that all the groups are Z2 and the homomorphisms
are isomorphisms.

DEFINITION OF a. We reverse the unwrapping construction [21; p. 79].
Let h:03943  R2 ~ V represent an element of H3(2). Identify 03943 x I2 c
03943 R2 with 03943 I2 {1} c ~(03943 I3) and let V0 = h(03943 I3). Glue
~03943 I3 to V0 via h on ~03943 I2 {1} this forms Wo, which has pl.
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interior since h is pl. on this subset, and we have a homeomorphism
h’:03943 I2 {1}~~03943 I3 ~ W0 which is pl. on ~03943 I3. Now

int( Wo) is a contractible pl. manifold and hence RS (Stallings [42]).
In int( Wo) choose a pl. ball BS sufficiently large to contain

h’(03943 x {0} x {1} u a.£13 x {0} x [0, 1])
in its interior, and denote C5 = (h’)-1B5 c ô(d3 x I3). Now extend
h’IC5 to g:B6 = 03943 I3 ~ B5 I by two conical extensions. First

extend over aB6 using the fact that ôB6 - int C’ is a ball by the
Schoenflies thecrem and second extend over B6 using the standard cone
structure on B6. See figure 2. Observe that g|03943 {0} is pl. since

h’|~03943 {0} was pl. Finally identify R3 with int 0394I3 and restrict g to
03943 03B5I3 to complete the definition of a(h), e being chosen so that
g|~03943 x 8I3 is pl. It is easy to check (cf [21; p. 83]) that 03B1(h) is equivalent
to the suspension of h, as required.

Figure 2

This completes the proof of 1.2. We note for future reference (§ 4)
that we could have constructed g to be pl. on all of ôd 3 I3 by the
regular neighbourhood theorem, and also that the range of g is a pl. ball.

PROOF oF 1.3. The case m ~ 6. Let 03BE be a normal block bundle for
Wq c Wm. We have e the trivial normal block bundle for Sq -1 c Sm -1
and we can homotope h rel Wq to a map h" : Wm ~ sm-l X R so that
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h’’|E(03BE) is a block homotopy equivalence of 03BE with e x R (see [37; § 3]
for definition). This follows by an easy induction argument using homo-
topy extension and the fact that h has local degree 1. Then h’’|E(03BE)
determines a map g : Wq ~ Gr/PLr, r = m - q, which we claim is nul-
homotopic. Consider s o 9 : Wq ~ G/PL, the suspension of g, this

factors via Top/PL by a standard argument since we started with a
homeomorphism. s o g is therefore nulhomotopic since the natural map
of Top/PL in G/PL is zero on homotopy, by [23] and the fact that

03C03(G/PL) = 0 (see also Wall [43]). Hence g is nulhomotopic by stability
of r/PLr (see [35; 1.10]).

It follows that h" is homotopic rel Wq to h"’ which restricts to a
block bundle isomorphism of 03BE with E x R. This provides a pl. product
structure on E(03BE) which extends to all of Wm by Siebenmann’s relative
collaring theorem [41 ]. We now have a pl. isomorphism

which extends h| Wq. But Mm-1 is a pl. sphere by the Poincaré theorem
and the pair (Mm -1, sq -1 ) is unknotted by Zeeman [45 ]. The construc-
tion of the desired h’ is now easy.

The case m = 5. The case q = 1 presents little difficulty so we concen-
trate on the case q = 2. It is easy to verify that any pl. self-homeomorph-
ism of Si x R extends to S4 x R if q ~ 2 and it suffices to find some pl.
homeomorphism of pairs W5,2 ~ S4,1 x R. By Wall [43] W5 is pl.
homeomorphic with S4 x R and we assume that W5 = S4 x R; we have
to unknot M2 - h-1(S1 x R) in S4 x R. We show how to isotope M
to meet each sphere S4 x {n}, n~Z, in an essential circle and the result
follows from the 2-dimensional pl. annulus theorem and unknotting
S1 x I in S4 I (Hudson and Lickorish’ concordence extension theorem
[19]). The method for each S4 is the same. By transversality S4 n M
can be taken to be a finite number of circles. We show how to pipe two
neighboring circles together and the result follows by induction. Choose
points p, q on each circle and arcs 03B1, 03B2 in M and S4 joining them and
not meeting other intersections. Then the circle oc u 13 spans a 2-disc D
which meets M and S4 only in a u fi. A regular neighbourhood of D is
a 5-ball. B5 meeting S4 and M in unknotted subdiscs B4, B2 which in
turn meet in 2 arcs ab, cd say. It is a trivial matter to isotope B 2 in B5
rel boundry so as to replace ab, cd by arcs ac, bd (or ad, bc) and this has
the effect of piping the two original circles together.

2. The stability theorems

Before proving 1.1 it is convenient to define a new set H’k(n, i). A
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representative is a homeomorphism h : Rk x Rn ~ V where V is a pl.
manifold, h|cl(Rk-0394k) Rn is pl. and h|0394k Ri is pl. locally flat.

(h, V) ~ (g, W) if there is a pl. homeomorphism q : V ~ W defined in
a neighbourhood of dk x {0} such that

commutes up to a topological isotopy which is pl. on cl(Rk-0394k) x Rn ~
03B4k x Ri and defined in a neighbourhood of d k x {0} x I. (h, V) - (g, W)
if (h, V) = (hl, Vi) z (h2, V2) ~ ··· ~ (h1, Vl) = (g, W). The set of
equivalence classes forms Hk(n, i); Hk(n) is defined similarly. There are
obvious surjections 03C81 : Hk(n, i) - H’k(n, i ) and 03C82 : Hk(n) ~ H’k(n)
defined by ’adding a collar’.

PROPOSITION 2.1. 03C81 and 1/1 2 are bijections.
PROOF. We have to show injectivity. Suppose (h, V) z (g, W) ; let q

be as above and st the isotopy of qh to g ; so we have so - qh and s, = g.
Now by two applications of the pl. covering isotopy theorem we can
find a pl. ambient isotopy st of W so that s’0 = id and s’tqh|L = sIL
where L = ad k x Rn ~ d k x Ri. Define q = s’1 q and st = s’1 o (s’t)-1 o st
then q is pl. and S-t is an isotopy between qh and g which is fixed on L.
This shows that the restriction of (h, V) and (g, W ) to dk x Rn are
equivalent in Hk (n, i), as required.
Now define Ik(n, i ) to be the set of regular homotopy classes of

orientation preserving immersions h : Rk Rn ~ Rk+n such that h is a

pl. immersion of Rk x Ri and of a neighbourhood of cl(Rk-0394k) x Rn.
The regular homotopies are via such immersions but defined only in a
neighbourhood of (0394k {0}) I. Similarly Ik(n) is defined by ignoring
the condition of dk x Ri. Now h induces a pl. manifold structure on
Rk x Rn; denote this pl. manifold by (Rk Rn)h. We then get a relative
handle problem ht, with ho = h. It is easy to see that (’idB (Rk x Rn)h) ,:
(’id’, (Rk x Rn)hE) for small e and hence, by compactness of I, the

(’id’, (Rk x Rn)h) 1’01 (’id’, (Rk x Rn)h1). We therefore have well-defined

functions CP1 : Ik(n, i ) ~ Hk(n, i) and CP2 : Ik(n) - Hk(n).
PROPOSITION 2.2. (fJ1 and CP2 are bijections.

PROOF. Surjectivity. Let (h, V) represent an element of H’k(n, i) then by
a collaring argument we may suppose h is pl. in a neighbourhood of
ôdk x Rn. Now Vits a contractible pl. manifold and therefore pl. immerses
in Rk+n by an immersion a such that ah is orientation preserving.



399

Injectivity. Suppose (’id’, (Rk x Rn)h0) ~ (’id’, (Rk x Rn)h1) we have to
construct a regular homotopy between ho and hl. Let q, st be given by
the definition of ~ (notation as in 2.1). We construct the regular homo-
topy in two stages.

Stage 1. By collaring st may be taken to be pl. in a neighbourhood of
ôd x Rn then h, st defines an allowable regular homotopy between
hl oqandhl.

Stage 2. h o and hl o q are both orientation-preserving pl. immersions
of (Rk x Rn)ho in Rk+n and are therefore regularly homotopic since both
manifolds are contractible.

PROOF oF 1.1. We have functions

defined by restricting the differential of an immersion to dk  {0} and it
follows from the pl. and topological immersion theorems that these are
bijections. The result now follows using 2.1 and 2.2 and the commutativ-
ity of 03C8i, CPi and di with suspension and forgetful functions.

THEOREM 2.3. Suppose r ~ 2 or k + r ~ 5 then inclusion induces an
isomorphism.

PROOF. Consider the diagram

i2 and i4 are isomorphisms for i ~ k by [9; 8.5] ] see also [35; 5.4].
i3 is an isomorphism by 1.1 and 1.2. To apply the 5-lemma we need il
epimorphic. This is true for i ~ 2 since 03C0i+1(Topr, PL,) = 0 by 1.1 and
1.2. For i = 2 however we have 03C02(PLr+k,k) ~ 03C02(PLr) ~ 03C02(PLr) ~
03C02(0r) ~ 0 (see [35; 5.5] ] and [8; 6.6]) so i* is an isomorphism by an
easier argument.

THEOREM 2.4. Suppose r ~ 3. Then TOPr/PLr -+ Top/PL is a homotopy
equivalence.

PROOF. This is immediate from 1.1 and 1.2.

COROLLARY 2.5. Suppose r ~ 3. Then Gr/Topr ~ GITop is a homotopy


