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1. Introduction

We are interested in the distribution of an arbitrary sequence of
numbers in an interval. We are thus returning to questions investigated
in the first part [10] of the present series. However, the present paper
can be read independently.

Let U be the unit interval consisting of numbers j with 0  03BE ~ 1,
and let cv = {03BE1, 03BE2, ···} be a sequence of numbers in this interval.
Given an oc in U and a positive integer n, we write Z(n, a) for the number
of integers i with 1 ~ i ~ n and 0 ~ 03BEi  03B1. We put

The sequence 03C9 is called uniformly distributed if D(n) = o(n), where
D(n) is the supremum of D(n, a) over all numbers a in U. Answering
a question ofVan der Corput [3], Mrs. Van Aardenne-Ehrenfest [1] 
showed that D(n) cannot remain bounded. Later [2] she proved that
there are infinitely many integers n with D(n) &#x3E; cl log log n/log log log n
where cl is a positive absolute constant, and K. F. Roth [9] improved
this to D(n) &#x3E; c2(log n)1 2.
For 03BA ~ 0 let S’(x) be the set of all numbers oc in U with

Further let S’(~) be the union of the sets S(x), i.e. the set of numbers
a in U for which D(n, a) remains bounded as a function of n. Erdôs [4, 5 ]
asked whether S(~) was necessarily a proper subset of U. This question
was answered in the affirmative by the author in the first paper [10] of
this series, where among other things it was shown that S(~) has Lebes-
gue measure zero. In the present paper we shall show that S(~) is at
most a countable set.

Recall that a number y is a limit point of a set S if there is a sequence
of distinct elements of S which converge to y. The derivative S(’) of S

1 Supported in part by Air Force Office of Scientific Research grant AF-AFOSR-
69-1712.
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consists of all the limit points of S. The higher derivatives are defined
inductively by S(d) = (S(d-1))(1) (d = 2, 3, ···). Our main theorem is
as follows.

THEOREM. S’uppose d &#x3E; 4K. Then S(d) (K) is empty.
No special importance attaches to the quantity 403BA which could be

somewhat reduced at the cost of further complications. But at the end
of this paper we shall exhibit a sequence 2 for which S(d) (d) is not empty
for d = 1, 2, ..., and hence 4K may not be replaced by K -s where
e &#x3E; 0. One shows easily by induction on d that a set S of real numbers
for which S(d) is empty is at most countable and is nowhere dense. We
therefore obtain the

COROLLARY. The sets S(03BA) are at most countable and they are nowhere
dense. The set S(~) is at most countable.

Let 0 be irrational and let cv = 03C9(03B8) be the sequence {03B8}, {203B8}, ···
where { } denotes fractional parts. One can easily show (see Hecke [6],
§ 6) that the numbers {k03B8} where k is an integer belong to S(~). In
answer to a question by Erdôs and Szüsz, it was shown by Kesten [7] 
that the numbers {k03B8} are the only elements of S(~). Hence in this case
the set S(~) is known and is countable.
Now let I be a subinterval of U of the type a  03BE ~ 03B2 and put

D(n, I) = |Z(n, 03B2)-Z(n, 03B1)-n(03B2-03B1)|. If 03C9 = 03C9(03B8), th en D (n, I ) is

bounded as a function of n if (Ostrowski [8]) and only if (Kesten [7]) 1
has length l(I) = 03B2-03B1 = {k03B8} where k is an integer. Hence in this
example there are continuum many intervals I for which D(n, I ) remains
bounded.

2. A proposition which implies the theorem

In what follows, U0 will be the open interval 0  03BE  1. All the

numbers 03B1, 03B2, 03B3, 03B4, 03B8, ~, 03BB, 03BC, 03B1i, 03B2i, ··· will be in U0. A neighborhood
of a number oc will by definition be an open interval containing a which
is contained in U°. It will be convenient to extend the definition of the
derivatives of a set S by putting S(0) = S. By I, J, ... we shall denote
intervals of the type a  n ~ b where the end points are integers with
0 ~ a  b. Such an interval of length 1(1) - b - a contains precisely
1(1) integers.
The sequence cv will be fixed throughout. For a in U0 we put

2 In fact it is Van der Corput’s sequence, as constructed in [3].
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so that D(n, 03B1) = lf(n, 03B1)|. We write

and

PROPOSITION. Suppose d ~ 0 and 8 &#x3E; 0. Let R be a set whose d-th

derivative R(d) has a non-empty intersection with UO.
Then there are w = 2d elements 03BB1, ···, 03BBw of R with neighborhoods

L1, ···, Lw and a number p such that

for every interval I with l(I) ~ p and every 03BC1 ~ L1, ···, 03BCw ~ Lw.
Applying this with 03BC1 = 03BB1, ···, 03BCt = 03BBt we see that there is a 03BBj with

h(I, 03BBj) &#x3E; 1 2(d + 1)-03B5. There are integers m, n with f(m, 03BBj)-f(n, 03BBj) &#x3E;

1 2(d+1)-03B5, hence with
max (D(m, 03BBj), D(n, 03BBj)) = max (|f(m, 03BBj)|, |f(n, 03BBj)|) &#x3E; 1 4(d+1)-1 203B5.
This shows that 03BBj ~ S(1 4(d + 1 ) - 8).
Now take R = S(1 4(d+1)-03B5). The assumption that an element oc of

U0 lies in R(d) leads to the contradiction that 03BBj ~ R and 03BBj ~ R. Hence
R(d) = S(d)(1 4(d+ 1 )-s) is empty except for the possible elements 0 and 1.
At any rate S(d+1) (1 4(d+1)- 03B5) is empty for d ~ 0, and hence S(d)(1 4d-03B5)
is empty for d ~ 1. It follows that S(d)(03BA) is empty for d &#x3E; 403BA.

Hence our proposition implies the theorem. The proposition will be
proved by induction on d. Its generality is necessary to carry out this
inductive proof.

3. Thé case d = 0

When d = 0 the hypotheses of the proposition are satisfied if R

consists of a single element 03B1 in Uo. In this case the conclusion must
hold with w = 2° = 1 and with 03BB1 = 03B1. Hence when d = 0 the proposi-
tion may be reformulated as follows.

LEMMA 1. Suppose OC is in U0 and 8 &#x3E; 0. There is a neighborhood A of
03B1 and a number p such that

for every fi in A and every interval I with l(I) ~ p.
For oc in U0 put
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Since 0 ~ c(03B1) ~ 1 2, Lemma 1 is a consequence of

LEMMA 2. The inequality (2) in Lemma 1 may be replaced by

PROOF. If a = y/z, then given any real 03C8 there are integers m, n with
1 ~ n ~ z and |n03B1-m-03C8| ~ c(03B1)/2. Now suppose that ot is irrational.

Kronecker’s Theorem implies that for every 03C8 there are positive integers
m, n with |n03B1-m-03C8|  B/8. Find particular solutions m, n for 03C8 = 0,
e/4, 203B5/4, ···, [403B5-1]03B5/4 (where [ ] denotes the integer part), and denote
the maximum of the numbers n so obtained by p. Then for every
there will be integers m, n with 1 ~ n ~ p and with |n03B1-m-03C8|  03B5/4.
Hence for every oc in U0 there is a p = p(ot, e) such that for every qi
there are integers m, n with

Let A be the neighborhood of oc consisting of numbers in U0 with
|03B2-03B1|p  03B5/4. For every P in A and every 03C8 there are integers m, n
with 1 ~ n ~ p and |n03B2-m-03C8|  1 2c(03B1)+1 203B5. Since this is true for

every 03C8, there will also be integers m, n with 1 ~ n ~ p and 0  n03B2-
m-03C8  c(03B1)+03B5. It is clear that the interval 1 ~ n ~ p may be replaced
by any interval I with l(I) ~ p. Thus for every such interval I and every
03C8 and for every p in A there are integers m, n with

Now choose integers m, n with

We have Z(n, 03B2) = f(n, 03B2)+n03B2 ~ g - (I, f3)+np &#x3E; m, whence Z(n, 03B2) ~
m + 1. This implies that

4. Variations on Lemma 2

Write
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Then there is a p and there are neighborhoods A of oc and B of f3 such that
for every y E A and ô E B and for every interval I with l(I) ~ p there are
two subintervals J and J’ with I(J) = l(J’) = q such that

for every n E J and every n’ E J’.

PROOF. We may assume that 03B1  03B2. Put po - [(03B2-(03B1)-1]. Every
number in U has a distance less than e/8 from at least one of the numbers
03B2-03B1, 2(03B2-03B1), ···, p0(03B2-03B1). Thus for every 03C8 there are integers m, n
with 1 ~ n ~ p0 and |n(03B2-03B1)-m-03C8|  03B5/8. Let A, B be disjoint
neighborhoods of a, fi such that elements y of A and à of B satisfy

respectively. For every y e A and Ô E B and for every there are integers
m, n with 1 ~ n ~ p0 and |n(03B4-03B3)-m-03C8|  03B5/4, and similarly there
are numbers m, n with 1 ~ n ~ p0 and 0  n(03B4-03B3)-m-03C8  03B5/2.
Here the interval 1 ~ n ~ p0 may be replaced by any interval Io with
l(I0) ~ p0.
Now suppose that y E A, b E B and l(I0) ~ p0. Let ni be the integer

in Io with

Choose integers m, no with

We have

whence Z(no, 03B4)-Z(n0, 03B3) ~ m + 1. This implies that

Since 03B1  03B2 and since A, B are disjoint, any elements y E A and ô E B
have y  ô. Moreover by (3) and (5) they satisfy

Put p = po + 2q and let I be an interval with l(I) ~ p. The interval I0
obtained from I by removing intervals of length q from both ends has
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l(I0) ~ p0. Hence for every y e A and 03B4 e B there are integers n0, n’0 in
Io with (6). Let J and J’ be the intervals

respectively. For every n in J and every n’ in J’ one has

by (7). These inequalities in conjunction with (6) yield (4). Since J and
J’ have length q and are contained in I, the lemma follows.
Write

The statement in Lemma 3 that (4) holds for n E J and n’c- J’ may now
be expressed by

We shall need the function

LEMMA 4. Suppose 03B81, ···, 03B8t belong to the derivative R(1) of some set R.
Let D1, ···, Dt be neighborhoods of 03B81, ···, 03B8t, respectively. Suppose
03B5 &#x3E; 0 and q ~ 1.

Then there is an r and there are elements 03B11, 03B21, ···, 03B1t, 03B2t of R with
neighborhoods A1, B1, ···, At, Bt satisfying Ai ~ Di, Bi ~ Di (i =
1, ..., t) and with the following property. For 03B31 ~ A1, 03B41 ~ B1, ···,
03B3t ~ At, 03B4t ~ Bt and for intervals I, I’ with l(I) ~ r, l(I’) ~ r there are
subintervals J ~ I and J’ ~ I’ with

and with

We shall apply this lemma only in the special case when I = l’. The
general formulation is necessary to carry out a proof by induction on t.

PROOF. Suppose at first that t = 1. Since 01 is a limit point of R,
there are elements 03B11, 03B21 of R which belong to D1 and which have

By Lemma 3 there is a p and there are neighborhoods A1, B1 of 03B11, 03B21
such that for every 03B31 ~ A1, 03B41 ~ B1 and for every I with l(I) ~ p there
are subintervals Jl , J2 of length q with
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We may shrink the neighborhoods A1, B1, if necessary, to get A1 ~ D1,
B1 ~ D1. If an interval I’ also has length l(I’) ~ p, the n I’ has subinter-
vals J’1, J’2 of length q with

By adding (9) and (10) we see that either

or

In the first case we take J = J1, J’ = J’2, and in the second case we take
J = J2, J’ = J’1. The inequality (8) is then true for i = 1. Hence when

t = 1, Lemma 4 is true with r = r(1) = p.
The induction from t-1 to t goes as follows. Construct al, 03B21, ···,

03B1t-1, 03B2t-1, A1, B1, ···, At-1, Bt-1 and r(t-1) such that (8) holds (under
the conditions stated in the lemma) for i = 1, ···, t-1. By the case
t = 1 we can find 03B1t, 03B2t in R with neighborhoods At, Bt contained in Dt
and a number r(1) such that for every 03B3t ~ At, 03B4t ~ Bt and for intervals
I, l’ with l(I) ~ r(1), l(I’) ~ r(1) there are subintervals I0 ~ I, I’0 ~ I’
with l(I0) = l(I’0) = r(t-1) such that

By our construction of 03B11, 03B21, ···, 03B1t-1, 03B2t-1, A1, B1, ···, At-1, Bt-1
and r(t-1) there are subintervals J ~ I0, J’ ~ I’0 with l(J) = l(J’) = q
such that (8) holds for i = 1, ···, t-1. Now in view of (11) and since
h(J, J’, 03B3t, 03B4t) ~ h(I0, I’0, 03B3t, 03B4t), the inequality (8) holds for i = 1, ···, t.
This shows that Lemma 4 is true with r = ,(1).

5. An inequality

LEMMA 5. Suppose a, fi belong to U0 and suppose that J, J’are sub-
intervals of an interval 1. Then

(12) h(I, oc) + h(I, 03B2) ~ h(J, J’, 03B1, 03B2)

PROOF. We may assume without loss of generality that
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for every n E J and every n’ E J’. Let ma , na , mp, np be integers in J with

Then

Similarly, there are elements m’03B1, n’03B1, m’03B2, n’03B2 of J’ such that

Applying (13) with n = m03B1, n’ = m’03B2 we obtain

Applying (13) with n = n03B2, n’ = n’03B1 we obtain

Adding these two inequalities and the four equations (14), (15), (16),
(17) we get

where

Since h(I, oc) ~ ~1, h(I, 03B1) ~ ~2, h(I, 03B2) ~ ~3, h(I, 03B2) ~ ~4, the lemma
follows.

6. Proof of the proposition

Lemma 1 shows the truth of the proposition when d = 0. From here
on we shall have d ~ 1, and we shall assume the truth of the proposition
for d -1 and proceed to prove it for d.
By this assumption we see that if a &#x3E; 0 and if R(d) and U0 have a

non-empty intersection, then there are t = 2d -1 elements 01, - - -, et of
R(l) with neighborhoods D1, ···, Dt and a number p(d-1) such that

for ~1 ~ D1, ···, ~t ~ Dt and every interval I with l(I) ~ p(d- 1). We now
apply Lemma 4 with these particular 03B81, ···, 03B8t, D1, ···, Dt and with
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q = p(d-1). We construct elements 03B11, 03B21, ···, 03B1t, 03B2t, of R with neighbor-
hoods A1, B1, ···, At, Bt and

with the properties enunciated in that lemma.
Now suppose that 1(/) = r and let 03B31, 03B41, ···, 03B3t, 03B4t be elements of

A1, B1, ···, At, Bt, respectively. There are subintervals J, J’ of I with

1(J) = 1(J’) = p(d-1) such that

Hence by Lemma 5 we have

Now 03B3j lies in Dj since 03B3j E Aj and Aj ~ Dj ( j = 1, ..., t). We therefore
may apply (18) with ~1 = 03B31, ···, ~t = 03B3t, and we obtain

More generally, each of the four quantities

exceeds t(1 2d-1 203B5). Taking the sum of the inequalities (20) with i = 1,..., t
and dividing by 2t we obtain

The w = 2t = 2 ’ 2d-1 = 2d quantities ,11 = 03B11, ···, 03BBt = 03B1t, 03BBt+1 =

03B21, ···, 03BB2t = 03B2t and their respective neighborhoods L1 = A1, ···, Lt =

At, Lt+1 = B1, ···, L2t = Bt and p = r where r is given by (19) have the
desired properties stated in the proposition. Namely, (21) shows that (1)
is true for every interval I with l(I) ~ p and arbitrary elements 03BC1, ···, 03BCw
in L1, ···, Lw.

7. An example

Let Ro be the set consisting of 0, and for integers d ? 1 let Rd be the
set consisting of 0 and of the numbers
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where t, Ul, ..., gt are integers with

(23) 1 ~ t ~ d and 1 ~ g1  g2  ···  gt.

LEMMA 6. For every d ~ 1,

PROOF. It is clear that Ri1) = Ro. We now proceed by induction on d
and assume that d ~ 2 and that R(1)d-1 = Rd-2. Since the relation

Rd-1 ~ R(1)d is rather obvious, it will remain for us to show that

R(1)d ~ Rd-1.
Let 03BE be the limit of a sequence of distinct numbers ~(1), ~(2), ···

of Rd; we have to show that 03BE lies in Rd-1. We clearly may assume that
none of the numbers ~(n) is 0. Let t(n), g1(n), ···, gt(n)(n) be the numbers
t, go , ..., gt in (22) which belong to 1J(n). In view of (23) there are only
finitely many numbers in Rd for which gt lies under a given upper bound,
and hence gt(n)(n) must tend to infinity. Therefore 03BE is also the limit of
the sequence (1), (2), ··· where

The numbers e (n) lie in Rd-1. If infinitely many of them are equal, then
their limit 03BE is in Rd-1. If infinitely many among them are distinct, then
we know by induction that their limit 03BE is in Rd-2, hence a fortiori in
Rd-1.
We now construct a sequence 03C90 = {03BE1, 03BE2, ···} as follows. We put

03BE1 = 0, and if k ~ 0 and if 03BE1, ···, 03BE2k have already been constructed,
then we define 03BE2k+1, ···, 03BE2k+1 by

Thus 03C90 = {0, 1 2, 1 4, 3 4, 1 8, 5 8, 3 8, 7 8, 1 16, ···}. ln what follows, the sets S(03BA)
will be defined in terms of this sequence (ùo.

LEMMA 7. For every integer d ~ 0,

Repeated application of Lemma 6 shows that R(d)d consists of 0, and
we obtain the

COROLLARY. The sets S(d) (d) are non-empty for d = 0, 1,2, ....
PROOF oF LEMMA 7. The assertion is true for d = 0 since S(0) contains

0. Assuming the truth of the lemma for d-1 we now proceed to prove it
for d. It will suf&#x26;ce to show that every element ~ of Rd of the type
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lies in S(d). Put  = 2-g1 + ··· + 2-gd-1. We know by our inductive
hypothesis that

The first 2 gd elements of ay are the numbersj2- gd ( j = 0, 1, ···, 2gd-1)
in some order. Hence there is precisely one to with 1 ~ t0 ~ 2gd and

çto = e. The other elements çt with 1 ~ t ~ 2gd lie outside the interval I
given by

Now if t’ = t+m2 gd where 1 ~ t ~ 2gd and where m is a nonnegative
integer, then

by repeated application of (24). Therefore çt lies in I precisely if t ~ t0
(mod 2gd). This implies that

hence that

Combining this inequality with (25) we obtain IZ(n, ~)-n~|  d, which
shows that 11 lies in S(d).
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