COMPOSITIO MATHEMATICA

WOLFGANG M. SCHMIDT Irregularities of distribution. VI

Compositio Mathematica, tome 24, nº 1 (1972), p. 63-74 http://www.numdam.org/item?id=CM 1972 24 1 63 0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

IRREGULARITIES OF DISTRIBUTION. VI

by

Wolfgang M. Schmidt¹

1. Introduction

We are interested in the distribution of an arbitrary sequence of numbers in an interval. We are thus returning to questions investigated in the first part [10] of the present series. However, the present paper can be read independently.

Let U be the unit interval consisting of numbers ξ with $0 < \xi \leq 1$, and let $\omega = \{\xi_1, \xi_2, \cdots\}$ be a sequence of numbers in this interval. Given an α in U and a positive integer n, we write $Z(n, \alpha)$ for the number of integers i with $1 \leq i \leq n$ and $0 \leq \xi_i < \alpha$. We put

$$D(n, \alpha) = |Z(n, \alpha) - n\alpha|.$$

The sequence ω is called *uniformly distributed* if D(n) = o(n), where D(n) is the supremum of $D(n, \alpha)$ over all numbers α in U. Answering a question of Van der Corput [3], Mrs. Van Aardenne-Ehrenfest [1] showed that D(n) cannot remain bounded. Later [2] she proved that there are infinitely many integers n with $D(n) > c_1 \log \log n/\log \log \log n$ where c_1 is a positive absolute constant, and K. F. Roth [9] improved this to $D(n) > c_2(\log n)^{\frac{1}{2}}$.

For $\kappa \ge 0$ let $S(\kappa)$ be the set of all numbers α in U with

$$D(n, \alpha) \leq \kappa$$
 $(n = 1, 2, \cdots).$

Further let $S(\infty)$ be the union of the sets $S(\kappa)$, i.e. the set of numbers α in U for which $D(n, \alpha)$ remains bounded as a function of n. Erdös [4, 5] asked whether $S(\infty)$ was necessarily a proper subset of U. This question was answered in the affirmative by the author in the first paper [10] of this series, where among other things it was shown that $S(\infty)$ has Lebesgue measure zero. In the present paper we shall show that $S(\infty)$ is at most a countable set.

Recall that a number γ is a *limit point* of a set S if there is a sequence of distinct elements of S which converge to γ . The *derivative* $S^{(1)}$ of S

¹ Supported in part by Air Force Office of Scientific Research grant AF-AFOSR-69-1712.

consists of all the limit points of S. The higher derivatives are defined inductively by $S^{(d)} = (S^{(d-1)})^{(1)}$ $(d = 2, 3, \cdots)$. Our main theorem is as follows.

THEOREM. Suppose $d > 4\kappa$. Then $S^{(d)}(\kappa)$ is empty.

No special importance attaches to the quantity 4κ which could be somewhat reduced at the cost of further complications. But at the end of this paper we shall exhibit a sequence² for which $S^{(d)}(d)$ is not empty for $d = 1, 2, \cdots$, and hence 4κ may not be replaced by $\kappa -\varepsilon$ where $\varepsilon > 0$. One shows easily by induction on d that a set S of real numbers for which $S^{(d)}$ is empty is at most countable and is nowhere dense. We therefore obtain the

COROLLARY. The sets $S(\kappa)$ are at most countable and they are nowhere dense. The set $S(\infty)$ is at most countable.

Let θ be irrational and let $\omega = \omega(\theta)$ be the sequence $\{\theta\}, \{2\theta\}, \cdots$ where $\{\}$ denotes fractional parts. One can easily show (see Hecke [6], § 6) that the numbers $\{k\theta\}$ where k is an integer belong to $S(\infty)$. In answer to a question by Erdös and Szüsz, it was shown by Kesten [7] that the numbers $\{k\theta\}$ are the only elements of $S(\infty)$. Hence in this case the set $S(\infty)$ is known and is countable.

Now let *I* be a subinterval of *U* of the type $\alpha < \xi \leq \beta$ and put $D(n, I) = |Z(n, \beta) - Z(n, \alpha) - n(\beta - \alpha)|$. If $\omega = \omega(\theta)$, then D(n, I) is bounded as a function of *n* if (Ostrowski [8]) and only if (Kesten [7]) *I* has length $l(I) = \beta - \alpha = \{k\theta\}$ where *k* is an integer. Hence in this example there are *continuum many intervals I* for which D(n, I) remains bounded.

2. A proposition which implies the theorem

In what follows, U^0 will be the open interval $0 < \xi < 1$. All the numbers α , β , γ , δ , θ , η , λ , μ , α_i , β_i , \cdots will be in U^0 . A neighborhood of a number α will by definition be an open interval containing α which is contained in U^0 . It will be convenient to extend the definition of the derivatives of a set S by putting $S^{(0)} = S$. By I, J, \cdots we shall denote intervals of the type $a < n \leq b$ where the end points are integers with $0 \leq a < b$. Such an interval of length l(I) = b - a contains precisely l(I) integers.

The sequence ω will be fixed throughout. For α in U^0 we put

$$f(n,\alpha)=Z(n,\alpha)-n\alpha,$$

² In fact it is Van der Corput's sequence, as constructed in [3].

so that $D(n, \alpha) = |f(n, \alpha)|$. We write

$$g^+(I, \alpha) = \max_{n \in I} f(n, \alpha), \ g^-(I, \alpha) = \min_{n \in I} f(n, \alpha)$$

and

$$h(I, \alpha) = g^+(I, \alpha) - g^-(I, \alpha).$$

PROPOSITION. Suppose $d \ge 0$ and $\varepsilon > 0$. Let R be a set whose d-th derivative $R^{(d)}$ has a non-empty intersection with U^0 .

Then there are $w = 2^d$ elements $\lambda_1, \dots, \lambda_w$ of R with neighborhoods L_1, \dots, L_w and a number p such that

(1)
$$w^{-1} \sum_{j=1}^{w} h(I, \mu_j) > \frac{1}{2}(d+1) - \varepsilon$$

for every interval I with $l(I) \ge p$ and every $\mu_1 \in L_1, \dots, \mu_w \in L_w$.

Applying this with $\mu_1 = \lambda_1, \dots, \mu_t = \lambda_t$ we see that there is a λ_j with $h(I, \lambda_j) > \frac{1}{2}(d+1) - \varepsilon$. There are integers m, n with $f(m, \lambda_j) - f(n, \lambda_j) > \frac{1}{2}(d+1) - \varepsilon$, hence with

 $\max (D(m, \lambda_j), D(n, \lambda_j)) = \max (|f(m, \lambda_j)|, |f(n, \lambda_j)|) > \frac{1}{4}(d+1) - \frac{1}{2}\varepsilon.$ This shows that $\lambda_i \notin S(\frac{1}{4}(d+1) - \varepsilon)$.

Now take $R = S(\frac{1}{4}(d+1)-\varepsilon)$. The assumption that an element α of U^0 lies in $R^{(d)}$ leads to the contradiction that $\lambda_j \in R$ and $\lambda_j \notin R$. Hence $R^{(d)} = S^{(d)}(\frac{1}{4}(d+1)-\varepsilon)$ is empty except for the possible elements 0 and 1. At any rate $S^{(d+1)}(\frac{1}{4}(d+1)-\varepsilon)$ is empty for $d \ge 0$, and hence $S^{(d)}(\frac{1}{4}d-\varepsilon)$ is empty for $d \ge 1$. It follows that $S^{(d)}(\kappa)$ is empty for $d > 4\kappa$.

Hence our proposition implies the theorem. The proposition will be proved by induction on d. Its generality is necessary to carry out this inductive proof.

3. The case d = 0

When d = 0 the hypotheses of the proposition are satisfied if R consists of a single element α in U^0 . In this case the conclusion must hold with $w = 2^0 = 1$ and with $\lambda_1 = \alpha$. Hence when d = 0 the proposition may be reformulated as follows.

LEMMA 1. Suppose α is in U^0 and $\varepsilon > 0$. There is a neighborhood A of α and a number p such that

(2)
$$h(I,\beta) > \frac{1}{2} - \varepsilon$$

for every β in A and every interval I with $l(I) \ge p$. For α in U^0 put

$$c(\alpha) = \begin{cases} 0 \text{ if } \alpha \text{ is irrational,} \\ 1/z \text{ if } \alpha = y/z \text{ with coprime positive integers } y, z. \end{cases}$$

[3]

Since $0 \leq c(\alpha) \leq \frac{1}{2}$, Lemma 1 is a consequence of

LEMMA 2. The inequality (2) in Lemma 1 may be replaced by

$$h(I,\beta)>1-c(\alpha)-\varepsilon.$$

PROOF. If $\alpha = y/z$, then given any real ψ there are integers m, n with $1 \leq n \leq z$ and $|n\alpha - m - \psi| \leq c(\alpha)/2$. Now suppose that α is irrational. Kronecker's Theorem implies that for every ψ there are positive integers m, n with $|n\alpha - m - \psi| < \varepsilon/8$. Find particular solutions m, n for $\psi = 0$, $\varepsilon/4, 2\varepsilon/4, \cdots, [4\varepsilon^{-1}]\varepsilon/4$ (where [] denotes the integer part), and denote the maximum of the numbers n so obtained by p. Then for every ψ there will be integers m, n with $1 \leq n \leq p$ and with $|n\alpha - m - \psi| < \varepsilon/4$. Hence for every α in U^0 there is a $p = p(\alpha, \varepsilon)$ such that for every ψ there are integers m, n with

$$1 \leq n \leq p$$
 and $|n\alpha - m - \psi| < \frac{1}{2}c(\alpha) + \frac{1}{4}\varepsilon$.

Let *A* be the neighborhood of α consisting of numbers β in U^0 with $|\beta - \alpha| p < \varepsilon/4$. For every β in *A* and every ψ there are integers *m*, *n* with $1 \leq n \leq p$ and $|n\beta - m - \psi| < \frac{1}{2}c(\alpha) + \frac{1}{2}\varepsilon$. Since this is true for every ψ , there will also be integers *m*, *n* with $1 \leq n \leq p$ and $0 < n\beta - m - \psi < c(\alpha) + \varepsilon$. It is clear that the interval $1 \leq n \leq p$ may be replaced by any interval *I* with $l(I) \geq p$. Thus for every such interval *I* and every ψ and for every β in *A* there are integers *m*, *n* with

$$n \in I$$
 and $0 < n\beta - m - \psi < c(\alpha) + \varepsilon$.

Now choose integers m, n with

$$n \in I$$
 and $0 < n\beta - m + g^{-}(I, \beta) < c(\alpha) + \varepsilon$.

We have $Z(n, \beta) = f(n, \beta) + n\beta \ge g^{-}(I, \beta) + n\beta > m$, whence $Z(n, \beta) \ge m+1$. This implies that

$$h(I, \beta) = g^+(I, \beta) - g^-(I, \beta)$$

$$\geq Z(n, \beta) - n\beta - g^-(I, \beta)$$

$$> m + 1 - n\beta + (n\beta - m - c(\alpha) - \varepsilon)$$

$$= 1 - c(\alpha) - \varepsilon.$$

4. Variations on Lemma 2

Write

$$f(n, \alpha, \beta) = f(n, \beta) - f(n, \alpha) = Z(n, \beta) - Z(n, \alpha) - n(\beta - \alpha).$$

Lemma 3. Suppose $\varepsilon > 0, q \ge 1$ and

(3)
$$0 < |\alpha - \beta| < \varepsilon/(8q).$$

Then there is a p and there are neighborhoods A of α and B of β such that for every $\gamma \in A$ and $\delta \in B$ and for every interval I with $l(I) \ge p$ there are two subintervals J and J' with l(J) = l(J') = q such that

(4)
$$f(n, \gamma, \delta) - f(n', \gamma, \delta) > 1 - \varepsilon$$

for every $n \in J$ and every $n' \in J'$.

[5]

PROOF. We may assume that $\alpha < \beta$. Put $p_0 = [(\beta - \alpha)^{-1}]$. Every number in U has a distance less than $\varepsilon/8$ from at least one of the numbers $\beta - \alpha$, $2(\beta - \alpha)$, \cdots , $p_0(\beta - \alpha)$. Thus for every ψ there are integers m, nwith $1 \le n \le p_0$ and $|n(\beta - \alpha) - m - \psi| < \varepsilon/8$. Let A, B be disjoint neighborhoods of α, β such that elements γ of A and δ of B satisfy

(5)
$$16|\gamma-\alpha| \max(q, p_0) < \varepsilon$$
 and $16|\delta-\beta| \max(q, p_0) < \varepsilon$,

respectively. For every $\gamma \in A$ and $\delta \in B$ and for every ψ there are integers m, n with $1 \leq n \leq p_0$ and $|n(\delta - \gamma) - m - \psi| < \varepsilon/4$, and similarly there are numbers m, n with $1 \leq n \leq p_0$ and $0 < n(\delta - \gamma) - m - \psi < \varepsilon/2$. Here the interval $1 \leq n \leq p_0$ may be replaced by any interval I_0 with $l(I_0) \geq p_0$.

Now suppose that $\gamma \in A$, $\delta \in B$ and $l(I_0) \ge p_0$. Let n'_0 be the integer in I_0 with

$$f(n'_0, \gamma, \delta) = \min_{n \in I_0} f(n, \gamma, \delta).$$

Choose integers m, n_0 with

$$n_0 \in I_0$$
 and $0 < n_0(\delta - \gamma) - m + f(n'_0, \gamma, \delta) < \varepsilon/2$.

We have

$$Z(n_0, \delta) - Z(n_0, \gamma) = f(n_0, \gamma, \delta) + n_0(\delta - \gamma) \ge f(n'_0, \gamma, \delta) + n_0(\delta - \gamma) > m,$$

whence $Z(n_0, \delta) - Z(n_0, \gamma) \ge m + 1$. This implies that

(6)

$$f(n_0, \gamma, \delta) - f(n'_0, \gamma, \delta) \ge m + 1 - n_0(\delta - \gamma) - f(n'_0, \gamma, \delta)$$

$$> m + 1 - m - \frac{1}{2}\varepsilon$$

$$= 1 - \frac{1}{2}\varepsilon.$$

Since $\alpha < \beta$ and since A, B are disjoint, any elements $\gamma \in A$ and $\delta \in B$ have $\gamma < \delta$. Moreover by (3) and (5) they satisfy

(7)
$$0 < q(\delta - \gamma) < \varepsilon/4.$$

Put $p = p_0 + 2q$ and let I be an interval with $l(I) \ge p$. The interval I_0 obtained from I by removing intervals of length q from both ends has

 $l(I_0) \ge p_0$. Hence for every $\gamma \in A$ and $\delta \in B$ there are integers n_0, n'_0 in I_0 with (6). Let J and J' be the intervals

$$n_0 < n \le n_0 + q$$
 and $n'_0 - q < n' \le n'_0$,

respectively. For every n in J and every n' in J' one has

$$f(n, \gamma, \delta) - f(n_0, \gamma, \delta) \ge -(\delta - \gamma)(n - n_0) \ge -q(\delta - \gamma) > -\varepsilon/4,$$

$$f(n', \gamma, \delta) - f(n'_0, \gamma, \delta) < \varepsilon/4$$

by (7). These inequalities in conjunction with (6) yield (4). Since J and J' have length q and are contained in I, the lemma follows.

Write

$$g^+(J, \alpha, \beta) = \max_{n \in J} f(n, \alpha, \beta), g^-(J, \alpha, \beta) = \min_{n \in J} f(n, \alpha, \beta).$$

The statement in Lemma 3 that (4) holds for $n \in J$ and $n' \in J'$ may now be expressed by

$$g^{-}(J, \gamma, \delta) - g^{+}(J', \gamma, \delta) > 1 - \varepsilon.$$

We shall need the function

$$h(J, J', \alpha, \beta) = \max \left(g^{-}(J, \alpha, \beta) - g^{+}(J', \alpha, \beta), g^{-}(J', \alpha, \beta) - g^{+}(J, \alpha, \beta)\right).$$

LEMMA 4. Suppose $\theta_1, \dots, \theta_t$ belong to the derivative $R^{(1)}$ of some set R. Let D_1, \dots, D_t be neighborhoods of $\theta_1, \dots, \theta_t$, respectively. Suppose $\varepsilon > 0$ and $q \ge 1$.

Then there is an r and there are elements $\alpha_1, \beta_1, \dots, \alpha_t, \beta_t$ of R with neighborhoods $A_1, B_1, \dots, A_t, B_t$ satisfying $A_i \subseteq D_i$, $B_i \subseteq D_i$ $(i = 1, \dots, t)$ and with the following property. For $\gamma_1 \in A_1$, $\delta_1 \in B_1, \dots, \gamma_t \in A_t$, $\delta_t \in B_t$ and for intervals I, I' with $l(I) \ge r$, $l(I') \ge r$ there are subintervals $J \subseteq I$ and $J' \subseteq I'$ with

$$l(J) = l(J') = q$$

and with

(8)
$$h(J, J', \gamma_i, \delta_i) > 1-\varepsilon \qquad (i = 1, \cdots, t).$$

We shall apply this lemma only in the special case when I = I'. The general formulation is necessary to carry out a proof by induction on t.

PROOF. Suppose at first that t = 1. Since θ_1 is a limit point of R, there are elements α_1, β_1 of R which belong to D_1 and which have

$$0 < |\alpha_1 - \beta_1| < \varepsilon/(8q)$$

By Lemma 3 there is a p and there are neighborhoods A_1 , B_1 of α_1 , β_1 such that for every $\gamma_1 \in A_1$, $\delta_1 \in B_1$ and for every I with $l(I) \ge p$ there are subintervals J_1 , J_2 of length q with

Irregularities of distribution. VI

(9)
$$g^{-}(J_1,\gamma_1,\delta_1)-g^{+}(J_2,\gamma_1,\delta_1)>1-\varepsilon.$$

We may shrink the neighborhoods A_1 , B_1 , if necessary, to get $A_1 \subseteq D_1$, $B_1 \subseteq D_1$. If an interval I' also has length $l(I') \ge p$, then I' has subintervals J'_1, J'_2 of length q with

(10)
$$g^{-}(J'_1,\gamma_1,\delta_1)-g^{+}(J'_2,\gamma_1,\delta_1)>1-\varepsilon.$$

By adding (9) and (10) we see that either

or

$$g^{-}(J_{1}, \gamma_{1}, \delta_{1}) - g^{+}(J_{2}', \gamma_{1}, \delta_{1}) > 1 - \varepsilon$$
$$g^{-}(J_{1}', \gamma_{1}, \delta_{1}) - g^{+}(J_{2}, \gamma_{1}, \delta_{1}) > 1 - \varepsilon.$$

In the first case we take $J = J_1$, $J' = J'_2$, and in the second case we take $J = J_2$, $J' = J'_1$. The inequality (8) is then true for i = 1. Hence when t = 1, Lemma 4 is true with $r = r^{(1)} = p$.

The induction from t-1 to t goes as follows. Construct $\alpha_1, \beta_1, \dots, \alpha_{t-1}, \beta_{t-1}, A_1, B_1, \dots, A_{t-1}, B_{t-1}$ and $r^{(t-1)}$ such that (8) holds (under the conditions stated in the lemma) for $i = 1, \dots, t-1$. By the case t = 1 we can find α_t, β_t in R with neighborhoods A_t, B_t contained in D_t and a number $\bar{r}^{(1)}$ such that for every $\gamma_t \in A_t, \delta_t \in B_t$ and for intervals I, I' with $l(I) \geq \bar{r}^{(1)}, l(I') \geq \bar{r}^{(1)}$ there are subintervals $I_0 \subseteq I, I'_0 \subseteq I'$ with $l(I_0) = l(I'_0) = r^{(t-1)}$ such that

(11)
$$h(I_0, I'_0, \gamma_t, \delta_t) > 1 - \varepsilon.$$

By our construction of $\alpha_1, \beta_1, \dots, \alpha_{t-1}, \beta_{t-1}, A_1, B_1, \dots, A_{t-1}, B_{t-1}$ and $r^{(t-1)}$ there are subintervals $J \subseteq I_0, J' \subseteq I'_0$ with l(J) = l(J') = qsuch that (8) holds for $i = 1, \dots, t-1$. Now in view of (11) and since $h(J, J', \gamma_t, \delta_t) \ge h(I_0, I'_0, \gamma_t, \delta_t)$, the inequality (8) holds for $i = 1, \dots, t$. This shows that Lemma 4 is true with $r = \bar{r}^{(1)}$.

5. An inequality

LEMMA 5. Suppose α , β belong to U^0 and suppose that J, J' are subintervals of an interval I. Then

(12)
$$h(I, \alpha) + h(I, \beta) \ge h(J, J', \alpha, \beta) + \frac{1}{2}(h(J, \alpha) + h(J, \beta) + h(J', \alpha) + h(J', \beta)).$$

PROOF. We may assume without loss of generality that

$$h(J, J', \alpha, \beta) = g^{-}(J, \alpha, \beta) - g^{+}(J', \alpha, \beta).$$

Then we have $f(n, \alpha, \beta) - f(n', \alpha, \beta) \ge h(J, J', \alpha, \beta)$, i.e.

(13)
$$f(n,\beta)-f(n,\alpha)-f(n',\beta)+f(n',\alpha) \ge h(J,J',\alpha,\beta)$$

[7]

for every $n \in J$ and every $n' \in J'$. Let m_{α} , n_{α} , m_{β} , n_{β} be integers in J with

$$f(m_{\alpha}, \alpha) = g^{+}(J, \alpha), \quad f(n_{\alpha}, \alpha) = g^{-}(J, \alpha),$$

$$f(m_{\beta}, \beta) = g^{+}(J, \beta), \quad f(n_{\beta}, \beta) = g^{-}(J, \beta).$$

Then

70

(14)
$$f(m_{\alpha}, \alpha) - f(n_{\alpha}, \alpha) = h(J, \alpha),$$

(15)
$$f(m_{\beta},\beta)-f(n_{\beta},\beta) = h(J,\beta).$$

Similarly, there are elements m'_{α} , n'_{α} , m'_{β} , n'_{β} of J' such that

(16)
$$f(m'_{\alpha}, \alpha) - f(n'_{\alpha}, \alpha) = h(J', \alpha),$$

(17)
$$f(m'_{\beta},\beta)-f(n'_{\beta},\beta)=h(J',\beta).$$

Applying (13) with $n = m_{\alpha}$, $n' = m'_{\beta}$ we obtain

$$f(m_{\alpha},\beta)-f(m_{\alpha},\alpha)-f(m_{\beta}',\beta)+f(m_{\beta}',\alpha) \geq h(J,J',\alpha,\beta).$$

Applying (13) with $n = n_{\beta}, n' = n'_{\alpha}$ we obtain

$$f(n_{\beta},\beta)-f(n_{\beta},\alpha)-f(n'_{\alpha},\beta)+f(n'_{\alpha},\alpha) \geq h(J,J',\alpha,\beta).$$

Adding these two inequalities and the four equations (14), (15), (16), (17) we get

 $\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4 \ge 2h(J, J', \alpha, \beta) + h(J, \alpha) + h(J, \beta) + h(J', \alpha) + h(J', \beta),$ where

$$\begin{aligned} \varphi_1 &= f(m'_{\alpha}, \alpha) - f(n_{\alpha}, \alpha), \quad \varphi_2 &= f(m'_{\beta}, \alpha) - f(n_{\beta}, \alpha), \\ \varphi_3 &= f(m_{\beta}, \beta) - f(n'_{\beta}, \beta), \quad \varphi_4 &= f(m_{\alpha}, \beta) - f(n'_{\alpha}, \beta). \end{aligned}$$

Since $h(I, \alpha) \ge \varphi_1$, $h(I, \alpha) \ge \varphi_2$, $h(I, \beta) \ge \varphi_3$, $h(I, \beta) \ge \varphi_4$, the lemma follows.

6. Proof of the proposition

Lemma 1 shows the truth of the proposition when d = 0. From here on we shall have $d \ge 1$, and we shall assume the truth of the proposition for d-1 and proceed to prove it for d.

By this assumption we see that if $\varepsilon > 0$ and if $R^{(d)}$ and U^0 have a non-empty intersection, then there are $t = 2^{d-1}$ elements $\theta_1, \dots, \theta_t$ of $R^{(1)}$ with neighborhoods D_1, \dots, D_t and a number $p^{(d-1)}$ such that

(18)
$$t^{-1} \sum_{j=1}^{t} h(I, \eta_j) > \frac{1}{2} d - \frac{1}{2} \varepsilon$$

for $\eta_1 \in D_1, \dots, \eta_t \in D_t$ and every interval *I* with $l(I) \ge p^{(d-1)}$. We now apply Lemma 4 with these particular $\theta_1, \dots, \theta_t, D_1, \dots, D_t$ and with

 $q = p^{(d-1)}$. We construct elements $\alpha_1, \beta_1, \dots, \alpha_t, \beta_t$ of R with neighborhoods $A_1, B_1, \dots, A_t, B_t$ and

(19)
$$r = r(\theta_1, \cdots, \theta_t; \boldsymbol{D}_1, \cdots, \boldsymbol{D}_t; p^{(d-1)})$$

with the properties enunciated in that lemma.

Now suppose that l(I) = r and let $\gamma_1, \delta_1, \dots, \gamma_t, \delta_t$ be elements of $A_1, B_1, \dots, A_t, B_t$, respectively. There are subintervals J, J' of I with $l(J) = l(J') = p^{(d-1)}$ such that

$$h(J, J', \gamma_i, \delta_i) > 1 - \varepsilon$$
 $(i = 1, \dots, t).$

Hence by Lemma 5 we have

.

(20)
$$h(I, \gamma_i) + h(I, \delta_i) > (1-\varepsilon) + \frac{1}{2}(h(J, \gamma_i) + h(J, \delta_i) + h(J', \gamma_i) + h(J', \delta_i)) \qquad (i = 1, \dots, t).$$

Now γ_j lies in D_j since $\gamma_j \in A_j$ and $A_j \subseteq D_j$ $(j = 1, \dots, t)$. We therefore may apply (18) with $\eta_1 = \gamma_1, \dots, \eta_t = \gamma_t$, and we obtain

$$\sum_{j=1}^{t} h(J, \gamma_j) > t(\frac{1}{2}d - \frac{1}{2}\varepsilon).$$

More generally, each of the four quantities

$$\chi_1 = \sum_{j=1}^t h(J, \gamma_j), \chi_2 = \sum_{j=1}^t h(J, \delta_j), \chi_3 = \sum_{j=1}^t h(J', \gamma_j), \chi_4 = \sum_{j=1}^t h(J', \delta_j)$$

exceeds $t(\frac{1}{2}d - \frac{1}{2}\varepsilon)$. Taking the sum of the inequalities (20) with $i = 1, \dots, t$ and dividing by 2t we obtain

(21)
$$(2t)^{-1} (\sum_{i=1}^{l} h(I, \gamma_i) + \sum_{i=1}^{l} h(I, \delta_i)) > (\frac{1}{2} - \frac{1}{2}\varepsilon) + (4t)^{-1} (\chi_1 + \chi_2 + \chi_3 + \chi_4)$$

> $\frac{1}{2}(d+1) - \varepsilon.$

The $w = 2t = 2 \cdot 2^{d-1} = 2^d$ quantities $\lambda_1 = \alpha_1, \dots, \lambda_t = \alpha_t, \lambda_{t+1} = \beta_1, \dots, \lambda_{2t} = \beta_t$ and their respective neighborhoods $L_1 = A_1, \dots, L_t = A_t, L_{t+1} = B_1, \dots, L_{2t} = B_t$ and p = r where r is given by (19) have the desired properties stated in the proposition. Namely, (21) shows that (1) is true for every interval I with $l(I) \ge p$ and arbitrary elements μ_1, \dots, μ_w in L_1, \dots, L_w .

7. An example

Let R_0 be the set consisting of 0, and for integers $d \ge 1$ let R_d be the set consisting of 0 and of the numbers

(22)
$$2^{-g_1} + \cdots + 2^{-g_t}$$

[9]

where t, g_1, \dots, g_t are integers with

(23)
$$1 \leq t \leq d \text{ and } 1 \leq g_1 < g_2 < \cdots < g_t.$$

LEMMA 6. For every $d \geq 1$,

$$R_d^{(1)} = R_{d-1}$$

PROOF. It is clear that $R_1^{(1)} = R_0$. We now proceed by induction on d and assume that $d \ge 2$ and that $R_{d-1}^{(1)} = R_{d-2}$. Since the relation $R_{d-1} \subseteq R_d^{(1)}$ is rather obvious, it will remain for us to show that $R_d^{(1)} \subseteq R_{d-1}$.

Let ξ be the limit of a sequence of distinct numbers $\eta(1), \eta(2), \cdots$ of R_d ; we have to show that ξ lies in R_{d-1} . We clearly may assume that none of the numbers $\eta(n)$ is 0. Let $t(n), g_1(n), \cdots, g_{t(n)}(n)$ be the numbers t, g_1, \cdots, g_t in (22) which belong to $\eta(n)$. In view of (23) there are only finitely many numbers in R_d for which g_t lies under a given upper bound, and hence $g_{t(n)}(n)$ must tend to infinity. Therefore ξ is also the limit of the sequence $\hat{\eta}(1), \hat{\eta}(2), \cdots$ where

$$\hat{\eta}(n) = \eta(n) - 2^{-g_{t(n)}(n)}.$$

The numbers $\hat{\eta}(n)$ lie in R_{d-1} . If infinitely many of them are equal, then their limit ξ is in R_{d-1} . If infinitely many among them are distinct, then we know by induction that their limit ξ is in R_{d-2} , hence a fortiori in R_{d-1} .

We now construct a sequence $\omega_0 = \{\xi_1, \xi_2, \cdots\}$ as follows. We put $\xi_1 = 0$, and if $k \ge 0$ and if ξ_1, \cdots, ξ_{2^k} have already been constructed, then we define $\xi_{2^{k+1}}, \cdots, \xi_{2^{k+1}}$ by

(24)
$$\xi_{2^{k+t}} = \xi_t + \frac{1}{2^{k+1}} \qquad (t = 1, \dots, 2^k).$$

Thus $\omega_0 = \{0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{5}{8}, \frac{3}{8}, \frac{7}{8}, \frac{1}{16}, \cdots\}$. In what follows, the sets $S(\kappa)$ will be defined in terms of this sequence ω_0 .

LEMMA 7. For every integer $d \ge 0$,

$$R_d \subseteq S(d).$$

Repeated application of Lemma 6 shows that $R_d^{(d)}$ consists of 0, and we obtain the

COROLLARY. The sets $S^{(d)}(d)$ are non-empty for $d = 0, 1, 2, \cdots$.

PROOF OF LEMMA 7. The assertion is true for d = 0 since S(0) contains 0. Assuming the truth of the lemma for d-1 we now proceed to prove it for d. It will suffice to show that every element η of R_d of the type

$$\eta = 2^{-g_1} + \cdots + 2^{-g_d}$$

lies in S(d). Put $\hat{\eta} = 2^{-g_1} + \cdots + 2^{-g_{d-1}}$. We know by our inductive hypothesis that

(25)
$$|Z(n,\hat{\eta})-n\hat{\eta}| \leq d-1 \qquad (n=1,2,\cdots).$$

The first 2^{g_d} elements of ω_0 are the numbers $j2^{-g_d}$ $(j = 0, 1, \dots, 2^{g_d} - 1)$ in some order. Hence there is precisely one t_0 with $1 \leq t_0 \leq 2^{g_d}$ and $\xi_{t_0} = \hat{\eta}$. The other elements ξ_t with $1 \leq t \leq 2^{g_d}$ lie outside the interval I given by

$$\hat{\eta} \leq \xi < \eta = \hat{\eta} + 2^{-g_d}.$$

Now if $t' = t + m2^{g_a}$ where $1 \le t \le 2^{g_a}$ and where m is a nonnegative integer, then

$$\xi_t \leq \xi_{t'} < \xi_t + 2^{-g_d - 1} + 2^{-g_d - 2} + \cdots = \xi_t + 2^{-g_d}$$

by repeated application of (24). Therefore ξ_t lies in I precisely if $t \equiv t_0 \pmod{2^{g_d}}$. This implies that

$$n2^{-g_d} - 1 < Z(n, \eta) - Z(n, \hat{\eta}) < n2^{-g_d} + 1$$
 $(n = 1, 2, \cdots),$

hence that

$$|Z(n, \eta) - Z(n, \hat{\eta}) - n(\eta - \hat{\eta})|$$

= $|Z(n, \eta) - Z(n, \hat{\eta}) - n2^{-g_d}| < 1 \qquad (n = 1, 2, \cdots).$

Combining this inequality with (25) we obtain $|Z(n, \eta) - n\eta| < d$, which shows that η lies in S(d).

REFERENCES

T. VAN AARDENNE-EHRENFEST

- [1] Proof of the impossibility of a just distribution, etc. Indag. Math. 7 (1945), 71-76.
- T. VAN AARDENNE-EHRENFEST
- [2] On the impossibility of a just distribution. Ibid. 11 (1949), 264–269.
- J. G. VAN DER CORPUT
- [3] Verteilungsfunktionen. I. Proc. Kon. Ned. Akad. v. Wetensch. 38 (1935), 813-821.

P. Erdös

[4] Some unsolved problems. Publ. Math. Inst. Hung. Acad. Sci. 6 (1961), 221–254. P. ERDÖS

[5] Problems and results on diophantine approximations. Compositio Math. 16 (1964), 52-56. (Nijenrode lecture 1962).

E. HECKE

[6] Über analytische Funktionen und die Verteilung von Zahlen mod Eins. Abh. Math. Sem. Hamburg 1 (1922), 54–76.

H. KESTEN

- [7] On a conjecture of Erdös and Szüsz related to uniform distribution mod 1. Acta Arith. 12 (1966/67), 193-212.
- A. Ostrowski
- [8] Math. Miszellen. IX. Notiz zur Theorie der Diophantischen Approximationen. Jber. Deutsch. Math. Ver. 36 (1927), 178–180.
- K. F. Roth
- [9] On Irregularities of Distribution. Mathematika 7 (1954), 73-79.

W. M. SCHMIDT

[10] Irregularities of Distribution. Quarterly J. of Math. (Oxford) 19 (1968), 181-191.

(Oblatum 30-XI-1970)

Department of Mathematics University of Colorado Boulder, Colorado 80302, U.S.A.