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Introduction

The problems of splitting bundles and smoothing cycles, as presented
in [1 ], lead to the general study of a bundle N of rank n on a quasi-pro-
jective, nonsingular variety X over an algebraically closed field k, such
that N(-1) is generated by its global sections. In particular, ([1], (5.6)
and (5.8)), the Chern classes ci(N) are represented by subvarieties Zi,
which are nonsingular if i = 1 or i &#x3E; 1 2(dim X - 2). This is obtained by
choosing an appropriate k-vector subspace E of 0393(X, N), and embedding
X as a ’twisted’ subvariety of Grassn(E), the Grassmannian of n-quotients
of E. Then, for a general subspace A of E, of dimension a = (n-i+1),
ci(N) is represented by the subvariety Zi = 03C31(A) n X, where 03C31(A)
is the first Special Schubert subvariety of Grassn(E) defined by A.
The sets Sp = 6p(A) n X, for p = 1,···, (n - i + 2), stratify 6’i = Zi; in
particular, ,S’p = 0 for i = 1 or i &#x3E; 1 2(dim X - 2).
Our principal aim is to carry out an analysis of this stratification and of

the ’generic’ singularities of the subvarieties Zi. A natural approach is
to study the Special Schubert varieties, and ’induce’ their properties in
the 5’ps; thus we carry out an extension and elaboration of the results
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in [1 ]. Proceeding thus, one shows that Sp is irreducible if p 1; and that
the monoidal transformation f : 03A3 ~ Sp of Sp with center S(p+1) restricts
over U = (S(p+r) - S(p+r+1)) to an algebraic fiber bundle of the form
Grasse) x Grass(n-a+p)(C), where B is a (p + r)-bundle, and C is an
(n - a +p + r)-bundle. Moreover, 03A3 is nonsingular. (See § 7).
A further analysis is made possible by Theorem (2.3.2). Modelled

after [2], Section 2, Corollary 2, our result differs in that here gr(A)
is assumed rigid in the category of all k-algebras, not in that of filtered
k-algebras. In geometric terms, the theorem asserts that if the normal cone
of a scheme X along a subscheme Y is rigid, then the completion of X
along Y is isomorphic to the completion of the normal cone at the vertex.
In our context, (03C3p(A)-03C3(p+z)(A)) is locally (in the canonical affine open
covering of Grassn(E)) isomorphic to the product of a linear space and
a certain determinantal variety Dz; hence the normal cone of (Sp - S(p+z))
along (S(p+z-1)-S(p+z)) is an algebraic fiber bundle with fiber Dz.
However, D2 is the projecting cone C over p(a - 1) X p(n - 1) in the Segre
embedding, whose vertex is the rigid singularity of Thom-Grauert-Kerner-
Schlessinger ; hence the normal cone of (Sp-S(p+2)) along (S(p+1)-
S(p+2)) is rigid. Thus the completion of (Sp-S(p+2)) along (S(p+1)-
S(p+2)) is locally isomorphic to the product of (S(p+1)-S(p+2)) and the
completion of C at the vertex.
A general theory of algebraic deformations, including the criterion for

rigidity employed above, was developped by Schlessinger in his (partly
published) dissertation; § 1 and § 2, (2.1) and (2.2), contain some of the
definitions and basic results. Since the wider scope of Schlessinger’s
theory is not needed in our context, we found it possible to make our
distillation of it self-contained by providing some unpublished proofs;
in particular, we present his beautiful approach to the verification of the
rigidity of the vertex of the projecting cone over P" x Pm for n + m ~ 3.

Definitions and basic facts on monoidal transformations are recalled

in § 3, which also contains proofs of two technical lemmas on the func-
toriality of normal cones. The definitions and some fundamental pro-
perties of Grassmannians can be found in § 4, which is a sequel to § 1 and
§ 2 of [1 ]. Here the properties of duality are especially emphasized, and
the connection of determinantal varieties with Special Schubert varieties
is made explicit.

In particular, the determinantal varieties Dz(n, a) are shown to be non-
singular in codimension one and irreducible. Since, as shown by Hochster
and Eagon in [5], Dz(n, a) is Cohen-Macaulay for all z, then Dz(n, a) is
normal for z &#x3E; 1; and it follows that the subvarieties Zi representing the
Chern classes ci(N) (see above) are all normal and Cohen-Macaulay.
Moreover, one finds that D2 (n, a) is the projecting cone over P(n-1) x
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P(a-1 ), hence it is rigid for n + m ~ 5; and we believe Dz(n, a) to be rigid
for all z ~ 1, unless z = n = a. The 2-codimensional Schubert subvarie-
ties of the 9-dimensional Grassmannian (~ P9) are, locally along their
singular locus, of the form V  D2(3, 2), where V is a linear space of
dimension 3; we conjecture that they cannot be deformed into a smooth
cycle by rational equivalence.
The monoidal transformation of (J p(A) with center 03C3(p+ 1)(A) is studied

in § 5. In § 6, the concept of a standard modification is developed, and it
is shown that the monoidal transformation of 03C3p(A) with center 03C3(p+1)(A)
can be written as the composition of a standard modification and a ’dual’
standard modification. The analysis of the stratification {Sp} can be
found in § 7; in particular, the proof of the irreducibility of sp for p ~ 1

referred to in the introduction of [1 ] is presented.
Some of the above results are contained in Landolfi’s doctoral disser-

tation at Brandeis University, and have appeared with an outline of their
proof in [8].
We would like to extend our thanks to David Lieberman and Heisuke

Hironaka for their kindness in reading a preliminary version of this work,
and for their several apposite remarks.

1. Extensions and deformations

Let A be a ring, B an A-algebra, and M a B-module.

(1.1) A (one term) extension of BIA by M is an exact sequence

where E is an A-algebra, j is a surjective homomorphism of A-algebras,
i(M) is a square-zero ideal of E, and the B-module structure on M
induced by i coincides with the given one.
Two extensions E and E’ of B/A by M are said to be equivalent if there

exists an A-algebra homomorphism u : E ~ E’, inducing a commutative
diagram

(u must then be an isomorphism). The set of equivalence classes of ex-
tensions of BIA by M is denoted Ex1(B/A, M).

(1.2.1) Express B as a quotient B = P/I of a polynomial ring over A by
an ideal I ; the exact sequence 0 ~ 1 ~ P ~ B ~ 0 is called a presentation
of B. Consider the usual exact sequence of B-modules involving the Kâhler
differentials
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Define T1(B/A, M) as the cokernel making the following sequence exact

EXAMPLE (1.2.2). Assume A is noetherian, and B is of finite type.
Then B is smooth over A if and only if T1(B/A, M) = 0 for all B-modules
M.

Indeed, B is smooth over A if and only if (a) is split, and (a) is split
if and only if T1(B/A, M) = 0 for all B-modules M by a general lemma of
commutative algebra.

PROPOSITION (1.2.3). There is a bijection a : Ex1(B/A, M) - T1(B/A, M).
Indeed, consider an extension 0 ~ M ~ E ~ B ~ 0. Since P is a

polynomial ring, the canonical surjection g : P - B factors through a
ring homomorphism-f : P ~ E. Since g(I) = 0, then f(I) ~ M. However,
M is a square-zero ideal in E; hence f induces a homomorphism
h : IiI’ ~ M, and thus an element of T (B/A, M). If f’ : P - E is a second
choice of lifting of g, then i-1(f-f’) : P ~ M is an A-derivation; thus
a is well defined.

Conversely, given an element of T1(B/A, M), choose a representative
homomorphism h : I ~ M. Let E = P (B M/{x-h(x)|x c- Il. Then the
composition P (B M ~ P - B gives a surjection of A-algebras E ~ B,
and the sequence 0 ~ M ~ E ~ B ~ 0 is exact. If d : P - M is the A-

derivation giving rise to a second choice h’ - (h+d) : I - M, then the
automorphism of P ~ M given by 0 (x -m) = x-(m+d(x)) induces an
equivalence between the extensions E and E’ defined by h and h’; thus
a has a well-defined inverse.

COROLLARY (1.2.4). T1(B/A, M) is independent of the choice of pre-
sentation 0 - 1 -:J; P ~ B - 0.

(1.3) Let A’ be a ring, and J an ideal of A’ such that A ~ A’/J.

(1.3.1 ) A deformation of B/A to A’ is an A’-algebra B’, with a homo-
morphism B’ - B, inducing an isomorphism B’/JB’  B. If J is a nilpo-
tent ideal (resp., square-zero), then the deformation is said to be in-

finitesimal (resp., square-zero). If J Q9 A’ B’ ~ JB’ is an isomorphism
(resp., B’ is A’-flat), the deformation is said to be admissible (resp., flat);
in view of the local criterion of flatness, ([4], V, 3.2), a deformation is
flat if and only if it is admissible and B is A-flat.
Two deformations B’ and B" of B/A to A’ are said to be equivalent if
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there is a homomorphism of A’-algebras B’ - B", inducing a commuta-
tive diagram

The set of equivalence classes of admissible infinitesimal deformations
of B/A to A’ is denoted Def (B/A, A’).
Suppose B’ is an admissible square-zero deformation of B/A to A’.

Then J ~A B ~ J ~A’ B’, and there is an exact sequence

Thus there is a natural map

which is clearly injective. It fails to be surjective when there is an exten-
sion B’ of BfA’ by J QA B not satisfying J (8) A B  JB’.

PROPOSITION (1.3.2). Assume J = Ker (A’ ~ A) is square-zero. If
T1(B/A, J Q9AB) = 0, then Def (B/A, A’) consists of at most one class.1

Indeed, fix a presentation 0 ~ I ~ P ~ B ~ 0, and let P’ = A’ ~AP.
Then the sequence 0 ~ JP’ ~ P’ ~ P ~ 0 is exact, and by composition,
there is a surjection g : P’ ~ B. Let K = Ker (g). Then 0 - K - P’ -
B ~ 0 is a presentation of B as an A’-algebra.

Let B’ and B2’ be any two extensions of B/A’ by J (8)A B. Since P’ is
a polynomial ring, g lifts to homomorphisms fi : P’ ~ B’i, whose restric-
tion to K induces homomorphisms hi : K ~ J (8) AB. Hence there are com-
mutative diagrams

Suppose both extensions arise from deformations. Then fi(j · p’) =
,xi(j Q g(p’)), for j ~ J, p’ E P’, and for i = 1, 2. Set h = hl - h2; then

1 THEOREM ([6], 4.3.3). Assume J is square-zero. If Def(B/A, A’) ~ ~, then

Def(B/A, A’) is a principal homogeneous space under Ex1(BjA, A’).
Indeed, continuing the lines of reasoning of (1.3.2) establishes this stronger asser-

tion, which, however, will not be needed in the sequel.
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h(j . p’) = 0. By construction, there is an exact sequence 0 ~ JP’ ~

K ~ 1 ~ 0. Hence h induces a homomorphism h : I ~ J QA B. Since
J (8) AB is a square-zero ideal in B’I, then h induces a homomorphism
k : III’ ~ J ~AB. Let k be the image of k in T1(B/A, J ~AB).

Suppose k = 0. Then k is the image of a homomorphism d : 03A9P/A ~PB
~ J (8) A B. By composition, d gives rise naturally to a homomorphism
d’ : ap’/A’ Q9p’ B’ - J (8)AB, whose image in HomB’(K/K2, J QAB) is

clearly h. Hence the image of h in T1(B/A, J ~AB) is zero. It follows
that B1 and B2 are equivalent extensions.

In particular, if T1(B/A, J (8)AB) = 0, then any two deformations of
B/A to A’ are equivalent, and (1.3.2) is proved.

(1.4) Some general lemmas
LEMMA (1.4.1). Let C be an A-algebra, D = B Q9A C, and N a D-

module. Assume one of the following conditions holds:
(i) B is A-flat
(ii) C is A-flat
(iii) There exists a homomorphism C - A inducing an isomorphism

N ~ NODB.
Then T1(D/C, N) - T1(B/A, N).
Indeed, let 0 ~ 1 ~ P ~ B ~ 0 be a presentation. Tensoring it with

C over A yields a presentation 0 ~ J ~ P ~A C ~ D ~ 0 and a surjec-
tive homomorphism u : I (8) A C ~ J.

If (i) or (ii) holds, then u is bijective and induces a bijection (1/12) QA C
~ J/J2. If (iii) holds, then tensoring the presentation of B with A over C
yields a surjection v : J (8) C A - I, and the composition v o (u Q C) is
the identity; since (u Q C) is surjective, v is bijective and induces a bijec-
tion (jîj2) Qc A ~ I/I2. Since 03A9(P~C/C) = 03A9P/A Q9 A C, the assertion fol-
lows directly from the definition (1.2.1).

LEMMA (1.4*2). For 1 = 1, 2, let Bi be an A-algebra, and Mi a Bral-
gebra. Then

T1(B1 Q9 B2/A, Ml (8) M2) (T1(B1/A, Ml) Q9 B2) EB(B1 Q9 T1(B2/A, M2)-
A A A A

Indeed, let 0 ~ h - Pi ~ Bi ~ 0 be presentations, let P = P1 ~A P2,
and I = (I1 ~A P2)+(P1 QA I2). Then 0 ~ I ~ P ~ B1 Q9A B2 0
is a presentation, °p/A = (QP11A QA P2) Q9 (Pl (DA 03A9P2/A) and (I/I2) =
((I1/I21) (8)A B2) 0 (Bl Q9A (I2/I32)). The assertion now follows directly
from the definition (1.2.1).

LEMMA (1.4.3). Assume Spec (B) is A-smooth at each of its generic
points, and M has no embedded primes. Then T1 (B/A, M) = Extl (QBIA, M).
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Indeed, let 0 ~ 1 ~ P ~ B ~ 0 be a presentation, and consider the
exact sequences

in which u o v is the natural map. By ([7], 0;y, 20. 5.14), there is an open
dense subset U of Spec (B) such that KI U = 0. Since M has no embedded
primes, then HomB(K, M) = 0. Hence v induces an isomorphism
HomB(H, M)  HomB(I/I2, M). Since 03A9P/A is a free module, there is an
exact sequence

The assertion now follows directly from the definition (1.2.1).

2. Rigidity

(2.1) DEFINITION (2.1.1). Let A be a ring, and B an A-algebra. If any
admissible infinitesimal deformation B’ of BjA to an A-algebra A’ is

necessarily equivalent to the product, family B QA A’, then B (resp., Spec
(B)) is said to be rigid over A.

THEOREM (2.1.2) (Schlessinger). Let A be an Artin local ring, and B
a flat A-algebra, and let k be the residue class field of A. Then B is rigid
over A if and only if T1(B/A, k QA B) = 0.

Indeed, let B’ be a flat infinitesimal deformation of B/A to an A-al-
gebra A’. Then A’ is an Artin ring, and we may clearly assume it is local.
Set J = Ker (A’ ~ A ), let M be the maximal ideal of A’, and n the largest
integer such that J’ = MnJ is nonzero. Set A" = A’/J’, and B" =
B’ Q9 A’ A". Then B" is a flat infinitesimal déformation of BjA to A",
and B’ is a flat square-zero deformation of B"! A" to A’.

By induction on n, we may assume that B" is equivalent to B QA A".
Since N = J’ ~A"B" is A"-isomorphic to a finite direct sum of copies
of k Q9A B, then T1(B/A, N) = 0 by (1.4.1). By (1.3.3), therefore the two
deformations B’ and B QA A’ of B"/A" to A’ are equivalent.

Conversely, the extensions E of B/A by k QAB are easily seen to be
the admissible deformations of B/A to A’ - A E9 (k OA B).
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(2.2) LEMMA (2.2.1). Let A be a ring, let k, M, and N be A-modules.
There exist two spectral sequences

with the same limit Hn.

Indeed, let k* and M’ be projective resolutions of k and M, and let N’
be an injective resolution of N. Let T* be the simple complex associated
to the double complex k* ~AM*, and consider the spectral sequences
’Epq2 and "Epq2 of the double complex HomA (T*, N*). We have

and

On the other hand,

Since Tq is projective, this spectral sequence degenerates, and it conver-
ges to the homology of the double complex

Finally, the first spectral sequence of this complex is

LEMMA (2.2.2). Let A be a noetherian local ring with residue class field
k, and let M and N be A-modules of finite type. If depthA(N) ~ 2, then
depthA(HomA(M, N)) ~ 2; and, if depthA(N) ~ 3, then there exists a
natural isomorphism

Indeed, consider the spectral sequences "Epq2 and ’Epq2 in (2.2.1). By
([4], III, 3.13), if depthA(N) ~ d, then "Epq2 = 0 for q  d, hence Hq = 0
for q  d.

Now the exact sequence of terms of low degree of ’Epq2 is

hence the result.

PROPOSITION (2.2.3) (Schlessinger). Let A be a noetherian local ring, m its
maximal ideal, and k its residue class field. Let M and N be A-modules of
finite type, and assume that M is locally free on (Spec (A) - {m}), and that
depthA(N) ~ 3. Then ExtÀ(M, N) = (0) if and only if
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Indeed, E = Ext,1 (M, N) has support in {m} because M is locally free
off {m}; hence E = (0) if and only if HomA(k, E) = (0). Since depthA(N)
~ 3, (2.2.2) applies; hence ExtqA(k, HomA(M, N)) is zero for q = 0, 1,
and it is zero for q = 3 if and only if E = (0).

(2.2.4) Let A be a. field, and S = ~~n=0 Sn a graded A-algebra
generated by S1. Let m = EB:= 1 Sn denote the irrelevant ideal of

S, and set R = Sm . Let N be a graded S-module of finite type. Set
X = Proj (S).

PROPOSITION (Grothendieck). Let N - ~+~k=-~H0(X, 9 (k» be the
canonical homomorphism. Let d = depthR(Nm). Then

(i) d ~ 1 if and only if 0 is injective;
(ii) d ~ 2 if and only if 0 is bijective;
(iii) d ~ 3 if and only if 0 is bijective, and Hl (X, g(k» = (0)for all k;

(p) d ~ p if and only if 0 is bijective, and H’(X, N(k) = (0) for all
1 ~ i ~ (p-2) and for all k.

Indeed, by definition, d = 0 if and only if there exists an x ~ N such
that sx = 0 for all s E m; i.e., such that 0(x) = 0. Thus (i) holds.

Suppose every SES 1 is a zero-divisor in N. Then

Hence mR c P for some associated prime P, and they must coincide,
because m is maximal.

Assume d ~ 1. There must then exist an s ~ 5’i which is not a zero-
divisor in N. Set X’ = Proj (5/M), and N’ - N/sN. Consider the diagram

Suppose d ~ 2. Then, by (i), all the vertical arrows are injections. By
Serre’s theorem, 4Jk is bijective for all k » 0. Hence, by descending in-
duction, it follows that 4Jk is bijective for all k. Conversely, if 4Jk is bijec-
tive for all k, then ~’k is injective for all k. Thus (ii) holds.
Assume that p ~ 2, that (p) holds, and that d ~ p. Then the following

sequence is also exact on the left:

Thus, since (p) holds for N’, d ~ (p+1) if Hp -1(X,(k)) = (0) for all
k ; and the converse follows by descending induction from Serre’s theorem,
completing the proof.
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(2.2.5) Let A be a ring, S = ~~n=0Sn a graded A-algebra generated
by Sl , and set X = Proj (S). Grade the Kâhler differentials °S/A by
deg (ds) = n for s e Sn .

PROPOSITION. There exists a canonical exact sequence of 0X-modules

Indeed, let U be the complement in Spec (s) of Spec (A), embedded
by the augmentation S ~ A, and let f : U - X be the canonical map.
Since f is smooth, the following sequence is exact and split

Let D denote the canonical derivation of the graded algebra S given by
D(s) = ns for SE Sn, and w : 03A9Spec(S)/A ~ 0Spec(S) the corresponding
homomorphism. Since DIS(s) is zero for all SE S1, w factors into v o u,
where v : 03A9U/X ~ Ou. Since w is surjective, and 03A9U/X is invertible, v is an
isomorphism. Finally, it is easy to see that the grading on Ker (w) de-
fined by the induced isomorphism f*03A9X/A  Ker (w)1 U coincides with
its grading as a submodule of 03A9X/S.
THEOREM (2.2.6) (Schlessinger). Let k be afield, S = Q~n=0 Sn a graded

k-algebra; set X = Proj (S), and Tx = Hom0X(03A9X/k, 0X). Assume that
S is normal, that X is k-smooth, and that H1(X, 0x(n)) = (0) for all n. If
H1(X, Tx(n)) = (0) for all n, then S is rigid over k.

Indeed, in view of (2.1.2), it succès to show T 1 = T1(S/k, S) = 0.
By (1.4.3), Tl = Ext1s(03A9S/k, S). Since X is smooth, °S/k is locally free on
(Spec (5)-{m}), where m = ~~n=1Sn. Therefore T 1 = 0 if and only if
Ext1R(03A9R/k, R) = 0, where R = Sm.
By (2.2.4), depthR(R) ~ 3. Hence (2.2.3) applies to 03A9R/k. Thus T 1 = 0

if and only if depthR(Nm) ~ 3, where N = HomS(03A9S/k, S).
By (2.2.2), depthR(Nm) ~ 2. By (2.2.5), there is an exact sequence

0 ~ 0X ~ N ~ T ~ 0. Hence H1(X, N(n)) = 0 for all n. Therefore, by
(2.2.4), depthR(Nm) ~ 3; thus Tl = 0.

REMARK (2.2.7). In the above theorem, if also H2(X, N(n)) = 0
for all n, then the proof yields the converse.

THEOREM (2.2.8) (Thom, Grauert-Kerner, Schlessinger). Let k be afield.
Let X = PnkxPmk, and embed X projectively by the Segre morphism. If n ~ 1

and m ~ 2, then the projecting cone C of X is rigid over k.
Indeed, 0X(p) = Opn(p) 0 Opm(p) for all p. So, by the Künneth formula,

H°(X, 0X(p)) is the set of bihomogeneous polynomials of degree p,
and Hi(X,0X(p)) = 0 for 1 ~ i  (n+m) and for all p. Let S be the
homogeneous coordinate ring of X. By construction, S is reduced,
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because X is. Thus, by explicit computation, the canonical map

0 : S - ~+~p=-~H0(X,0X(p)) is bijective. Since X is regular, it follows

from (2.2.4) that X is normal (and Cohen-Macaulay).
For any k-scheme Y, set Ty = Hom0Y(03A9Y/k, Oy). It follows from (2.2.5)

that there is an exact sequence

Hence, H°(Pn, TP(p)) = 0 if p  - 2, and H1(pn, TP(p)) = 0 if p ~ - 2.
In general, for any k-scheme Z, Tyxz = (Ty 0 Oz) (f) (Oy Q Tz). So,
the Künneth formula yields H1(X, Tx(p)) = 0 for all p, because m ~ 2.
The conclusion then follows from (2.2.6).

(2.3.1) Let A be a ring, B a graded A-algebra, and M a graded B-
module. An extension 0 ~ M ~ E ~ B ~ 0 is called homogeneous if E is
a graded A-algebra, and the maps are homogeneous (of degree zero). The
set of classes of homogeneous extensions E, E’ under equivalence de-
fined by homogeneous maps u : E ~ E’ is denoted ExÕ(BIA, M).
Choose a presentation 0 ~ I ~ P ~ B ~ 0, and define deg (p) =

deg (g(p)) for p E P. Then I is homogeneous, and the usual exact sequence

consists of graded B-modules and homogeneous maps of degree
zero. Define TÕ(BIA, M) as the cokernel of Homo(Dp/A 0pB, M)
Homo (I/I2, M), where Hom0(-,-) denotes the set of homogeneous maps
of degree zero. Then there exists a bijection Ex10(B/A, M)  TJ(B/A, M),
whose construction is analogous to that in the inhomogeneous theory,
(cf. (1.2.3)).

It is clear from the definitions that T10(B/A, M) is a direct summand of
T1(B/A, M). In particular, the following result has been proved.

LEMMA. The canonical map Ex’(BIA, M) ~ EX1(B/A, M) is injective.
In other words, if there is any equivalence u’ : E - E’ between two

homogeneous extensions of B/A by M, there is a second one u : E ~ E’
which is homogeneous.

Alternately, the Lemma can be proved by defining u(e) for e E En to
be the component of degree n of u’ (e), and by directly verifying that u pre-
serves multiplication.

(2.3.2) Let k be a ground ring, A a k-algebra with an ascending filtra-
tion (Ai)+~i=-~, and set gr(A) = ~~-~ (Ai/Ai-1). (For example, let I
be an ideal of A, and set A = A for i ~ 0, and A = I-1 for i  0.)
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THEOREM (Gerstenhaber). If T1(gr(A)/k, gr(A)) = 0, then there exists
an isomorphism of separated completions (in fact, of pro-objects):
  gr(A)^.

Indeed, let B = ~~-~Aiti, where t is an indeterminate. Then B/tnB =
~~-~(Ai/Ai-n) for all n. Starting with the natural map ul : B/t"B - gr(A),
and proceeding by induction on n, construct as follows a k [t]-algebra
homomorphism un : B/tnB -+ Bn, where Bn = gr(A) Q (k[t]/tn), such
that:

(i) un reduces to un-1

(ii) the submodule (Ai-m/Ai-n) of AilAi-n is carried onto

~nj=m(Ai-j/Ai-j-1)tj, where i is the residue class of t. Suppose un-1
has been constructed, and consider the following diagram, whose rows
are the natural homogeneous admissible extensions:

By (1.4.1 ), (iii), T1(Bn-1/k[t]/tn-1, gr (A» = 0. It therefore follows from
(1.3.3) that there exists a k[t]-algebra isomorphism un which renders the
above diagram commutative; moreover, by (2.2.1), we may assume U,
is homogeneous. It is then easily seen that un satisfies (ii).

Finally, (ii) implies that the u,, form a coherent family of filtration-pre-
serving isomorphisms

whence the assertion.

3. Monoidal transformations

Let X be a scheme, Y a closed subscheme of X, and I the ideal of Y. As-
sume I is of finite type.

(3.1 ) (See [7], II, 8.1 ). Let Z = Proj (~~n= 0In). The structure morphism
f : Z X is called the monoidal transformation (or blowing-up) of X with
center Y.

Clearly, Z is reduced (resp., integral), if X is. The morphism f is projec-
tive, and is an isomorphism precisely at those points where Iis invertible;
in particular,

The (scheme-theoretic) fiber E = f-1(Y) is called the exceptional
divisor, and, indeed, it enters into an exact sequence


