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1. Introduction

This paper is an adjunct to [2]. In [2, § 2], we remarked that the index
set G(F) of a recursively enumerable family 57 of classes of r.e. sets
can be En 0 complete for 1 ~ n ~ 5 or 03A00n complete for 1 ~ n ~ 4. Here
we shall give specific examples which verify that remark. All unexplained
notation and background terminology in the present paper should be
read according to the conventions laid down in [2, § 1 ]. We wish to take
the opportunity to correct a minor technical error in [2]. The function
(0 referred to in the introductory section of [2] should not be alleged to
be a total recursive function, but should rather be specified as a partial
recursive function with 03B403B60 = {e|WFe is a nonempty family consisting of
nonempty classes}. The only point at which (0 enters into a proof in [2]
is at the beginning of the proof of Lemma A, where, under the alias of 03B6,
it is mistakenly treated as being defined for all arguments e. However,
it is easily seen that even with its domain limited as indicated above,
03B6 (= 03B60) still permits the function 03BE of [2, Lemma A] to be taken total
recursive; none of the remaining discussion in [2] need then be modified
or even reworded. (There are alternative ways of mending the error;
but the way just indicated seems most direct.)

2. Complète index sets

Throughout this section, we let il denote a partial recursive function
with the property that (~x)[Wx ~ 0 =&#x3E; 1 (x) E Wx]; and we let 03BC denote
a recursive function such that (~x)[W03BC(x) = {x}].

PROPOSITION 1. If F is an r.e. family of classes then its index set,
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But Wj ~ WCk ~ (~r)[r ~ Wk and (~s)[s ~ Wj ~ s ~ Wr]]. Hence, by
means of the usual prenex transformation procedures, Wj ~ WCk is seen
to be a E’ predicate of j and k. It follows, again by the standard prenex
operations, that n EE G(F) is a 03A305 predicate of n. Q.E.D.
PROPOSITION 2. Let if/" = {WCe|e ~ N}. Then E4%’ is an r.e. family and

G(W) is recursive.
Since G(W) = N, Proposition 2 is obvious.

PROPOSITION 3. 0X’ and 0 are the only r.e. families F for which G(F)
is recursive.

PROOF. The proposition is a precise analogue of a result of Rice’s
concerning classes ([3, Corollary B to Theorem 6]); and the proof
follows the proof of Rice’s result given in [1 ]. Thus, suppose F is a
family of r.e. classes such that G(F) is recursive. Suppose further that
neither F nor W-F is empty. Now, either Ø ~ F or Ø ~ W-F; let us
first suppose that 0 e W-F. Let Q be a fixed non-recursive r.e. subset of
N; and let Wé be some fixed element of -9’. Let g be a recursive function
such that n ~ Q =&#x3E; Wg(n) = We and n ~ Q =&#x3E; Wg(n) = 0. Then, since

W,, 0 0, we have n ~ Q « g(n) E G(F). But therefore Q is recursive:
contradiction. A similar contradiction arises if we assume 0 E F, since
if G(F) is recursive then so also is G(W-F). Hence either F = W or
F = Ø. Q.E.D.

REMARK. The proof of Proposition 3 in fact shows that if F ~ Ø &#x26;

0 0,Je7 then every 03A301 set is many-one reducible to G(F). (Indeed, they
are all one-one reducible to G(.-97), since g can be taken one-one.)

PROPOSITION 4. Let F0 = {WCe|(~y)[y ~ We and W :0 Ø]}. Then F0
is an r.e. family and G(,9o) is 03A301 complete.
PROOF. Clearly, we have

therefore G(F0) is 03A301. A fortiori, 597o is an r.e. family. Next, it is easy
to see that there exists a recursive function 03C80(x, y) such that

is defined ~ T1(f, z, w)]. Let cv(x) be a recursive function such that

Then, since (~f)[Wf = {z|(~w)T1(f, z, w)}], we have that
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here and subsequently, (1 is as in § 1 of [2]. Thus G(F0) is 03A301 complete.
(Alternatively, note that Ø ~ F ~ Ø and use the remark following the
proof of Proposition 3.) Q.E.D.

PROPOSITION 5. Let F1 = {Ø, {Ø}}. Then F1 is an Y. e. family and
G(F1) is 03A001 complete.

PROOF. Since every finite family of r.e. classes is r.e., F1 is an r.e.

family. We can easily construct a recursive function 03C81(x, y) such that

(~w)(~z)(~x)(~y)[~303C81(f, z)(w, x, y) is defined ~ T1(f, z, x)].
Therefore ~(03B61(03C81(f, n))) E G(F1) ~ (Vx) ‹ Tl ( f, n, x), so that if

G(F1) is 03A001 then it is 03A001 complete. (Alternatively, note that Ø ~ W-F
~ Ø and use the remark following the proof of Proposition 3.) But,
since n ~ G(F1) ~ (~x)(~y)[x ~ Wn ~ y ~ Wx], we have that G(F1)
is indeed 03A001 and therefore 03A001 complete. Q.E.D.
REMARK. The alternative proofs of completeness indicated for Proposi-

tions 4 and 5 show that we could have taken F0 = {WCe|We ~ Ø} for
Proposition 4 and F1 = {Ø} for Proposition 5. We prefer, however,
the more involved choices of F0 and F1 since then the proofs can be
given the common format shared by all the later proofs (with the single
exception of our proof of Proposition 8).

PROPOSITION 6. Let F2 = {WCe|Ø ~ WCe}. Then F2 is an r.e. family
and G(F2) is 03A302 complete.

PROOF. F2 is r.e., since F2 = {WCe|(~f)[WCe = Wf u {Ø}]}. Next,
since n E G(F2) ~ (~j)[j ~ Wn and (~z)(z ~ Wj)], it is easily seen by
routine prenex-form manipulation that G(F2) is 03A302. To show that
G(F2) is 03A302 complete, we need only construct a recursive function

o/2(X,y) with the property that 

(~f)(~n)[(~w)(~z) ‹ T2(f, n, w, z) ~ (~v)(~u)(03B4~303C82(f,n)(v, M, y) = 0)]; 
for then we have that n ~ the f-th 03A320 set ~ 03C9(03B61(03C82(f, n))) ~ G(F2).
To obtain 03C82, we first construct an auxiliary partial recursive function
v by stages, thus:

and we set

Clearly, vf,n is partial recursive uniformly in the parameters f and n;
so let 03C82(x, y) be a recursive function such that
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From the definition of vf,n, it is easy to see that, for each pair f, n),

(~w)(~z) ‹ T2(f, n, w, z) ~ (~v)(~u)(03B4~303C82(f,n)(v, u, y) = 0).
Hence G(F2) is 03A302 complete. Q.E.D.
PROPOSITION 7. Let F3 = {{N}}. Then F3 is an r.e. family and

G(F3) is 03A002 complete.
PROOF. F3 is r.e. since it is a finite family of r.e. classes. Since

n e G(F3) ~ [Wn ~ 0 and (~z)[z ~ Wn ~ (~k)(k ~ Wz)]],
and since Wn ~ 0 is a 03A301 predicate of n, we see by the usual prenex
transformation procedures that G(F3) is 03A002. We shall construct a
recursive function 03C83(x, y) with the property:

Since

the function ~03B6103C83 will then witness the 03A002 completeness of G(F3).
The required function 03C83 is very simply obtainable via a stage-by-stage
construction of an auxiliary function 03C4: at stage s we set

for all pairs (f,z); then we take Tf,z = U~s=003C4sf,z. Obviously, the
construction of 03C4f,z is effective uniformly in the parameters f and z;
i.e., there is a recursive function 03C83 such that (~f)(~z)[03C4f,z ~ ~303C83(f,z)].
03C83 as so specified is plainly an indexing function of the kind that we
require, and hence G(F3) is 03A002 complete. Q.E.D.

PROPOSITION 8. Let F4 = {{A}|A is a cofinite subset of N}. Then F4
is an r.e.family and G(F4) is 03A303 complete.

PROOF. The class COF of cofinite subsets of N is r.e.; hence F4 is r.e.
since F4 = {WC03BC(e)|We ~ COF}. Now, it is shown in [4] that the set
C = {e| We ~ COF} is 03A303 complete. But hence G(F4) is also 03A303 com-
plete, provided that it is 03A303 at all; for if A is a 03A303 subset of N and p is
a recursive function such that n e A ~ 03B2(n) e C and n ~ A ~ 03B2(n) ~ C,
then n ~ A ~ 03BC(03B2(n)) ~ G(F4) and n ~ A ~ 03BC(03B2(n)) ~ G(F4). To see

that G(F4) is 03A303, we first note that the predicate (Vz)[z e Wn ~ Wz =
We] is a 03A002 predicate of n and e, and we then apply the standard prenex
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operations to the right-hand side of the equivalence n E G(F4) ~
[Wn ~ Ø and (~e)[e ~ C and (~z)[z ~ Wn ~ Wz = Wx]]]. Thus, G(F4)
is 0 complete. Q.E.D.

PROPOSITION 9. Let F5 = {WCe|{Wj|Wr is finitel 9 Wcl. Then F5 is
an r.e. family and G(F5) is 03A003 complete.
PROOF. The class {Wj|Wj is finitel is r.e. ; hence, since

it is easily deduced that F5 is an r.e. family. To show that G(F5) is
03A003, we make use of a ’canonical enumeration’ of the class {Wj|Wj is
finite}. The particular enumeration that we shall apply is defined (as in
[5, p. 70]) as follows:

with kl  k2  ...  km . It is easily verified that the predicate Di 9 Wk
is a Zo predicate of j and k, and that the predicate x E Dj is a recursive
predicate of x and j. Now, we have

hence, by routine prenex manipulations we obtain a 03A003 predicate form
for G(F5). We shall construct a recursive function 03C84(x, y) such that,
for every pair of numbers f, n), we have

(~z)(~w)(~y) - T3(f, n, z, w, Y) ~ (~j)(~l)(~k)[03B4~303C84(f,n)(l, k, u) = Dj].
It is then obviously the case that

where 03C9 is as in the proof of Proposition 4. Thus, the existence of such
a function 03C84 implies il, 0 completeness of G(F5). In order to specify
03C84, we shall define an auxiliary partial recursive function î by stages, as
follows:

It is obvious that the definition of i f, n is effective uniformly in the param-
eters f and n; hence, there is a recursive function 03C84(x, y) such that
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But then 03B4~303C84(f,n)(j, k, u), for a given pair (j, k), is either N or Dj,
according as (~y)T3(f, n, j, k, y) or (Vy) -1 T3(f, n, j, k, y). Thus, 03C84 has
the required property, and so G(F5) is 03A003 complete. Q.E.D.

Before stating Proposition 10 we remind the reader that Pn denotes
the n-th prime number in order of magnitude, starting with po - 2. We
shall dénote by Pn the set {pmn|m e N- {0}} of positive powers of Pn.

PROPOSITION 10. Let F6 = {WCe|(~n)[{Wj|Wj is a finite subset of
Pn} ~ WCe]}. Then F6 is an r.e. family and G(F6) is 03A304 complete.

PROOF. It is easily demonstrated that there is a recursive function

x(x, y), with x(n, y) one-to-one for each n, such that (~n)[{D~(n,y)|y ~ N}
= {Wj|Wj is a finite subset of Pk}]. Hence F6 is r.e., since

Next, we observe that

Therefore G(F6) is 03A304. To show that G(F6) is 03A304 complete, we need
only make a slight modification of our above proof that G(F5) is 03A003
complete. Thus, we begin by defining

and we then set

for all pairs f, n). Clearly, ’1, n is partial recursive uniformly in f and n;
so there is a recursive function 03BE(x, y) such that

Let 03B62(f, n) be a recursive function such that

03C02 is here a recursive pairing function as in [2, § 1 ]. Then, for all 5-tuples
f, n, k, j, y&#x3E;, we have 03B4~303B62(f,n)(03C02(k, j), y, z) = either N or D~(k, j) ac-
cording as (3w)T4(f, n, k, j, y, w) or (~w) ‹ T4(f, n, k, j, y, w). It follows
that, for every pair of numbers (f, n), we have
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Therefore if we define 03C85(x, y) by VIs = 03C903B6103B62, we obtain the equiva-
lence : n e the f-th 03A304 set ~ 03C85(f, n ) e G(F6). Thus G(F6) is 03A304 com-
plete. Q.E.D.

PROPOSITION 11. Let F7 = {WCe|{Wj|Wj is cofinite} ~ WCe}. Then F7
is an r.e. family and G(F7) is 03A004 complete.

PROOF. The class {Wj|Wj is cofinite} is, of course, r.e.; say, {Wj|Wj
is cofinite} = WCe0. Hence F7 is an r.e. family, since

Next, observe that

But Wi = Wh is a F12 predicate of 1 and h ; and the assertion that Wh is
cofinite is ([4]) a 03A303 predicate of h. Hence, by the usual prenex operations
(carried out with several alternations of priority between the antecedent
and the consequent inside the main quantifier), we see that n E G(57,) is
a 03A004 predicate of n. To show 110 completeness of G(F7), we construct
a recursive function 03C86(x, y) with the property that

To this end we define a partial recursive function Z as follows:

03B6f,n is partial recursive uniformly in f and n; so let 03C86(x, y) be a recursive
function such that 

Now, it is easily seen from the definition of 03B6 that for each pair l, k)
we have either
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finite set, according as (~w)(~z)T4(f, n, l, k, w, z) or ‹ (~w)(~z)T4
( f, n, l, k, w, z). It readily follows that for every pair (f, n) we have

Hence n E the f-th 03A004 set ~ 03C9(03B61(03C86(f, n))) E G(F7), and G(F7) is
03A004 complete. Q.E.D.

PROPOSITION 12. Let F8 = {WCe|(~n)[{ Wj|Wj is a relatively cofinite
subset of Pn} ~ WCe]}. Then F8 is an r.e. family and G(F8) is 03A305 com-
plete.

PROOF. Let i(x, y) be a recursive function with î(n, y) one-to-one for
each number n, such that (~n)[{Pn-D~(n, y)|y ~ N} = {Wj|Wj is a

relatively cofinite subset of Pnl]. It follows that 57, is r.e., since

Next, since n ~ G(F8) ~ (~k)(~j)(~m)[m ~ Wn and Pk-D~(k, j) = Wm],
and since the predicate Pk-D~(k, j) = Wm is a 03A002 predicate of k, j and
m, we have that G(F8) is 03A305. In the same way in which we showed

G(F6) to be 03A304 complete by modifying our proof of the 03A003 completeness
of G(F5), we shall now show G(F8) to be 03A305 complete by making
appropriate alterations in our proof of the 03A004 completeness of G(F7).
First, we define a partial recursive function y by stipulating that

03B3f, n, as so defined, is partial recursive uniformly in f and n; hence there
is a recursive function 03B2(x, y) such that (~f)(~n)[03B3f, n ~ ~403B2(f, n)]. Let 03B63
be a recursive function such that (~f)(~n)[~303B63(f, n)(03C02(l, k), j, y) ~
~403B2(f, n)(l, k, j, y)]. Then, for all 5-tuples f, n, l, k, j&#x3E;, we have that

03B4~303B63(f, n)(03C02(l, k), j, y) = either Pl-D~(l, k) or a finite set, according as
(~w)(~z)T5(f, n, l, k, j, w, z) or not. It follows that, for every pair (/, n)
of numbers, we have
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