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We are interested in studying the topological behavior of a complex
flow near a generic singular point. Recall the classical analytic theories
of Poincaré and Siegel [3, 5]: x = (x1, ···, xn) are standard complex
coordinates in Cn. (P is the holomorphic complex flow generated by the
vector field

We have made the canonical identification of C" with the tangent space
at each of its points in writing this formula. It is assumed that X(x) has
an isolated zero at the origin. One then wîshes to know when there is a
holomorphic change of coordinates defined in some neighbourhood of the
origin which ’linearizes’ X. Precisely, this means the following: If h is a
holomorphic isomorphism, then h acts on the space of holomorphic
vector fields by the conjugation 03B3h:

If there is an h defined in a neighborhood of the origin so that

J

then we say h linearizes X. 

The theories of Poincaré and Spiegel begin by formally trying to
solve recursion formulas for the Taylor coefficients of a linearization of
X. Let A be the matrix of linear coefficients of X:

In formally solving for a linearization h, one finds that if the eigenvalues
ç 1 , ..., Çn of A satisfy a relation of the form

1 Research partially supported by the National Science Foundation (GP-7952X2)
and the British Science Research Council.
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then one cannot even formally solve the recursion formulas for the Taylor
expansion of h. This corresponds to the geometrical fact that Xl(x) = Ax
has a holomorphic first integral while X(x) generally will not.
At this point the theories of Poincaré and Siegel diverge, depending

upon the location of the 03BEi in the complex plane. If all of the 03BEi lie in a
half plane whose boundary contains the origin, then Poincaré proves
without difficulty that the formal linearization of X converges if no rela-
tion (*) holds; thus the formal linearization defines a linearization h.
The points of C" which satisfy a relation (*) and whose coordinates lie
in a half plane containing the origin in its boundary form an isolated set.
Following Arnold [1 ], we call {z ~ Cn : 0 ~ convex hull {z1, ···, zn}} the
Poincaré domain n.
The complement of Il in C" is the Siegel domaine. The set of points

of 1 satisfying a relation (*) is not isolated in Z. If a formal linearization
of X(x) exists with (03BE1, ···, 03BEn) ~ 03A3, it is no longer an easy task to
determine whether the formal linearization converges. Siegel’s theorem
asserts that there is a set T ce Z of measure zero such that if (03BE1, ···, 03BEn) ~
1 - T, then X does have a linearization.

Analogous theorems have been proved in the real Coo category by
Sternberg [7]. Sternberg proves that if the linear part of a smooth vector
field X with isolated zero at the origin in Rn has eigenvalues which do not
satisfy a relation (*), then there is a local Coo diffeomorphism h such that
X conjugated by h is a linear vector field near the origin.
Our concern is with cruder results which reflect only the topological

structure of a flow. Especially, we want to investigate equivalence rela-
tions whose equivalence classes contain open sets in a space of vector
fields having a zero at the origin. More specifically. consider the follow-
ing :

HARTMAN’S THEOREM (Pugh [4]). Let E be a Banach space and L an
isomorphism of E with spectrum disjoint from the unit circle. There exists
a p &#x3E; 0 such that if À is a uniformly continuous map from E to E, uniformly
bounded by J1 and Lipschitz with Lipschitz constant bounded by ,u, then

there exists a unique homeomorphism h of E such that h o (L+À) = L o h.
Pugh states that if ~t is a linear flow of E and 03C8t is a flow of E such

that 03C81 satisfies the above hypotheses of Hartman’s tbeorem with respect
to the isomorphism ~1, then the h given in the conclusion of Hartman’s
theorem satisfies h o ip, = 0, o h for all t. This follows from the unique-
ness of h. Pugh also remarks that one obtains a local theorem at the

expense of a uniqueness statement for the conjugacy h.
Our goal is to obtain an analogue of Hartman’s theorem for complex

flows. Throughout X will denote the linear vector field defined on C" by
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X(z) = Az; A is an n x n complex matrix. 0 will denote the complex flow
03A6 : Cn x C ~ Cn obtained from integrating X.

Pugh’s global formulation of Hartman’s theorem is not suitable as a
model for a theorem about complex flows because non-trivial bounded
holomorphic perturbations of X do not exist. Notice that Pugh’s version
of Hartman’s theorem does allow perturbation of the linear part of a
vector field, and it is a feature which does admit a complex analogue.
Thus, the following question about complex flows is more reasonable if
X and 9 are nearby linear holomorphic vector fields (in the sense that
the matrices defining X and 1 are sufficiently close to one another in
Cn2), when are the singular foliations of the corresponding flows 0 and
 topologically conjugate? Our partial answer to this question is contain-
ed in the theorem stated below.

Note that we have asked only for a conjugacy mapping e orbits to 
orbits and not for a simultaneous conjugacy of the isomorphisms 4l(., t)
and (·, t), for all t. It is not possible to have such a time preserving
conjugacy generally. This is evident from the proof of the theorem.

1 have succeeded in establishing an analogue to Hartman’s theorem
only when the eigenvalues of the matrix A defining X lie in the Poincaré
domine. Our primary results are the following:

THEOREM. Suppose 03A6 is the flow defined by X(z) = Az on en, A an n x n
matrix. If the eigenvalues of A are distinct and do not contain the origin
in their convex hull, and if no two eigenvalues of A lie on the same line
through the origin, then 0 is globally stable with respect to linear perturba-
tions and locally stable with respect to arbitrary holomorphic perturbation.

’Stability’ in the conclusion of the theorem means precisely that if 1
is a matrix sufficiently close to A and  is the flow corresponding to the
vector fieldX(z) = Â(z), then there is a homeomorphism h of en mapping
4Y orbits to (15 orbits. X is a holomorphic vector field C1 close to X in a
neighborhood U of the origin, with corresponding flow , then there is
a local homeomorphism h defined in a neighborhood V of the origin
mapping 4T orbits to  orbits.
A converse to the theorem is the following proposition:

PROPOSITION. If X(z) = Az is a linear vector field on en and if two
eigenvalues of A lie on the same line through the origin in C, then X is
not stable.

PROOF. Let 03BE1, 03BE2 be two eigenvalues lying on the same line through the
origin. 03BE1 and 03BE2 are real multiples of one another. Let P be the plane
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corresponding to the eigenvalues 03BE1 and 03BE2. P is invariant under the flow
03A6 determined by X. If 03BE1/03BE2 is irrational, then most 03A6 orbits in P are
homeomorphic to C. But, if ç lfç2 is rational, all 0 orbits in P are not
simply connected. Furthermore, there is not another plane near P
invariant under 0. Since we can pass from 03BE1/03BE2 rational to 03BE1/03BE2 irra-
tional and vice-versa by arbitrarily small perturbations, it follows that X
is not stable. Even the topological type of orbits is not stable under

perturbation.
In the theorem, the eigenvalues of A are assumed to be distinct. By a

linear change of coordinates, we may assume that A is a diagonal matrix.
A vital observation for the proof of the theorem is contained in the
following lemma, also observed by Arnold [1 ] :

LEMMA. I, f’ X(z) = Az is a linear holomorphic vector field on Cn and if
A is a diagonal matrix all of whose eigenvalues lie in a half plane bounded
by a line through the origin, then the integral curves of X are transverse to
each of the spheres Sr defined by

PROOF. Let {03BEj} be the eigenvalues of A and r &#x3E; 0. An integral curve
of X can fail to be transverse to Sr at z ~ Sr only if the complex multiples
of X(z) all lie in the tangent space to Sr at z. Let co be a normal to ,Sr at z.
As a 1-form,

up to a real constant factor. If a E C, then the real inner product of aX
with cv is

(Here Re denotes ’the real part of’.) If the tangent space to the integral
curve of X lies in the tangent space to S, at z, then

for all a E C. This clearly implies

But if

is a positive multiple of a point in the convex hull of {03BEj}. Since 0 does
not lie in the convex hull of {03BEj}, we conclude that
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and sr is transverse to the integral curves of X.

REMARK. The lemma remains true if the hypothesis that A be a diagonal
matrix is omitted.

lt follows from this lemma that the intersections of the integral curves
of 4l with S, form a real, orientable 1-dimensional foliation of Sr. This
foliation is defined by a real, non-zero vector field Xr on Sr.

LEMMA. If X(z) = Az is a linear holomorphic vector field such that the
eigenvalues of A all lie in a half plane whose boundary contains the origin,
and if no two of the eigenvalues of A lie on the same line through the
origin, then the real vector field Xr constructed above is Morse-Smale [6].
This means that Xr has a finite number of closed orbits, each is generic,
and the stable and unstable manifolds of these closed orbits intersect

transversely. There are no recurrent points of Xr other than the closed
orbits.

PROOF. Assume the matrix A is diagonal. Then the intersection of each
complex coordinate axis with Sr is a closed orbit of Xr. Since no two
eigenvalues of A are rational multiples of one another, all of the integral
curves of X, except those lying on the coordinate axis are homeomorphic
to C. Therefore, if y were a closed orbit of Xr not given as the intersection
of Sr with a coordinate axis, then y bounds a disk D contained in an
integral curve of X. The Euclidean distance function of Cn restricted to
D is constant on DD = y and hence has a critical point in D. This contra-
dicts the previous lemma, so the only closed orbits of X lie in the coor-
dinate axes.

Next we prove that there is no non-trivial recurrence of Xr . Suppose
w and z E Sr lie on the same integral curve of Xr which is not a closed
orbit. Choose two indices k, 1 so that zkzl ~ 0. These exist because z is
not on a coordinate axis. There is a z E C" such that w = eAtz or

Wj = zj e4it since A is a diagonal matrix. If w and z are close to each
other in C", t is close to

for some m, n E Z. Since Çk and ji are linearly independent over R, this
implies t is near zero. Therefore, given z E Sr such that z is not on a closed
orbit of Xr, there is a small neighborhood U of z such that the integral
curve of Xr through z has connected intersection with U. It follows that
there is no non-trivial recurrence of orbits of Xr, and the non-wandering
set of Xr is a finite union of closed orbits.
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Next we prove that each closed orbit has a Poincaré transformation

with no eigenvalues of modulus 1. The flow determined by X is

Thus as t runs over the interval from 0 to 203C0-1/03BE1, the flow traverses
the first closed orbit of X,. The real hypersurface H = {z|z1 ~ R} is

mapped into itself by 03A6(·,203C0-1/03BE1). H n Sr is a transverse section
to the flow Xr, so that the Poincaré transformation 0 of the first closed
orbit of Xr at (r, 0, ···, 0) on Sr n H is computed explicitly to be

with

The derivative of 0398 at (r, 0, ···, 0) is

In this matrix, ’1j represents a real 2 x 2 matrix obtained from the standard

embedding of C into the ring of 2 x 2 real matrices. Since 03BEj/03BE1 ~ R if
j ~ 1, the eigenvalues of DO have modulus different from 1. The first
closed orbit of Xr is generic. Similarly, all the closed orbits of Xr are generic.

It remains to check that the stable and unstable manifolds of Xr have
transverse intersection. One sees directly that the stable and unstable
manifolds of a closed orbit are each the difference of two linear spans of

coordinate axes intersected with Sr. The point z = (Zl’ ..., zk, 0, ..." 0)
lies in the stable manifold of the first closed orbit and the unstable mani-

fold of the kth closed orbit if

Since the eigenvalues of A lie on a half plane containing the origin in its
boundary, for j &#x3E; k either arg 03BE1-arg03BEj  0 or arg çj-arg Çk  0.

Now the stable manifold of the first closed orbit is open and dense in
the linear span of those coordinate axes j for which arg ç 1 - arg çj  0.

Similarly, the unstable manifold of the kth closed orbit is open and dense
in the linear span of those coordinate axes j for which arg çj - arg Çk  0.

It follows that these unstable manifolds intersect transversely at z. This
proves the lemma.
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PROOF OF THE THEOREM. A theorem of Palis-Smale [2] implies that Xi
is structurally stable. If X is a linear holomorphic vector field close to X,
1 will be C1 close to X1. The theorem of Palis-Smale states that there
is a topological conjugacy h1 : S1 ~ S1 from X1 to 1. Let a E C be
such that the eigenvalues of ocA and ai lie in the right half plane bounded
by the imaginary axis. Consider the flows 0 and à along the line deter-
mined by oc. Fort e R, define Rt = 03A6(S1, t03B1), t = (S1, t03B1). Rt and t
each form a disjoint family of nested spheres whose union is Cn-{0}
and which contracts uniformly to 0 as t ~ - oo. Define h : Cn ~ Cn by

Since 03A6-t03B1(Rt) = S1, h is well-defined. Clearly, h is a homeomorphism
mapping 03A6-orbits to -orbits. This proves the global assertion of the
theorem.

The local assertion is proved in the same way. A Cl perturbation 
of X will be transverse to Sr for all sufficiently small r. For small enough
r, there will be a direction 03B1 ~ C such that as t ~ - ~, 03A6(Sr, t03B1) and
03A6(Sr, t03B1) contract uniformly to the origin. Thus we can apply the above
argument on some neighborhood of the origin, starting the argument
with Xr (for some sufficiently small r) rather than with Xl.
REMARK. 1 have been unable to prove the theorem when the eigenvalues

of A lie in the Siegel domain. Such a flow corresponds to a real saddle
point in the sense that there are orbits which do not contain the origin
in their closure. The spheres Sr are no longer transverse to the integral
curves of the flow. It is true, however, that the real quadrics

are transverse to the integral curves of X if one chooses uj = ± 1 so that
(03C3j03BEj) lies in the Poincaré domain. But now the Vr are no longer compact,
so the Palis-Smale theorem does not apply directly. Furthermore, there
are continuity difficulties which arise because the Vr do not form a nested
family of spheres.
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