Compositio Mathematica

Steven L. Kleiman John Landolfi
 Geometry and deformation of special Schubert varieties

Compositio Mathematica, tome 23, no 4 (1971), p. 407-434
<http://www.numdam.org/item? id=CM_1971__23_4_407_0>
© Foundation Compositio Mathematica, 1971, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

GEOMETRY AND DEFORMATION OF SPECIAL SCHUBERT VARIETIES

by
Steven L. Kleiman and John Landolfi
5th Nordic Summerschool in Mathematics
Oslo, August 5-25, 1970

Contents

Introduction1 Extensions and deformations 409
2 Rigidity 413
3 Monoidal transformations 418
4 Fundamentals 421
5 The monoidal transformation of $\sigma_{p}(A)$ with center $\sigma_{(p+1)}(A)$. 425
6 Standard modifications 428
7 Geometry of twisted subvarieties 431
Bibliography 434

Introduction

The problems of splitting bundles and smoothing cycles, as presented in [1], lead to the general study of a bundle N of rank n on a quasi-projective, nonsingular variety X over an algebraically closed field k, such that $N(-1)$ is generated by its global sections. In particular, ([1], (5.6) and (5.8)), the Chern classes $c_{i}(N)$ are represented by subvarieties Z_{i}, which are nonsingular if $i=1$ or $i>\frac{1}{2}(\operatorname{dim} X-2)$. This is obtained by choosing an appropriate k-vector subspace E of $\Gamma(X, N)$, and embedding X as a 'twisted' subvariety of $\operatorname{Grass}_{n}(E)$, the Grassmannian of n-quotients of E. Then, for a general subspace A of E, of dimension $a=(n-i+1)$, $c_{i}(N)$ is represented by the subvariety $Z_{i}=\sigma_{1}(A) \cap X$, where $\sigma_{1}(A)$ is the first Special Schubert subvariety of $\operatorname{Grass}_{n}(E)$ defined by A. The sets $S_{p}=\sigma_{p}(A) \cap X$, for $p=1, \cdots,(n-i+2)$, stratify $S_{1}=Z_{i}$; in particular, $S_{p}=\emptyset$ for $i=1$ or $i>\frac{1}{2}(\operatorname{dim} X-2)$.

Our principal aim is to carry out an analysis of this stratification and of the 'generic' singularities of the subvarieties Z_{i}. A natural approach is to study the Special Schubert varieties, and 'induce' their properties in the S_{p} 's; thus we carry out an extension and elaboration of the results
in [1]. Proceeding thus, one shows that S_{p} is irreducible if $p \geqq 1$; and that the monoidal transformation $f: \sum \rightarrow S_{p}$ of S_{p} with center $S_{(p+1)}$ restricts over $U=\left(S_{(p+r)}-S_{(p+r+1)}\right)$ to an algebraic fiber bundle of the form $\operatorname{Grass}_{r}(B) \times \operatorname{Grass}_{(n-a+p)}(C)$, where B is a $(p+r)$-bundle, and C is an ($n-a+p+r$)-bundle. Moreover, \sum is nonsingular. (See §7).

A further analysis is made possible by Theorem (2.3.2). Modelled after [2], Section 2, Corollary 2, our result differs in that here $\operatorname{gr}(A)$ is assumed rigid in the category of all k-algebras, not in that of filtered k-algebras. In geometric terms, the theorem asserts that if the normal cone of a scheme X along a subscheme Y is rigid, then the completion of X along Y is isomorphic to the completion of the normal cone at the vertex. In our context, $\left(\sigma_{p}(A)-\sigma_{(p+z)}(A)\right)$ is locally (in the canonical affine open covering of $\operatorname{Grass}_{n}(E)$) isomorphic to the product of a linear space and a certain determinantal variety D_{z}; hence the normal cone of $\left(S_{p}-S_{(p+z)}\right)$ along ($S_{(p+z-1)}-S_{(p+z)}$) is an algebraic fiber bundle with fiber D_{z}. However, D_{2} is the projecting cone C over $\boldsymbol{P}^{(a-1)} \times \boldsymbol{P}^{(n-1)}$ in the Segre embedding, whose vertex is the rigid singularity of Thom-Grauert-KernerSchlessinger; hence the normal cone of $\left(S_{p}^{\prime}-S_{(p+2)}\right)$ along ($S_{(p+1)}-$ $\left.S_{(p+2)}\right)$ is rigid. Thus the completion of $\left(S_{p}-S_{(p+2)}\right)$ along $\left(S_{(p+1)}-\right.$ $\left.S_{(p+2)}\right)$ is locally isomorphic to the product of $\left(S_{(p+1)}-S_{(p+2)}\right)$ and the completion of C at the vertex.

A general theory of algebraic deformations, including the criterion for rigidity employed above, was developped by Schlessinger in his (partly published) dissertation; $\S 1$ and $\S 2$, (2.1) and (2.2), contain some of the definitions and basic results. Since the wider scope of Schlessinger's theory is not needed in our context, we found it possible to make our distillation of it self-contained by providing some unpublished proofs; in particular, we present his beautiful approach to the verification of the rigidity of the vertex of the projecting cone over $\boldsymbol{P}^{n} \times \boldsymbol{P}^{m}$ for $n+m \geqq 3$.

Definitions and basic facts on monoidal transformations are recalled in §3, which also contains proofs of two technical lemmas on the functoriality of normal cones. The definitions and some fundamental properties of Grassmannians can be found in $\S 4$, which is a sequel to $\S 1$ and $\S 2$ of [1]. Here the properties of duality are especially emphasized, and the connection of determinantal varieties with Special Schubert varieties is made explicit.

In particular, the determinantal varieties $D_{z}(n, a)$ are shown to be nonsingular in codimension one and irreducible. Since, as shown by Hochster and Eagon in [5], $D_{z}(n, a)$ is Cohen-Macaulay for all z, then $D_{z}(n, a)$ is normal for $z>1$; and it follows that the subvarieties Z_{i} representing the Chern classes $c_{i}(N)$ (see above) are all normal and Cohen-Macaulay. Moreover, one finds that $D_{2}(n, a)$ is the projecting cone over $\boldsymbol{P}^{(n-1)} \times$
$\boldsymbol{P}^{(a-1)}$, hence it is rigid for $n+m \geqq 5$; and we believe $D_{z}(n, a)$ to be rigid. for all $z \geqq 1$, unless $z=n=a$. The 2-codimensional Schubert subvarieties of the 9 -dimensional Grassmannian $\left(\neq \boldsymbol{P}^{9}\right)$ are, locally along their singular locus, of the form $V \times D_{2}(3,2)$, where V is a linear space of dimension 3 ; we conjecture that they cannot be deformed into a smooth cycle by rational equivalence.

The monoidal transformation of $\sigma_{p}(A)$ with center $\sigma_{(p+1)}(A)$ is studied in § 5. In § 6, the concept of a standard modification is developed, and it is shown that the monoidal transformation of $\sigma_{p}(A)$ with center $\sigma_{(p+1)}(A)$ can be written as the composition of a standard modification and a 'dual' standard modification. The analysis of the stratification $\left\{S_{p}\right\}$ can be found in $\S 7$; in particular, the proof of the irreducibility of S_{p} for $p \geqq 1$ referred to in the introduction of [1] is presented.

Some of the above results are contained in Landolf's doctoral dissertation at Brandeis University, and have appeared with an outline of their proof in [8].

We would like to extend our thanks to David Lieberman and Heisuke Hironaka for their kindness in reading a preliminary version of this work, and for their several apposite remarks.

1. Extensions and deformations

Let A be a ring, B an A-algebra, and M a B-module.
(1.1) A (one term) extension of B / A by M is an exact sequence

$$
0 \rightarrow M \xrightarrow{i} E \xrightarrow{j} B \rightarrow 0
$$

where E is an A-algebra, j is a surjective homomorphism of A-algebras, $i(M)$ is a square-zero ideal of E, and the B-module structure on M induced by i coincides with the given one.

Two extensions E and E^{\prime} of B / A by M are said to be equivalent if there exists an A-algebra homomorphism $u: E \rightarrow E^{\prime}$, inducing a commutative diagram

(u must then be an isomorphism). The set of equivalence classes of extensions of B / A by M is denoted $\mathrm{Ex}^{1}(B / A, M)$.
(1.2.1) Express B as a quotient $B=P / I$ of a polynomial ring over A by an ideal I; the exact sequence $0 \rightarrow I \rightarrow P \rightarrow B \rightarrow 0$ is called a presentation of B. Consider the usual exact sequence of B-modules involving the Kähler differentials
(a)

$$
I / I^{2} \rightarrow \Omega_{P / A} \otimes_{P} B \rightarrow \Omega_{B / A} \rightarrow 0
$$

Define $T^{1}(B / A, M)$ as the cokernel making the following sequence exact

$$
\begin{align*}
0 \rightarrow \operatorname{Hom}_{B}\left(\Omega_{B / A}, M\right) & \rightarrow \operatorname{Hom}_{B}\left(\Omega_{P / A} \otimes_{P} B, M\right) \rightarrow \operatorname{Hom}_{B}\left(I / I^{2}, M\right) \tag{b}\\
& \rightarrow T^{1}(B / A, M) \rightarrow 0 .
\end{align*}
$$

Example (1.2.2). Assume A is noetherian, and B is of finite type. Then B is smooth over A if and only if $T^{1}(B / A, M)=0$ for all B-modules M.

Indeed, B is smooth over A if and only if (\mathfrak{a}) is split, and (\mathfrak{a}) is split if and only if $T^{1}(B / A, M)=0$ for all B-modules M by a general lemma of commutative algebra.

Proposition (1.2.3). There is a bijection $\alpha: \operatorname{Ex}^{1}(B / A, M) \rightarrow T^{1}(B / A, M)$.
Indeed, consider an extension $0 \rightarrow M \rightarrow E \rightarrow B \rightarrow 0$. Since P is a polynomial ring, the canonical surjection $g: P \rightarrow B$ factors through a ring homomorphism $f: P \rightarrow E$. Since $g(I)=0$, then $f(I) \subset M$. However, M is a square-zero ideal in E; hence f induces a homomorphism $h: I / I^{2} \rightarrow M$, and thus an element of $T^{1}(B / A, M)$. If $f^{\prime}: P \rightarrow E$ is a second choice of lifting of g, then $i^{-1}\left(f-f^{\prime}\right): P \rightarrow M$ is an A-derivation; thus α is well defined.

Conversely, given an element of $T^{1}(B / A, M)$, choose a representative homomorphism $h: I \rightarrow M$. Let $E=P \oplus M /\{x-h(x) \mid x \in I\}$. Then the composition $P \oplus M \rightarrow P \rightarrow B$ gives a surjection of A-algebras $E \rightarrow B$, and the sequence $0 \rightarrow M \rightarrow E \rightarrow B \rightarrow 0$ is exact. If $d: P \rightarrow M$ is the A derivation giving rise to a second choice $h^{\prime}=(h+d): I \rightarrow M$, then the automorphism of $P \oplus M$ given by $\phi(x-m)=x-(m+d(x))$ induces an equivalence between the extensions E and E^{\prime} defined by h and h^{\prime}; thus α has a well-defined inverse.

Corollary (1.2.4). $T^{1}(B / A, M)$ is independent of the choice of presentation $0 \rightarrow I \rightarrow P \rightarrow B \rightarrow 0$.
(1.3) Let A^{\prime} be a ring, and J an ideal of A^{\prime} such that $A \cong A^{\prime} / J$.
(1.3.1) A deformation of B / A to A^{\prime} is an A^{\prime}-algebra B^{\prime}, with a homomorphism $B^{\prime} \rightarrow B$, inducing an isomorphism $B^{\prime} / J B^{\prime} \leadsto B$. If J is a nilpotent ideal (resp., square-zero), then the deformation is said to be infinitesimal (resp., square-zero). If $J \otimes_{A^{\prime}} B^{\prime} \rightarrow J B^{\prime}$ is an isomorphism (resp., B^{\prime} is A^{\prime}-flat), the deformation is said to be admissible (resp., flat); in view of the local criterion of flatness, ([4], V, 3.2), a deformation is flat if and only if it is admissible and B is A-flat.

Two deformations B^{\prime} and $B^{\prime \prime}$ of B / A to A^{\prime} are said to be equivalent if
there is a homomorphism of A^{\prime}-algebras $B^{\prime} \rightarrow B^{\prime \prime}$, inducing a commutative diagram

The set of equivalence classes of admissible infinitesimal deformations of B / A to A^{\prime} is denoted $\operatorname{Def}\left(B / A, A^{\prime}\right)$.

Suppose B^{\prime} is an admissible square-zero deformation of B / A to A^{\prime}. Then $J \otimes_{A} B \cong J \otimes_{A^{\prime}} B^{\prime}$, and there is an exact sequence

$$
0 \rightarrow J \underset{A}{\otimes} B \rightarrow B^{\prime} \rightarrow B \rightarrow 0
$$

Thus there is a natural map

$$
\operatorname{Def}\left(B / A, A^{\prime}\right) \rightarrow \operatorname{Ex}^{1}\left(B / A^{\prime}, J \underset{A}{\otimes} B\right)
$$

which is clearly injective. It fails to be surjective when there is an extension B^{\prime} of B / A^{\prime} by $J \otimes_{A} B$ not satisfying $J \otimes_{A} B \xrightarrow{\sim} J B^{\prime}$.

Proposition (1.3.2). Assume $J=\operatorname{Ker}\left(A^{\prime} \rightarrow A\right)$ is square-zero. If $T^{1}\left(B / A, J \otimes_{A} B\right)=0$, then $\operatorname{Def}\left(B / A, A^{\prime}\right)$ consists of at most one class. ${ }^{1}$

Indeed, fix a presentation $0 \rightarrow I \rightarrow P \rightarrow B \rightarrow 0$, and let $P^{\prime}=A^{\prime} \otimes_{A} P$. Then the sequence $0 \rightarrow J P^{\prime} \rightarrow P^{\prime} \rightarrow P \rightarrow 0$ is exact, and by composition, there is a surjection $g: P^{\prime} \rightarrow B$. Let $K=\operatorname{Ker}(g)$. Then $0 \rightarrow K \rightarrow P^{\prime} \rightarrow$ $B \rightarrow 0$ is a presentation of B as an A^{\prime}-algebra.

Let B_{1}^{\prime} and B_{2}^{\prime} be any two extensions of B / A^{\prime} by $J \otimes_{A} B$. Since P^{\prime} is a polynomial ring, g lifts to homomorphisms $f_{i}: P^{\prime} \rightarrow B_{i}^{\prime}$, whose restriction to K induces homomorphisms $h_{i}: K \rightarrow J \otimes_{A} B$. Hence there are commutative diagrams

Suppose both extensions arise from deformations. Then $f_{i}\left(j \cdot p^{\prime}\right)=$ $\alpha_{i}\left(j \otimes g\left(p^{\prime}\right)\right)$, for $j \in J, p^{\prime} \in P^{\prime}$, and for $i=1,2$. Set $h=h_{1}-h_{2}$; then

[^0]$h\left(j \cdot p^{\prime}\right)=0$. By construction, there is an exact sequence $0 \rightarrow J P^{\prime} \rightarrow$ $K \rightarrow I \rightarrow 0$. Hence h induces a homomorphism $\bar{h}: I \rightarrow J \otimes_{A} B$. Since $J \otimes_{A} B$ is a square-zero ideal in B_{i}^{\prime}, then \bar{h} induces a homomorphism $k: I / I^{2} \rightarrow J \otimes_{A} B$. Let k be the image of k in $T^{1}\left(B / A, J \otimes_{A} B\right)$.

Suppose $k=0$. Then k is the image of a homomorphism $d: \Omega_{P / A} \otimes_{P} B$ $\rightarrow J \otimes_{A} B$. By composition, d gives rise naturally to a homomorphism $d^{\prime}: \Omega_{P^{\prime} / A^{\prime}} \otimes_{P^{\prime}} B^{\prime} \rightarrow J \otimes_{A} B$, whose image in $\operatorname{Hom}_{B^{\prime}}\left(K / K^{2}, J \otimes_{A} B\right)$ is clearly h. Hence the image of h in $T^{1}\left(B / A, J \otimes_{A} B\right)$ is zero. It follows that B_{1} and B_{2} are equivalent extensions.

In particular, if $T^{1}\left(B / A, J \otimes_{A} B\right)=0$, then any two deformations of B / A to A^{\prime} are equivalent, and (1.3.2) is proved.
(1.4) Some general lemmas

Lemma (1.4.1). Let C be an A-algebra, $D=B \otimes_{A} C$, and N a D module. Assume one of the following conditions holds:
(i) B is A-flat
(ii) C is A-flat
(iii) There exists a homomorphism $C \rightarrow A$ inducing an isomorphism $N \rightarrow N \otimes_{D} B$.

Then $T^{1}(D / C, N)=T^{1}(B / A, N)$.
Indeed, let $0 \rightarrow I \rightarrow P \rightarrow B \rightarrow 0$ be a presentation. Tensoring it with C over A yields a presentation $0 \rightarrow J \rightarrow P \otimes_{A} C \rightarrow D \rightarrow 0$ and a surjective homomorphism $u: I \otimes_{A} C \rightarrow J$.

If (i) or (ii) holds, then u is bijective and induces a bijection $\left(I / I^{2}\right) \otimes_{A} C$ $\rightarrow J / J^{2}$. If (iii) holds, then tensoring the presentation of B with A over C yields a surjection $v: J \otimes_{C} A \rightarrow I$, and the composition $v \circ(u \otimes C)$ is the identity; since $(u \otimes C)$ is surjective, v is bijective and induces a bijection $\left(J / J^{2}\right) \otimes_{C} A \rightarrow I / I^{2}$. Since $\Omega_{(P \otimes C / C)}=\Omega_{P / A} \otimes_{A} C$, the assertion follows directly from the definition (1.2.1).

Lemma (1.4 2). For $i=1,2$, let B_{i} be an A-algebra, and M_{i} a B_{i}-algebra. Then
$T^{1}\left(B_{1} \underset{A}{\otimes} B_{2} / A, M_{1} \otimes M_{2}\right)=\left(T^{1}\left(B_{1} / A, M_{1}\right) \underset{A}{\otimes} B_{2}\right) \oplus\left(B_{1} \otimes{ }_{A}^{\otimes} \Gamma^{1}\left(B_{2} / A, M_{2}\right)\right.$.
Indeed, let $0 \rightarrow I_{i} \rightarrow P_{i} \rightarrow B_{i} \rightarrow 0$ be presentations, let $P=P_{1} \otimes_{A} P_{2}$, and $I=\left(I_{1} \otimes_{A} P_{2}\right)+\left(P_{1} \otimes_{A} I_{2}\right)$. Then $0 \rightarrow I \rightarrow P \rightarrow B_{1} \otimes_{A} B_{2} \rightarrow 0$ is a presentation, $\Omega_{P / A}=\left(\Omega_{P_{1} / A} \otimes_{A} P_{2}\right) \otimes\left(P_{1} \oplus_{A} \Omega_{P_{2} / A}\right)$ and $\left(I / I^{2}\right)=$ $\left(\left(I_{1} / I_{1}^{2}\right) \otimes_{A} B_{2}\right) \oplus\left(B_{1} \otimes_{A}\left(I_{2} / I_{2}^{2}\right)\right)$. The assertion now follows directly from the definition (1.2.1).

Lemma (1.4.3). Assume $\operatorname{Spec}(B)$ is A-smooth at each of its generic points, and M has no embedded primes. Then $T^{1}(B / A, M)=\operatorname{Ext}^{1}\left(\Omega_{B / A}, M\right)$.

Indeed, let $0 \rightarrow I \rightarrow P \rightarrow B \rightarrow 0$ be a presentation, and consider the exact sequences

$$
\begin{aligned}
& 0 \rightarrow H \xrightarrow{u} \Omega_{P / A} \underset{P}{\otimes} B \rightarrow \Omega_{B / A} \rightarrow 0 \\
& 0 \rightarrow K \longrightarrow I / I^{2} \xrightarrow{v} H \longrightarrow 0
\end{aligned}
$$

in which $u \circ v$ is the natural map. By ([7], $\mathrm{O}_{\mathrm{IV}}, 20.5 .14$), there is an open dense subset U of $\operatorname{Spec}(B)$ such that $K \mid U=0$. Since M has no embedded primes, then $\operatorname{Hom}_{B}(K, M)=0$. Hence v induces an isomorphism $\operatorname{Hom}_{B}(H, M) \xrightarrow{\hookrightarrow} \operatorname{Hom}_{B}\left(I / I^{2}, M\right)$. Since $\Omega_{P / A}$ is a free module, there is an exact sequence

$$
\operatorname{Hom}_{B}\left(\Omega_{P / A} \underset{P}{\otimes} B, M\right) \rightarrow \operatorname{Hom}_{B}(H, M) \rightarrow \operatorname{Ext}^{1}\left(\Omega_{B / A}, M\right) \rightarrow 0 .
$$

The assertion now follows directly from the definition (1.2.1).

2. Rigidity

(2.1) Definition (2.1.1). Let A be a ring, and B an A-algebra. If any admissible infinitesimal deformation B^{\prime} of B / A to an A-algebra A^{\prime} is necessarily equivalent to the product family $B \otimes_{A} A^{\prime}$, then B (resp., Spec $(B))$ is said to be rigid over A.

Theorem (2.1.2) (Schlessinger). Let A be an Artin local ring, and B a flat A-algebra, and let k be the residue class field of A. Then B is rigid over A if and only if $T^{1}\left(B / A, k \otimes_{A} B\right)=0$.

Indeed, let B^{\prime} be a flat infinitesimal deformation of B / A to an A-algebra A^{\prime}. Then A^{\prime} is an Artin ring, and we may clearly assume it is local. Set $J=\operatorname{Ker}\left(A^{\prime} \rightarrow A\right)$, let M be the maximal ideal of A^{\prime}, and n the largest integer such that $J^{\prime}=M^{n} J$ is nonzero. Set $A^{\prime \prime}=A^{\prime} / J^{\prime}$, and $B^{\prime \prime}=$ $B^{\prime} \otimes_{A^{\prime}} A^{\prime \prime}$. Then $B^{\prime \prime}$ is a flat infinitesimal deformation of B / A to $A^{\prime \prime}$, and B^{\prime} is a flat square-zero deformation of $B^{\prime \prime} \mid A^{\prime \prime}$ to A^{\prime}.

By induction on n, we may assume that $B^{\prime \prime}$ is equivalent to $B \otimes_{A} A^{\prime \prime}$. Since $N=J^{\prime} \otimes_{A^{\prime \prime}} B^{\prime \prime}$ is $A^{\prime \prime}$-isomorphic to a finite direct sum of copies of $k \otimes_{A} B$, then $T^{1}(B / A, N)=0$ by (1.4.1). By (1.3.3), therefore the two deformations B^{\prime} and $B \otimes_{A} A^{\prime}$ of $B^{\prime \prime} \mid A^{\prime \prime}$ to A^{\prime} are equivalent.

Conversely, the extensions E of B / A by $k \otimes_{A} B$ are easily seen to be the admissible deformations of B / A to $A^{\prime}=A \oplus\left(k \otimes_{A} B\right)$.
(2.2) Lemma (2.2.1). Let A be a ring, let k, M, and N be A-modules. There exist two spectral sequences

$$
{ }^{\prime} E_{2}^{p q}=\operatorname{Ext}_{A}^{q}\left(\operatorname{Tor}_{p}^{A}(k, M), N\right), \text { and }{ }^{\prime} E_{2}^{p q}=\operatorname{Ext}_{A}^{p}\left(k, \operatorname{Ext}_{A}^{q}(M, N)\right),
$$

with the same limit H^{n}.
Indeed, let k^{*} and M^{*} be projective resolutions of k and M, and let N^{*} be an injective resolution of N. Let T^{*} be the simple complex associated to the double complex $k^{\bullet} \otimes_{A} M^{*}$, and consider the spectral sequences ${ }^{\prime} E_{2}^{p q}$ and ${ }^{\prime \prime} E_{2}^{p q}$ of the double complex $\operatorname{Hom}_{A}\left(T^{\prime}, N^{*}\right)$. We have

$$
{ }^{\prime \prime} E_{1}^{p q}=\operatorname{Hom}_{A}\left(\operatorname{Tor}_{p}^{A}(k, M), N\right),
$$

and

$$
{ }^{\prime \prime} E_{2}^{p q}=\operatorname{Ext}_{A}^{q}\left(\operatorname{Tor}_{p}^{A}(k, M), N\right)
$$

On the other hand,

$$
{ }^{\prime} E_{1}^{p q}=\operatorname{Ext}_{A}^{p}\left(T^{q}, N\right)
$$

Since T^{q} is projective, this spectral sequence degenerates, and it converges to the homology of the double complex

$$
\operatorname{Hom}_{A}\left(k_{A}^{*} \otimes_{A}^{*}, N\right)=\operatorname{Hom}_{A}\left(k^{*}, \operatorname{Hom}_{A}\left(M^{*}, N\right)\right)
$$

Finally, the first spectral sequence of this complex is

$$
{ }^{\prime} E_{2}^{p q}=\operatorname{Ext}_{A}^{p}\left(k, \operatorname{Ext}_{A}^{q}(M, N)\right) .
$$

Lemma (2.2.2). Let A be a noetherian local ring with residue class field k, and let M and N be A-modules of finite type. If $\operatorname{depth}_{A}(N) \geqq 2$, then $\operatorname{depth}_{\boldsymbol{A}}\left(\operatorname{Hom}_{\boldsymbol{A}}(M, N)\right) \geqq 2$; and, if depth $(N) \geqq 3$, then there exists a natural isomorphism

$$
\operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{1}(M, N)\right) \simeq \operatorname{Ext}_{A}^{2}\left(k, \operatorname{Hom}_{A}(M, N)\right) .
$$

Indeed, consider the spectral sequences " $E_{2}^{p q}$ and ${ }^{\prime} E_{2}^{p q}$ in (2.2.1). By ([4], III, 3.13), if $\operatorname{depth}_{A}(N) \geqq d$, then " $E_{2}^{p q}=0$ for $q<d$, hence $H^{q}=0$ for $q<d$.

Now the exact sequence of terms of low degree of ${ }^{\prime} E_{2}^{p q}$ is

$$
\begin{aligned}
0 \rightarrow \operatorname{Ext}_{A}^{1}\left(k, \operatorname{Hom}_{A}(M, N)\right) \rightarrow H^{1} & \rightarrow \operatorname{Hom}_{A}\left(k, \operatorname{Ext}_{A}^{1}(M, N)\right) \\
& \rightarrow \operatorname{Ext}_{A}^{2}\left(k, \operatorname{Hom}_{A}(M, N)\right) \rightarrow H^{2}
\end{aligned}
$$

hence the result.
Proposition (2.2.3) (Schlessinger). Let A be a noetherian local ring, \boldsymbol{m} its maximal ideal, and k its residue class field. Let M and N be A-modules of finite type, and assume that M is locally free on $(\operatorname{Spec}(A)-\{\boldsymbol{m}\})$, and that $\operatorname{depth}_{A}(N) \geqq 3$. Then $\operatorname{Ext}_{A}^{1}(M, N)=(0)$ if and only if

$$
\operatorname{depth}_{A}\left(\operatorname{Hom}_{A}(M, N)\right) \geqq 3 .
$$

Indeed, $E=\operatorname{Ext}_{A}^{1}(M, N)$ has support in $\{\boldsymbol{m}\}$ because M is locally free off $\{\boldsymbol{m}\}$; hence $E=(0)$ if and only if $\operatorname{Hom}_{A}(k, E)=(0)$. Since $\operatorname{depth}_{A}(N)$ $\geqq 3,(2.2 .2)$ applies; hence $\operatorname{Ext}_{A}^{q}\left(k, \operatorname{Hom}_{A}(M, N)\right)$ is zero for $q=0,1$, and it is zero for $q=3$ if and only if $E=(0)$.
(2.2.4) Let A be a field, and $S=\oplus_{n=0}^{\infty} S_{n}$ a graded A-algebra generated by S_{1}. Let $m=\oplus_{n=1}^{\infty} S_{n}$ denote the irrelevant ideal of S, and set $R=S_{m}$. Let N be a graded S-module of finite type. Set $X=\operatorname{Proj}(S)$.

Proposition (Grothendieck). Let $\phi: N \rightarrow \oplus_{k=-\infty}^{+\infty} H^{0}(X, \tilde{N}(k))$ be the canonical homomorphism. Let $d=\operatorname{depth}_{\mathrm{R}}\left(N_{m}\right)$. Then
(i) $d \geqq 1$ if and only if ϕ is injective;
(ii) $d \geqq 2$ if and only if ϕ is bijective;
(iii) $d \geqq 3$ if and only if ϕ is bijective, and $H^{1}(X, \tilde{N}(k))=(0)$ for all k;
(p) $d \geqq p$ if and only if ϕ is bijective, and $H^{i}(X, N(k))=(0)$ for all $1 \leqq i \leqq(p-2)$ and for all k.

Indeed, by definition, $d=0$ if and only if there exists an $x \in N$ such that $s x=0$ for all $s \in \boldsymbol{m}$; i.e., such that $\phi(x)=0$. Thus (i) holds.
Suppose every $s \in S_{1}$ is a zero-divisor in N. Then

$$
\boldsymbol{m} R \subset\left(\bigcup_{\boldsymbol{P} \in \boldsymbol{A s s}\left(N_{\boldsymbol{m}}\right)} P\right) \boldsymbol{m}^{2} R
$$

Hence $\boldsymbol{m} R \subset P$ for some associated prime P, and they must coincide, because \boldsymbol{m} is maximal.

Assume $d \geqq 1$. There must then exist an $s \in S_{1}$ which is not a zerodivisor in N. Set $X^{\prime}=\operatorname{Proj}(S / s S)$, and $N^{\prime}=N / s N$. Consider the diagram

Suppose $d \geqq 2$. Then, by (i), all the vertical arrows are injections. By Serre's theorem, ϕ_{k} is bijective for all $k \gg 0$. Hence, by descending induction, it follows that ϕ_{k} is bijective for all k. Conversely, if ϕ_{k} is bijective for all k, then ϕ_{k}^{\prime} is injective for all k. Thus (ii) holds.
Assume that $p \geqq 2$, that (p) holds, and that $d \geqq p$. Then the following sequence is also exact on the left:

$$
0 \rightarrow H^{p-2}\left(X^{\prime}, \tilde{N}^{\prime}(k)\right) \rightarrow H^{p-1}(X, \tilde{N}(k-1)) \rightarrow H^{p-1}(X, \tilde{N}(k)) .
$$

Thus, since (p) holds for $N^{\prime}, d \geqq(p+1)$ if $H^{p-1}(X, \widetilde{N}(k))=(0)$ for all k; and the converse follows by descending induction from Serre's theorem, completing the proof.
(2.2.5) Let A be a ring, $S=\oplus_{n=0}^{\infty} S_{n}$ a graded A-algebra generated by S_{1}, and set $X=\operatorname{Proj}(S)$. Grade the Kähler differentials $\Omega_{S / A}$ by $\operatorname{deg}(d s)=n$ for $s \in S_{n}$.

Proposition. There exists a canonical exact sequence of 0_{X}-modules

$$
0 \rightarrow \Omega_{X / A} \rightarrow \tilde{\Omega}_{S / A} \rightarrow 0_{X} \rightarrow 0
$$

Indeed, let U be the complement in $\operatorname{Spec}(S)$ of $\operatorname{Spec}(A)$, embedded by the augmentation $S \rightarrow A$, and let $f: U \rightarrow X$ be the canonical map. Since f is smooth, the following sequence is exact and split

$$
0 \rightarrow f^{*} \Omega_{X / A} \rightarrow\left(\Omega_{S / A}\right) \mid U \xrightarrow{u} \Omega_{U / X} \rightarrow 0 .
$$

Let D denote the canonical derivation of the graded algebra S given by $D(s)=n s$ for $s \in S_{n}$, and $w: \Omega_{\operatorname{Spec}(S) / A} \rightarrow 0_{\mathrm{Spec}(S)}$ the corresponding homomorphism. Since $D \mid S_{(s)}$ is zero for all $s \in S_{1}, w$ factors into $v \circ u$, where $v: \Omega_{U / X} \rightarrow 0_{U}$. Since w is surjective, and $\Omega_{U / X}$ is invertible, v is an isomorphism. Finally, it is easy to see that the grading on Ker (w) defined by the induced isomorphism $f^{*} \Omega_{X / A} \simeq \operatorname{Ker}(w) \mid U$ coincides with its grading as a submodule of $\Omega_{X / S}$.

Theorem (2.2.6) (Schlessinger). Let k be a field, $S=\oplus_{n=0}^{\infty} S_{n}$ a graded k-algebra; set $X=\operatorname{Proj}(S)$, and $T_{X}=\operatorname{Hom}_{0_{X}}\left(\Omega_{X / k}, 0_{X}\right)$. Assume that S is normal, that X is k-smooth, and that $H^{1}\left(X, 0_{X}(n)\right)=(0)$ for all n. If $H^{1}\left(X, T_{X}(n)\right)=(0)$ for all n, then S is rigid over k.

Indeed, in view of (2.1.2), it suffices to show $T^{1}=T^{1}(S / k, S)=0$. By (1.4.3), $T^{1}=\operatorname{Ext}_{S}^{1}\left(\Omega_{S / k}, S\right)$. Since X is smooth, $\Omega_{S / k}$ is locally free on (Spec $(S)-\{\boldsymbol{m}\})$, where $\boldsymbol{m}=\oplus_{n=1}^{\infty} S_{n}$. Therefore $T^{1}=0$ if and only if $\operatorname{Ext}_{R}^{1}\left(\Omega_{R / k}, R\right)=0$, where $R=S_{m}$.

By (2.2.4), $\operatorname{depth}_{R}(R) \geqq 3$. Hence (2.2.3) applies to $\Omega_{R / k}$. Thus $T^{1}=0$ if and only if $\operatorname{depth}_{R}\left(N_{m}\right) \geqq 3$, where $N=\operatorname{Hom}_{S}\left(\Omega_{S / k}, S\right)$.

By (2.2.2), $\operatorname{depth}_{R}\left(N_{m}\right) \geqq 2$. By (2.2.5), there is an exact sequence $0 \rightarrow 0_{X} \rightarrow \tilde{N} \rightarrow T \rightarrow 0$. Hence $H^{1}(X, \tilde{N}(n))=0$ for all n. Therefore, by (2.2.4), $\operatorname{depth}_{R}\left(N_{m}\right) \geqq 3$; thus $T^{1}=0$.

Remark (2.2.7). In the above theorem, if also $H^{2}(X, \tilde{N}(n))=0$ for all n, then the proof yields the converse.

Theorem (2.2.8) (Thom, Grauert-Kerner, Schlessinger). Let k be a field. Let $X=\boldsymbol{P}_{k}^{n} x \boldsymbol{P}_{k}^{m}$, and embed X projectively by the Segre morphism. If $n \geqq 1$ and $m \geqq 2$, then the projecting cone C of X is rigid over k.

Indeed, $0_{X}(p)=0_{\boldsymbol{p}^{n}}(p) \otimes 0_{\boldsymbol{P}^{m}}(p)$ for all p. So, by the Künneth formula, $H^{0}\left(X, 0_{X}(p)\right)$ is the set of bihomogeneous polynomials of degree p, and $H^{i}\left(X, 0_{X}(p)\right)=0$ for $1 \leqq i<(n+m)$ and for all p. Let S be the homogeneous coordinate ring of X. By construction, S is reduced,
because X is. Thus, by explicit computation, the canonical map $\phi: S \rightarrow \oplus_{p=-\infty}^{+\infty} H^{0}\left(X, 0_{X}(p)\right)$ is bijective. Since X is regular, it follows from (2.2.4) that X is normal (and Cohen-Macaulay).

For any k-scheme Y, set $T_{Y}=\underline{\operatorname{Hom}}_{0_{Y}}\left(\Omega_{Y / k}, 0_{Y}\right)$. It follows from (2.2.5) that there is an exact sequence

$$
0 \rightarrow 0_{\boldsymbol{P}^{n}} \rightarrow\left(0_{P^{n}}(1)\right)^{\oplus(n+1)} \rightarrow T_{P^{n}} \rightarrow 0
$$

Hence, $H^{0}\left(\boldsymbol{P}^{n}, T_{\boldsymbol{P}}(p)\right)=0$ if $p \leqq-2$, and $H^{1}\left(\boldsymbol{P}^{n}, T_{\boldsymbol{P}}(p)\right)=0$ if $p \geqq-2$. In general, for any k-scheme $Z, T_{Y \times Z}=\left(T_{Y} \otimes 0_{Z}\right) \oplus\left(0_{Y} \otimes T_{Z}\right)$. So, the Künneth formula yields $H^{1}\left(X, T_{X}(p)\right)=0$ for all p, because $m \geqq 2$. The conclusion then follows from (2.2.6).
(2.3.1) Let A be a ring, B a graded A-algebra, and M a graded B module. An extension $0 \rightarrow M \rightarrow E \rightarrow B \rightarrow 0$ is called homogeneous if E is a graded A-algebra, and the maps are homogeneous (of degree zero). The set of classes of homogeneous extensions E, E^{\prime} under equivalence defined by homogeneous maps $u: E \rightarrow E^{\prime}$ is denoted $\operatorname{Ex}_{0}^{1}(B / A, M)$.

Choose a presentation $0 \rightarrow I \rightarrow P \rightarrow B \xrightarrow{g} 0$, and define $\operatorname{deg}(p)=$ $\operatorname{deg}(g(p))$ for $p \in P$. Then I is homogeneous, and the usual exact sequence

$$
I / I^{2} \rightarrow \Omega_{P / A} \underset{P}{\otimes} B \rightarrow \Omega_{B / A} \rightarrow 0
$$

consists of graded B-modules and homogeneous maps of degree zero. Define $T_{0}^{1}(B / A, M)$ as the cokernel of $\operatorname{Hom}_{0}\left(\Omega_{P / A} \otimes_{P} B, M\right) \rightarrow$ $\operatorname{Hom}_{0}\left(I / I^{2}, M\right)$, where $\operatorname{Hom}_{0}(-,-)$ denotes the set of homogeneous maps of degree zero. Then there exists a bijection $\operatorname{Ex}_{0}^{1}(B / A, M) \leadsto T_{0}^{1}(B / A, M)$, whose construction is analogous to that in the inhomogeneous theory, (cf. (1.2.3)).

It is clear from the definitions that $T_{0}^{1}(B / A, M)$ is a direct summand of $T^{1}(B / A, M)$. In particular, the following result has been proved.

Lemma. The canonical map $\operatorname{Ex}_{0}^{1}(B / A, M) \rightarrow \operatorname{Ex}^{1}(B / A, M)$ is injective.
In other words, if there is any equivalence $u^{\prime}: E \rightarrow E^{\prime}$ between two homogeneous extensions of B / A by M, there is a second one $u: E \rightarrow E^{\prime}$ which is homogeneous.

Alternately, the Lemma can be proved by defining $u(e)$ for $e \in E_{n}$ to be the component of degree n of $u^{\prime}(e)$, and by directly verifying that u preserves multiplication.
(2.3.2) Let k be a ground ring, A a k-algebra with an ascending filtration $\left\{A_{i}\right\}_{i=-\infty}^{+\infty}$, and set $\operatorname{gr}(A)=\oplus_{-\infty}^{\infty}\left(A_{i} / A_{i-1}\right)$. (For example, let I be an ideal of A, and set $A_{i}=A$ for $i \geqq 0$, and $A_{i}=I^{-1}$ for $i<0$.)

Theorem (Gerstenhaber). If $T^{1}(g r(A) / k, \operatorname{gr}(A))=0$, then there exists an isomorphism of separated completions (in fact, of pro-objects): $\widehat{A} \leadsto g r(A)^{\wedge}$.

Indeed, let $B=\oplus_{-\infty}^{\infty} A_{i} t^{i}$, where t is an indeterminate. Then $B / t^{n} B=$ $\oplus_{-\infty}^{\infty}\left(A_{i} / A_{i-n}\right)$ for all n. Starting with the natural map $u_{1}: B / t^{n} B \rightarrow g r(A)$, and proceeding by induction on n, construct as follows a $k[t]$-algebra homomorphism $u_{n}: B_{l} t^{n} B \rightarrow B_{n}$, where $B_{n}=\operatorname{gr}(A) \otimes\left(k[t] / t^{n}\right)$, such that:
(i) u_{n} reduces to u_{n-1}
(ii) the submodule $\left(A_{i-m} / A_{i-n}\right)$ of A_{i} / A_{i-n} is carried onto $\oplus_{j=m}^{n}\left(A_{i-j} / A_{i-j-1}\right) \bar{t}^{j}$, where \bar{t} is the residue class of t. Suppose u_{n-1} has been constructed, and consider the following diagram, whose rows are the natural homogeneous admissible extensions:

By (1.4.1), (iii), $T^{1}\left(B_{n-1} / k[t] / t^{n-1}, g r(A)\right)=0$. It therefore follows from (1.3.3) that there exists a $k[t]$-algebra isomorphism u_{n} which renders the above diagram commutative; moreover, by (2.2.1), we may assume u_{n} is homogeneous. It is then easily seen that u_{n} satisfies (ii).

Finally, (ii) implies that the u_{n} form a coherent family of filtration-preserving isomorphisms

$$
A_{i} / A_{i-n} \leadsto\left(A_{i} / A_{i+1}\right) \oplus \cdots \oplus\left(A_{i-n+1} / A_{i-n}\right)
$$

whence the assertion.

3. Monoidal transformations

Let X be a scheme, Y a closed subscheme of X, and I the ideal of Y. Assume I is of finite type.
(3.1) (See [7], II, 8.1). Let $Z=\operatorname{Proj}\left(\oplus_{n=0}^{\infty} I^{n}\right)$. The structure morphism $f: Z \rightarrow X$ is called the monoidal transformation (or blowing-up) of X with center Y.

Clearly, Z is reduced (resp., integral), if X is. The morphism f is projective, and is an isomorphism precisely at those points where I is invertible; in particular,

$$
\left(Z-f^{-1}(Y)\right) \leadsto(X-Y)
$$

The (scheme-theoretic) fiber $E=f^{-1}(Y)$ is called the exceptional divisor, and, indeed, it enters into an exact sequence

$$
0 \rightarrow 0_{Z}(1) \rightarrow 0_{Z} \rightarrow 0_{E} \rightarrow 0
$$

It has the form $E=\operatorname{Proj}\left(\oplus_{n=0}^{\infty} I^{n} / I^{n+1}\right)$, and thus comes equipped with a relatively projective embedding over Y, and a cone,

$$
C_{Y}(X)=\operatorname{Spec}\left(\oplus_{n=0}^{\infty} I^{n} / I^{n+1}\right),
$$

called the normal cone of X along Y.
Lemma (3.1.1). With the above notation, if C is reduced, then X is reduced.

Indeed, for any ring A and ideal I of A, if $\operatorname{gr}(A)$ is reduced, then A is.
(3.2) Let M be a quasi-coherent 0_{X}-module, and $u: M \rightarrow 0_{X}$ a homomorphism such that $u(M)=I$. Then:
(i) the surjections $\operatorname{Sym}^{n}(M) \rightarrow I^{n}$ define a closed immersion $i: Z \hookrightarrow P(M)$
(ii) the restriction $u \mid(X-Y)$ defines a section $s:(X-Y) \rightarrow \boldsymbol{P}(M)$.

Proposition (3.2.1). Under the above conditions i embeds Z as the (scheme-theoretic) closure T of the image $s(X-Y)$ in $\boldsymbol{P}(M)$.

Indeed, clearly $s(X-Y)=i(Z-E)$, and $T \subseteq i(Z)$. Hence the question is local on X and Z; we may then assume $X=\operatorname{Spec}(A)$, and I is an ideal of A.

As g runs through I, the homogeneous part of degree one of the graded algebra $S=\oplus_{n=0}^{\infty} I^{n}, Z$ is covered by the affines $\operatorname{Spec}(B)$, where B is the component $S_{(g)}$ of degree zero of the localization S_{g}; symbolically, $B=$ $A[I / g]$. Now, T corresponds to an ideal J of B, and $J\left(B_{(g / 1)}\right)$ is zero. However, the natural map $B \rightarrow B_{g}\left(=A_{g}\right)$ is injective. Hence $J=(0)$, and $T=i(Z)$.
(3.3) Let X^{\prime} be a closed subscheme of X, and $Y^{\prime}=X^{\prime} \cap Y$. Let I^{\prime} be the ideal of Y^{\prime} on X^{\prime}, and let $f^{\prime}: Z^{\prime} \rightarrow X^{\prime}$ be the monoidal transformation of X^{\prime} with center Y^{\prime}. Then the surjection $I \rightarrow I^{\prime}$ defines a closed immersion $j: Z^{\prime} \hookrightarrow Z$.

Proposition (3.3.1). Under the above conditions j embeds Z^{\prime} as the closure of $\left(X^{\prime}-Y\right)$ in Z, and it induces a closed immersion $C_{Y^{\prime}}\left(X^{\prime}\right) \hookrightarrow C_{Y}(X)$.

Indeed, the first assertion results immediately from (3.2), in view of the commutative diagram

The second assertion is an immediate consequence of the definitions.
(3.4) Fix an algebraically closed field k, and assume that X is an integral algebraic k-scheme, and that Y is an equidimensional closed subscheme of X. Let X^{\prime} be an irreducible closed subscheme of X. With the notation of (3.1) and (3.3), let $E=f^{-1}(Y)$ (resp., $E^{\prime}=\left(f^{\prime}\right)^{-1}\left(Y^{\prime}\right)$) be the exceptional divisor of the monoidal transformation $f: Z \rightarrow X$ (resp., $f^{\prime}: Z^{\prime} \rightarrow X^{\prime}$).
(3.4.1) Suppose that E (resp., $C_{Y}(X)$) is an algebraic fiber bundle over Y with integral fiber F (resp., with integral fiber the projecting cone over $F)$. Then, necessarily, $\operatorname{dim}(F)=(\operatorname{codim}(Y, X)-1)$. Assume Y^{\prime} not equal to X^{\prime}, locally integral and equidimensional, and assume that $\operatorname{codim}(Y, X)$ $=\operatorname{codim}\left(Y^{\prime}, X^{\prime}\right)$.

Proposition (3.4.2): Under the above conditions $E^{\prime}=E \times{ }_{Y} Y^{\prime}$ (resp., $\left.C_{Y^{\prime}}\left(X^{\prime}\right)=C_{Y}(X) \times{ }_{Y} Y^{\prime}\right)$, and Z^{\prime} has the same underlying space as $Z \times{ }_{Y} X^{\prime}$ (resp., and X^{\prime} is integral).

Indeed, consider Z^{\prime} as the closure of $\left(X^{\prime}-Y^{\prime}\right)$ in Z, and f^{\prime} as the restriction $f \mid Z^{\prime}$. Let $\left\{Y_{i}^{\prime}\right\}$, for $i=1, \cdots, r$, be the irreducible components of Y^{\prime}. Then $\left(f^{\prime}\right)^{-1}\left(Y_{i}^{\prime}\right)$ is a closed subscheme of $f^{-1}\left(Y_{i}^{\prime}\right)$ which is not empty, because X^{\prime} is irreducible and f^{\prime} is a monoidal transformation. We show next that they have the same dimension, and hence they coincide. Since E is a fiber bundle over Y, then $\operatorname{dim}\left(f^{-1}\left(Y_{i}^{\prime}\right)\right)=(\operatorname{codim}(Y, X)-1)+$ $\operatorname{dim}\left(Y_{i}^{\prime}\right)$. However, $\operatorname{codim}(Y, X)=\operatorname{codim}\left(Y^{\prime}, X^{\prime}\right)$, and Y^{\prime} is equidimensional, hence $\operatorname{dim}\left(f^{-1}\left(Y_{i}^{\prime}\right)\right)=\operatorname{dim} X^{\prime}-1$. On the other hand, since E^{\prime} is a Cartier divisor on $Z^{\prime}, \operatorname{dim}\left(f^{\prime}\right)^{-1}\left(Y_{i}^{\prime}\right)=\operatorname{dim} X^{\prime}-1$. Hence $f^{-1}\left(Y_{i}^{\prime}\right)$ and $\left(f^{\prime}\right)^{-1}\left(Y_{i}^{\prime}\right)$ have the same dimension. Moreover, $f^{-1}\left(Y_{i}^{\prime}\right)$ is integral, since F and Y_{i}^{\prime} are integral, and $f^{-1}\left(Y_{i}^{\prime}\right)$ is a fiber bundle over Y_{i}^{\prime} with fiber F. Hence $E^{\prime}=E x_{Y} Y^{\prime}$.

The argument for the normal cones is essentially the same, and X^{\prime} is integral by (3.1.1).
(3.4.3) Let $Y_{0} \supset Y_{1} \cdots \supset Y_{n+1}$ be a sequence of equidimensional closed subschemes of X, with $Y_{0}=X$, and $Y_{n+1}=\emptyset$. For $0 \leqq p \leqq n$, let $U_{p}=\left(Y_{p}-Y_{p+1}\right)$, let $E_{p}=f^{-1}\left(U_{p}\right)$, and assume it is a fiber bundle over U_{p} with integral fiber. Let $W_{p}=\left(Y_{p}-Y_{p+2}\right)$, and let $f_{p}: Z_{p} \rightarrow W_{p}$ be the monoidal transformation with center U_{p+1}. Assume that the exceptional divisor of Z_{p} is a fiber bundle over U_{p+1} with integral fiber, and that there exists a fiber bundle P_{p} over Z_{p} with integral fiber, and a surjective X-morphism $g_{p}: P_{p} \rightarrow f^{-1}\left(W_{p}\right)$.

Let

$$
W_{p}^{\prime}=W_{p} \cap X^{\prime} ; \quad U_{p}^{\prime}=U_{p} \cap X^{\prime} ; \quad E_{p}^{\prime}=\left(f^{\prime}\right)^{-1}\left(U_{p}^{\prime}\right)
$$

and assume
(i) W_{p}^{\prime} is equidimensional and locally irreducible;
(ii) U_{p}^{\prime} is equidimensional and locally integral;
(iii) $\operatorname{codim}\left(U_{p+1}^{\prime}, W_{p}^{\prime}\right)=\operatorname{codim}\left(U_{p+1}, W_{p}\right)$.

Let $f_{p}^{\prime}: Z_{p}^{\prime} \rightarrow W_{p}^{\prime}$ be the monoidal transformation with center U_{p+1}^{\prime}.
Proposition (3.4.4). Under the above conditions $E_{p}^{\prime}=E_{p} \times_{Y_{p}} Y_{p}^{\prime}$, for $0 \leqq p \leqq n$.

Indeed, for $p=0$ the assertion is trivially true. Assume $p \geqq 0$. Proposition (3.4.2), applied to f_{p} and f_{p}^{\prime} restricted to the irreducible components of W_{p}^{\prime}, asserts that $Z_{p} \times{ }_{X} X^{\prime}$ and Z_{p}^{\prime} have the same underlying space. Since $P_{p} \times_{X} X^{\prime}=P_{p} \times_{Z_{p}}\left(Z_{p} \times_{X} X^{\prime}\right)$, then $P_{p} \times_{X} X^{\prime}$ and $P_{p} \times_{Z_{p}} Z_{p}^{\prime}$ have the same underlying space.

Now Z_{p}^{\prime} is the closure of U_{p}^{\prime} in Z_{p}, hence $P_{p} \times U_{p}^{\prime}$ is dense in $P_{p} \times{ }_{z_{p}} Z_{p}^{\prime}$. Since the base extension $g_{p} \times_{X} X^{\prime}: P_{p} \times_{X} X^{\prime} \rightarrow f^{-1}\left(W_{P}^{\prime}\right)$ is surjective, it follows that $f^{-1}\left(U_{p}^{\prime}\right)$ is topologically dense in $f^{-1}\left(W_{p}^{\prime}\right)=E_{p} \times_{Y_{p}} Y_{p}^{\prime}$.

Let \bar{E}_{p}^{\prime} be the closure of E_{p}^{\prime} in E^{\prime}. Then we have

$$
\left(\bar{E}_{p}^{\prime} x_{Y_{p+1}} Y_{p+1}^{\prime}\right) \subseteq E_{p+1}^{\prime} \subseteq\left(E_{d+1} \times_{Y_{p+1}} Y_{p+1}^{\prime}\right)
$$

By induction, $f^{-1}\left(U_{p}^{\prime}\right)=E_{p}^{\prime}$, hence \bar{E}_{p}^{\prime} has the same underlying space as $E_{p} \times_{Y_{p}} Y_{p}^{\prime}$. Therefore, E_{p+1}^{\prime} is a closed, topologically dense subscheme of $E_{p+1} \times{ }_{Y_{p+1}} Y_{p+1}^{\prime}$. Since the latter is reduced, they coincide.

4. Fundamentals

Fix a ground scheme S, an e-bundle ${ }^{2} E$ on S, and an integer n, with $0 \leqq n \leqq e$.
(4.1) The Grassmann scheme $X=\operatorname{Grass}_{n}(E)$, equipped with its universal n-quotient ${ }^{3} Q$ of $E_{X}{ }^{4}$, represents the functor whose points t with values in an S-scheme T are the n-quotients N of E_{T}; i.e., the morphisms $t: T \rightarrow \operatorname{Grass}_{n}(E)$ and the n-quotients N of E_{T} are in bijective correspondence by $N=t^{*} Q$.
(4.2) There is a natural commutative diagram

in which:

$$
m=(e-n) ;
$$

d is the isomorphism induced by the natural correspondence between

[^1]n-quotients N of E_{T}, m-subbundles ${ }^{5} M$ of E_{T}, and m-quotients M^{*} of $E_{T}^{* 6}$;
π (resp., π^{*}) is the Plücker embedding, which is defined by mapping an n-quotient N of E_{T} to the 1-quotient $\bigwedge^{n} N$ of $\bigwedge^{n} E_{T}$ (resp., similarly for π^{*}).
i is the isomorphism defined by mapping a 1-quotient L of $\wedge^{m} E_{T}^{*}$ to the 1-quotient $L \otimes\left(\bigwedge^{e} E\right)$ of $\left(\bigwedge^{m} E_{T}^{*}\right) \otimes\left(\bigwedge^{e} E\right)$, and identifying the latter with $\bigwedge^{n} E$ via the following canonical maps, which are perfect dualities, since E is locally free:
$(\stackrel{m}{\wedge} E) \otimes\left(\stackrel{m}{\wedge} E^{*}\right) \rightarrow 0_{S}, \operatorname{by}\left(e_{1} \wedge \cdots \wedge e_{m}\right) \otimes\left(e_{1}^{*} \wedge \cdots \wedge e_{m}^{*}\right) \mapsto \operatorname{det}\left(\left(e_{i}, e_{j}\right)\right)$, and
\[

$$
\begin{aligned}
\left(\bigwedge^{m} E\right) \otimes\left(\bigwedge^{n} E\right) \rightarrow \stackrel{e}{\wedge} E, \text { by }\left(e_{1} \wedge \cdots \wedge e_{m}\right) \otimes\left(e_{m+n} \wedge \cdots \wedge e_{e}\right) & \mapsto\left(e_{1} \wedge \cdots \wedge e_{e}\right)
\end{aligned}
$$
\]

Indeed, the commutativity holds because the following diagram of canonical maps (arising from an exact sequence $0 \rightarrow M \rightarrow E_{T} \rightarrow N \rightarrow 0$ on T) is itself commutative:

(4.3) If $E=E_{1} \otimes E_{2}$, and $t_{i}: T \rightarrow \operatorname{Grass}_{n_{i}}\left(E_{i}\right)$ are two morphisms defined by n_{i}-quotients N_{i} of $E_{i T}$, their Segre product is the morphism $t_{1} \otimes t_{2}: T \rightarrow \operatorname{Grass}_{n}(E)$ defined by the n-quotient $N_{1} \otimes N_{2}$ of E, with $n=n_{1} n_{2}$. In particular, the projections p_{i} give rise to the Segre embedding

$$
s=p_{1} \otimes p_{2}: \operatorname{Grass}_{n_{1}}\left(E_{1}\right) \times \operatorname{Grass}_{n_{2}}\left(E_{2}\right) \hookrightarrow \operatorname{Grass}_{n}(E)
$$

(4.4) Fix an a-subbundle A of E, and an integer p satisfying $\max (0, a-n) \leqq p \leqq 1+\min (a, e-n)$. The p-th special Schubert scheme $\sigma_{p}(A)$ defined by A represents the subfunctor of $\operatorname{Grass}_{n}(E)$ whose T-points are those n-quotients N of E_{T} such that the induced map $\bigwedge^{q} A_{T} \rightarrow \bigwedge^{q} N$ is zero, where $q=(a-p+1)$. (Intuitively, this condition requires $r k\left(A_{T} \cap M \geqq p\right.$ where $M=\operatorname{Ker}\left(E_{T} \rightarrow N\right)$.)

Proposition (4.5). The map of (4.2) induces an isomorphism

$$
\sigma_{p}(A) \xrightarrow{\sim} \sigma_{(p+n-a)}\left((E / A)^{*}\right) .
$$

[^2]Indeed, for an exact sequence $0 \rightarrow M \rightarrow E_{T} \rightarrow N \rightarrow 0$ defining a T-point of $\operatorname{Grass}_{n}(E)$, the following conditions are equivalent:
(i) the map $\Lambda^{q} A_{T} \rightarrow \bigwedge^{q} N$ is zero, where $q=(a-p+1)$;
(ii) the map $\wedge^{q^{\prime}} C \rightarrow \bigwedge^{q^{\prime}} E_{T}$ is zero, where $q^{\prime}=(a-p+e-n+1)$ and $C=A_{T}+M$;
(iii) the map $\bigwedge^{q^{*}} M \rightarrow \bigwedge^{q^{*}}(E / A)_{T}$ is zero, where $q^{*}=(e-n-p)$;
(iv) the map $\bigwedge^{q^{*}}(E / A)_{T}^{*} \rightarrow \bigwedge^{q^{*}} M_{T}^{*}$ is zero.

The equivalence (i) \Leftrightarrow (ii) (resp., (ii) \Leftrightarrow (iii)) holds in view of [1], (2.5), because M (resp., A_{T}) is locally a direct summand of E_{T}; the equivalence (iii) \Leftrightarrow (iv) holds by duality (see (4.3)); whence the assertion.
(4.6) Set $P=\operatorname{Ker}\left(E_{X} \rightarrow Q\right)$; it is called the universal subbundle on $X=\operatorname{Grass}_{n}(E)$, and its dual P^{*} is the universal quotient on $d(X)=$ $\operatorname{Grass}_{m}\left(E^{*}\right)$. Set $B=(E / A)_{X}$ and $F=\left(\bigwedge^{b} P\right) \otimes\left(\bigwedge^{b} B^{*}\right)$ where $b=$ $(e-n-p)$. Let $v: \bigwedge^{b} B^{*} \rightarrow \bigwedge^{b} P^{*}$ be the natural map and define u as the composition

$$
\begin{equation*}
u: F \xrightarrow{1 \otimes 0}\left(\bigwedge^{b} P\right) \otimes\left(\bigwedge^{b} P^{*}\right) \xrightarrow{\operatorname{det}((,))} 0_{X} . \tag{4.6.1}
\end{equation*}
$$

Proposition. The image of $u: F \rightarrow 0_{X}$ is the ideal of $\sigma_{p+1}(A)$.
Indeed, by (4.5), a point $t: T \rightarrow \operatorname{Grass}_{n}(E)$ lies in $\sigma_{p+1}(A)$ if and only if $t^{*} v=0$. Certainly, $t^{*} u=0$ if $t^{*} v=0$; the converse holds because P is locally free.
(4.7) Let K be a k-subbundle of E. If $k \leqq(e-n)$, then $\sigma_{k}(K)=\operatorname{Grass}_{n}(E / K)$, for they have the same T-points, the n-quotients N of $(E / K)_{T}$, and their embedding in $\operatorname{Grass}_{n}(E)$ corresponds to reinterpreting N as an n-quotient of E_{T}. Furthermore, the following diagram of canonical closed immersions is clearly commutative:

Dually, in view of (4.5) and (4.2), if $k \geqq m=(e-n)$, then there is a commutative diagram

In particular, if $k=(e-n-1)$, then $\sigma_{k}(K)=\boldsymbol{P}\left((E / K)^{*}\right)$, and, if $k=(e-n+1)$, then $\sigma_{(e-n)}(K)=\boldsymbol{P}(K)$; furthermore, the Plücker morphism π of $\operatorname{Grass}_{n}(E)$ embeds them as linear subspaces of $\boldsymbol{P}\left(\bigwedge^{n} E\right)$.

(4.8) Determinantal Varieties

Let S_{0} be an affine scheme, and denote by $D_{z}(n, a)$ the affine S_{0}-scheme of $(n \times a)$-matrices [$U_{i j}$] whose minors of order z are all zero. Clearly, $D_{1}(n, a)=S_{0}$, and $D_{z}(n, a)$ is a cone. Further it is a theorem of Eagan and Northcott that $D_{n}(n, a)$ is Cohen-Macaulay ([5]).

Proposition (4.9). $D_{2}(n, a)$ is the projecting cone over $\boldsymbol{P}^{(n-1)} \times \boldsymbol{P}^{(a-1)}$ embedded by the Segre morphism.

Indeed, $D_{2}(n, a)$ is the closed subscheme of $A_{S_{0}}^{n a}$ defined by the homogeneous ideal I generated by the relations

$$
\left\{U_{i j} U_{k l}-U_{i l} U_{k j}\right\}, \quad 1 \leqq i \leqq n, \quad 1 \leqq j \leqq a
$$

in the polynomial ring $k\left[\left\{U_{i j}\right\}\right.$].
On the other hand, $\boldsymbol{P}^{(n-1)} \times \boldsymbol{P}^{(a-1)}$ is embedded by the Segre morphism in $\boldsymbol{P}^{(n a-1)}$ as the closed subscheme whose homeogeneous coordinate ring is the image of the homomorphism

$$
g: k\left[\left\{U_{i j}\right\}\right] \rightarrow k\left[\left\{X_{i}\right\}\right] \otimes k\left[\left\{Y_{j}\right\}\right], \quad 1 \leqq i \leqq n, \quad 1 \leqq j \leqq a
$$

defined by $g\left(U_{i j}\right)=X_{i} \otimes Y_{j}$.
Let

$$
M=M^{N}\left(i_{1}, \cdots, i_{N}, j_{1}, \cdots, j_{N}\right)=\left(\prod_{k=1}^{N} X_{i_{k}}\right) \otimes\left(\prod_{k=1}^{N} Y_{j_{k}}\right)
$$

and let $R(M)$ be the set of

$$
P(\beta)=\prod_{\alpha \in \boldsymbol{A}} U_{\alpha, \beta(\alpha)}
$$

where $A=\left(i_{1}, \cdots, i_{N}\right)$, and β runs over the set of all bijections $\beta: A \rightarrow\left\{j_{1}, \cdots, j_{N}\right\}$. Then $R(M)$ consists precisely of those monomials in $k\left[\left\{U_{i j}\right\}\right]$ whose image under g is M. Since any polynomial P has the form ($\sum_{M} \sum_{P \in R(M)} a_{P} P$), it will be sufficient to show that any two elements of $R(M)$ are congruent (modulo I). But, clearly, one need only consider elements $P(\beta)$ and $P(\gamma)$, where β and γ differ by a single transposition of $\left\{j_{1}, \cdots, j_{N}\right\}$, in which case the assertion is trivial.

Theorem (4.10). With the notation of (4.1), let $X=\operatorname{Grass}_{n}(E)$, and let $x \in\left(X-\sigma_{(r+1)}(A)\right)$. Then there exists an affine subscheme S_{0} of S, a (standard) affine neighborhood $U=A_{S_{0}}^{m n}$ of x, and a linear subspace V of dimension $[m n-(n-c)(a-c)]$, depending only on x and r, such that $\sigma_{p}(A) \cap U=V \times D_{z}(n-c, a-c)$, with $p=(r+1-z)$, and $c=(a-r)$.

Indeed, let $A(x)=A \otimes_{0_{s}} k(x), E(x)=E \otimes_{0_{s}} k(x)$, and $Q(x)=$ $Q \otimes_{0_{s}} k(x)$. Then $x \in \sigma_{(r+1)}(A)$ if and only if the homomorphism $\bigwedge^{c} A(x)$ $\rightarrow \bigwedge^{c} Q(x)$ is not zero. Hence there are elements $\left\{f_{1}(x), \cdots, f_{c}(x)\right\}$ whose images in $Q(x)$ are linearly independent. Extend $\left\{f_{1}(x), \cdots, f_{c}(x)\right\}$
to a basis of $E(x)$ so that $\left\{f_{1}(x), \cdots, f_{n}(x)\right\}$ generate $Q(x)$. Replacing S by a suitably small affine S_{0}, we may assume that the $f_{i}(x)$ are represented by global sections f_{i} of E which are independent at every point of S_{0}.

Let E^{\prime} (resp., $E^{\prime \prime}$) be the subbundle of E generated by $\left\{f_{1}, \cdots, f_{n}\right\}$ (resp., by $\left\{f_{n+1}, \cdots, f_{n+m}\right\}$. For any S_{0}-scheme T, let $U(T)$ be the set of n-quotients N of E_{T} such that $E_{T}^{\prime} \rightarrow N$ is surjective. Clearly $x \in U$, by construction. Since any surjective homomorphism $E_{T}^{\prime} \rightarrow N$ is necessarily bijective, $U(T)$ can be identified with $\operatorname{Hom}_{0_{T}}\left(E_{T}^{\prime \prime}, E_{T}^{\prime}\right)$, the set of $(m \times n)$ matrices over $\Gamma\left(\mathrm{O}_{T}\right)$.

In particular, to any T-point t there corresponds a surjective homomorphism $g: E_{T} \rightarrow Q_{T}$, and hence a matrix of the form [IM], where I is the identity $(n \times n)$-matrix, and $M \in \operatorname{Hom}_{0_{T}}\left(E_{T}^{\prime \prime}, E_{T}^{\prime}\right)$. Let $g^{\prime}: A_{T} \rightarrow Q_{T}$ be the composition of g with the injection of A_{T} into E_{T}. Then to g^{\prime} there corresponds a submatrix M^{\prime} of $[I M]$ of the form $\left[\begin{array}{ll}I & T_{1} \\ 0 & T_{2}\end{array}\right]$, where I is the identity $(c \times c)$-matrix, and T_{2} is an $(n-c) \times(a-c)$-submatrix of M.

By definition, $t \in \sigma_{p}(A)$ if and only if $\bigwedge^{(a-p+1)}\left(M^{\prime}\right)=0$. Since $\left\{f_{1}, \cdots, f_{c}\right\}$ generate a free submodule of Q_{T}, then ([1], (2.5), (ii) \Leftrightarrow (iii)) shows that this is equivalent to $\wedge^{z} T_{2}=0$. Hence $T_{2} \in D_{z}(n-c, a-c)$. Moreover, this condition on M involves only the submatrix T_{2}, so that its remaining entries freely generate a linear subspace V of U, of dimension $[m n-(n-c)(a-c)]$. Hence $\left[\sigma_{p}(A)-\sigma_{r}(A)\right] \cap U=$ $V \times D_{z}(n-c, a-c)$.

Corollary (4.11). The normal cone of $\left[\sigma_{p}(A)-\sigma_{(p+z)}(A)\right]$ along $\left[\sigma_{(p+z-1)}(A)-\sigma_{p+z}(A)\right]$ is an algebraic fiber bundle over $\left[\sigma_{(p+z-1)}(A)-\right.$ $\left.\sigma_{(p+z)}(A)\right]$ with fiber $D_{z}(n-c, a-c)$.

Corollary (4.12). $\left[\sigma_{p}(A)-\sigma_{(p+1)}(A)\right]$ is locally isomorphic to affine $[m n-p(n-a+p)]$-space.

Corollary (4.13). (i) $D_{z}(n, a)$ is irreducible, of dimension $(n a-(a-z+1)(n-z+1))$, and nonsingular in codimension 1.
(ii) $D_{n}(n, a)$ is normal and Cohen-Macaulay.

Indeed, (i) holds because, choosing $m=a$ in (4.10), then $D_{z}(n, a)$ is isomorphic to $\sigma_{(a-z+1)}(A)$, which has the required properties. (See [1], (3.3)). Moreover, $D_{z}(n, a)$ is Cohen-Macaulay by [5], hence it is normal, since it is nonsingular in codimension 1 by (i) above. Hence (ii) holds.

5. The monoidal transformation of $\sigma_{p}(A)$ with center $\sigma_{(p+1)}(A)$

(5.1) Preserve all the notation of (4). Set $Y=\operatorname{Grass}_{(n-a+p)}(E / A)$, and $Z=\operatorname{Grass}_{(a-p)}(A)$. Let R be the universal quotient on Y, and J the
universal subbundle on Z. Let $K=\operatorname{Ker}\left(E_{Y} \rightarrow R\right)$. Then $A_{Y} \subset K$ and $J \subset A_{\boldsymbol{Z}}$. Set

$$
\sum=\operatorname{Grass}_{(a-p)}\left(K_{Y \times Z} / J_{Y \times Z}\right)
$$

Essentially by definition, a T-point of \sum corresponds to the following triple:

> a) a p-subbundle J^{\prime} of A_{T}
> b) a $(b+a)$-subbundle K^{\prime} of E_{T} containing A_{T}, where $b=(e-n-p)$
> c) an $(e-n)$-subbundle P^{\prime} of K^{\prime} containing J^{\prime}.

Define a morphism $f: \sum \rightarrow \operatorname{Grass}_{n}(E)$ by mapping t to the T-point $f(t)$ defined by the $(e-n)$-subbundle P^{\prime} of E_{T}; since $P^{\prime} \cap A_{T} \supset J^{\prime}$, the map $\bigwedge^{q} A_{T} \rightarrow \bigwedge^{q}\left(E_{T} / P^{\prime}\right)$ factors through $\bigwedge^{q}\left(A_{T} / J^{\prime}\right)=0$, hence $f(t)$ lies in $\sigma_{p}(A)$.

Theorem (5.2). Then $f: \sum \rightarrow \sigma_{p}(A)$ is the monoidal transformation with center $\sigma_{(p+1)}(A)$. Over $U=\left(\sigma_{(p+z)}(A)-\sigma_{(p+z+1)}(A)\right)$, the exceptional locus restricts to

$$
f^{-1}(U)=\operatorname{Grass}_{z}\left(P_{U} \cap A_{U}\right) \times \operatorname{Grass}_{(n-a+p)}\left(E_{U} /\left(P_{U}+A_{U}\right)\right)
$$

and its relatively projective embedding is given by the Plücker and Segre embeddings. (Note that $P_{U} \cap A_{U}$ and $\left(P_{U}+A_{U}\right)$ are subbundles of E_{U} by [1], (2.6).)

Indeed, in view of (4.6) and (3.2), it suffices to define an embedding $i: \sum \hookrightarrow P(F)$ such that $i\left(\sum\right)$ is the closure of the section s over $U_{0}=\left(\sigma_{p}(A)-\sigma_{(p+1)}(A)\right)$ defined by $u \mid U_{0}$.

Define g by mapping the triple (5.1.1) to the pair: the p-subbundle J^{\prime} of $P^{\prime}\left(=(f \circ t)^{*} P\right)$, and the b-subbundle $\left(K^{\prime} \mid A_{T}\right)$ of B_{T}.

The image of $\sum(T)$ under g is contained in the set of triples:
a) an $(e-n)$-subbundle P^{\prime} of E_{T},
b) a p-subbundle J^{\prime} of P^{\prime} which is also a subbundle of A_{T},
c) a ($b+a$)-subbundle K^{\prime} of E_{T} containing both A_{T} and P^{\prime}.

Conversely, such a triple determines a triple of the form (5.1.1). Thus g is a monomorphism, and (5.2.1) describes its image.Therefore g is closed
immersion, because it is proper ${ }^{7}$, being complete, and $f^{-1}(U)$ has the asserted form.

Let $\sum_{0}=f^{-1}\left(U_{0}\right)$. Then \sum_{0} contains all points of depth 0 , because \sum is flat over S, its geometric fibers $\sum(s)$ are integral, and \sum_{0} induces a dense open subset in each $\sum(s)$; hence \sum is the scheme-theoretic closure of \sum_{0}. By the computation of $f^{-1}(U), f \mid \sum_{0}$ is an isomorphism. It remains to prove that $i=(s \circ f)$ on \sum_{0}.

Under i, the triple (5.1.1) is mapped to the 1-quotient $L=\left(\bigwedge^{b}\left(P^{\prime} \mid J^{\prime}\right)\right)$ $\otimes\left(\bigwedge^{b}\left(K^{\prime} \mid A_{T}\right)^{*}\right)$ of $F_{T}=(f \circ t)^{*} F$. Consider the diagram

in which w is induced by the inclusions of P^{\prime} in K^{\prime} and of J^{\prime} in A_{T}; and u^{\prime} is the pull-back of (4.6.1) to T. Set $T_{0}=t^{-1}\left(\sum_{0}\right)$. Since the triple (5.1.1) restricted to T_{0} corresponds under $(s \circ f)$ to the surjection $u^{\prime} \mid T_{0}$, to complete the proof it suffices to prove that $\chi \mid T_{0}$ is an isomorphism and that (5.2.2) commutes.

On $T_{0},\left(P^{\prime}+A_{T}\right)=K^{\prime}$, and $P^{\prime} \cap A_{T}=J^{\prime}$; hence $w \mid T_{0}$ and $\chi \mid T_{0}$ are isomorphisms. Finally, the commutativity of (5.2.2) is no more than the commutativity of the following two diagrams of canonical maps:

Corollary (5.3). When $p=0$, then $Y=\operatorname{Grass}_{(n-a)}(E / A)$ and $K=$ $\operatorname{Ker}\left(E_{Y} \rightarrow R\right)$ is an $(e-r+a)$-bundle, where R is the universal quotient on Y; and $f: \sum=\operatorname{Grass}_{a}(K) \rightarrow X=\operatorname{Grass}_{n}(E)$ is the monoidal transformation with center $\sigma_{1}(A)$.
(5.4) For $0 \leqq z \leqq(\min (a, e-n)-p)$, let $f_{z}: \sum_{z} \rightarrow \sigma_{p+z}(A)$ be the monoidal transformation with center $\sigma_{p+z+1}(A)$. In view of (5.1), \sum_{z} carries a universal $(p+z)$-subbundle J_{z} of $A_{\Sigma_{z}}$, and a universal $(a+m-p-z)$-subbundle K_{z} of $E_{\Sigma_{z}}$ containing $A_{\Sigma_{z}}$. Set

$$
\Phi_{z}=\operatorname{Grass}_{z}\left(J_{z}\right) \times \operatorname{Grass}_{(n+p-a)}\left(E_{\Sigma_{z}} / K_{z}\right)
$$

[^3]Proposition. There is a natural surjective X-morphism

$$
g_{z}: \Phi_{z} \rightarrow f^{-1} \sigma_{p+z}(A)
$$

Indeed, a T-point t of Φ_{z} corresponds to a sequence of subbundles of E_{T}

$$
J^{\prime} \subset J_{z}^{\prime} \subset P^{\prime} \subset K_{z}^{\prime} \subset K^{\prime}
$$

of ranks $p,(p+z), m,(a+m-p-z),(a+m-p)$ respectively, such that $J_{z}^{\prime} \subset A_{T} \subset K_{z}^{\prime}$. Define $g_{z}: \Phi_{z} \rightarrow \sum$ by $g_{z}(t)=\left(J^{\prime}, P^{\prime}, K^{\prime}\right)$. Since $J_{z}^{\prime} \subset\left(P^{\prime} \cap A_{T}\right)$, it follows that $g_{z}(t)$ lies in $f^{-1} \sigma_{p+z}(A)$. Finally, if T is the spectrum of a field, and $\left(J^{\prime}, P^{\prime}, K^{\prime}\right)$ is a triple of subspaces defining a T-point of $f^{-1} \sigma_{p+z}(A)$, then there exist subspaces J_{z}^{\prime} and K_{z}^{\prime} of ranks $(p+z)$ and $(m-p-z)$ such that $J^{\prime} \subset J_{z} \subset\left(P^{\prime} \cap A_{T}\right)$ and $\left(P^{\prime}+A_{T}\right) \subset K_{z}^{\prime} \subset K^{\prime}$; hence g_{z} is onto $f^{-1} \sigma_{p+z}(A)$.

6. Standard modifications

(6.1) As in (4.1), let $X=\operatorname{Grass}_{n}(E)$, let $Y=\operatorname{Grass}_{(n-a+p)}(E / A)$, let R be the universal quotient on Y, and let $K=\operatorname{Ker}\left(E_{Y} \rightarrow R\right)$. Necessarily, $\operatorname{rank}(K)=(e-n+a-p)$.

Let $X^{\prime}=\operatorname{Grass}_{(a-p)}(K)$. For any S-scheme T, a T-point of X^{\prime} corresponds to an ($e-n+a-p$)-subbundle K^{\prime} of E_{T} containing A, and an $(e-n)$-subbundle P^{\prime} of E_{T} contained in K^{\prime}. In particular, to P^{\prime} there corresponds a T-point s of X, which is easily seen to lie in $\sigma_{p}(A)$. Thus there is a natural morphism $f: X^{\prime} \rightarrow \sigma_{p}(A)$, defined on T-points by $f(t)=s$; call f the standard modification of $\sigma_{p}(A)$.

Let P be the universal subbundle on X, and, for any non-negative integer r, set $U=\left[\sigma_{(p+r)}(A)-\sigma_{(p+r+1)}(A)\right]$.

Proposition (6.2). The standard modification $f: X^{\prime} \rightarrow \sigma_{p}(A)$ is an isomorphism off $\sigma_{(p+1)}(A)$, and $f^{-1} U=\operatorname{Grass}_{(n-a+p)}\left(E_{U} / P_{U}+A_{U}\right)$.

Indeed, by [1], (2.6), an $(e-n)$-subbundle P^{\prime} of E_{T} determines a T point of U if and only if $\left(P^{\prime}+A_{T}\right)$ is an $(a+e-n-p-r)$-bundle. Fix a T-point s of U, defined by an $(e-n)$-subbundle P^{\prime} of E_{T}. Then a T-point of $f^{-1}(s)$ corresponds to an $(e-n+a-p)$-subbundle K^{\prime} of E_{T} containing P^{\prime}, hence to an $(n-a+p)$-quotient of $\left(E_{T} / P_{T}+A_{T}\right)$.

Finally, if $r=0$, then $\left(P^{\prime}+A_{T}\right)$ is an $(e-n+a-p)$-bundle, so determines a unique T-point t of X^{\prime}. The morphism $s \mapsto t$ is clearly an inverse for f.

Corollary (6.3). If $p \geqq 1$, then $\sigma_{(p+1)}(A)$ is the full singular locus of $\sigma_{p}(A)$.

Indeed, by (5.9), $\left[\sigma_{p}(A)-\sigma_{(p+1)}(A)\right]$ is nonsingular. Conversely, the
codimension of $f^{-1} \sigma_{(p+1)}(A)$ in X^{\prime} is $(p+1)$. However, the restriction \bar{f} of f to any of the geometric fibers over S is a birational morphism. Hence, if $\sigma_{p}(A)$ were non-singular at a geometric point of $\sigma_{(p+1)}(A)$, then the exceptional locus of \bar{f} would necessarily have codimension one ([8], p. 415 , Prop. 1), whence the assertion.
(6.4) Set $Z=\operatorname{Grass}_{(a-p)}(A)$, and let J be the universal subbundle on Z. Let

$$
F^{*}: \operatorname{Grass}_{(e-p+n)}\left(\left(E_{Z} / J\right)^{*}\right) \rightarrow \sigma_{(p+n-a)}\left((E / A)^{*}\right)
$$

be the standard modification. Define the dual standard modification to be the morphism

$$
F: \operatorname{Grass}_{n}\left(E_{Z} / J\right) \rightarrow \sigma_{p}(A)
$$

induced from F^{*} by the duality isomorphisms (1.2) and (1.5). Explicitly, a T-point of $\operatorname{Grass}_{n}\left(E_{Z} / J\right)$ corresponds to an $(e-n)$-subbundle \bar{B} of (E_{T} / J_{T}), hence to an $(e-n)$-subbundle B of E_{T} containing J_{T}, thence to a T-point of $\sigma_{p}(A)$. It follows from (6.2) that F is an isomorphism off $\sigma_{1}(R)$, where R is the universal quotient on Z, and that $F^{-1} U=\operatorname{Grass}_{r}\left(P_{U} \cap A_{U}\right)$.
(6.5) Let $f: \operatorname{Grass}_{(a-p)}(K) \rightarrow \sigma_{p}(A)$ be the standard modification. Let C be an $(a-p)$-subbundle of A, let $Y^{\prime}=\operatorname{Grass}_{(n-a)}(E / C)$, and let $f^{\prime}: \operatorname{Grass}_{a}\left(K^{\prime}\right) \rightarrow X$ be the standard modification. By (5.3), f^{\prime} is the monoidal transformation of X with center $\sigma_{1}(C)$.

Lemma (6.5.1). f is the pull-back of f^{\prime} via the canonical immersion of Y in Y^{\prime}.

Indeed, let R (resp., R^{\prime}) be the universal quotient on Y (resp., Y^{\prime}). Then $R=R_{Y}^{\prime}$. Pulling back to Y the canonical exact sequence $0 \rightarrow K^{\prime} \rightarrow E_{Y^{\prime}}$ $\rightarrow R^{\prime} \rightarrow 0$ then yields $K=K_{Y}^{\prime}$, whence the assertion.

Theorem (6.5.2). The standard modification $f: \operatorname{Grass}_{(a-p)}(K) \rightarrow \sigma_{p}(A)$ is the monoidal transformation of $\sigma_{p}(A)$ with center $\sigma_{p}(A) \cap \sigma_{1}(C)$.

Indeed, by (3.3.1), it will suffice to show that $\operatorname{Grass}_{(a-p)}(K)$ is the scheme-theoretic closure of $\left(f^{\prime}\right)^{-1}\left[\sigma_{p}(A)-\sigma_{1}(C)\right]$.

Let $i^{\prime}: \operatorname{Grass}_{a}\left(K^{\prime}\right) \rightarrow Y^{\prime}$ be the structure map, and let U^{\prime} be the complement in $\operatorname{Grass}_{a}\left(K^{\prime}\right)$ of the exceptional divisor $\sigma_{1}\left(C_{Y}, K^{\prime}\right)$ of f^{\prime}. Then there is a commutative diagram

where $f^{\prime} \mid U^{\prime}$ is an isomorphism, and $p=\left(f^{\prime} \mid U^{\prime}\right)^{-1} \circ i^{\prime} \mid U^{\prime}$. Moreover
if t is a T-point of $\left[\sigma_{p}(A)-\sigma_{1}(C)\right]$, it follows easily by [1], (2.5) that $p(t)$ lies on $\sigma_{p}(A / C)$. Then

$$
\left(f^{\prime}\right)^{-1}\left[\sigma_{p}(A)-\sigma_{1}(C)\right]=\left[\left(i^{\prime}\right)^{-1} \sigma_{p}(A / C)\right] \cap U^{\prime}
$$

and it will suffice to show that $\operatorname{Grass}_{(a-p)}(K)$ is the scheme-theoretic closure of $\left[\left(i^{\prime}\right)^{-1} \sigma_{p}(A / C)\right] \cap U^{\prime}$ in any of the geometric fibers of i^{\prime}, since the latter induces an open dense subset in each of them.

However, i^{\prime} is a flat morphism by construction, and its geometric fibers are integral. Hence the scheme-theoretic closure of $\left[\left(i^{\prime}\right)^{-1} \sigma_{p}(A)\right] \cap U^{\prime}$ in any geometric fiber of i^{\prime} can have no embedded components, which completes the proof.
(6.6) With the notation of (6.1), let $\sum=\operatorname{Grass}_{(a-p)}\left(K_{Y \times Z} / J_{Y \times Z}\right)$, and let $f: \sum \rightarrow \sigma_{p}(A)$ be the monoidal transformation of $\sigma_{p}(A)$ with cen$\operatorname{ter} \sigma_{(p+1)}(A)$. (cf. (5.2)).

Set $Z^{\prime}=\operatorname{Grass}_{(a-p)}\left(A_{Y}\right)$, and let J^{\prime} be the universal subbundle on Z^{\prime}. Let $g: \operatorname{Grass}_{(a-p)}(K) \rightarrow \sigma_{p}(A)$ be the standard modification, and let $h: \operatorname{Grass}_{(a-p)}\left(K_{Z^{\prime}} / J^{\prime}\right) \rightarrow \operatorname{Grass}_{(a-p)}(K)$ be the dual standard modification. Since $Z^{\prime}=Z \times Y$, it is clear that $\operatorname{Grass}_{(a-p)}\left(K_{Z^{\prime}} / J^{\prime}\right)=\sum$. Thus there is a diagram

For any integer $r \geqq 0$, let $U=\left[\sigma_{(p+r)}(A)-\sigma_{(p+r+1)}(A)\right]$. Set $G_{1}=$ $\operatorname{Grass}_{r}\left(P_{U} \cap A_{U}\right)$, and $G_{2}=\operatorname{Grass}_{(n-a+p)}\left(E_{U} /\left(P_{U}+A_{U}\right)\right)$. Recall that $f^{-1} U=G_{1} \times G_{2}$. Let $p_{2}: G_{1} \times G_{2} \rightarrow G_{2}$ be the projection.

Proposition (6.7). Under the above conditions $f=g \circ h$, and $h \mid f^{-1} U=p_{2}$.

Indeed, recall that a T-point of \sum corresponds to a triple of bundles ($J^{\prime}, K^{\prime}, P^{\prime}$), where J^{\prime} is a p-subbundle of A_{r}, K^{\prime} is an $(e-n+a-p)$-subbundle of E_{T}, and P^{\prime} is an $(e-n)$-subbundle of K^{\prime} containing J^{\prime}. By definition, $h(t)$ corresponds to the pair of subbundles $\left(P^{\prime}, K^{\prime}\right)$ of E_{T}, and $g(t)$ to P^{\prime}; hence $g \circ h=f$.

Assume that $f(t)$ lies in U. Then $\left(P^{\prime}+A_{T}\right)$ is an $(a+e-n-p-r)$ subbundle of $E_{T}, P^{\prime} \cap A_{T}$ is a $(p+r)$-bundle containing J^{\prime}, and t corresponds to the T-point of $G_{1} \times G_{2}$ determined by the pair of bundles $\left(J^{\prime}, K^{\prime} /\left(P^{\prime}+A_{T}\right)\right)$. However, $h(t)$ corresponds to the T-point of G_{2} determined by $K^{\prime} /\left(P^{\prime}+A_{T}\right)$, whence the assertion.

7. Geometry of twisted subvarieties

Let k be an algebraically closed field, $X=\operatorname{Grass}_{n}(V)$ a Grassmann variety, where V is a k-vector space of dimension v, and X^{\prime} a nonsingular, irreducible subvariety of X. Assume X^{\prime} is twisted in X; i.e., the universal quotient Q on X induces a bundle $Q(-1) \mid X^{\prime}$ which is generated by its global sections. Fix a "sufficiently general" subspace A of V of dimension a, and set $S_{p}=X^{\prime} \cap \sigma_{p}(A)$.

Theorem (7.1). Under the above conditions:
(i) $\operatorname{Codim}\left(S_{p}, X\right)=(v-a+p) p$
(ii) $S_{(p+1)}$ is the full singular locus of S_{p}.

Indeed, (i) is a corollary of [1], (3.3). Let $x \in S_{p}$, and assume $\sigma_{p}(A)$ is nonsingular at x. Then S_{p} is nonsingular at x by [1], (3.3). The converse is an application of the following general fact.

Lemma (7.2). Let X be a scheme, X^{\prime} and Y subschemes, $Y^{\prime}=X^{\prime} \cap Y$, and $x \in Y^{\prime}$. Suppose that X, Y, and Y^{\prime} are regular at x, that X^{\prime} is irreducible at x, and that $\operatorname{codim}_{x}\left(Y^{\prime}, X^{\prime}\right)=\operatorname{codim}_{x}(Y, X)$. Then X^{\prime} is also regular at x.

Indeed, there are functions f_{1}, \cdots, f_{n}, where $n=\operatorname{codim}_{x}(Y, X)$, which cut out Y at x. Let I (resp., I^{\prime}; resp., J) be the ideal of Y in X (resp., of Y^{\prime} in Y; resp., of X^{\prime} in X) at x. Then $I^{\prime}=J / I$; hence choosing functions $\bar{g}_{1}, \cdots, \bar{g}_{m}$, with $m=\operatorname{codim}_{x}\left(Y^{\prime}, Y\right)$, which cut Y^{\prime} out of Y at x gives functions g_{1}, \cdots, g_{m} which vanish on X^{\prime}, and whose restrictions to Y cut out Y^{\prime}. Then $f_{1}, \cdots, f_{n}, g_{1}, \cdots, g_{m}$ cut Y^{\prime} out of X at X, so form part of a regular system of parameters at x. Hence g_{1}, \cdots, g_{m} cut out a scheme which is regular at x, lies in X^{\prime}, and has the same codimension in X at x as X^{\prime}, whence the assertion.

Theorem (7.3). S_{p} is irreducible if $\operatorname{dim}\left(S_{p}\right) \geqq 1$.
Indeed, in view of the constructibility of the property, it suffices to extend the ground field k to a universal domain Ω, and to consider the case where A is generic over k and $\operatorname{dim}\left(S_{p}\right) \geqq 1$. We will employ the approach of [1], (3.3). Then $\left(X-\sigma_{(p+1)}(A)\right)$ is covered by certain affines U, and we shall show that the $S_{p} \cap U$ are geometrically irreducible and all contain a common point x. Then $\left(S_{p}-S_{(p+1)}\right)$ is irreducible. Now every component of S_{p} has dimension at least $d=\left[\operatorname{dim}\left(X^{\prime}\right)+\operatorname{dim}\left(\sigma_{p}(A)\right)\right.$ $-\operatorname{dim}(X)$], because X is nonsingular. But $S_{p}=\left(S_{p}-S_{(p+1)}\right) \cup S_{(p+1)}$, while $\operatorname{dim}\left(S_{p}-S_{(p+1)}\right)=d$, and $d>\operatorname{dim}\left(S_{(p+1)}\right)$. Therefore S_{p} is irreducible.

In [1], (3.3), a certain k-basis $\left(e_{i}\right)$ of V is fixed, and A is taken as the vector space spanned by independent, k-generic linear combinations f_{i} of the e_{i} 's. Each affine U arises from an ordering of the e_{i} 's and the f_{i} 's as
the standard affine corresponding to the two sets $f_{1}, \cdots, f_{(a-p)}, e_{(a-p+1)}$, \cdots, e_{n}, and $e_{(n+1)}, \cdots, e_{v}$.

Let g_{1}, \cdots, g_{p} be independent generic linear combinations of the $f_{i}^{\prime} s$, and let $g_{(p+1)}, \cdots, g_{(v-n)}$ be generic linear combinations of the e_{i} 's which are independent modulo A. Then the point x of X corresponding to the subspace spanned by the g_{i} 's is a generic point of $\sigma_{p}(A)$ which is easily seen to lie in every U.

Finally, an analysis of the coordinates on U like that done in [1], (3.3) easily shows that, for the irreducibility of $S_{p} \cap U$, the following form of Bertini's Theorem is sufficient.

Lemma (7.4). Let k be a field, $U=\operatorname{Spec}\left(k\left[t_{1}, \cdots, t_{N}\right]\right)$ affine N-space, and V a subscheme. Let $L=k\left(s_{1}, \cdots, s_{m}\right)$, and $K=k(s)$ be pure transcendental extensions, $f=s_{1} t_{1}+\cdots+s_{m} t_{m}+f_{1}$, with $f_{1} \in k\left[t_{(m+1)}, \cdots, t_{N}\right]$, and $W=V_{K} \cap\{f=s\}$. Assume that the projection of V onto the coordinates t_{1}, \cdots, t_{m} is an embedding. If V is geometrically integral of dimension $d \geqq 2$, then W is geometrically integral of dimension $(d-1)$.

Indeed, let Ω be a universal domain for k. Let $\left(y_{1}, \cdots, y_{N}\right) \in V(\Omega)$ be a generic point over L, and set $s^{\prime}=f\left(y_{i}\right)$. Then s^{\prime} lies in $L\left(y_{i}\right)$, which is a regular extension of L. If s^{\prime} were algebraic over L, then $s^{\prime} \in L$, and the elements $s^{\prime}, s_{1}, \cdots, s_{m}, 1 \in L$ would become linearly dependent over $k\left(y_{i}\right)$. Since $k\left(y_{i}\right)$ and L are linearly disjoint over k there would exist elements $a_{1}, \cdots, a_{m}, a \in k$ such that $s^{\prime}=s_{1} a_{1}+\cdots+s_{m} a_{m}+a$. Since s_{1}, \cdots, s_{m} are linearly independent over k, then $y_{1}=a_{1}, \cdots, y_{m}=a_{m}$, and $f\left(y_{i}\right)=a$. Hence $d=0$, a contradiction. Therefore s^{\prime} is transcendental over L and an L-automorphism of Ω which maps s^{\prime} to s will map $\left(y_{i}\right)$ to a point in $W(\Omega)$; replacing $\left(y_{i}\right)$ by it, we may assume that the generic point of $V(\Omega)$ over L lies in $W(\Omega)$.

Let $\left(x_{i}\right)$ be an arbitrary point in $W(\Omega)$. Since it lies in $V(\Omega)$, there is a specialization $\left(y_{i}\right) \mapsto\left(x_{i}\right)$ over L. Since $s=s_{1} x_{1}+\cdots+s_{m} x_{m}+f_{1}\left(x_{i}\right)$, the specialization leaves s fixed, so is actually over K. Thus $W(\Omega)$ is the locus of $\left(y_{i}\right)$ over K. Therefore W is irreducible, of dimension $(d-1)$. It is reduced, because, by [1], (3.4), it is generically smooth, and does not contain any of the finite number of points of V of depth 1 and codimension $\geqq 2$.

It remains to prove that $K\left(y_{i}\right)$ is a regular extension of K. Reordering y_{1}, \cdots, y_{m}, we may assume $y_{1} \notin L\left(y_{i}^{p}\right)$, where $p=\operatorname{char}(L)$. Let $y=s_{1} y_{1}+\cdots+s_{m} y_{m}+f_{1}\left(y_{i}\right)$. Then $s=y+s_{1} y_{1}$. Hence $K\left(y_{i}\right)=L\left(y_{i}\right)$ is a regular extension of $K=L\left(y+s_{1} y_{1}\right)$ by the lemma of Zariski-Matsusaka.

Theorem (7.5). S_{p} is Cohen-Macaulay and normal.
Indeed, this is an immediate consequence of (4.13).

Theorem (7.6). The completion of $\left(S_{p}-S_{(p+2)}\right)$ along $\left(S_{(p+1)}-S_{(p+2)}\right)$ is locally isomorphic to the product of $\left(S_{(p+1)}-S_{(p+2)}\right)$ with the completion at the vertex of the projecting cone C over $\boldsymbol{P}^{(v-a+p)} \times \boldsymbol{P}^{p}$, projectively embedded by the Segre morphism.

Indeed, by (4.11) and (4.9), the normal cone of $\left(\sigma_{p}(A)-\sigma_{(p+2)}(A)\right)$ along $\left(\sigma_{(p+1)}(A)-\sigma_{(p+2)}(A)\right)$ is an algebracc fiber bundle whose fiber is C. Hence, by (3.4) and (7.3), every point of $\left(S_{(p+1)}-S_{(p+2)}\right)$ has an affine neighborhood U such that the normal cone of $\left(S_{p}-S_{(p+2)}\right)$ along U is isomorphic to $U \times C$. In view of (2.1.2), since U is smooth by (7.1), it is rigid by (1.2.2); and, since C is rigid by (2.2.8), then $U \times C$ is rigid by (1.4.1). Therefore, after an algebraic reformulation, the conclusion results from Gerstenhaber's theorem (2.3.2).

Theorem (7.7). Let $f^{\prime}: \sum^{\prime} \rightarrow S_{p}$ be the monoidal transformation with center $S_{(p+1)}$, and set $F_{r}^{\prime}=\left(f^{\prime}\right)^{-1}\left(S_{(p+r)}-S_{(p+r+1)}\right)$. Then \sum^{\prime} is nonsingular, and F_{r}^{\prime} is an algebraic fiber bundle of the form

$$
F_{r}^{\prime}=\operatorname{Grass}_{r}\left(B^{\prime}\right) \times \operatorname{Grass}_{(n-a+p)}\left(C^{\prime}\right)
$$

where B^{\prime} is a $(p+r)$-bundle, and C^{\prime} an $(n-a+p-r)$-bundle.
Indeed, let $F: \Sigma \rightarrow \sigma_{p}(A)$ be the monoidal transformation with center $\sigma_{(p+1)}(A)$, and set $F_{r}=f^{-1}\left(\sigma_{(p+r)}(A)-\sigma_{(p+r+1)}(A)\right)$; consider \sum^{\prime} as the closure of $\left(S_{p}-S_{(p+1)}\right)$ in \sum, and $f^{\prime}=f \mid \sum^{\prime}$. (See (3.3)). In view of (5.2), (5.4), (7.1) and (7.3), the conditions of (3.4.2) are met, and it implies that F_{r}^{\prime} has the asserted form, that $\operatorname{codim}\left(F_{r}^{\prime}, \sum^{\prime}\right)=\operatorname{codim}\left(F_{r}, \sum\right)$, and that F_{r}^{\prime} is nonsingular. Since \sum and F_{r} are nonsingular, and $F_{r}^{\prime}=$ $F_{r} \cap \sum^{\prime}$, the nonsingularity of \sum^{\prime} results from (7.2).

Theorem (7.8). Let $g: \Delta \rightarrow \sigma_{p}(A)$ be the standard modification, Δ^{\prime} the closure of $\left(S_{p}-S_{(p+1)}\right)$ in Δ, and $g^{\prime}=g \mid \Delta^{\prime}$. Let $G_{r}=g^{-1}\left(\sigma_{(p+r)}(A)-\right.$ $\left.\sigma_{(p+r+1)}(A)\right)$, and let $G_{r}^{\prime}=\left(g^{\prime}\right)^{-1}\left(S_{(p+r)}-S_{(p+r+1)}\right)$. Then Δ^{\prime} is nonsingular, and G_{r}^{\prime} is the algebraic fiber bundle induced by G_{r}, so has the form

$$
G_{r}^{\prime}=\operatorname{Grass}_{(n-a+p)}\left(C^{\prime}\right),
$$

where C^{\prime} is an $(n-a+p-r)$-bundle.
Indeed, by (6.7), the monoidal transformation $f: \sum \rightarrow \sigma_{p}(A)$ factors as $f=g h$ in such a way that h acts on $F_{r}=f^{-1}\left(\sigma_{p+r}(A)-\sigma_{p+r+1}(A)\right)$, which has the form $\operatorname{Grass}_{r}\left(B^{\prime}\right) \times \operatorname{Grass}_{(n-a+p)}\left(C^{\prime}\right)$, as projection onto the second factor. In the proof of (7.7) it is shown that $F_{r}^{\prime}=$ $\left(f^{\prime}\right)^{-1}\left(S_{(p+r)}-S_{(p+r+1)}\right)$ is the fiber bundle induced by F_{r}. Hence G_{r}^{\prime} is dense in the bundle induced by G_{r}; since the former is closed, and the latterreduced, they coincide. Finally, since Δ, G_{r}, and G_{r}^{\prime} are nonsingular by (6.2) and (7.1), and since $G_{r}^{\prime}=G_{r} \cap \Delta^{\prime}$ by definition, Δ^{\prime} is nonsingular by (7.2).

BIBLIOGRAPHY

S. L. Kleiman

[1] Geometry on Grassmannians and applications . . . Publ. Math. IHES, \#36, Paris, 1969.
M. Gerstenhaber
[2] On the deformation of rings and algebras. Ann. of Math., Vol. 84, 1966.
S. L. Kleiman and J. Landolfi
[3] Singularities of Special Schubert Varieties, Atti Convegno di Geometrica, 1970, University of Rome.
A. Altman and S. L. Kleiman
[4] Introduction to Grothendieck Duality, Lecture Notes in Math. \#146, Springer, 1970.
M. Hochster and J. A. Eagon
[5] A class of perfect determinantal ideals, Bull. A.M.S., Sept., 1970.
S. Lichtenbaum and M. Schlessinger
[6] The cotangent complex of a morphism, Transactions of the A.M.S., Vol. 128, 1967.
A. Grothendieck
[7] Elements de Géométrie Algébrique, Publ. Math. IHES, Paris.
D. Mumford
[8] Introduction to algebraic geometry, Harvard Mathematics Department Notes.
(Oblatum 30-XI-1970)

Massachusetts Institute of Technology Cambridge, Mass.
New York City College
New York, New York

S. L. Kleiman
Massachusetts Institute of Technology
Department of Mathematics
CAMBRIDGE, Mass., 02739
U.S.A.

J. Landolfi

New York City College
Department of Mathematics
NEW YORK, N.Y. 10031
U.S.A.

This paper also appears in 'Algebraic Geometry, Oslo 1971', Proceedings of the 5th Nordic Summer-School in Mathematics, Wolters-Noordhoff Publishing 1971.

[^0]: ${ }^{1}$ Theorem ([6], 4.3.3). Assume J is square-zero. If $\operatorname{Def}\left(B / A, A^{\prime}\right) \neq \phi$, then $\operatorname{Def}\left(B / A, A^{\prime}\right)$ is a principal homogeneous space under $\operatorname{Ex}^{1}\left(B / A, A^{\prime}\right)$.

 Indeed, continuing the lines of reasoning of (1.3.2) establishes this stronger assertion, which, however, will not be needed in the sequel.

[^1]: ${ }^{2}$ Shorthand for locally free 0_{S}-module of rank e.
 ${ }^{3}$ Shorthand for locally free quotient of rank n.
 ${ }^{4}$ Notation for the pull-back of E via the structure map $X \rightarrow S$.

[^2]: ${ }^{5}$ Shorthand for the submodules which are locally direct summands of rank m.
 ${ }^{6}$ Notation for the dual of M.

[^3]: ${ }^{7}$ A proper monomorphism $g: X \rightarrow Y$ is (well-known to be) a closed immersion. Indeed, each nonempty fiber of g is a monomorphism onto a field; hence an isomorphism, by considering Δ_{g}. Thus g is finite, and, by Nakayama's Lemma, $0_{Y} \rightarrow \mathrm{~g}_{*} 0_{\boldsymbol{x}}$ is surjective.

