COMPOSITIO MATHEMATICA

J. DE VRIES Equivalence of almost periodic compactifications

Compositio Mathematica, tome 22, nº 4 (1970), p. 453-456 <http://www.numdam.org/item?id=CM 1970 22 4 453 0>

© Foundation Compositio Mathematica, 1970, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

EQUIVALENCE OF ALMOST PERIODIC COMPACTIFICATIONS

by

J. de Vries

1. Introduction

1.1. Purpose of this note is to give a simple proof of [1], Theorem 5.5 (see Corollary 2.4 below).

Let S, T be semitopological semigroups ([2], p. 1). We do not assume S and T to have an identity. The Banach space of almost periodic (a.p.) functions on S is denoted by A(S) and the Banach space of weakly almost periodic functions on S is denoted by W(S). If $\phi : S \to T$ is a continuous homomorphism, then the induced mapping $f \mapsto f \circ \phi$ of C(T) into C(S) is denoted by $\tilde{\phi}$.

Recall that $\tilde{\phi}[C(T)] \subset W(S)$ if T is a compact semitopological semigroup, and that $\tilde{\phi}[C(T)] \subset A(S)$ if T is a compact topological semigroup ([1], lemma 5.2).

1.2. An ordered pair (ϕ, T) is called an *almost periodic compactification* (a weakly almost periodic compactification) of S, if the following conditions are satisfied:

(i) T is a compact topological (semitopological) Hausdorff semigroup.

(ii) φ : S → T is a continuous homomorphism such that for each f∈A(S) (f∈W(S)) there is a unique f∈C(T) with f = f ∘ φ.
Note that (ii) is equivalent with

(ii)' $\phi: S \to T$ is a continuous homomorphism with dense image in T, and $\tilde{\phi}[C(T)] = A(S) \ (\tilde{\phi}[C(T)] = W(S)).$

(The proof depends on 1.1 and the fact, that T is a completely regular topological space.)

1.3. Let S be a semitopological semigroup. Two a.p. compactifications (w.a.p. compactifications) (ϕ_1, T_1) and (ϕ_2, T_2) are called *equivalent*, if there is a topological isomorphism ψ of T_1 onto T_2 such that $\psi \circ \phi_1 = \phi_2$.

We shall prove, that two a.p. compactifications (w.a.p. compactifications) of a semitopological semigroup are equivalent ([1], Corollary 5.6); in fact, this is an easy corollary of the 'universal property' of the a.p. and w.a.p. compactifications, explained in Theorem 2.2 of this note. From this, Theorem 5.5 of [1] is also easily derived.

All semitopological semigroups are not supposed to have an identity (so the existence of the compactifications is not a priori guaranteed).

2. The main theorem

2.1. LEMMA. Let X be a uniform space, Y a compact Hausdorff topological space. A function $f: X \to Y$ is uniformly continuous (Y with its unique uniformity) if and only if $g \circ f: X \to [0, 1]$ is uniformly continuous for all continuous $g: Y \to [0, 1]$.

PROOF: It is known that Y may be regarded as a (closed) subset of a topological product of copies of the interval [0, 1] such that the restrictions to Y of the canonical projections are the continuous functions of Y into [0, 1]. The lemma now follows from [3], Ch. 6, Theorem 10.

2.2. THEOREM. Let (ϕ, S^a) be an a.p. compactification of S and (ψ, S^w) a weakly a.p. compactification. Then (ϕ, S^a) and (ψ, S^w) have the following 'universal' property:

If T is a topological (resp. semitopological) compact Hausdorff semigroup and $\xi: S \to T$ a continuous homomorphism, then there exists a unique continuous homomorphism $\xi^a: S^a \to T$ (resp. $\xi^w: S^w \to T$) such that $\xi = \xi^a \circ \phi$ (resp. $\xi = \xi^w \circ \psi$).

PROOF: Unicity follows from the fact that T is a Hausdorff topological space and that ϕ and ψ have dense images.

We now prove the existence of ξ^w in the case that *T* is a semitopological compact Hausdorff semigroup (the existence of ξ^a in the case that *T* is a topological compact Hausdorff semigroup can be proved in a similar way). First, we note that

(1) $\forall s, t \in S : \psi(s) = \psi(t) \Rightarrow \xi(s) = \xi(t)$

Indeed: C(T) separates the points of T, so

$$\xi(s) \neq \xi(t) \Rightarrow \exists g \in \mathcal{C}(T) : g(\xi(s)) \neq g(\xi(t)).$$

Since $g \circ \xi \in W(S)$ it follows from 1.2 that in this case $\psi(s) \neq \psi(t)$.

Defining $\psi': S \to \operatorname{Im} \psi$ by $\psi = i \circ \psi'$ (*i*: $\operatorname{Im} \psi \to S^w$ is the inclusion map) it follows from (1) that there is a homomorphism $\xi': \operatorname{Im} \psi \to T$ such that $\xi = \xi' \circ \psi$.

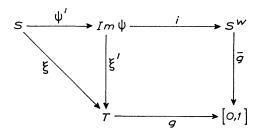
Now it is sufficient to show that ξ' is uniformly continuous (Im ψ provided with the relative uniformity of S^w): *T* is complete as a uniform space ([3], Ch. 6, Theorem 32), so in this case ξ' has a uniformly con-

tinuous extension $\xi^w : S^w \to T$ ([3], Ch. 6, Theorem 26). It is easy to see that this continuous extension ξ^w of the homomorphism ξ' is itself a homomorphism, using separate continuity of multiplication in S^w and T.

Uniform continuity of ξ' will follow from 2.1 if we succeed in proving the following assertion: if $g: T \to [0, 1]$ is any continuous map, than $g \circ \xi' : \operatorname{Im} \psi \to [0, 1]$ is uniformly continuous.

By 1.1, $g \circ \xi \in W(S)$, so there is a $\overline{g} \in C(S^w)$ such that $g \circ \xi = \overline{g} \circ \psi$, that is

$$g\circ \xi'\circ \psi'=ar{g}\circ i\circ \psi$$



Since S is mapped onto $\operatorname{Im} \psi$ by ψ' , it follows that

$$g\circ \xi'=\bar{g}\circ i.$$

Now uniform continuity of $g \circ \xi'$ follows from uniform continuity of *i* and \overline{g} .

2.3. COROLLARY ([1], Corollary 5.6). Two a.p. compactifications (weakly a.p. compactifications) of a semitopological semigroup are equivalent.

PROOF: Let (ϕ_1, T_1) and (ϕ_2, T_2) be weakly a.p. compactifications of S. By 2.2 there are continuous homomorphisms $\phi_1^w: T_2 \to T_1$ and $\phi_2^w: T_1 \to T_2$ such that

$$\phi_2^w \circ \phi_1 = \phi_2$$
 and $\phi_1^w \circ \phi_2 = \phi_1$.

We have to prove, that ϕ_1 (or ϕ_2) is a topological isomorphism. It is easy to see, that

$$(\phi_1^{w} \circ \phi_2^{w}) \circ \phi_1 = \phi_1 = I_1 \circ \phi_1$$

so by unicity it follows that $\phi_1^w \circ \phi_2^w = I_1$.

Similarly $\phi_2^w \circ \phi_1^w = I_2$ (I_i denotes the identity mapping of T_i for i = 1, 2). From this the result follows.

2.4. COROLLARY ([1], Theorem 5.5). Let S and S_1 be semitopological semigroups, (ϕ, S') and (ϕ_1, S'_1) a.p. compactifications (resp. w.a.p.

compactifications) of S and S_1 and $\psi : S \to S_1$ a continuous homomorphism. Then there is an unique continuous homomorphism $\psi' : S' \to S'_1$ for which $\psi' \circ \phi = \phi_1 \circ \psi$.

PROOF: Existence: take $\psi' = (\phi_1 \circ \psi)^a$ (respectively $\psi' = (\phi_1 \circ \psi)^w$; notation as in 2.2).

Unicity follows from unicity in 2.2: if $\psi'' : S' \to S'_1$ satisfies $\psi'' \circ \phi = \phi_1 \circ \psi$, then $\psi'' = (\phi_1 \circ \psi)^a$ (respectively $\psi'' = (\phi_1 \circ \psi)^w$).

REFERENCES

K. DE LEEUW AND I. GLICKSBERG

- [1] Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97.
- J. F. BERGLUND AND K. H. HOFMANN
- [2] Compact Semitopological Semigroups and Weakly Almost Periodic Functions, Lecture Notes in Mathematics 42, Springer, Berlin, 1967.

J. L. KELLEY

[3] General Topology, Van Nostrand, New York, 1955.

(Oblatum 30-IX-1969)

Free University, Amsterdam.