COMPOSITIO MATHEMATICA

T. G. MCLAUGHLIN Complete index sets of recursively enumerable families

Compositio Mathematica, tome 24, nº 1 (1972), p. 83-91

<http://www.numdam.org/item?id=CM_1972_24_1_83_0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

COMPLETE INDEX SETS OF RECURSIVELY ENUMERABLE FAMILIES

by

T. G. McLaughlin

1. Introduction

This paper is an adjunct to [2]. In $[2, \S 2]$, we remarked that the index set $G(\mathcal{F})$ of a recursively enumerable family \mathcal{F} of classes of r.e. sets can be $\sum_{n=1}^{\infty} n^{n}$ complete for $1 \leq n \leq 5$ or $\prod_{n=1}^{\infty} n^{n}$ complete for $1 \leq n \leq 4$. Here we shall give specific examples which verify that remark. All unexplained notation and background terminology in the present paper should be read according to the conventions laid down in [2, § 1]. We wish to take the opportunity to correct a minor technical error in [2]. The function ζ_0 referred to in the introductory section of [2] should not be alleged to be a total recursive function, but should rather be specified as a partial recursive function with $\delta \zeta_0 = \{e | W_e^F \text{ is a nonempty family consisting of } \}$ *nonempty* classes}. The only point at which ζ_0 enters into a proof in [2] is at the beginning of the proof of Lemma A, where, under the alias of ζ , it is mistakenly treated as being defined for all arguments e. However, it is easily seen that even with its domain limited as indicated above, $\zeta (= \zeta_0)$ still permits the function ξ of [2, Lemma A] to be taken *total* recursive; none of the remaining discussion in [2] need then be modified or even reworded. (There are alternative ways of mending the error; but the way just indicated seems most direct.)

2. Complete index sets

Throughout this section, we let η denote a partial recursive function with the property that $(\forall x)[W_x \neq \emptyset \Rightarrow \eta(x) \in W_x]$; and we let μ denote a recursive function such that $(\forall x)[W_{\mu(x)} = \{x\}]$.

PROPOSITION 1. If \mathscr{F} is an r.e. family of classes then its index set, $G(\mathscr{F})$, is \sum_{5}^{0} . PROOF. Let $\mathscr{F} = \{W_{e}^{C} | e \in W_{f}\}$. Then

$$n \in G(\mathfrak{F}) \Leftrightarrow (\exists e) [e \in W_f \text{ and } W_e^C = W_n^C]$$
$$\Leftrightarrow (\exists e) [e \in W_f \text{ and } (\forall_j) [W_j \in W_e^C \Leftrightarrow W_j \in W_n^C]].$$

But $W_j \in W_k^c \Leftrightarrow (\exists r) [r \in W_k \text{ and } (\forall s) [s \in W_j \Leftrightarrow s \in W_r]]$. Hence, by means of the usual prenex transformation procedures, $W_j \in W_k^c$ is seen to be a \sum_{3}^{0} predicate of j and k. It follows, again by the standard prenex operations, that $n \in G(\mathscr{F})$ is a \sum_{3}^{0} predicate of n. Q.E.D.

PROPOSITION 2. Let $\mathscr{W} = \{W_e^c | e \in N\}$. Then \mathscr{W} is an r.e. family and $G(\mathscr{W})$ is recursive.

Since $G(\mathcal{W}) = N$, Proposition 2 is obvious.

PROPOSITION 3. \mathcal{W} and \emptyset are the only r.e. families \mathcal{F} for which $G(\mathcal{F})$ is recursive.

PROOF. The proposition is a precise analogue of a result of Rice's concerning *classes* ([3, Corollary B to Theorem 6]); and the proof follows the proof of Rice's result given in [1]. Thus, suppose \mathscr{F} is a family of r.e. classes such that $G(\mathscr{F})$ is recursive. Suppose further that neither \mathscr{F} nor $\mathscr{W} - \mathscr{F}$ is empty. Now, either $\emptyset \in \mathscr{F}$ or $\emptyset \in \mathscr{W} - \mathscr{F}$; let us first suppose that $\emptyset \in \mathscr{W} - \mathscr{F}$. Let Q be a fixed non-recursive r.e. subset of N; and let W_e^c be some fixed element of \mathscr{F} . Let g be a recursive function such that $n \in Q \Rightarrow W_{g(n)} = W_e$ and $n \notin Q \Rightarrow W_{g(n)} = \emptyset$. Then, since $W_e \neq \emptyset$, we have $n \in Q \Leftrightarrow g(n) \in G(\mathscr{F})$. But therefore Q is recursive: contradiction. A similar contradiction arises if we assume $\emptyset \in F$, since if $G(\mathscr{F})$ is recursive then so also is $G(\mathscr{W} - \mathscr{F})$. Hence either $\mathscr{F} = \mathscr{W}$ or $\mathscr{F} = \emptyset$. Q.E.D.

REMARK. The proof of Proposition 3 in fact shows that if $\mathscr{F} \neq \emptyset$ & $\emptyset \notin \mathscr{F}$ then every \sum_{1}^{0} set is many-one reducible to $G(\mathscr{F})$. (Indeed, they are all one-one reducible to $G(\mathscr{F})$, since g can be taken one-one.)

PROPOSITION 4. Let $\mathscr{F}_0 = \{W_e^{\mathsf{C}} | (\exists y) [y \in W_e \text{ and } W_y \neq \emptyset] \}$. Then \mathscr{F}_0 is an r.e. family and $G(\mathscr{F}_0)$ is $\sum_{i=1}^{0} complete$.

PROOF. Clearly, we have

$$(\forall n)[n \in G(\mathscr{F}_0) \Leftrightarrow (\exists y)(\exists z)[y \in W_n \text{ and } z \in W_y]];$$

therefore $G(\mathcal{F}_0)$ is \sum_{1}^{0} . A fortiori, \mathcal{F}_0 is an r.e. family. Next, it is easy to see that there exists a recursive function $\psi_0(x, y)$ such that

$$(\forall w)(\forall z)(\forall x)(\forall y)[\varphi^3_{\psi_0(f,z)}(w, x, y)$$

is defined $\Leftrightarrow T_1(f, z, w)$]. Let $\omega(x)$ be a recursive function such that

$$(\forall x) [W_{\omega(x)} = \bigcup_{z \in x} W_z].$$

Then, since $(\forall f)[W_f = \{z | (\exists w)T_1(f, z, w)\}]$, we have that

$$\omega(\zeta_1(\psi_0(f,n))) \in G(\mathscr{F}_0) \Leftrightarrow n \in W_f;$$

84

here and subsequently, ζ_1 is as in § 1 of [2]. Thus $G(\mathscr{F}_0)$ is \sum_{1}^{0} complete. (Alternatively, note that $\emptyset \notin \mathscr{F} \neq \emptyset$ and use the remark following the proof of Proposition 3.) Q.E.D.

PROPOSITION 5. Let $\mathscr{F}_1 = \{\emptyset, \{\emptyset\}\}\)$. Then \mathscr{F}_1 is an r.e. family and $G(\mathscr{F}_1)$ is $\prod_{i=1}^{0}$ complete.

PROOF. Since every *finite* family of r.e. classes is r.e., \mathscr{F}_1 is an r.e. family. We can easily construct a recursive function $\psi_1(x, y)$ such that

 $(\forall w)(\forall z)(\forall x)(\forall y)[\varphi_{\psi_1(f,z)}^3(w, x, y) \text{ is defined } \Leftrightarrow T_1(f, z, x)].$

Therefore $\eta(\zeta_1(\psi_1(f,n))) \in G(\mathscr{F}_1) \Leftrightarrow (\forall x) \neg T_1(f,n,x)$, so that if $G(\mathscr{F}_1)$ is $\prod_{i=1}^{n}$ then it is $\prod_{i=1}^{n}$ complete. (Alternatively, note that $\emptyset \notin \mathscr{W} - \mathscr{F} \neq \emptyset$ and use the remark following the proof of Proposition 3.) But, since $n \in G(\mathscr{F}_1) \Leftrightarrow (\forall x)(\forall y) [x \in W_n \Rightarrow y \notin W_x]$, we have that $G(\mathscr{F}_1)$ is indeed $\prod_{i=1}^{n}$ and therefore $\prod_{i=1}^{n}$ complete. Q.E.D.

REMARK. The alternative proofs of completeness indicated for Propositions 4 and 5 show that we could have taken $\mathscr{F}_0 = \{W_e^c | W_e \neq \emptyset\}$ for Proposition 4 and $\mathscr{F}_1 = \{\emptyset\}$ for Proposition 5. We prefer, however, the more involved choices of \mathscr{F}_0 and \mathscr{F}_1 since then the proofs can be given the common format shared by all the later proofs (with the single exception of our proof of Proposition 8).

PROPOSITION 6. Let $\mathscr{F}_2 = \{W_e^{\mathsf{C}} | \emptyset \in W_e^{\mathsf{C}}\}$. Then \mathscr{F}_2 is an r.e. family and $G(\mathscr{F}_2)$ is $\sum_{e=1}^{o} complete$.

PROOF. \mathscr{F}_2 is r.e., since $\mathscr{F}_2 = \{W_e^C \mid (\exists f) [W_e^C = W_f^C \cup \{\emptyset\}]\}$. Next, since $n \in G(\mathscr{F}_2) \Leftrightarrow (\exists j) [j \in W_n \text{ and } (\forall z) (z \notin W_j)]$, it is easily seen by routine prenex-form manipulation that $G(\mathscr{F}_2)$ is \sum_{2}^{0} . To show that $G(\mathscr{F}_2)$ is \sum_{2}^{0} complete, we need only construct a recursive function $\psi_2(x, y)$ with the property that

$$(\forall f)(\forall n)[(\exists w)(\forall z) \neg T_2(f, n, w, z) \Leftrightarrow (\exists v)(\exists u)(\delta \varphi^3_{\psi_2(f, n)}(v, u, y) = \emptyset)];$$

for then we have that $n \in$ the f-th $\sum_{0}^{2} \text{set} \Leftrightarrow \omega(\zeta_{1}(\psi_{2}(f, n))) \in G(\mathscr{F}_{2})$. To obtain ψ_{2} , we first construct an auxiliary partial recursive function v by stages, thus:

$$v_{f,n}^{s}(v, u, y) \simeq \begin{cases} 0, \text{ if } (\forall w \leq v)(\exists z \leq s)T_{2}(f, n, w, z), \\ \text{undefined, otherwise;} \end{cases}$$

and we set

$$v_{f,n}^s =_{df} \bigcup_{s=0}^{\infty} v_{f,n}^s.$$

Clearly, $v_{f,n}$ is partial recursive uniformly in the parameters f and n; so let $\psi_2(x, y)$ be a recursive function such that

T. G. McLaughlin

 $(\forall f)(\forall n)[\varphi^3_{\psi_2(f,n)} \simeq v_{f,n}].$

From the definition of $v_{f,n}$, it is easy to see that, for each pair $\langle f, n \rangle$,

$$(\exists w)(\forall z) \neg T_2(f, n, w, z) \Leftrightarrow (\exists v)(\exists u)(\delta \varphi^3_{\psi_2(f, n)}(v, u, y) = \emptyset).$$

Hence $G(\mathscr{F}_2)$ is \sum_{1}^{0} complete. Q.E.D.

PROPOSITION 7. Let $\mathscr{F}_3 = \{\{N\}\}$. Then \mathscr{F}_3 is an r.e. family and $G(\mathscr{F}_3)$ is \prod_{2}^{0} complete.

PROOF. \mathcal{F}_3 is r.e. since it is a finite family of r.e. classes. Since

$$n \in G(\mathscr{F}_3) \Leftrightarrow [W_n \neq \emptyset \text{ and } (\forall z)[z \in W_n \Rightarrow (\forall k)(k \in W_z)]],$$

and since $W_n \neq \emptyset$ is a \sum_{1}^{0} predicate of *n*, we see by the usual prenex transformation procedures that $G(\mathscr{F}_3)$ is \prod_{2}^{0} . We shall construct a recursive function $\psi_3(x, y)$ with the property:

$$(\forall w)(\forall z)(\forall x)(\forall y)[\varphi^3_{\psi_3(f,z)}(w, x, y) \text{ is defined } \Leftrightarrow (\exists u)T_2(f, z, y, u)].$$

Since

$$z \in \text{the } f \text{-th } \prod_{2}^{0} \text{set} \Leftrightarrow (\forall y) (\exists u) T_2(f, z, y, u)$$
$$\Leftrightarrow (\forall w) (\forall x) [\delta \varphi^3_{\psi_3(f, z)}(w, x, y) = N],$$

the function $\eta \zeta_1 \psi_3$ will then witness the \prod_2^0 completeness of $G(\mathscr{F}_3)$. The required function ψ_3 is very simply obtainable via a stage-by-stage construction of an auxiliary function τ : at stage s we set

$$\tau_{f,z}^s = \{ \langle w, x, y, 0 \rangle | (\exists u \leq s) T_2(f, z, y, u) \},\$$

for all pairs $\langle f, z \rangle$; then we take $\tau_{f,z} = \bigcup_{s=0}^{\infty} \tau_{f,z}^s$. Obviously, the construction of $\tau_{f,z}$ is effective uniformly in the parameters f and z; i.e., there is a recursive function ψ_3 such that $(\forall f)(\forall z)[\tau_{f,z} \simeq \varphi_{\psi_3(f,z)}^3]$. ψ_3 as so specified is plainly an indexing function of the kind that we require, and hence $G(\mathscr{F}_3)$ is $\prod_{j=0}^{2}$ complete. Q.E.D.

PROPOSITION 8. Let $\mathscr{F}_4 = \{\{A\} | A \text{ is a cofinite subset of } N\}$. Then \mathscr{F}_4 is an r.e. family and $G(\mathscr{F}_4)$ is \sum_{3}^{0} complete.

PROOF. The class *COF* of cofinite subsets of *N* is r.e.; hence \mathscr{F}_4 is r.e. since $\mathscr{F}_4 = \{W_{\mu(e)}^c | W_e \in COF\}$. Now, it is shown in [4] that the set $C = \{e | W_e \in COF\}$ is \sum_{3}^{0} complete. But hence $G(\mathscr{F}_4)$ is also \sum_{3}^{0} complete, provided that it is \sum_{3}^{0} at all; for if *A* is a \sum_{3}^{0} subset of *N* and β is a recursive function such that $n \in A \Rightarrow \beta(n) \in C$ and $n \notin A \Rightarrow \beta(n) \notin C$, then $n \in A \Rightarrow \mu(\beta(n)) \in G(\mathscr{F}_4)$ and $n \notin A \Rightarrow \mu(\beta(n)) \notin G(\mathscr{F}_4)$. To see that $G(\mathscr{F}_4)$ is \sum_{3}^{0} , we first note that the predicate $(\forall z)[z \in W_n \Rightarrow W_z =$ $W_e]$ is a \prod_{2}^{0} predicate of *n* and *e*, and we then apply the standard prenex operations to the right-hand side of the equivalence $n \in G(\mathscr{F}_4) \Leftrightarrow [W_n \neq \emptyset \text{ and } (\exists e)[e \in C \text{ and } (\forall z)[z \in W_n \Rightarrow W_z = W_x]]]$. Thus, $G(\mathscr{F}_4)$ is \sum_{3}^{0} complete. Q.E.D.

PROPOSITION 9. Let $\mathscr{F}_5 = \{W_e^c | \{W_j | W_r \text{ is finite}\} \subseteq W_e^c\}$. Then \mathscr{F}_5 is an r.e. family and $G(\mathscr{F}_5)$ is \prod_{3}^{0} complete.

PROOF. The class $\{W_i | W_i \text{ is finite}\}$ is r.e.; hence, since

$$\mathscr{F}_5 = \{W_e^{\mathbf{C}} | (\exists k) [W_e^{\mathbf{C}} = W_k^{\mathbf{C}} \cup \{W_j | W_j \text{ is finite}\}]\},\$$

it is easily deduced that \mathscr{F}_5 is an r.e. family. To show that $G(\mathscr{F}_5)$ is \prod_{3}^{0} , we make use of a 'canonical enumeration' of the class $\{W_j|W_j$ is finite}. The particular enumeration that we shall apply is defined (as in [5, p. 70]) as follows:

$$D_0 \stackrel{=}{=} \emptyset; D_{n+1} \stackrel{=}{=} \{k_1, \dots, k_l\}, \text{ where } n+1 = \sum_{m=1}^{l} 2^{k_m}$$

with $k_1 < k_2 < \cdots < k_m$. It is easily verified that the predicate $D_j \subseteq W_k$ is a $\sum_{j=1}^{0}$ predicate of j and k, and that the predicate $x \in D_j$ is a recursive predicate of x and j. Now, we have

$$n \in G(\mathscr{F}_5) \Leftrightarrow (\forall j)(\exists m) [m \in W_n \text{ and } D_j = W_m] \\ \Leftrightarrow (\forall j)(\exists m) [m \in W_n \text{ and } D_j \subseteq W_m \text{ and } W_m \subseteq D_j];$$

hence, by routine prenex manipulations we obtain a \prod_{3}^{0} predicate form for $G(\mathscr{F}_{5})$. We shall construct a recursive function $\psi_{4}(x, y)$ such that, for every pair of numbers $\langle f, n \rangle$, we have

$$(\forall z)(\exists w)(\forall y) \neg T_3(f, n, z, w, y) \Leftrightarrow (\forall j)(\exists l)(\exists k) [\delta \varphi^3_{\psi_4(f, n)}(l, k, u) = D_j].$$

It is then obviously the case that

$$n \in \text{the } f\text{-th } \prod_{3}^{0} \text{set} \Leftrightarrow \omega(\zeta_1(\psi_4(f, n))) \in G(\mathscr{F}_5),$$

where ω is as in the proof of Proposition 4. Thus, the existence of such a function ψ_4 implies \prod_3^0 completeness of $G(\mathscr{F}_5)$. In order to specify ψ_4 , we shall define an auxiliary partial recursive function $\overline{\tau}$ by stages, as follows:

$$\bar{\tau}_{f,n}^{s}(j,k,u) \simeq \begin{cases} 0, \text{ if } u \in D_{j} \text{ or if } (\exists y \leq s)T_{3}(f,n,j,k,y), \\ \text{undefined, otherwise;} \end{cases}$$
$$\bar{\tau}_{f,n} = {}_{df} \bigcup_{s=0}^{\infty} \bar{\tau}_{f,n}^{s}.$$

It is obvious that the definition of $\bar{\tau}_{f,n}$ is effective uniformly in the parameters f and n; hence, there is a recursive function $\psi_4(x, y)$ such that

T. G. McLaughlin

$$(\forall f)(\forall n)[\varphi^3_{\psi_4(f,n)} \simeq \bar{\tau}_{f,n}].$$

But then $\delta \varphi_{\psi_4(f,n)}^3(j,k,u)$, for a given pair $\langle j,k \rangle$, is either N or D_j , according as $(\exists y)T_3(f,n,j,k,y)$ or $(\forall y) - T_3(f,n,j,k,y)$. Thus, ψ_4 has the required property, and so $G(\mathscr{F}_5)$ is $\prod_{j=0}^{3}$ complete. Q.E.D.

Before stating Proposition 10 we remind the reader that p_n denotes the *n*-th prime number in order of magnitude, starting with $p_0 = 2$. We shall denote by P_n the set $\{p_n^m | m \in N - \{0\}\}$ of positive powers of p_n .

PROPOSITION 10. Let $\mathscr{F}_6 = \{W_e^{\mathbf{C}} | (\exists n) [\{W_j | W_j \text{ is a finite subset of } P_n\} \subseteq W_e^{\mathbf{C}}]\}$. Then \mathscr{F}_6 is an r.e. family and $G(\mathscr{F}_6)$ is \sum_{4}^{0} complete.

PROOF. It is easily demonstrated that there is a recursive function $\chi(x, y)$, with $\chi(n, y)$ one-to-one for each *n*, such that $(\forall n)[\{D_{\chi(n,y)}|y \in N\} = \{W_j|W_j \text{ is a finite subset of } P_k\}]$. Hence \mathscr{F}_6 is r.e., since

$$\mathscr{F}_6 = \{W_e^{\mathbf{C}} | (\exists f) (\exists n) [W_e^{\mathbf{C}} = W_f^{\mathbf{C}} \cup \{D_{\chi(n,y)} | y \in N\}] \}.$$

Next, we observe that

$$n \in G(\mathscr{F}_6) \Leftrightarrow (\exists k)(\forall j)(\exists m) [m \in W_n \text{ and } D_{\chi(k, j)} = W_m].$$

Therefore $G(\mathscr{F}_6)$ is \sum_{4}^{0} . To show that $G(\mathscr{F}_6)$ is \sum_{4}^{0} complete, we need only make a slight modification of our above proof that $G(\mathscr{F}_5)$ is \prod_{3}^{0} complete. Thus, we begin by defining

$$\zeta_{f,n}^{s}(k,j,y,z) \simeq \begin{cases} 0, \text{ if } z \in D_{x(k,j)} \text{ or if } (\exists w \leq s) T_{4}(f,n,k,j,y,w), \\ \text{undefined, otherwise;} \end{cases}$$

and we then set

$$\zeta_{f,n} =_{df} \bigcup_{s=0}^{\infty} \zeta_{f,n}^{s},$$

for all pairs $\langle f, n \rangle$. Clearly, $\zeta_{f,n}$ is partial recursive uniformly in f and n; so there is a recursive function $\xi(x, y)$ such that

$$(\forall f)(\forall n)[\varphi_{\xi(f,n)}^4 \simeq \zeta_{f,n}].$$

Let $\zeta_2(f, n)$ be a recursive function such that

$$(\forall f)(\forall n) [\varphi_{\zeta_2(f,n)}^3(\pi_2(k,j), y, z) \simeq \varphi_{\xi(f,n)}^4(k,j, y, z)];$$

 π_2 is here a recursive pairing function as in [2, § 1]. Then, for all 5-tuples $\langle f, n, k, j, y \rangle$, we have $\delta \varphi^3_{\xi_2(f, n)}(\pi_2(k, j), y, z) =$ either N or $D_{\chi(k, j)}$ according as $(\exists w)T_4(f, n, k, j, y, w)$ or $(\forall w) \neg T_4(f, n, k, j, y, w)$. It follows that, for every pair of numbers $\langle f, n \rangle$, we have

$$\begin{aligned} (\exists k)(\forall j)(\exists y)(\forall w) &\neg T_4(f, n, k, j, y, w) \\ \Leftrightarrow [(\forall k)(\forall j)(\forall p)(\forall q)(\forall y)(p \neq k) \\ \Rightarrow \delta \varphi^3_{\zeta_2(f, n)}(\pi_2(p, q), y, z) \neq D_{\chi(k, j)}) \text{ and} \\ (\exists k)(\forall j)(\exists y)[\delta \varphi^3_{\zeta_2(f, n)}(\pi_2(k, j), y, z) = D_{\chi(k, j)}]]. \end{aligned}$$

Therefore if we define $\psi_5(x, y)$ by $\psi_5 = \omega\zeta_1\zeta_2$, we obtain the equivalence: $n \in$ the f-th \sum_{4}^{0} set $\Leftrightarrow \psi_5(f, n) \in G(\mathscr{F}_6)$. Thus $G(\mathscr{F}_6)$ is \sum_{4}^{0} complete. Q.E.D.

PROPOSITION 11. Let $\mathscr{F}_7 = \{W_e^{\mathsf{C}} | \{W_j | W_j \text{ is cofinite}\} \subseteq W_e^{\mathsf{C}}\}$. Then \mathscr{F}_7 is an r.e. family and $G(\mathscr{F}_7)$ is $\prod_{i=1}^{4}$ complete.

PROOF. The class $\{W_j | W_j \text{ is cofinite}\}$ is, of course, r.e.; say, $\{W_j | W_j \text{ is cofinite}\} = W_{e_0}^{\mathbf{C}}$. Hence \mathscr{F}_7 is an r.e. family, since

$$\mathfrak{F}_7 = \{ W_e^{\mathcal{C}} | (\exists f) [W_e^{\mathcal{C}} = W_f^{\mathcal{C}} \cup W_{e_0}^{\mathcal{C}}] \}.$$

Next, observe that

$$n \in G(\mathscr{F}_7) \Leftrightarrow (\forall h)[W_h \text{ is cofinite } \Rightarrow (\exists l)[l \in W_n \text{ and } (W_l = W_h)]].$$

But $W_l = W_h$ is a \prod_2^0 predicate of l and h; and the assertion that W_h is cofinite is ([4]) a \sum_3^0 predicate of h. Hence, by the usual prenex operations (carried out with several alternations of priority between the antecedent and the consequent inside the main quantifier), we see that $n \in G(\mathscr{F}_7)$ is a \prod_4^0 predicate of n. To show \prod_4^0 completeness of $G(\mathscr{F}_7)$, we construct a recursive function $\psi_6(x, y)$ with the property that

$$(\forall f)(\forall n)[(\forall u)(\exists v)(\forall w)(\exists z)T_4(f, n, u, v, w, z) \Leftrightarrow (\forall j)(\exists l)(\exists k)[\delta \varphi^3_{\psi_6(f, n)}(l, k, y) = N - D_j]].$$

To this end we define a partial recursive function $\bar{\zeta}$ as follows:

$$\bar{\zeta}_{f,n}^{s}(l, k, y) \simeq \begin{cases} 0, \text{ if } (\forall w \leq y)(\exists z \leq s)T_4(f, n, l, k, w, z) \text{ and} \\ y \in N - D_l, \\ \text{undefined, otherwise;} \end{cases}$$
$$\bar{\zeta}_{f,n} = {}_{df} \bigcup_{v=0}^{\infty} \bar{\zeta}_{f,n}^{s}.$$

 $\zeta_{f,n}$ is partial recursive uniformly in f and n; so let $\psi_6(x, y)$ be a recursive function such that

$$(\forall f)(\forall n)[\varphi^3_{\psi_6(f,n)}\simeq \overline{\zeta}_{f,n}].$$

Now, it is easily seen from the definition of $\bar{\zeta}$ that for each pair $\langle l, k \rangle$ we have either

T. G. McLaughlin

$$\delta \varphi^3_{\psi_6(f,n)}(l,k,y) = N - D_l \text{ or } \delta \varphi^3_{\psi_6(f,n)}(l,k,y) = a$$

finite set, according as $(\forall w)(\exists z)T_4(f, n, l, k, w, z)$ or $\neg (\forall w)(\exists z)T_4(f, n, l, k, w, z)$. It readily follows that for every pair $\langle f, n \rangle$ we have

$$(\forall u)(\exists v)(\forall w)(\exists z)T_4(f, n, u, v, w, z) \Leftrightarrow (\forall j)(\exists l)(\exists k)[\delta \varphi^3_{\psi_6(f, n)}(l, k, y) = N - D_j].$$

Hence $n \in \text{the } f\text{-th } \prod_{4}^{0} \text{ set } \Leftrightarrow \omega(\zeta_1(\psi_6(f, n))) \in G(\mathscr{F}_7)$, and $G(\mathscr{F}_7)$ is $\prod_{4}^{0} \text{ complete. Q.E.D.}$

PROPOSITION 12. Let $\mathscr{F}_8 = \{W_e^{\mathbb{C}} | (\exists n) [\{W_j | W_j \text{ is a relatively cofinite subset of } P_n\} \subseteq W_e^{\mathbb{C}}]\}$. Then \mathscr{F}_8 is an r.e. family and $G(\mathscr{F}_8)$ is \sum_{5}^{0} complete.

PROOF. Let $\bar{\chi}(x, y)$ be a recursive function with $\bar{\chi}(n, y)$ one-to-one for each number *n*, such that $(\forall n)[\{P_n - D_{\overline{\chi}(n, y)} | y \in N\} = \{W_j | W_j \text{ is a relatively cofinite subset of } P_n\}]$. It follows that \mathscr{F}_8 is r.e., since

$$\mathscr{F}_8 = \{ W_e^{\mathbf{C}} | (\exists f) (\exists n) [W_e^{\mathbf{C}} = W_f^{\mathbf{C}} \cup \{ P_n - D_{\overline{\chi}(n, y)} | y \in N \}] \}.$$

Next, since $n \in G(\mathscr{F}_8) \Leftrightarrow (\exists k)(\forall j)(\exists m)[m \in W_n \text{ and } P_k - D_{\overline{\chi}(k,j)} = W_m]$, and since the predicate $P_k - D_{\overline{\chi}(k,j)} = W_m$ is a \prod_2^0 predicate of k, j and m, we have that $G(\mathscr{F}_8)$ is \sum_5^0 . In the same way in which we showed $G(\mathscr{F}_6)$ to be \sum_4^0 complete by modifying our proof of the \prod_3^0 completeness of $G(\mathscr{F}_5)$, we shall now show $G(\mathscr{F}_8)$ to be \sum_5^0 complete by making appropriate alterations in our proof of the \prod_4^0 completeness of $G(\mathscr{F}_7)$. First, we define a partial recursive function γ by stipulating that

$$\gamma_{f,n}^{s}(l,k,j,y) \simeq \begin{cases} 0, \text{ if } y \in P_{l} - D_{\overline{\chi}(l,k)} \text{ and} \\ (\forall w \leq y)(\exists z \leq s)T_{5}(f,n,l,k,j,w,z), \\ \text{undefined, otherwise;} \end{cases}$$
$$\gamma_{f,n} = {}_{df} \bigcup_{s=0}^{\infty} \gamma_{f,n}^{s}.$$

 $\gamma_{f,n}$, as so defined, is partial recursive uniformly in f and n; hence there is a recursive function $\beta(x, y)$ such that $(\forall f)(\forall n)[\gamma_{f,n} \simeq \varphi_{\beta(f,n)}^4]$. Let ζ_3 be a recursive function such that $(\forall f)(\forall n)[\varphi_{\zeta_3(f,n)}^*(\pi_2(l,k), j, y) \simeq \varphi_{\beta(f,n)}^4(l,k, j, y)]$. Then, for all 5-tuples $\langle f, n, l, k, j \rangle$, we have that $\delta \varphi_{\zeta_3(f,n)}^3(\pi_2(l,k), j, y) =$ either $P_l - D_{\overline{\chi}(l,k)}$ or a finite set, according as $(\forall w)(\exists z)T_5(f, n, l, k, j, w, z)$ or not. It follows that, for every pair $\langle f, n \rangle$ of numbers, we have

$$\begin{aligned} (\exists l)(\forall k)(\exists j)(\forall w)(\exists z)T_5(f, n, l, k, j, w, z) \\ \Leftrightarrow (\exists l)(\forall k)(\exists j)[\delta \varphi^3_{\zeta_3(f, n)}(\pi_2(l, k), j, y) = P_l - D_{\overline{\chi}(l, k)}] \end{aligned}$$

So, if we set $\psi_7 = \omega \zeta_1 \zeta_3$ then

$$n \in \text{the } f\text{-th } \sum_{5}^{0} \text{set} \Leftrightarrow \psi_{7}(f, n) \in G(\mathscr{F}_{8}).$$

Thus $G(\mathscr{F}_8)$ is \sum_{5}^{0} complete. Q.E.D.

REFERENCES

- J. C. E. DEKKER AND J. MYHILL
- Some theorems on classes of recursively enumerable sets, Trans. Amer. Math. Soc. 89(1) (1958) 25-59.

T. G. McLaughlin

[2] The family of all recursively enumerable classes of finite sets, Trans. Amer. Math. Soc., 155(1) (1971) 127–136.

H. G. RICE

[3] Classes of recursively enumerable sets and their decision problems, Trans. Amer. Math. Soc. 74(2) (1953) 358-366.

HARTLEY ROGERS

[4] Computing degrees of unsolvability, Math. Annalen, 138(2) (1959) 125-140.

HARTLEY ROGERS

[5] Theory of recursive functions and effective computability, McGraw-Hill Book Co., 1967.

(Oblatum 29–III–71)

Dept. of Mathematics The University of Illinois at Urbana URBANA, 111. 61801 U.S.A.