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COMPLETE INDEX SETS OF
RECURSIVELY ENUMERABLE FAMILIES

by

T. G. McLaughlin

1. Introduction

This paper is an adjunct to [2]. In [2, § 2], we remarked that the index
set G(F) of a recursively enumerable family & of classes of r.e. sets
can be Y2 complete for 1 < n < 5 or []? complete for 1 < n < 4. Here
we shall give specific examples which verify that remark. All unexplained
notation and background terminology in the present paper should be
read according to the conventions laid down in [2, § 1]. We wish to take
the opportunity to correct a minor technical error in [2]. The function
{o referred to in the introductory section of [2] should not be alleged to
be a fotal recursive function, but should rather be specified as a partial
recursive function with 6, = {e|W, is a nonempty family consisting of
nonempty classes}. The only point at which {, enters into a proof in [2]
is at the beginning of the proof of Lemma A, where, under the alias of {,
it is mistakenly treated as being defined for all arguments e. However,
it is easily seen that even with its domain limited as indicated above,
{ (= o) still permits the function £ of [2, Lemma A] to be taken total
recursive; none of the remaining discussion in [2] need then be modified
or even reworded. (There are alternative ways of mending the error;
but the way just indicated seems most direct.)

2. Complete index sets

Throughout this section, we let n denote a partial recursive function
with the property that (Vx)[W, # 0 = n(x) € W,]; and we let u denote
a recursive function such that (Vx)[W,, = {x}].

PROPOSITION 1. If F is an r.e. family of classes then its index set,
G(F),is Y 3.
PrOOF. Let # = {Wflee W,}. Then
n e G(F) < (Je)[e € Wy and WY = W]
< (Je)[ee W, and (V,)[W; e WS« W;e Wil
83
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But W;e W< (Ir)lre W, and (Vs)[se W;<>se W,]]. Hence, by
means of the usual prenex transformation procedures, W, e WE is seen
tobea Zg predicate of j and k. It follows, again by the standard prenex
operations, that n e G(%) is a Y ¢ predicate of n. Q.E.D.

PROPOSITION 2. Let W = {WElee N}. Then W is an r.e. family and
G(W") is recursive.
Since G(#") = N, Proposition 2 is obvious.

PROPOSITION 3. W~ and @ are the only r.e. families F for which G(F)
is recursive.

PRrROOF. The proposition is a precise analogue of a result of Rice’s
concerning classes ([3, Corollary B to Theorem 6]); and the proof
follows the proof of Rice’s result given in [1]. Thus, suppose & is a
family of r.e. classes such that G() is recursive. Suppose further that
neither & nor #— % is empty. Now, either fe F or Qe #'—F; let us
first suppose that @e #— F. Let Q be a fixed non-recursive r.e. subset of
N; and let WE be some fixed element of . Let g be a recursive function
such that ne Q= W,,, = W, and n¢ Q = W,,, = 9. Then, since
W, # 0, we have ne Q < g(n) e G(F). But therefore Q is recursive:
contradiction. A similar contradiction arises if we assume 9 € F, since
if G(F) is recursive then so also is G(#— %'). Hence either # = # or
F =0.QED.

ReMARK. The proof of Proposition 3 in fact shows that if # # 0 &
0 ¢ F then every 35 set is many-one reducible to G(%). (Indeed, they
are all one-one reducible to G(&), since g can be taken one-one.)

PROPOSITION 4. Let F = {WF|(3y)[y € W, and W, # 01}. Then F
is an r.e. family and G(F ) is 2(1’ complete.

Proor. Clearly, we have
(Vr)lne G(F,) < (3y)3z)[ye W, and ze W,]];

therefore G(F,) is 3.5 A fortiori, F, is an r.e. family. Next, it is easy
to see that there exists a recursive function ,(x, y) such that

(YW)(Y2) (V)9 [@Pyos, (W X, ¥)

is defined < T(f, z, w)]. Let w(x) be a recursive function such that

(V) [ Wiy = U W

Zex

Then, since (Yf)[W; = {z|(3w)T,(f, z, w)}], we have that
o (Yo(fin)) € G(F )= ne Wy,
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here and subsequently, {, is asin § 1 of [2]. Thus G(F,)is Y 5 complete.
(Alternatively, note that @ ¢ & # 0 and use the remark following the
proof of Proposition 3.) Q.E.D.

PROPOSITION 5. Let # = {0, {#}}. Then & is an r.e. family and
G(#,) is []] complete.

PROOF. Since every finite family of r.e. classes is r.e., & is an r.e.
family. We can easily construct a recursive function ¥, (x, y) such that

(YW)(Y2)(YX)(Y9)[ @5 11, (Ws X, y) is defined < T(f, z, x)].

Therefore n({,(¥1(f; n))) € G(#,) < (Vx) = Ty(f, n, x), so that if
G(Z,) is ]} then it is []] complete. (Alternatively, note that ¢ ¢ #—F
# ¢ and use the remark following the proof of Proposition 3.) But,
since ne G(#) < (Vx)(Vy)[xe W,=y¢ W,], we have that G(H)
is indeed []{ and therefore []{ complete. Q.E.D.

REMARK. The alternative proofs of completeness indicated for Proposi-
tions 4 and 5 show that we could have taken % = {WES|W, # ¢} for
Proposition 4 and &, = {@} for Proposition 5. We prefer, however,
the more involved choices of %, and % since then the proofs can be
given the common format shared by all the later proofs (with the single
exception of our proof of Proposition 8).

PROPOSITION 6. Let F, = {WE|0e WE}. Then %, is an r.e. family
and G(,) is Y3 complete.

PROOF. &, is r.e., since = {WE|Qf)IWE = Wf U {#}]}. Next,
since ne G(#) < (Aj)[je W, and (Vz)(z¢ W;)], it is easily seen by
routine prenex-form manipulation that G(%) is Y3. To show that
G(#,) is Y5 complete, we need only construct a recursive function
¥,(x, y) with the property that

(U)(YMIEW)(V2) — To(f; 1, w, 2) <> (30)Eu) 00y, m(vs 4, ) = D)];

for then we have that nethe fth Yo set <> ({1 (Y, (f, n))) € G(F).
To obtain ,, we first construct an auxiliary partial recursive function
v by stages, thus:
s 0, if (Vw £ 0v)(3z £ 5)T,(f, n, w, 2),
vf,n(v’ u, y) =~ { ( )( . ) 2(f )
undefined, otherwise;

and. we set

8

S S
Vr,n =asr \J Vf,n-
s=0

Clearly, vy, , is partial recursive uniformly in the parameters f and n;
so let Y,(x, y) be a recursive function such that
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(vf )(V")[(Dzz(f,n) = Df,n]'

From the definition of v ,, it is easy to see that, for each pair {f, n),

(Aw)(Yz) = To(f, n, w, 2) <> (30)(Fu) 5@y 41, m(vs 4, ¥) = 0).
Hence G(%) is ) 3 complete. Q.E.D.

PROPOSITION 7. Let F; = {{N}}. Then %, is an r.e. family and
G(#) is []3 complete.

PROOF. % is r.e. since it is a finite family of r.e. classes. Since
neG(#) < [W, # 0 and (Vz)[ze W, = (Vk)(ke W,)]],

and since W, # 0 is a Z‘l’ predicate of n, we see by the usual prenex
transformation procedures that G(Z) is []3. We shall construct a
recursive function y;(x, y) with the property:

(YW)(V2)(Vx)(VY)[@5 s, o(Ws X, ¥) is defined <> (Fu) T,(f; z, y, u)].
Since

z e the f-th [ set < (Yy)(Fu)To(f, z, y, u)
had (Vw)(vx)[é(pl?ls(f, z)(wa X, J’) = N],

the function n{, Y5 will then witness the []J completeness of G(F).
The required function ¥; is very simply obtainable via a stage-by-stage
construction of an auxiliary function t: at stage s we set

Tj',z = {<W, X, Vs 0>|(3u = S)Tz(f; 2, )5 u)}’

for all pairs {f,z); then we take 7, , = (JZo7}, .. Obviously, the
construction of 7, , is effective uniformly in the parameters f/ and z;
i.e., there is a recursive function ¥ such that (Yf)(Vz)[t,, = ¢03..5]-
Y5 as so specified is plainly an indexing function of the kind that we
require, and hence G(%;) is [ [ complete. Q.E.D.

PROPOSITION 8. Let %, = {{A}|A is a cofinite subset of N}. Then Z,
is an r.e. family and G(%,) is ¥ 3 complete.

Proor. The class COF of cofinite subsets of N is r.e.; hence #, is r.e.
since # = {W,,)| W,e COF}. Now, it is shown in [4] that the set
C = {e| W, e COF} is Y3 complete. But hence G(%,) is also ) 3 com-
plete, provided that it is Y 3 at all; for if 4 is a ) 3 subset of N and f is
a recursive function such that ne A = B(n)e C and n¢ 4 = B(n) ¢ C,
then ne 4 = u(B(n))e G(#,) and n¢ A= u(f(n)) ¢ G(F,). To see
that G(#,) is )3, we first note that the predicate (Vz)[ze W, = W, =
W.,lisa 1‘[2 predicate of n and e, and we then apply the standard prenex
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operations to the right-hand side of the equivalence ne G(%,) <
[W, # 0 and (3e)[ee C and (Vz)[ze W,= W, = W,]]]. Thus, G(#,)
is ) 3 complete. Q.E.D.

PROPOSITION 9. Let F5 = {WF|{W;| W, is finite} = WE}. Then F; is
an r.e. family and G(Zs) is [|3 complete.

ProoF. The class {W;| W; is finite} is r.e.; hence, since
Fs = {WI@EK)WS = Wi U {W;| W, is finite} ]},

it is easily deduced that & is an r.e. family. To show that G(%) is
13, we make use of a ‘canonical enumeration’ of the class {W;|W; is
finite}. The particular enumeration that we shall apply is defined (as in

[5, p. 70]) as follows:
1

D, P 0; Dyyq by {ky, " ki}, where n+1 =m2=‘,12k"'
with ky < k, < -+ < k. Itis easily verified that the predicate D; = W,
is a ) { predicate of j and k, and that the predicate x € D; is a recursive
predicate of x and j. Now, we have

i

ne G(F) < (Vj)(3@m)[me W, and D; = W,]
< (Vj)@m)[me W, and D; = W,, and W, = D;];
hence, by routine prenex manipulations we obtain a []3 predicate form

for G(Z;). We shall construct a recursive function Y,(x, y) such that,
for every pair of numbers {f, n), we have

(V2)@W)(¥y) = Ts(f, n, 2, w, y) = (V) EDEK)60y.r,m(L k, u) = Dy].
It is then obviously the case that

n e the f-th [ ]3 set < o({,(V4(f, n))) € G(F),

where o is as in the proof of Proposition 4. Thus, the existence of such

a function ¥, implies []3 completeness of G(F). In order to specify

V4, we shall define an auxiliary partial recursive function T by stages, as
follows:

. o < ,

(ko u) = { 0, if ueD; orif (Ay £ )T5(f, n, j, k, y),

undefined, otherwise;
oo}
= =S
Tyn =ar U T
s=0

It is obvious that the definition of 7, , is effective uniformly in the param-
eters f and n; hence, there is a recursive function y4(x, y) such that
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(vf)(vn)[(pl:;m(f,n) = ‘Ef,n]'

But then 54),,3,40«,,,)( Jj, k, u), for a given pair {j, k), is either N or D;,
according as (Iy)T5(f, n, j, k, y) or (Vy) = T5(f,n,j, k, y). Thus, ¥, has
the required property, and so G(Z) is []3 complete. Q.E.D.

Before stating Proposition 10 we remind. the reader that p, denotes
the n-th prime number in order of magnitude, starting with p, = 2. We
shall denote by P, the set {p}'|m e N—{0}} of positive powers of p,.

ProposITION 10. Let % = {WE|3An)[{W;|W; is a finite subset of
P} = WEY}. Then % is an r.e. family and G(%) is ¥ 4 complete.

Proor. It is easily demonstrated that there is a recursive function
x(x, y), with x(n, y) one-to-one for each n, such that (Vr)[{D,,,,)|y € N}
= {W;|W; is a finite subset of P,}]. Hence % is r.e., since

9-6 = {Wecl(af)(an)[Wec = qu o {Dx(n,y)lyeN}]}'
Next, we observe that
ne G(Z) < 3k)Vj)3@m)me W, and D, ; = W,].

Therefore G(%) is Y.q. To show that G(%) is Y 4 complete, we need
only make a slight modification of our above proof that G(%) is [[3
complete. Thus, we begin by defining

0, if zeD,g, j, orif (Iw £ )T,(f, n, k, j, y, w),

Cs n k’ .’ b Z >~ {
7onlks 9, 2) undefined, otherwise;

and. we then set
oo}
Ef,n =ar U C;,,,,
s=0

for all pairs {f, n). Clearly, (,, , is partial recursive uniformly in f and n;
so there is a recursive function &(x, y) such that

(M) @zr,m = Cp,nl-

Let {,(f, n) be a recursive function such that

(Vf)(vn)[‘sz(f, n)(n2(k’ i)y, 2) = ¢§(f, n)(k’ b ¥ 2)1;

7, is here a recursive pairing function as in [2, § 1]. Then, for all 5-tuples
{fyn, k. j, py, we have 8¢}, s n(ma(k, j), v, z) = either N or D, ; ac-
cording as (Iw)T4(f; n, k, j, y, w) or (Yw) — T4(f;, n, k, j, y, w). It follows
that, for every pair of numbers {f, #n), we have
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@RV )Ey)(Yw) = Tu(fs n, k. jy v, w)
< [(YE)(/)(YP)(Ya)(Yr)(p # Kk
= 50%,r,m(72(P> 9), ¥, 2) # Dy, ;) and
ER)(Y)EV)002,s,m(ma(k, ), 35 2) = Dy, 11
Therefore if we define ¥s(x, y) by ¥s = o, {,, we obtain the equiva-

lence: nethe fth Y set < y5(f, n) e G(F). Thus G(%) is Y g com-
plete. Q.E.D.

PROPOSITION 11. Let & = {WE|{W;| W, is cofinite} = WE}. Then %,
is an r.e. family and G(7) is [ | complete.

PrROOF. The class {W;| W; is cofinite} is, of course, r.e.; say, {W;|W;
is cofinite} = WE. Hence % is an r.e. family, since

Tz = (WIENIWE = Wi v Wil
Next, observe that
ne G(#;) < (Yh)[W, is cofinite = (3!)[le W, and (W, = W,)]].

But W, = W,isa Hg predicate of / and 4; and the assertion that W, is
cofinite is ([4]) a zg predicate of 4. Hence, by the usual prenex operations
(carried out with several alternations of priority between the antecedent
and the consequent inside the main quantifier), we see that n € G(%) is
a []4 predicate of n. To show []§ completeness of G(F;), we construct
a recursive function Y¢(x, y) with the property that

(W) (V) (V) E0) (V) 32T . 1, 0, 0, w, 2)
< (W)EDER[503 (s, (L k» ¥) = N=D]].

To this end we define a partial recursive function { as follows:

0, if (Vw £ y)(3z £ 5)Tu(f, n, I, k, w, z) and
Z;‘,n(la k’ y) = yeN—Dla
undefined, otherwise;

Cf,n =af
s

Cs

ron
0

{s, s partial recursive uniformly in fand #; so let Y(x, y) be a recursive
function such that

(Vf)(vn)[(Pis(f,n) ~ Zf,n]'

Now, it is easily seen from the definition of { that for each pair {/, k)
we have either
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503 4s,m(l ks ¥) = N=D; ot 605 r.m(l k. y) = a

finite set, according as (Yw)3z)T4(f,n, 1 k,w,z) or — (Yw)3z)T,
(f, n, I, k, w, z). It readily follows that for every pair {f,n) we have

(Vu)@v)(Yw)32)Tu(f, n, u, v, w, z)
<1’(vj)(;ll)(slk)[aq’is(f,n)(l’ k’ y) = N—Dj]'

Hence nethe f~th J]q set < w({{(Y6(f, n))) € G(F), and G(F) is
14 complete. Q.E.D.

PROPOSITION 12. Let Fy = {WE|(@n)[{W;|W; is a relatively cofinite
subset of P,} = WE}. Then % is an r.e. family and G(%) is Y9 com-
Dlete.

PROOF. Let j(x, y) be a recursive function with ¥(n, y) one-to-one for
each number n, such that (Va)[{P,—Ds,,»lyeN}={W,W, is a
relatively cofinite subset of P,}]. It follows that Z is r.e., since

‘g:S = {Wecl(af)(an)[Wec = Wf Y {Pn—DZ(n,y)lyeN}]}-

Next, since ne G(F) < (3k)(Vj)@m)[me W, and P,—Dsyq, j, = W,],
and since the predicate P,~Dyy, ;) = W, is a 1‘[2 predicate of &, j and
m, we have that G(%) is Y9. In the same way in which we showed
G(Z) to be Y 4 complete by modifying our proof of the [ J3 completeness
of G(%), we shall now show G(%) to be Y2 complete by making
appropriate alterations in our proof of the [] completeness of G(%).
First, we define a partial recursive function y by stipulating that

O, if y € Pl _Di(l,k) al'ld
Y},n(l: ka j: y) >~ (VW é .)’)(32 é S)TS(f’ n: la k’j’ W, Z),
undefined, otherwise;

o0
Yron =ar U 7},71'
s=0

Yr.n» as so defined, is partial recursive uniformly in f and »; hence there
is a recursive function B(x, y) such that (Vf)(Ya)[y,,,» = @5, m]- Let {5
be a recursive function such that (Vf)(Vn)l@:s,n(m2(l, k), J,y) ~
@4¢r,m(s k. j, p)]. Then, for all 5-tuples {f,n, 1, k,j), we have that
803,cr,m(m2(l, k), j, ) = either P,— Dz, or a finite set, according as
(Yw)3z2)Ts(f; n, L, k, j, w, z) or not. It follows that, for every pair {f, n)
of numbers, we have

(3[)(Vk)(3])(VW)(32)T5(f; n, l’ k)j’ w, Z)
< ANV )00z cs,mT2(l k), s ¥) = Pr—Dya,].
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So, if we set Y, b w{; {5 then
ne the f-th Y9 set <> Y, (f, n) € G(F).
Thus G(%) is Y9 complete. Q.E.D.
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