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1. Introduction

Bishop has proposed in [1 ] to avoid some difhculties in the interpreta-
tion of intuitionistic implication by adopting instead for his constructive
mathematics an interpretation of implication suggested by Gôdel’s [2].

If quantifiers of all appropriate types and corresponding intuitionistic
rules are added to Gôdel’s theory T of functionals of finite type, three
additional principles can be seen to be necessary and sufficient to allow
a proof that any formula is equivalent to its normal form for the func-
tional interpretation ~~03C3~~03C4A (A logic free). The first of these is the
axiom of choice:

for x, y variables of any type and oc of the appropriate type. The others,
presumably non-intuitionistic, are

(which for x a number variable is just what is usually called Markov’s
principle), and

each to be available for variables of any type. Cf. Yasugi [10].
A detailed investigation of theories extending T to formalize Bishop’s

mathematics has been carried out by Myhill, who calls the system finally
proposed in [9] DQ+.
Viewed formally, Bishop’s proposal appears to call for the adoption

of a new concept of constructive implication for which *M and *C are
valid. (Of course Bishop, like Brouwer, seems to wish to avoid commit-
ment to any specific set of postulates for his logic.)
We shall explore the consequences of adopting this new constructive

1 Preparation of this paper was assisted by a grant from the U.S. National Science
Foundation, GP 13019. We should like to thank for their helpful remarks Joan R.
Moschovakis and A. S. Troelstra.
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logic (for two types only) for a theory of free choice sequences. Specific-
ally, to Kleene’s formal system I of intuitionistic analysis ([6], hereafter
cited as FIM, and which should be consulted for all otherwise unexplained
notations or concepts), we shall add (in effect) as axioms *M (which is
then Markov’s principle for choice sequences) and a (probably) strength-
ened *C, to obtain a new system I+. We shall show that I+ satisfies

(Theorem 1) a realizability property, and (Theorem 2) a normal form
property for formulas like that obtained in the functional interpretation
(but now staying in only two types).
The realizability result is established intuitionistically except for use of

*M; so in this sense, the extended *C is justified from *M.
The theory I+ cannot claim to be intuitionistic, by reason of Brouwer’s

explicit denial of Markov’s principle for choice sequences. But to refute
it the intuitionist, if he follows Brouwer, must use that strongest weapon
(Kripke’s schema) of whose other proper uses he seems unsure. So the
margin of difference is not yet clear.
On the other hand, I’ is the only known extension of intuitionistic

analysis with a normal form property for formulas, no parallel to which
exists in present intuitionistic theories. (There is of course no prenex
normal form theorem for intuitionistic predicate logic.)

2. Representing higher types in I

In I we cannot deal directly with objects of higher type. Instead we
consider species Ch of one-place number-theoretic functions, where each
Ch or h corresponds to a level in the finite type structure for the one-place
functionals. We call the indices h C-indices and define the species of such
C-indices inductively as follows.

DEFINITION 1.

1. 0 is a C-index.
2. If i and j are C-indices then so is (i, j ).
3. If i and j are C-indices then so is (i : j).
4. An object is a C-index only as required by 1-3.

We abbreviate indices made up by iterated applications of clause 2
by omitting parentheses under a convention of associating to the left.
So (0, 0, 0, 0) abbreviates (((0, 0), 0), 0).
For each C-index h a species Ch of number-theoretic functions is now

defined. Actually, we want more: we want for each Ch a formula, ab-
breviated a E Ch, in I which is to express the property a E Ch. We shall
define such formulas a E Ch by induction on h (h and other C-indices
i, j, etc. being of course not symbols of I but of the metalanguage).
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The corresponding informal species Ch are then just those such that
oc E Ch is expressed by the formula oc E Ch. Each such species consists of
Kleene-style representing functions (cf. [4]) of a certain class of func-
tionals, described below.
We make only slight modification of Kleene’s representing functions.

We do not insist that for r computing 03B2 from a : (t)(E!y)03C4(2t+1 * 03B1(y))
&#x3E; 0, but only that (t)(Ey)03C4(2t+1 * 03B1(y)) &#x3E; 0 (then we can effectively (from
i, a) pick out for each t, 03BCy03C4(2t+1 * 03B1(y)) &#x3E; 0, which will of course be

unique). Only this modification enables us to show (Lemma 5 below)
that for every h and every sequence number z, z can be extended to give
03B1 ~ Ch.
We shall abbreviate Vot(ot E Ch ~ A(03B1)) and ~03B1(03B1 E Ch &#x26; A(03B1)) as

~03B1hA(03B1) and ~03B1hA(03B1), and similarly in the informal case. We use {03C4} [03B1] =

03B2 to abbreviate

DEFINITION 2.

1. 03C4 E C ° is (abbreviates) 03C4 = 03C4.

2. If i and j are C-indices and h = (i, j), then 03C4 ~ Ch is (03C4)0 ~ Ci &#x26;

(03C4)1 ~ Cj.
3. If i and j are C-indices and h = (i : j), then 03C4 ~ Ch is

The species Ch is the species of the representing functions of the inten-
sional countable (or continuous) functionals of type corresponding to h.
The countable functionals were introduced by Kleene [4] and Kreisel [7];
the intensional ones, by Kreisel [8] p. 154. Both kinds of functicnals

can be treated in I via representing functions. But for the countable
functionals one must insure extensionality by introducing for every h
both a species Ch and an identity relation Ih such that e.g. when h = (i : j ):

We are using representing functions without extensionality conditions
and this is just the way Kreisel obtains the intensional countable func-
tionals. Thus our formal results translate directly into higher types in
the theory of the intensional countable functionals.

3. The system I+

The system I+ is obtained from I by adding first as axiom Markov’s
principle for choice sequences:
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(M can be dcnved in I from the case of *M above in which x is a number
variable, while conversely with M and C below we can derive every
instance of *M in which x is replaced by ai.)

Secondly, we complete I+ by adding a principle corresponding to *C.
The evident form in which to take *C in this context would seem to be

As will emerge from the work to follow, in the presence of M, this is
no stronger than the case:

We do not adopt **C but instead an apparently stronger principle. (We
have no proof that it is an actual strengthening.) For, it seems appropriate
to extend the continuity property (Brouwer’s principle of FIM § 7) to
cover now functionals of arbitrary type. This can be combined conve-
niently with **C to give us our new axiom schema C. It should be noted
that C includes AC.

In stating C, we replace the hypothesis of excluded middle on A by a
structural condition which will insure excluded middle, but is more

convenient for our purpose, namely that A(03B1, x) should be constructed
from prime formulas by use of propositional connectives and bounded
number quantifiers

s a term not containing x (cf. FIM Remark 4.1). For short, we say A
has no quantifiers except bounded ones. It can be shown that this is

equivalent to the principle with the hypothesis of excluded middle on A.
So, for A(03B1, x) containing no quantifiers except bounded ones, for

B(03B2) an arbitrary formula, i and j arbitrary C-indices and h = (i : j ),
we have as axiom:

Using FIM p. 30 *D, *E, etc., we can find a prime formula
G(r, a, p, (p(t), t) equivalent to the formula in the scope of Vt, so that
C is equivalent in I to

where:



37

To indicate derivability in I+ we use 1- +.

4. Realizability in I +

LEMMA 1. (a) Let E be a formula of I containingfree only the variables
03A8 and containing no quantifiers except bounded ones. There is a primitive
recursive function 03B5E[03A8] such that for each 03A8:

(i) If (Ee) (a realizes- IF E), then E is true-P.
(ii) If E is true-P, then 03B5E[03A8] realizes-03A8 E.

PROOF. By induction. Cf. FIM Lemma 8.4a. As there, if E is of form
P, A &#x26; B, A m) B, -iA, let 03B5E[03A8] = 03BBt0, 03B5A[03A8], 03B5B[03A8]&#x3E;, 039B03B103B5B[03A8], Âto-

CASE 5. E is A v B. Let ~A(03A8) be the primitive recursive characteristic
function of the predicate A expressed by A (FIM Lemma 3.3 and
Remark 3.4). Let

where s(IF) and A(03A8, x) are the primitive recursive function and predicate
expressed by s and A, respectively.

LEMMA 1. (b) For A as E in part (a) and P = a, IF,, there is a primitive
recursive function 8VaA [FI such that for every 03A81:

(i) (E03B5) (e realizes-P 1 VaA) -+ VaA is true-03A81.
(ii) VaA is true-03A81 ~ 8VaA [03A81] realizes-03A81 ~aA.

(c) Similarly, for IF = a, P 1 there is a primitive recursive function
03B5~03B1A [03A8] such that for every 03A81:

(i) (Ee) (s realizes-03A81~03B1A) ~ ~03B1A is true-03A81.
(ii) VotA is true-P 1 - 03B5~03B1A realizes-03A81~03B1A.

PROOFS. (b) Let 03B5~aA[03A81] = 039Ba03B5A[a, 03A81], for 03B5A [a, 03A81] obtained by
part (a) of the lemma.

(C) 03B5~03B1A [03A81] = Arx8 A [oc, 03A81].

LEMMA 2. For every C-index h there is a partial recursive function eh [T
such that

(i) (Ee) (a realizes-03C4 r E C") -+ r E Ch.
(ii) 03C4 E Ch ~ eh [03C4] realizes-03C4 03C4 ~ Ch.
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PROOF. By induction on h we show: the formula 03C4 ~ Ch contains no
v and all occurrences of 3 are in parts of the form 3xP(x) with P(x)
containing no quantifiers except bounded ones, and hence expressing a
primitive recursive predicate. The proof of FIM Lemma 8.4b applies.

LEMMA 3. For every C-index h:

PROOF. By ind. on h. IND. STEP.

CASE 1. h = (i,j).
Then

CASE 2. h = (i : j). We need show oniy =3. Let the conjunction a E Ch
be abbreviated E(a) &#x26; F(03B1). Assume ‹‹03B1 ~ Ch. By *25, (i) ‹‹E(03B1) &#x26;

‹‹ F(03B1).
We shall deduce first E(ot). Assume (ii) ~03B2j~t~y‹ 03B1(2t+1 * 03B2(y)) &#x3E; 0. As-

sume 03B2 ~ Cj &#x26; ~y‹03B1(2t+1 * 03B2(y)) &#x3E; 0. Then ‹~03B2j~t~y03B1(2t+1 * 03B2(y)) &#x3E; 0,
i.e. -’E(rx), contradicting (i). So, rejecting (ii), (iii) ‹~03B2j 3tV’y-, 03B1(2t+1 *
03B2(y)) &#x3E; 0. Now assume (iv) 03B2 ~ Cj. Using (iii), ‹~t~y‹03B1(2t+1 * 03B2(y))
&#x3E; 0, whence using M : ~t~y03B1(2t+1 * 03B2(y)) &#x3E; 0. By zD -introd. from (iv),
etc.: (v) E(03B1).
Next we shall deduce F(03B1). Assume (vi) ~03B2j~03B3~~[~tG(03B1, 03B2, 03B3, ~(t), t)

&#x26; -1 y E Ci]. (Cf. end § 3.) Then ‹~03B2j ~03B3~~[~tG(03B1, 03B2, 03B3, ~(t), t) ~ 03B3 ~ Ci],
i.e. ‹F(03B1), contradicting (i). So rejecting (vi), (vii) ‹~03B2j~03B3~~[~tG(03B1, 03B2, 03B3,

g(t), t) &#x26; -1 y E Ci]. Now assume (viii) 03B2 ~ Cj and (ix) b’tG(a, 03B2, 03B3, ~(t), t).
Then using (vii), -,-, y E Ci, whence by ind. hyp., y E Ci. By zD -introd.
from (ix), then ’v’-introds., ::)-introd. from (viii), V-introd. : (x) F(03B1).
Combining (v) and (x): oc E Ch.
In Lemma 5 below we establish that for every C-index h, every finite

sequence of natural numbers can be continued to give a function in Ch.
We need this (a) as a formal result in 1+ and (b) as an informal result
with in this case the additional information that the continuation can

be given primitive recursively.
Lemma 4 provides two results needed in the proof of Lemma 5.

(Proofs in these lemmas hold in Kleene’s basic system B ; cf. FIM p. 8.)
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PROOFS. (a) Like FIM *26.5.

(b) Let the hyps. be (i)-(iii), respectively.

Thus

LEMMA 5. (a) For every C-index h

where Exth(03C4, z) abbreviates 03BBs03C4(z, s&#x3E;) E Ch &#x26; ~sslh(z) 03C4(z, s) ) + 1 = (z)s.
(b) For every C-index h there is a primitive recursive function 1: such that

(z)Seq(z)Exth(03C4, z), where Exth(03C4, z) is expressed by the formula Exth( 1:, z)
of (a).

PROOF. We give a detailed formal proof of (a). The corresponding
informal argument establishes (b), when supplemented by the observa-
tions that the definitions of 1: in Case 1 (iii) and Case 2 (iii) below are
primitive recursive (using ind. hyp. in Case 2), and that this remains true
if we consider these definitions as yielding functions 03C40(z, x) of two
variables z and x. Then in the final paragraph let 03C4(z, x&#x3E;) = 03C40(z, x)
and avoid the application of x2.1. (Alternatively, we could establish (b)
with a general recursive, but not primitive recursive, r by using (a),
FIM Theorem 9.3(a) with Lemma 8.4b (i), etc.)

PROOF of (a). By induction on h.

IND. STEP. CASE 1: h = (i, j ). Assume from ind. hyp.
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Introduce 03C4:

Assume (iv) Seq(z). We easily deduce from (iii) and (iv):

Next we shall deduce

(a) (03BBs03C4(z, s&#x3E;))0 ~ Ci. A parallel deduction would give
(b) (ÀS7:( (z, S)))1 E Cj. Let (vi) w=03A0klh(z)pk exp(((z)k  1)0+1); so

th(w) = lh(z). From (i): (vii) Exti(03C4i, w) whence (viii) 03BBs03C4i(w, s&#x3E;) ~ Ci.
We shall deduce (ix) (7:( (z, s&#x3E;))0 = 03C4i(w, s&#x3E;), whence by V-introd. and
(viii): (a). For (ix) use cases (s  lh(w), s ~ lh(w)).
CASE A: s  lh(w) = lh(z). Then (03C4(z, s&#x3E;))0 = ((z)s1)0 [case A

hyp., (iii)] = (w)s1 [(vi)] = 03C4i(w, s&#x3E;) [(vii)].
CASE B: s ~ lh(w) = lh(z). Then (7:( (z, s&#x3E;))0 = 03C4i(03A0klh(z)pk exp

(((z)k1)0+1),s&#x3E;)[(iii)] = 03C4i(w, s&#x3E;) [(vi)].
Now from (a) and (b): 03BBs03C4(z, s&#x3E;) ~ Ch. Then with (v): Exth(03C4, z).
CASE 2: h = (i : j). From ind. hyp.: (i) ’IZSeq(z) Exti(03C4, z). (We do not

need the part of the ind. hyp. for j. )
First we shall deduce (a)~zSeq(z) ~03C4h03C4(lh(z)) = z. So, assume (ii) Seq(z).

We use the following abbreviations for terms in introducing r in (iii)
below.

Now we propose to introduce r under Lemma 5.5(c). Verification that
the cases in (iii) are exhaustive and exclusive is routine. To show that the
fourth case could be brought under (c) of the lemma by appropriate
use of *B, etc., use Lemma 4(b) to justify the case hyp. To justify the
corresponding definiens, assume m  q((x)0, z). Under the case hyp.,
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otherwise.

Then: (b) 03C4(lh(z)) = z.
To obtain r E C" we must deduce

Towards (c), we shall deduce first:

Letting x = 2"’* 03B1(lh(z)), we can deduce

So by (iii): r(x) = 1, whence (iv). Next we deduce

SUBCASE B.l : lh(z) ~ 1. Then 2t+1*03B1(0) = 2t+1 ~ lh(z). So

SuBCASE B.2: lh(z) &#x3E; 1. Using case hyp., *149a, etc., we can assume
prior to ~-elim.:

Using subcase hyp. and
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(ix) ~m(m  t+1 &#x26; 2m  lh(z) &#x26; 2m+1 ~ lh(z)). Assuming m  q(t+ l, z),
we can deduce ‹2m+1 ~ lh(z) [(ix), *E5], whence 2m+1  lh(z) and then
by (iv), ~y03C4(2m+1*03B1(y)) &#x3E; 0; and so easily: ~w~yy~w03C4(2m+1*03B1(y)) &#x3E; 0.

Letting B(s, w) be ~yy~w03C4(2s+1* 03B1(y)) &#x3E; 0 we have thus by ~- and
V-introd. : (x) Vm(m  q(t + 1, z) ~ ~wB(m, w)). Also we can deduce:
(xi) ~s~z~w(B(s, z) &#x26; w ~ z zD B(s, w)). Now using (x) and (xi) in
Lemma 4(a), assume (xii) Vm(m  q(t+1, z) ~ B(m, w)). Let x =

2t+1*03B1(w+ 1 ). Then (xiii) Seq(x), (xiv) w + 1 = lh(x)1, (xv) 2(x)o ~ lh(z)
[case hyp.]. Assuming m  q((x)0, z) = q(t+ 1, z) we can deduce from
(xii) a formula from which we may assume : y  w &#x26; 03C4(2m+1* 03B1(y)) &#x3E; 0,
whence with (xiv), etc. : y  lh(x)1 &#x26; 03C4(2m+1* 03A0nyp(x)n+1n) &#x3E; 0. Thus

by ~-, ~-introd. etc.:

Using (xiii), (xv), subcase hyp. and (xvi) in (iii): T(x) == 03C4i(u(03C4, x, z),
(x)01&#x3E;)+ 1 &#x3E; 0. By 3 -, V-introds., (v). From (v) easily: (c).
Now towards (d), assume (xvii) oc E Ci and (xviii) ~t~yG(03C4, 03B1, 03B2, y, t).

We shall deduce (e) fl E Ci by cases (lh(z) ~ 1, lh(z) &#x3E; 1).
CASE 1: lh(z) ~ 1. Assume from (xviii), 03C4(2t+1*03B1(y)) = 03B2(t)+1. Now

2t+1*03B1(y) &#x3E; 1 ~ lh(z) [case hyp.]; so 03B2(t)+1 = 03C4(2t+1 dé(y» = 03C4i(z,
t&#x3E;)+1 [(iii)], whence pet) = 03C4i(z, t&#x3E;). By x0.1 and V-introd. and using
(ii) and (i): 03B2 ~ Ci.

CASE 2: lh(z) &#x3E; 1. Since lh(z)  lh(z) + 1 &#x26; 2lh(z)+1 ~ lh(z), we have
(xix) ~ttlh(z)+12t+1 ~ lh(z). Let (xx) M = 03BCttlh(z)+12t+1 ~ lh(z).
Using *2.2 with (xviii), assume (xxi) ~tG(03C4, 03B1, 03B2, ~(t), t). Let (xxii)
w = 03A0tMpt exp(03C4(2t+1*03B1(~(t)))). Then (xxiii) Seq(w) and (xxiv)
lh(w) = M. We shall deduce (f) 03B2(t)+1 = 03C4i(w, t&#x3E;)+1 by cases

(t  lh(w), t ~ lh(w)). CASE A: t  lh(w). Then pet) + 1 = 03C4(2t+1* 03B1(~(t)))
[(xxi)] = (w)t [case hyp., (xxii)] = 03C4i(w, t&#x3E;)+1 [(xxiii), (i), case hyp.].
CASE B: t ~ lh ( w). Now (xxv) 2t+1 = 2. 2t ~ 2 . 2lh(w) = 2M+1 [(xxiv)]
~ lh(z) [(xix), (xx)]. So (xxvi) 2t+1*03B1(~(t)) ~ lh(z). Also, from (xxi):
03C4(2t+1* 03B1(~(t))) &#x3E; 0; so the last case in (iii) is not the one used in evalu-
ating 03C4(2t+1* 03B1(~(t))). But similarly the first three cases are ruled out by
(xxvi), case 2 hyp. and (xxv), respectively. So the fourth case applies
and thus: (xxvii) ’t(2t+ 1 * 03B1(~(t))) = 03C4i(u(03C4, 2t+1* 03B1(~(t)), z), t&#x3E;) + 1, and

(xxviii) ~mmq(t+1,z)~yy~(t)03C4(2m+1*03A0nyp03B1(n)+1n) &#x3E; 0. We have (xxix)
M = lh(w) [(xxiv)] ~ t [case B hyp.]  t+ 1 and (xxx) 2M+1 ~ lh(z)
[(xxv)]; so ~mmt+12m+1 ~ lh(z). Now q(t+1, z) = 03BCmmt+12m+1 ~
lh(z) and by *E5 if M  q(t + 1, z) then 2M+1 ~ lh(z), contradicting
(xxx), but also if M &#x3E; q(t+ 1, z) then we contradict (xix)-(xx). So (xxxi)
q(t+ 1, z) = M. Let K(m) = k(03C4, 2t+1* 03B1(~(t)), m). We deduce (xxxii)
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~m(m  q(t+ 1, z) ~ K(m) = ~(m)), as follows. Assume m  q(t+ 1, z).
By (xxviii): (xxxiii) ~yy~(t) 03C4(2m+1* 03B1(y)) &#x3E; 0. By (xxi): (xxxiv)
03C4(2m+1*03B1(~(m))) &#x3E; 0 &#x26; ~vv~(m)03C4(2m+1*03B1(v)) = 0. Since

we can use (xxxiii) and *E5 with (xxxiv) to show K(m)  cp(m) and
K(m)  cp(m), whence K(m) = cp(m). Thus by ~-introd. etc.: (xxxii).
Thence

So 03B2(t)+1 = 03C4(2t+1* 03B1(~(t))) [(xxi)] = Ti( (w, t&#x3E;) + 1 [(xxvii)]. Thence
03B2 = 03BBt03C4i(w, t&#x3E;) and by (xxiii) and (i): 03B2 ~ Ci.
Now by z)-introd. from (xviii), (xvii), etc.: (d).
Combining (c) and (d): 03C4 ~ Ch. Then with (b): (a).
Next, from (a) by x2.1, etc. (with Seq(z)~‹Seq(z)):

Assume prior to 3-elim., ~zSeq(z)(03BBs03C4(z, s&#x3E;) E Ch &#x26; 03BBs03C4(z, S) )(lh(z») =
z). Then if Seq(z), 03BBs03C4(z, s» E Ch and if s  lh(z) : r«z, s&#x3E;)+ 1 =

(03BBs03C4(z, s)(lh(z»),, = (z)s. Thus Ext(,r, z). So finally, ~03C4~zSeq(z) Exth(03C4, z).

THEOREM 1. Using Markov’s schema M: if I’ + E and the formulas r
are realizable, then E is realizable.

PROOF. The proof of Theorem 9.3(a) in FIM pp. 105-109 provides
all that is needed except for the cases in which E is M or an axiom by C.

CASE M. Use Theorem 11.7(a)C of FIM pp. 129-130, with a(y) =A 0
as A(x, y). The realizing function can be taken to be simply 039B03C003BCy03B1(y)
~ 0, 03B503B1(y)~0&#x3E;, using FIM Lemma 8.4a. The argument is classical, as
indicated by the superscript C on the theorem number, but the only non-
intuitionistic principle is M (used at line 3 of the proof on p. 130).

CASE C. Suppose (1) B realizes-IF the hyp. of C. Then for every a, n, 11:
if 03C0 realizes-a a E Ci and il realizes-03A8, a ~xA(03B1, x) then {{{03B5}[03B1]}[03C0]}[~]
realizes-IF 3f3i B(P). Thus, using Lemmas 2 and 1 (b): (2) if x realizes-ot
a E Ci and 11 realizes- IF, oc ~xA(03B1, x), then

realizes-P, oc ~03B2iB(03B2).
Now define the function qJ of B, a, P by 9 [e, oc, 03A8] = {{{03B5}[03B1]}[03B5j[03B1]]}

[03B5~xA(03B1,x) [03B1, 03A8]]. Since ~[03B5, 03B1, 03A8] = 03BBt~(03B5, 03B1, 03A8, t) is a partial recursive
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function there is by the normal form theorem (IM Theorem XIX p. 330)
a Gôdel number e of cp such that

where

Also, A(03B1, x) expresses a primitive recursive predicate A(a, x) [FIM
Remark 3.4 p. 13]. So there is by the normal form theorem [IM Theorem
IX p. 288] a Gôdel number f (of the representing function of A (ex, x)
considered as predicate of a, lY, x) such that:

where

1. We want to define (primitive recursively from B with Y as parameters)
a function r with the properties expressed in the conclusion of C. Our
aim is to make 03C4 represent the following algorithm Y, which works on
a given t and a given initial segment â(x) of a function a to give effectively
either a value 03B2(t) or the answer that no value 03B2(t) can be computed.
(From now through the definition of r in (21) below, except for

Remark 1, we let 03B5, 03A8 be arbitrary (not necessarily satisfying (1 )) as we
describe J- and r uniformly in 03B5, 03A8.)
Given 03B1(x) and asked to determine 03B2(t) the algorithm Y first deter-

mines whether the following are satisfied.

(a) x &#x3E; t,

(b) (s)st(Ey)yx(03B2(s) is determined by Y from 03B1(y)).
If not (a) or not (b), J signals that it can compute no value for 03B2(t)

from 03B1(x).
If both (a) and (b), J next determines if there is for this â(x) a

refuting pair of numbers (s, â(y)) - i.e. a pair of numbers s ~ x and
03B1(y), y ~ x, such that Tm(f, 03B1(y), 03A8(y), s) &#x26; U(y) = 1; so that by (5):
A(a, s).

If there is such a pair, J computes fl(t) to insure 03B2 ~ Ci as follows.
First J looks back (using (b)) to determine if there is t 1  t such that
the computation of 03B2(t1) by Y requires a segment 03B1(x1), x1 ~ x, such
that there exists for à(xi) a refuting pair. Setting to = least such tl if
one exists (= t otherwise), Y then computes 03B2(t) as -ri«P(to), t&#x3E;),
using the primitive recursive function it given by Lemma 5(b).
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If there is no refuting pair for a(x), J determines if for any

y  x Tm+1n(e, 03B5(y), dé (y), W(y), t). If so, ff computes pet) as U(y)+ 1 =

~(03B5, 03B1, 03A8, t)+1 [(3)]. If not, J signals that it can make no computation
of 03B2(t) from 03B1(x).

(REMARK 1. That J associates a function fl E Ci with every oc E Ci
then follows, using M, provided that B satisfies (1) above (details below)).
We shall represent J by a function z so that in computing pet) we

apply r to arguments 2t+ 1 * a(x) for increasing x. We shall arrange
that r(u) = 0 unless Seq(u) &#x26; lh(u) &#x3E; 1.

Towards defining r by primitive (course of values) recursion, we first
observe that if we put z = 03B1(x), the condition (a) &#x26; (b) becomes

Then easily

Further, it is easy to find a primitive recursive predicate P’(w) such that
letting

we can show

Next the condition that there is for z = à(x ) a refuting pair is expressed
primitive recursively by

Clearly:

Now, if i computes a value 03B2(s) for s  t from some proper initial
segment (i(y) of z = 5î(x), the length y of that segment is given by

Clearly:
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Again, it is easy to define a primitive recursive function Y’(s, w) such that
for B(u, t, z) as in (8):

For s ~ t the sequence number 03B2(s) giving the accumulated values of
fi determined by z = à(x) (if any) is given by

Using (13) and (14), we can find a primitive recursive function Z’(s, w)
such that for B(u, t, z ) as in (8):

The least s  t (if any) such that the computation of 03B2(s) by r requires
a z for which there is a refuting pair is

Again, using (14), we can find a primitive recursive W’(P, w) such that

Following J we shall need, if P(03C4, z, t) &#x26; Ref(03A8, z), the sequence
number 03B2(W(03A8, 03C4, z, t)). Using (15) and (17) this is given by

Using (16) and (18)

Now we can define r uniformly from P, B, writing for short t = (u)01
and z = 03A0ilh(u)1p(u)ii and using 03C4i provided by Lemma 5(b) so that
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Using (9) and (20), we see that r is defined by primitive (course of values)
recursion.

Assuming 03C4(2t+1* 03B1(y)) &#x3E; 0, we have P(03C4, a(y), t), whence y = lh(5(y»
&#x3E; t and (s)st(Ek)ky t(2s+1* d (k» &#x3E; 0. So

II. For the r just defined we next want to show 7: E Ch. We need:

Towards (i), assume (24) oc E Ci. We shall deduce

Assume Assume further

Suppose (27) Ref(IF, 03B1(y)). Using (25) choose y, large enough so that
yl &#x3E; max(y, t, 1) &#x26; (s)st(Ey)yy103C4(2s+1*a(y)) &#x3E; 0. Then letting u =

2t+1*03B1(y1), we have Seq(u), lh(u) = Yl + 1 &#x3E; 1, P(03C4, 03B1(y1), t) [(6)],
Ref( P, 5. (y 1» [(27), (11)]. So by the first case of (22), 03C4(2t+1* 03B1(y1)) =
r(u) &#x3E; 0, contradicting (26). So, rejecting (27): Ref(03A8, 03B1(y)), whence
(28) (y) Ref(03A8, 03B1(y)), and by (10): (29) (y)(Es)sy(Ek)ky(Tmn(f, 03B1(k),
P(k), s) &#x26; U(k) = 1). Now if for any s A(et, s) then by (5) for some y
Tmn(f, 03B1(y), P (y), s) &#x26; U(y) = 1, and then letting y 1 = 1 + max( y, s) :
(Es)sy1(Ek)ky1(Tmn(f, 03B1(k), 03A8(k), s) &#x26; U(k) = 1), contradicting (29).
So (03B1, s), whence (30) (s)A(03B1, s). Then by Lemma 1(b), 03B5~03C3A(03B1,s)
realizes- 111, oc Vs A (oc, s). Also by (24) and Lemma 2, 03B5j[03B1] realizes-et

03B1 ~ Cj. So by (2), ~[03B5, 03B1, 03A8] realizes-P, et ~03B2iB(03B2). So in particular
~(03B5, 03B1, 03A8, t) is defined. By (3) (Ey)Tm+1n(e, E(y), 03B1(y), 03A8(y), t). Assume
(30) Tm+1n(e, 03B5(y), 03B1(y), 03A8(y), t). Using (25) choose yl large enough so
that y1 &#x3E; max(y, t, 1) &#x26; (s)st(Ey)yy103C4(2t+1*03B1(y)) &#x3E; 0. Then letting
u = 2t+1*03B1(y1) : Seq(u), lh(u) = Yl + 1 &#x3E; 1, P(03C4, 03B1(y1), t) [(6)], Ref(W,
03B1(y1)) [(28)], (Ey)yy1 Tm+1n(e, 03B5(y), 03B1(y), 03A8(y), t). [(30)]. So by the
second case of (22): 03C4(2t+1*03B1(y)) = 03C4(u) &#x3E; 0, contradicting (26). So
rejecting (26) : (Ey)03C4(2t+1* 03B1(y)) &#x3E; 0. By M, (Ey)03C4(2t+1* 03B1(y)) &#x3E; 0.

Finally from (iii) by course of values induction, (t)(Ey)03C4(2t+1* 03B1(y)) &#x3E; 0,
and then, discharging (24) : (i).
Towards (ii), assume (31) ce E Ci and
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Using (31) and (i): (33) (t)03C4(2t+1*03B1(yt)) &#x3E; 0 where Yt = 03BCy03C4(2t+1*03B1(y))
&#x3E; 0. Then using (32) : (34) (t)03B2(t)+ 1 = 03C4(2t+1* 03B1(yt)). Using (23):
(35) (s)(t)(s :9 t ~ ys ~ yt). By (12): (36) (s)(t)(s  t - Y(i, 03B1(yt), s, t)
= Ys).
We shall show

and

Towards (iii), suppose (37) (Ey) Ref(03A8, 03B1(y)).
Let (38) r = 03BCy Ref(03A8, 03B1(y)). By (33), 03C4(2r+1*03B1(y)r) &#x3E; 0. By (23),

yr &#x3E; r; so (Es)ys ~ r. Let (39) R = 03BCsys ~ r. Then (40) (Es)sR Ref(03A8,
â(ys)), for if s  R &#x26; Ref(tY, 03B1(ys)) then s  R &#x26; ys ~ r [(38)],
contradicting (39).
We shall show (41) 03B2(t) = 03C4i(03A0sRp03B2(s)+1s, t) by cases (t  R, t ~ R).

CASE 2: t ~ R. Then yt ~ yR [(35)] ~ r [(39)]. So by (38) and (11):
(42) Ref(03A8, iX(Yt). We shall show (43) W(03A8, 03C4, 03B1(yt), t) = R by cases
(t = R, t &#x3E; R).

CASE A: t = R. Now if (lA) (Es)st Ref(03A8,03A0jY(03C4,03B1(yt),s,t) pj exp
(03B1(yt))j), then (Es)st Ref(03A8,03A0jyspjexp(03B1(yt))j) [(36)], whence

(Es)st Ref(P, 03B1(ys)) [(35)]. But this contradicts Case A hyp. and (40).
So, rejecting (lA), we obtain (43) (cf. IM pp. 225, 229).

CASE B: t &#x3E; R. Then W(03A8, 03C4, 03B1(yt), t) = 03BCsst Ref(03A8, 03B1(ys)) [(17),
(35), (36)] = R [(39), (38), (11)]. - This shows (43). Then

(44) V(W, T, â(yt)t), = Z(03C4, 03B1(yt), R, t) [(19), (43)]

Now 03B2(t)+1 = t(2t+ 1 * fi(Yt)) [(34)] = 1+03C4i(V(03A8, 03C4, 03B1(yt)), t) [(22),
(42)] = 1+03C4i(03A0sRps exp(03C4(2s+1*03B1(ys))), t) [(44)] = 1+03C4i(03A0sRps
exp (03B2(s)+ 1 ), t) [(34)]. Thence, (41 ).
Now from (41) and (21): P E Ci.
Next, towards (iv), assume (45) (Éy) Ref(’P, 03B1(y)). Then r(2" 1 * 03B1(yt))

= 03B2(t)+ 1 [(34)] &#x3E; 0. So by (22) with (45): (46) (Ey)yyt Tm+1n(e, g(y),
03B1(y), 03A8(y), t). Then (47) P(t)+1 = ’r(2t+l*a(Yt)) [(34)] = 1+(U(03BCyy~yt
Tm+1n(e, 03B5(y), 03B1(y), 03A8(y), t)))0. Also from (45), (Ey)(Es)sy(Ek)ky
(Tnm(f, fi(k), P(k), s) &#x26; U(k) = 1). Thence (Es)(Ek)(Tmn(f,03B1 (k), P(k), s)
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&#x26; U(k) = 1). So by (5), (Es)Â(oc, s). Then (s)A(03B1, s), whence (s)A(03B1, s).
Then 03B5~sA(03B1, s) [03A8, 03B1] realizes-03A8, oc ~sA(03B1, s) [Lemma 1 b ]. Also by (31 ),
aj[C(] realizes-oe oc E Ci [Lemma 2]. So by (2), cp [a, oc, P] realizes-P,
03B1 ~03B2iB(03B2), and thus (cp [e, a, 03A8])1 realizes-P, a, (cp [e, oc, 03A8])0 03B2 ~ Ci &#x26;

B(03B2). So (~[03B5, 03B1, 03A8])1, 0 realizes-03A8, 03B1, (~[03B5, 03B1, 03A8])0 03B2 ~ Ci. Then 03B2 ~ Ci
is true-(~[03B5, 03B1, 03A8])0 [Lemma 2]. But by (3) with (46)-(47): (~[03B5, 03B1, 03A8])0
= 03B2. So 03B2 ~ Ci.
Now from (iii) and (iv), (48) 13 E Ci, for if 03B2 ~ Ci, then from (iii)

(Ey) Ref(03A8, 03B1(y)), whence from (iv), 13 E Ci. And from (48) and (the
informal analogue of) Lemma 3 ; fl E Ci.

Finally from (i)-(ii), we have (49) 03C4 ~ Ch is true-i and so by Lemma 2:
(49) 03B5h[03C4] realizes-T r E Ch.

III. Next we must find a function to realize-03A8, r the formula

Suppose for some a (v) x realizes-ot oc E C’, and for some 03B2, ~, 03B6:

Then by FIM Lemma 8.4a(i) and (vi):

By Lemma 2 and (v):

By (i) of II with (52): (53) (t)03C4(2t+1*03B1(yt)) &#x3E; 0, where yt = 03BCy 03C4

(2t+1* 03B1(y)) &#x3E; 0. From (51) and (53):

By Lemma 1(b) and (vii): (x)A(oc, x). So by (4) (x)(U(03BCyTmn(f, 03B1(y),
03A8(y), x)) = 0). Then easily from (10), etc.: (55) (Ey) Ref(03A8, 03B1(y)). By
(22) with (53) and (55): (56) (Ey)y~yt Tm+1n(e, B(Y), 03B1(y), 03A8(y), t). Then
(57) 03B2(t)+1 = 03C4(2t+1*03B1(yt)) [(51), (54)] = 1 +(U(03BCyy~yt Tm+1n(e, 03B5(y),
03B1(y), P(y), t)))0 [(22) with (53), (55)] = 1 + (~(03B5, 03B1, 03A8, t))o [(3), (56)].
Now from (v) and (vii) with (2): (qJ[B, oc, IF]), realizes-03A8, et, (qJ[B, oc,

03A8])0 03B2 ~ Ci &#x26; B(03B2). Then using (57), (~[03B5, 03B1, 03A8])1, 1 realizes-03A8, 03B1, 03B2
B(03B2).

So, to realize (*) we use ~[03B5, 03A8] = 039B03B1039B03C0039B03B2039B~039B03B6039B~(~[03B5, 03B1, 03A8])1,,
IV. In conclusion, to realize-W C we use 039B03B503C4, 03B5h[03C4], ~[03B5, 03A8]&#x3E;&#x3E;.
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5. Normal forms in I +

Preparatory to the normal form result in Theorem 2, we must establish
a number of lemmas.

LEMMA 6(a). Let A(03B1, 03A8) be a formula of I containing no quantifiers
except bounded ones and containing as free variables exactly Ci, 111. There

is a prime formula S(z, tp) containing as free variables exactly z, 111 such

that

PROOF. By FIM *D, *E, etc. we can find a prime formula P(03B1, 03A8)
with A(03B1, 03A8) ~ P(03B1, 03A8). By Lemma 6(b) of [3] there is a prime formula
S’ such that P(a, 03A8) ~ ~xS’(03B1, 03A8&#x3E;(x)) ~ ~xS’(03A0ixpi exp(l + 03B1, 03A8&#x3E;
(i))) ~ ~xS’(03A0ixpiexp(1 + (203B1(i) * 03A8&#x3E;(i))). Let S(z, 03A8) be S’(ni«z)oPi
exp(l + (2(z)i+11 * 03A8&#x3E;(i))). We shall deduce ~03B1~xS’(03A0ixpi exp(l +
(203B1(i) * 03A8&#x3E;(i)))) ~ Vz S(z, 03A8), abbreviated (i ) - (ii). Assuming (i ) and
putting oc = 03BBi(z)i+11 and x = (z)o we deduce S(z, tp), whence (ii).
Assuming (ii) and, for reductio ad absurdum, ‹S’(03A0ixpi exp(l +
(203B1(i) * 03A8&#x3E;(i)))) we can let z = 2x * 03B1(x), whence ‹S’(03A0i(z)0pi exp(1 +
(2(z)i+11 * 03A8&#x3E;(i)))), contradicting (ii); so by *158, etc., (i).

LEMMA 6(b). Let A(03B1, 03A8) be as in part (a). Then for every C-index h:

PROOF. For =3, obtain P and S’ as in the proof of (a), so that

(i) ~03B1, 03A8[A(03B1, 03A8) ~ ~xS’(03B1, 03A8&#x3E;(x))]. Assume (ii) Vah A (oc, 03A8) and

(iii) ~03B1‹A(03B1, 03A8), whence assume ‹A(03B1, 03A8). By (i), --lVxS’«Ot, 03A8&#x3E;(x))
whence by M, ~x‹S’(03B1, 03A8&#x3E;(x)). Assume (iv) ‹S’(03B1, 03A8&#x3E;(x)). Via

Lemma 5, assume (v) f3e Ch &#x26;/1(x) = a(x). Then by (iv): ‹S’(03B2, 03A8)
(x)). 80’VxS’«P, 03A8&#x3E;(x)), whence from (i): (vi) ‹A(03B2, 03A8). But (v) and
(vi) contradict (ii), so rejecting (iii): ‹~03B1‹A(03B1, 03A8), whence VocA(ot, 03A8).

LEMMA 7. Suppose A(x), C are formulas containing no quantifiers
except bounded ones, C not containing x. Then

PROOF.
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LEMMA 8.

PROOF. Assume ~03B1h~xB(03B1, x). Thence easily ~03B1h~03B2B(03B1, 03B2(0)). Apply-
ing C, assume

Assume aECh. From 03C4 ~ C(0:h): ~t~y03C4(2t+1*03B1(y)) &#x3E; 0. Then by *2.2
assume ’v’t-r(2t+ 1 * 03B1(03C8(t))) &#x3E; 0. Introduce 9 and fi : ~t~(t) = 03BCyy~03C8(t)
03C4(2t+1*03B1(y)) &#x3E; 0, ’v’tf3(t) = 03C4(2t+1*03B1(~(t)))1. Thence ’v’t(f3(t)+ 1 =
-r(2t+ 1 * 03B1(~(t))) &#x26; ~zz~(t) 03C4(2t+1 * 03B1(~(t))) = 0). So B(a,f3(O)). Also

f3(0) = 03C4(2 * 03B1(~(0)))1, and ~(0) = 03BCyy~03C8(0) 03C4(2 * 03B1(y)) &#x3E; 0, where

03C4(2 * 03B1(03C8(0))) &#x3E; 0. So, assuming 03C4(2 * 03B1(y)) &#x3E; 0 &#x26; ~zzy03C4(2 * 03B1(z))
= 0, we deduce y = ~(0). So 03B2(0) = T(2 * 03B1(y)))1.

LEMMA 9. Let E(03C4, 03B1, 03B4, ~, t) and F(03B4, y) be formulas of I+ containing
no quantifiers except bounded ones. Then for any C-indices h and j there
is a C-index k and there is a prime formula S(03C4, x) such that

PROOF.

[Lemma 8, with J(03C4, ~, 03B1, y) abbreviating

[Lemma 6(b), observing that only bounded quantifiers appear in H and
finally in J] ~ ~03C4k~xS(03C4, x) [Lemma 6(a), and letting k = (h, (0 :
( j, 0, 0, 0)))]. By Lemma 6(a), S is prime.
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THEOREM 2. For every formula A of I+ there is a C-index h and there is
a prime formula A’ such that ( for a, x variables not free in A):

PROOF. By induction on the number of logical symbols in A.

BASIS. A is prime. Let h be 0 and A’ be A.

IND. STEP. We have cases A is B &#x26; C, B v C, etc. By ind. hyp.
B - 3 ai Vx B’ and C - 3yi Vx C’ for prime formulas B’, C’.

CASE 1. A is B &#x26; C. Then A - B &#x26; C ~ 3oci b’xB’(a, x) &#x26; ~03B3i ~xC’
(y,x) [ind. hyp.] - 3oci 3y’Vx(B’(ot, x) &#x26; C’(y, x)) [*31, *87] - 3a(i,j)
~x(B’((03B1)1, x) &#x26; C/«a)o, x)). So let h = (i,j) and let A’(03B1, x) be a prime
formula such that A’(a, x) - B’((03B1)1, x) &#x26; C’((03B1)0, x) [FIM. *14.1,
*D, *E ].

CASE 2. A is B v C. Then A - B v C ~ ~03B1j~xB’(03B1, x) ~ ~03B3i ~x C’(03B3, x)
- 3a [(a c- Ci &#x26; bxB’(a, x)) v 3yiVXC/(y, x)] [*90] - 3oci [dxB’(a, x)
~ ~03B3i~xC’(03B3, x)] [~: by cases prior to 3-elim., using Lemma 5 in second
case] - 3aj3yi [~xB’(03B1, x) v ~xC’(03B3, x)] [similarly] ~ 3aj3yi3z[(z = 0
i3 ~xB’(03B1, x)) &#x26; (z i= 0 ~ VXC’( y, x))] [~: by cases (z = 0, z * 0)] ~
3aj3yi3zVx[(z = 0 ~ B’(a, x)) &#x26; (z ~ 0 ~ C’(y, x))] [*95, *87]
~03B1(i,j,0)~x[((03B1)1(0) = 0 ~ B’((03B1)0, 1, x)) &#x26; ((03B1)1(0) ~ 0 ~ C’((03B1)0, 0,
x))]. Let h = (i, j, 0) and again find A’(a, x) by FIM * 14.1, *D, *E, etc.

CASE 3. A is B ~ C. Then A ~ B ~ C ~ 3ocjvxB,(oc, x) ~ ~03B3i~xC’
(y, x) - ~03B1j[~xB’(03B1, x) ~ ~03B3i~xC’(03B3, x)] [*95, *5] ~ ~03C4h~03B1j~03B4~~
[~tG(03C4, 03B1, 03B4, ~(t), t) ~ (~xB’(03B1, x) ~ ~yC’(03B4, y) ) ] [axiom C, with
h = (i : j)] ~ ~03C4h~03B1j~03B4~~ [Vt(G(r, a, b, ep(t), t) &#x26; B’(a, t)) ~ ~yC’(03B4, y)]
[*4, *5, *87, *95] ~ ~03C4k~~S(03C4, x) for prime S [Lemma 9].
CASE 4. A is uB. Then A ~ B ~ 1 = 0. Use Case 3.

CASE 5. A is 3PB(P). Then A - ~03B2B(03B2) ~ ~03B2~03B1j~xB’(03B2, 03B1, x) ~
~03B1(0,j)~xB’((03B1)0, (03B1)1, x).
CASE 6. A is 3xB(x). Then A - 3xB(x) - 3PB(P(0)). Use Case 5.

CASE 7. A is ~03B2B(03B2). Then A - ~03B2~03B1j~xB’(03B2, 03B1, x) ~ ~03C4(j : 0)~03B2~03B4~~
[~tG(03C4, 03B2, 03B4, ~(t), t)) ~ ~xB’(03B2, 03B4, x)] [axiom C] ~ ~03C4k~xS(03C4, x) for
prime S [Lemma 9, with j = 0].

CASE 8: A is VxB(x). Then A - ~xB(x) ~ ~03B1B(03B1(0)). Use Case 7.



53

REFERENCES

ERRETT BISHOP

[1 ] Mathematics as a numerical language, Intuitionism and Proof Theory, edited by
John Myhill, A. Kino and R. E. Vesley, North-Holland, Amsterdam, (1970),
53-71.

KURT GÖDEL

[2] Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes,
Dialectica 12 (1958), 280-287.

S. C. KLEENE

[3] Classical extensions of intuitionistic mathematics, Proceedings of the 1964 Inter-
national Congress for Logic, Methodology and Philosophy of Science, edited by
Y. Bar-Hillel, North-Holland, Amsterdam, (1965), 31-44.

S. C. KLEENE

[4] Countable functionals, Constructivity in Mathematics, edited by A. Heyting,
North-Holland, Amsterdam, (1959), 81-100.

S. C. KLEENE

[5] Introduction to Metamathematics, Van Nostrand, New York, 1952.

S. C. KLEENE AND R. E. VESLEY

[6] The Foundations of Intuitionistic Mathematics, North-Holland, Amsterdam,
1965.

G. KREISEL

[7] Interpretation of analysis by means of constructive functionals of finite types,
Constructivity in Mathematics, edited by A. Heyting, North-Holland, Amsterdam
(1959), 101-128.

G. KREISEL

[8] On weak completeness of intuitionistic predicate logic, Journal of Symbolic
Logic, vol. 27 (1962), 139-158.

JOHN MYHILL

[9] Lecture notes for a seminar in logic, S.U.N.Y. at Buffalo, Spring 1969, and
University of Michigan, Fall 1969.

M. YASUGI

[10] Intuitionistic analysis and Gödel’s interpretation, Journal of the Mathematical
Society of Japan, vol. 15 (1963), 101-112.

(Oblatum 14-IV-1970) Department of Mathematics
S.U.N.Y. at Buffalo
4246 Ridge Lea Road
Amherst, New York 14226, U.S.A.


