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This is the first half of a 2 part paper, the first of which deals with the
construction of curves and the second with abelian varieties. The idea

of investigating the p-adic analogs of classical uniformizations of curves
and abelian varieties is due to John Tate. In a very beautiful and influ-

ential piece of unpublished work, he showed that if K is a complete non-
Archimedean valued field, and E is an elliptic curve over whose
j-invariant is not an integer, then E can be analytically uniformized. This
uniformization is not a holomorphic map:

generalizing the universal covering space
n : C ~ E ( = closed points of an elliptic curve over C),

but instead is a holomorphic map:

generalizing an infinite cyclic covering 03C02 over C:

cvl one of the 2 periods of E. Here you can take holomorphic map to mean
holomorphic in the sense of the non-Archimedean function theory of
Grauert and Remmert [G-R]. But the uniformization 03C02 is more simply
expressed by embedding E in p2 and defining the three homogeneous
coordinates of n(z) by three everywhere convergent Laurent series.
The purpose of my work is 2-fold: The first is to generalize Tate’s

results both to curves of higher genus and to abelian varieties. This gives
a very useful tool for investigating the structures at infinity of the moduli
spaces. It gives for instance an abstract analog of the Fourier series
development of modular forms. Our work here overlaps to some extent
with the work of Morikawa [Mo] and McCabe [Mc] generalizing Tate’s
uniformization to higher-dimensional abelian varieties. The second pur-
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pose is to understand the algebraic meaning of these uniformizations.
For instance, in Tate’s example, 03C0 defines not only a holomorphic map
but also a formal morphism from the Néron model of G. to the Néron
model of E over the ring of integers A c K. And from an algebraic point
of view, it is very unnatural to uniformize only curves over the quotient
fields K of complete one-dimensional rings A : one wants to allow A to
be a higher-dimensional local ring as well, (this is essential in the applica-
tions to moduli for instance). But when dim A &#x3E; 1, there is no longer
any satisfactory theory of holomorphic functions and spaces over K.

In this introduction, 1 would first like to explain (in the case K is a
discretely-valued complete local field) what to expect for curves of higher
genus. We can do this by carrying a bit further the interesting analogies
between the real, complex and p-adic structures of PGL(2) as developed
recently by Bruhat, Tits and Serre:

(A) real case: PSL(2, R) acts isometrically and transitively on the upper
f plane and the boundary can be identified with RP’ (the real line,
plus ~):

(B) complex case: PGL(2, C) acts isometrically and transitively on the
upper 2-space 1 H’ and the boundary can be identified with CP1:

1 The action of SL(2, C) on H’ is given by:
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(C) p-adic case: PGL(2, K) acts isometrically and transitively on the
tree 0394 of Bruhat-Tits, (whose vertices correspond to the subgroups
gPGL(2, A)g-1, and whose edges have length 1 and correspond to the

subgroups gBg-1, B = 1 (a bd)|a,b,c,d~A,c~m, ad~m} modulo A*)
and the set of whose ends can be identified with Kpl (for details, cf. § 1,
below and Serre [S ]) :

In A, for any vertex v the set of edges meeting v is naturally isomorphic
to kPl, the isomorphism being canonical up to an element of PGL(2, k)
(where k = A/m).

In the first case, if r c PSL(2, R) is a discrete subgroup with no
elements of finite order such that PSL(2, R) jh is compact, we obtain
Koebe’s uniformization

of an arbitrary compact Riemann surface X of genus 2.
In the second, if r c PGL(2, C) is a discrete subgroup which acts

discontinuously at at least one point of CP’ (a Kleinian group) and
which moreover is free with n generators and has no unipotent elements
in it, then according to a Theorem of Maskit [Ma], r is a so-called
Schottky group, i.e. if 0 = set of points of CP1 where r acts discontinu-
ously, then Q is connected and up to homeomorphism we get a

uniformization:

In particular 03A9/0393 is a compact Riemann surface of genus n and for a
suitable standard basis al’ ..., an, b1, ..., bn of 03C01(03A9/0393), 03C0 is the partial
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covering corresponding to the subgroup

N = least normal subgroup containing a1, ···, an .

The uniformization n is what is called in the classical literature the

Schottky uniformization. It is the one which has a p-adic analog.
In the third case, let r c PGL(2, K) be any discrete subgroup consist-

ing entirely of hyperbolic elements 2. Then Ihara [I] proved that r is
free: let r have n generators. Again, let 03A9 = set of closed points of PK
where r acts discontinuously (equivalently, Q is the set of points which
are not limits of fixed points of elements of F).
Then 1 claim that there is a curve C of genus n and a holomorphic

isomorphism:

Moreover 0394/0393 has a very nice interpretation as a graph of the specializa-
tion of C over the ring A. In fact

a) there will be a smallest subgraph (0394/0393)0 c 4 /r such that

will be finite:

b) C will have a canonical specialization C over A, where C is a singular
curve of arithmetic genus n made up from copies of pi with a finite
number of distinct pairs of k-rational points identified to form ordinary
double points. Such a curve C will be called a k-split degenerate curve of
genus n.

c) C(K), the set of K-rational points of C, will be naturally isomorphic
to the set of ends of 4 /r; C(k), the set of k-rational points of C, will be
naturally isomorphic to the set of edges of 4 /r that meet vertices of

2 If K is locally compact, this is equivalent to asking simply that .h has no elements
of finite order, since suitable powers of a non-hyperbolic element not of finite order
must converge to the identity.
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(0394/0393)0 (so that the components of C correspond to the edges of 0394/0393
meeting a fixed vertex of (4 /r)o and the double points of C correspond
to the edges of (4 /r)o ) ; and finally the specialization map

is equal, under the above identifications, to the map:

which takes an end to the last edge in the shortest path from that end
to (0394/0393)0.

EXAMPLES. We have illustrated a case where the genus is 2, C has 2

components, each with one double point and meeting each other once:

Because all the curves C which we construct have property (b), we refer
to them as degenerating curves. Our main theorem implies that every such
degenerating curve C has a unique analytic uniformization n : 03A9/0393  C.
Next 1 would like to give an idea of how I intend to construct algebraic

objects which imply the existence of the analytic uniformization n, which
express the way the analytic map specializes over A, and which will
generalize to the case dim A &#x3E; 1. Given a discretely-valued complete
local field K, one has:

a) the category of holomorphic spaces X over K, in the sense e.g. of
Grauert and Remmert [G-R],

b) the category of formal schemes X over A, locally of topological
finite type over A, with m(!) fI’ as a defining sheaf of ideals.

There is a functor:

from the category of formal schemes to the category of holomorphic
spaces given as follows:
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i) as a point set xan ~ set of reduced irreducible formal subschemes
Z c !!l’ such that Z is finite over A, but Z 4= the closed fibre !!l’ 0;

ii) if 0 : xan ~ Max ( ) = (closed points of x) is the specialization
map Z H Z n 0, then for all U c X affine open, Ø-1(Max U) = V
is an affinoid subdomain of !!l’an with affinoid ring 0393(U, (9x).

According to results of Raynaud, the category of holomorphic spaces
looks like a kind of localization of the category of formal schemes with

respect to blowings-up of subschemes concentrated in the closed fibre.
In fact, he has proven that the category of holomorphic spaces admitting
a finite covering by afhnoids is equivalent to this localization of the catego-
ry of formal schemes of finite type. What happens in our concrete situation
is that the holomorphic spaces Q and C both have canonical liftings into
the category of formal schemes and the analytic map n : Q - C is induced
by a formal morphism. For the uniformization of abelian varieties, dis-
cussed in the 2nd paper of this series, the lifting turns out not to be canoni-
cal ; however, a whole class of such liftings can be singled out, which is

non-empty and for which n lifts too. Thus the whole situation is lifted
into the category of formal schemes where it can be generalized to
higher-dimensional base rings A. Let me illustrate this lifting in Tate’s
original case of an elliptic curve. First of all, what formal scheme over
A gives rise to the holomorphic space A£ - (0) = Gm, K? If we take the
formal completion of the algebraic group G. over Spec (A), the holo-
morphic space that we get is only the unit circle:

If we take formal completion of Raynaud’s ’Néron model’ of Gm over
Spec (A) (cf. [R]), we get the subgroup:

To get the full Gm, K start with Pl x Spec (A). Blow up (0), (~) in the
closed fibre Pl; then blow up again the points where the 0-section and
oo-section meet the closed fibre; repeat infinitely often. (See figure on
next page.)
The result is a scheme P~, only locally of finite type over Spec (A).

If we omit the double points of the closed fibre, we get Raynaud’s
’Néron model’. However, if we take the whole affair, the holomorphic
space associated to its formal completion is Gm, K . On the other hand,
the Néron model of E over Spec (A) will have a canonical ’compactifica-
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tion’ : it can be embedded in a unique normal scheme é proper over
Spec (A) by adding a finite set of points. It will look like this (possibly,
after replacing K by a suitable quadratic extension):

tf will in fact be regular. Finally, the analytic uniformization which we
denoted n2 will come from a formal étale morphism from P~ to e
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which simply wraps the infinite chain in the closed fibre of P 00 around
and around the polygon which is the closed fibre of .
We can now state fully our main result:
For every Schottky group r c PGL(2, K), there is a canonical formal

scheme 9 over A on which r acts freely and whose associated holo-
morphic space is the open set 03A9 c pi. There is a one-one correspondence
between a) conjugacy classes of Schottky groups r, and b) isomorphism
classes of curves C over K which are the generic fibres of normal schemes
W over A whose closed fibre C is a k-split degenerate curve, set up by
requiring that YIF is formally isomorphic to W.

Some notation

Pl = projective line over K
KP1 = K-rational points of PK’ = K+ K- (0, 0)/K*

u, v&#x3E; = module generated by u, v
R(X) = field of rational functions on an integral scheme X.
 = formal completion of a scheme X over a complete local ring

A, along its closed fibre.

1. Trees

Let A be a complete integrally closed noetherian local ring, with
quotient field K, maximal ideal m and residue field k = Alm. Let

S’ = Spec (A), 9,1 = Spec (K) and So = Spec (k):

We are interested in certain finitely generated subgroups of PGL(2, K)
that we will call Schottky groups. First of all define a morphism:

by

Here and below we will describe elements of PGL(2) by 2 x 2 matrices,
considered modulo multiplication by a scalar, without further comment.

be represented:

PROOF. On the one hand:
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Conversely, suppose t-1(03B3) = v E m, and let the matrix C represent y.

Then det C = v - (Tr C)2 and the characteristic polynomial of C is

By Hensel’s lemma, this has 2 distinct roots in K of the form

Then y is also represented by the matrix C’ - Clu - Tr C with eigenvalues
1 and vlu’ E m. Therefore C’ has the required form.

DEFINITION (1.2). The elements y E PGL(2, K) such that t-1(03B3)~m
will be called hyperbolic.
From the lemma it follows immediately that if y is hyperbolic, then y

as an automorphism of P, has 2 distinct fixed points P and Q, both
rational over K, and such that the differential dylp = mult. by p in Tp
(the tangent space to Pl at P), ,u E m, while d03B3|Q = mult. by ju-’; P is
called the attractive fixed point of y and Q the repulsive fzxed point.

DEFINITION (1.3). A Schottky group r c PGL(2, K) is a finitely
generated subgroup such that every y E r, 03B3 ~ e, is hyperbolic.

These are probably the most natural class of groups to look at.

However, there is a particular type which is easier to prove theorems
about and which include all Schottky groups in the case dim A = 1:

DEFINITION (1.4). A flat Schottky group r c PGL(2, K) has the extra
property that if 1 c KP’ is the set of fixed points of the elements y E r,
then for any P1, P2, P3, P4 E E, R(Pl , P2 ; P3 , P4) or its inverse is in A,
i.e. the cross-ratio R defines a morphism from to P1.
The construction of flat Schottky groups is not so easy and we postpone

this until § 4. For the time being, we simply assume that one is given.
The structure of PGL(2, K) and of r is best displayed, following the

method of Bruhat and Tits [B-T] by introducing:

0394(0) ~ {set of sub A-modules M c K+ K, M free of rank 2, modulo the
identification M - À . M, 03BB E K*, (the image {M} in 0394(0) of a
module M will be called the class of M)}

~ {set of schemes P/,S with generic fibre pi, such that P éé P1S,
modulo isomorphisml.
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These sets will be identified by the map

This is easily seen to be a bijection under which the set of A-valued points
of P equals the set of elements x ~ M-mM, modulo A*. Intuitively, P is
the scheme of one-dimensional subspaces of the rank 2 vector bundle M.

DEFINITION (1.5). If {M} e 0394(0), we denote the corresponding scheme
PIS by P(M).
Note that PGL(2, K) acts on 0394(0):

Then the class {X(M)} depends only on the image {X} of X in
PGL(2, K) and on the class {M}.

The stabilizer of the module A+A is:

PGL(2, A) = elements of PGL(2, K) represented by matrices

and the stabilizers of the other modules M are conjugates of

x . PGL(2, A) · x-l in PGL(2, K).
Moreover PGL(2, K) acts transitively on 0394(0), so 0394(0) can be naturally

identified with the coset space PGL(2, K)/PGL(2, A).
Less obvious is the fact that any 3 distinct points xi , x2 , X3 E KP’

determined canonically an element of 0394(0): let w1, w2, w3 ~K+K be
homogeneous coordinates for xi , x2 , X3. Then there is a linear equation:
a1w1+ a2w2+a3w3 = 0, unique up to scalar. Let M = 03A33i=1 A · aiwi.
The class of multiples {M} of M is determined by the xi alone. We will
write this class as {M(x1, x2 , x3)}.

Unlike the case where dim A = 1, the full set 0394(0) is rather unmanage-
able. We need to introduce the concept:

DEFINITION (1.6). {M1},{M2} ~ 0394(0) are compatible if there exists a
basis u, v of Ml, and elements 03BB E K*, oc E A such that 03BBu, 03BB03B1v is a basis

of M2, (Mi representatives of {Mi}).
It is easy to check that this definition is symmetric and that the principal

ideal (oc) is uniquely determined by (Mi ) and {M2}. Since (03B1) measures
the ’distance’ of {M1} from {M2}, we write:

Moreover, when dim A = 1, every pair {Ml}, {M2} is compatible. If
Mi’ are representatives of the classes {Mi} such that
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we call Mi , M2’ representatives in standard position.
Now then, let

0394(0)0393 = set of classes {M(x1, X2, x3)}, where Xl, X2, X3 E Il
1 = set of fixed points of elements of r.

The flatness of the Schottky group r is obviously equivalent to th(

property:

This now gives us :

PROPOSITION (1.7). Any 2 classes {M1}, {M2} ~ 0394(0)0393 are compatible.

PROOF. First note the

LEMMA (1.8). If Xl’ x2 , X3, X4 E pi have property (*), then for some
i, j ~ {1, 2, 3}, with i i= j, {M(x1, X2, X3)1 = {M(xi, Xi, x4)}.

PROOF. Let Wi be coordinates for xi as in (*). Then if al and a2 ft m,
one checks that M(x1, x2 , X3) = M(Xl’ x2 , X4); if al ft m, a2 E m, then
M(x1, x2 , x3) = M(x2, x3, X4); and if al E m, a2 ft m, then

Now let {M1} = M(Xl,X2,X3)’ {M2} = M(Yl, Y2, Y3). Choose

coordinates wi for xi and ui for yi such that

Next, if the ratios ai : bi mod m in kP’ are all distinct, one checks

immediately that the u ; are related by 03BB1u1 + 03BB2u2 + 03BB3u3 = 0 where
Ài E A, 03BBi ~ m. This implies that

M2 = (module generated by the ui) = Ml ,
hence Ml and M2 are obviously compatible. New if the ratios ai : hi
mod m are not all distinct, then at least one of the triples (0 : 1), (1 : 0),
(1 : 1) is different from all three ratios ai : bi mod m. Permuting the three
wi’s, we may as well assume that (1 : 0) does not cocur, i.e. bi 0 m for
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all i. Multiplying ui by a unit, we can normalize it so that now:

Now by the lemma, {M2} = {M(yi, yj, x1)} for some i and j. The linear
equation relating ui, uj and w, is:

Therefore M( yi, yj, xl ) is the module generated by ui , uj and (ai - aj)w1.
Thus ui and wi are a basis of Ml and ui and (ai - aj)w1 are a basis of M2 .
Hence {M1} and {M2} are compatible.

Q.E.D.

1 claim that for any 3 compatible classes of modules, there is a multi-

plicative triangle ’inequality’ relating their ’distances’ from each other:

PROPOSITION (1.9). Let {M1}, {M2}, {M3} E J(O) be distinct but compat-
ible. Let (ocij) = 03C1({Mi}, {Mj}) and let

be representatives in standard position. Then if N = M2 + M3, there exist
u,vEMl and îl, À2, À3 c- A such that:

In particular, for all permutations i, j, k of 1, 2, 3, 03B1ij|03B1ik03B1jk.

CLUMSY PROOF. First choose u E M2 such that u 1= m . Ml . Secondly
choose i3 E M11mMl such that i3 is not in either of the 1-dimensional

subspaces M2/M2 n mM, or M3/M3 n mM1 of M1/mMl. Lift i3 to
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v E Ml. Then first of all il and v generate MllmMl, hence u and v
generate Ml. Secondly u and 03B112v lie in M2 and since Ml and M2 are
in standard pcsition, it is easy to see that they must generate M2. Thirdly,
for some À1 E A, u + 03BB1v E M3. Then since Ml and M3 are in standard

position, u+03BB1v and al 3 v must generate M3. Now use the fact that
lVl2 and M3 are compatible: for some 03BE E K*, M2 ~ 03BE· M3 and this pair
is in standard position. Then

and one of thèse is not in m . M2. This implies that 03BE e A, 03BE03BB1 = 03B6 · 03B112,

03BE03B113 = ~ · 03B112, (where 03B6 and ~ e A), and furthermore that either 03BE, 03B6 or
~ is a unit. Firstly, suppose 03BE is a unit but 03B6 is not. Note that we may
replace u by u’ = u + 03B112v then u’ and 03B112v still generate M2 and u’ + 03BB’1v
and 03B113v generate M3 where 03BB’1 = 03BB1-03B112. But then 03BE03BB’1 - (’Ct12’ where
03B6’ = 03B6 - 1 is a unit. Therefore by suitable choice of u, we can assume that
03B6 is a unit. Secondly, suppose ~ is a unit but 03B6 is not. In this case, note
that u + 03BB’1v and 03B113v still generate M3 where 03BB’1 = 03BB1 + 03B113. And then
03BE03BB’1 = 03BE03BB1 + 03BE03B113 = (03B6 + ~)03B112 = (’Ct12 where 03B6’ is a unit. Thus we can

always assume that 03B6 is a unit. Then if À2 = Ç . (-1 and À3 = ~ · 03B6-1 it
follows that Ct12 = 03BB1 03BB2 and 03B113 = 03BB103BB3 hence M2 and M3 are generated
as required. It follows immediately that M2 + M3 is generated by u and
À1 v. To evaluate 03B123, note that the 2 modules M2 ~ À2M3 are in standard
position (since 03BB2u + 03BB103BB2v is in À2M3 but not in mM2 ) and that À2M3
is generated by 03BB2u + 03BB103BB2v and by 03BB203BB3u hence (03BB2 À3) = 03C1({M2}, {M3}).

Q.E.D.

COROLLARY (1.10). If M1 ~ M2 ~ 03B112 M1, Mi =3 M3 ~ Ct13M1 are
representatives of 3 compatible classes in standard position, then

PROOF. In the notation of the proposition, both parts of (a) are equiva-
lent to 03BB2 being a unit; both parts of (b) are equivalent to 03BB1 being a unit.

This Proposition motivates:

DEFINITION (1.11). A subset 0394(0)* c 0394(0) is linked if a) every pair of
elements {M1},{M2}~0394(0)* is compatible, b) for every triple {M1},
{M2}, {M3} ~ 0394(0)*, if we pick representatives M1 ~ M2, M1 ~ M3 in
standard position, then M2 + M3 (which is a free A-module by the
proposition) defines a class {M2 + M3} in 0394(0)*.
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We must check that 0394(0)0393 has both these fine properties:
THEOREM (1.12). 0394(0)0393 is linked.

PROOF. Suppose {Mi} = {M(xi, yi, zi)l, i = 1, 2, 3, where all these

points come from E. We saw above that all these classes are compatible.
Choose representatives M1 ~ M2, M1 ~ M3 in standard position, and
choose homogeneous coordinates ui, vi, Wi E Mi for xi,yi and zi such
that the linear relation 03B1iui+03B2ivi+03B3iwi = 0 has the property
(Xb 03B2i, ’Yi E A*. Since M2 ~ mM1, one of u2’ v2, or w2 is in the set

M1 - mM1. Renaming, we can assume U2 ft mM1. Similarly, we can
assume U3 ft mMl . Next, the images u1, v1, Wl of ul , vl , Wl in MlImm,
are all distinct, so one of them is different from both u2 and Ù 3. Renaming,
we can assume fi t =1= fi 2 or fi 3. Let us construct a module in the class

{M(x1, x2, X3)1 ~ 0394(0)0393. We must find the linear equation relating
u1, u2, u3: since fi 1 , fi 2’ fi 3 E M llmM 1 are related by an equation
dù 1 + 03B2u2 +iï3 = 0, where a, /3 E Alm, and 03B2 =1= 0, it follows that ul , u2 , U3
are related by an equation 03B1u1 + 03B2u2 + u3 = 0, where 03B1, 03B2 ~ A, 03B2 ~ m.
Therefore

On the other hand, if we choose generators u, v E Ml as in the previous
Proposition, it follows that

If À2,À3Em, then since M2 + M3 = u, 03BB1v&#x3E;, it follows that U2 and

U3 have distinct images u2 ,u3 ~ M2 + M3/m · (M2 + M3). Therefore

M2 + M3 u2, u3&#x3E; whose class is in A(O). If either À2 or À3 is in A*,
then M2 ~ M3 or M3 M2 and M2 + M3 equals either M2 or M3 ,
whose class is in 0394(0)0393. Q.E.D.
Linked subsets A «» c A(’) are very nice objects. They can be fitted

together in a natural way into a tree.

TREE THEOREM (1.13). If 0394(0)* is a linked subset of 0394(0), then 0394(0)* is the
set of a vertices of a connected tree 0394* in which a principal ideal (03B103C3) is
associated to each edge 03C3 and such that for every pair of classes
{P}, {Q} ~ 0394(0)*, if they are linked in the tree as follows :
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then

PROOF. First, let us call {P}, {Q} ~ 0394(0)* adjacent if there is no

{R} ~ 0394(0)* such that:

Join 2 adjacent classes by an edge u and set (03B103C3) = p({P}, {Q}). This
gives us a graph in any case. Starting now with any {P}, {Q}, consider
all sequences

such that

By the noetherian assumption on A, there is a maximal sequence of this
type. Then each pair {Mi}, {Mi+1} must be adjacent and this proves
that {P} and {Q} are joined in our graph by a sequence of edges. There-
fore the graph is connected.
To prove that our graph is a tree and to prove (*), it suffices, by an

obvious induction, to prove:

Then either

or

PROOF OF LEMMA. Let Mn-1 ~ Mn , Mn-1 ~ Mn - 2 , Mn-1 ~ M1 be
representatives in standard position. By the Corollary (1.10) Mn-1 ~
Mn-2 ~ Mi. Consider Mn-2 + Mn. Since 0394(0)* is linked, {Mn-2 + Mn} ~ T.
Since {Mn-1} is adjacent to {Mn-2} and Mn-2 ~ Mn-2+Mn ~ Mn-1,
Mn-2+Mn equals Mn-1 or Mn-2; similarly since {Mn-1} is adjacent to
{Mn}, Mn-2+Mn equals Mn or Mn-1. Thus either Mn-2+Mn = Mn-1
or, if not, then Mn = Mn-2+M2 = Mn-2. In the first case, Mn/Mn ~
mMn-1 and Mn-2/Mn-2 ~ mMn-1 are distinct one-dimensional sub-

spaces of Mn-1/mMn-1. But (0) ~ M11M1 ~ mMn-1 c Mn-2/Mn-2 ~
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mMn-1, so Ml/Ml n mMn-1 must be the same subspace as Mn-2IMn-2
~ m · Mn-1. Therefore Mi and Mn together generate Mn-1/mMn-1,
hence they generate Mn-1. By Cor. (1.10) applicd to the triple Mi,
Mn-1, Mn this means that

COROLLARY (1.15). In a canonical way, A (0) is the set of vertices of a
tree 4r on which r acts.

COROLLARY (1.16) (lhara). r is a free group.
PROOF. 1 claim that r acts freely on dr . In fact, if y e r, 03B3 ~ e, has a

fixed point P, then P is either a vertex or the midpoint of an edge. In the
latter case, y2 fixes the 2 endpoints of this edge. But the stabilizers in
PGL(2, K) of the elements of 0394(0) are the various subgroups

Since every y E r is hyperbolic, neither y nor y2 can belong to any such
subgroup. Thus r acts freely on a tree, hence r itself must be free. Q.E.D.

COROLLARY (1.17) (Bruhat-Tits). If dim A = 1, the whole of 0394(0) is,
in a canonical way, the set of vertices of a tree A on which ïhe whole group
PGL(2, K) acts.

It can be shown further when dim A = 1 that for all y E PGL(2, K),
either y is hyperbolic and has no fixed point on L1; or y is not hyperbolic
and y has a fixed point on A in which case then y2 is in some subgroup
g·PGL(2,A)·g-1.
For any linked subset 0394(0)* c 0394(0), let A, be the associated tree. We

can add a boundary to 4* that has an interesting interpretation: let

[Where an end is an equivalence class of subtrees of 4 * isomorphic to:

two such being ’equivalent’ if they differ only in a finite set of vertices].
Let 1* = 0394* ~ bd,: this is a topological space if an open set is a subset
U u V, where U c 0394* is open and V c ~0394* is the set of ends represented
by subtrees in U.

PROPOSITION (1.18). a) There is a natural injection
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c) If dim A = 1, 0394* = d, then i is a bijection of ~0394 and Kpl.

PROOF. Let {M1}, {M2}, ... be an infinite sequence of adjacent vertices
of 4* which defines an end e E ~0394*. Represent these by modules in
standard position:

Then it is easy to check that n:= 1 Nln is a free A-module of rank 1 in

K+K. If u e n Mn is a generator, u defines the point i(e) e KP1. Note
that u ~ mM1 and if v e Mi is such that ù ~ v in M1/mMl, then

where (an) = 03C1({M1}, {M1}). Next, let e’ be a 2nd end and assume

e ~ e’. From general properties of trees, it follows that there is a unique
subtree of 0394* isomorphic to:

(we call such a subtree a line) defining e at one end, e’ at the other. Pick
a base point {P} on this, and let its vertices in the 2 directions be

{M1}, {M2}, ... and (Ni), {N2}, .... Represent these by modules in
standard positions:

By Cor. (1.10), since 03C1({Mk}, {Nk}) = 03C1({Mk}, {P}) · 03C1({P}, {Nk}), it

follows that P = Mk + Nk. Thus if u is a generator of n Mn and v is a
generator of n Nn, then P = u, v). In particular K· u and K. v are
distinct subspaces of K+K. But K · u represents i(e), K. v represents
i(e’). Therefore i(e) ~ i(e’). To prove (b), note that when J* = Ar,
r acts on 4r , on 8Jr and on KP1 and i is r-linear. On the other hand,
any fixed point free automorphism y of a tree leaves invariant a unique
line (its axis) and it acts on its axis by a translation. Thus y fixes 2
distinct ends of the tree. In our case, every y ~ 0393, 03B3 ~ e, has therefore

2 fixed points in DA, hence in i(~03940393), and hence i(~03940393) contains the 2
fixed points of y in KP1. To prove (c), let x E Kpl and let u E K+ K be
homogeneous coordinates for x. Let v E K+K be any vector that is not
a multiple of u and let M. = u, 03C0nv&#x3E;, where (03C0) = m, the maximal
ideal in A. Then {Mn}n~0 is a half-line in the full tree A whose end is
mapped by i to x. Q.E.D.

DEFINITION (1.19). i(ô4r) ce Kpl will be denoted I and called the
limit point set of r.
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In fact, when dim A = 1, it is easy to check that f is precisely the
closure of r in the natural topology on KP1.
We can link together via the map i several of the ideas we have been

working with:

PROPOSITION (1.20). Let 0394(0)* be any linked subset of 0394(0), and let J* be
the corresponding tree. For any x, y, z E ~0394*, the class {M(ix, iy, iz)l is

in 0394(0)* and equals to unique vertex of 0394* such that the paths from v to the
3 ends x, y, z all start off on different edges.

PROOF. In fact, let the module M represent v, and let M ~ Mx ,
M ~ My, M ~ Mz be representatives in standard positions of M and
the module classes next on the path from v to x, y and z respectively.
Then ix, iy, iz are represented by homogeneous coordinates u, v, w E K+ K
such that

Since {M} is between {Mx} and {My} in 0394*, it follows from (1.10) that
Mx+My = M hence û, v E M/mM are distinct. Similarly w is distinct
from ù and D. Therefore, if 03B1u + 03B2v + 03B3w = 0 is the linear relation on
u, v, w, it follows that a, 03B2, 03B3~A-m. Therefore

COROLLARY (1.21). Every vertex of Ar meets at least 3 distinct edges.
PROPOSITION (1.22). Let 0394(0)* be any linked subset of 0394(0) and let 0394* be

the corresponding tree. Then for any Xl’ x2 , x3, X4 E ~0394*, R(ixl, ix2 ,
ix3, iX4) E A or R(ixl , ix2 , ix3, iX4)-1 E A.

PROOF. Let v be the vertex of 0394* joined to x1, x2 , X3 by paths starting
on different edges. Represent v by M and ixl , ix2 , iX3 by coordinates
ul , u2 , U3 E M- mM as in the proof of the previous Proposition.
Moreover we can represent X4 by coordinates U4 E M- mM too. Then

In this case,

We can use Proposition (1.20) to prove the important:
THEOREM (1.23). For all flat Schottky groups r, Arlr is a finite graph.
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PROOF. Let 03B31, ···, 03B3n be free generators of r and let v be any vertex

of dr . Let ui be the path in dr from v to y i(v) and let S = 03C31 ~ ··· u 6n .
S is a finite tree and 1 claim that S maps onto A,IF. This is equivalent
to saying that

is equal to d r . Note first that S is connected. In fact, if y E r, write y
as a word:

Then a typical point of S is on the path from y(v) to yyi(v). It is joined
to v by the sequence of paths:

where at = ai and a;l = 03B3-1i(03C3i) = (path from v to 03B3-1i(v)). Note
secondly that for every x E 03A3, the end i-1x of 03940393 is actually an end of
the subtree S. In fact, if x is a fixed point of y e r, it suffices to join the
points

by paths in S. The result is a line in S, invariant under y, plus an infinite
set of spurs one leading to each of the points ynv. The 2 ends of this line
are the 2 ends of A. fixed by y and one of these is i - lx. Thus i -’x is,
in fact, an end of S. Finally, suppose w is a vertex of dr - S. Then
w = fM(x, y, z)} for some x, y, z ~ 03A3. Since w ~ S, w is connected to S
by a unique path 03C4:
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Thus all the paths from w to all ends of S start with the same edge.
Since i-1x, i-1y, i-1z are all ends of S, this contradicts Prop. (1.20).
Hence d, = S. Q.E. D.

COROLLARY (1.24). dr is a locally finite tree.
DEFINITION (1.25). Let {M}, {N} ~ 0394(0) be compatible, and let z E KP1.

Then {M} separates {N} from z if there are representatives N ::) M in
standard positions and homogeneous coordinates z* ~ K+ K of z such
that:

The following is almost immediate:

PROPOSITION (1.26). Let 0394(0)* c 0394(0) be a linked subset and let e be an
end of DA*. Let {M}, {N} ed(o). Then {M} separates {N} from i(e) if
and only if the line in 0394* from {N} to the end e passes through {M}.

DEFINITION (1.27). Let 0394(0)* c 0394(0) be any linked subset and let

z E KP1. The base of z of 0394(0)* is the set of all (M) ~ 0394(0)* which are not
separated from z by any {N} ~ 0394(0)*.

PROPOSITION (1.28). The base ofz on 0394(0)* is empty if and only if z E i(oL1*).
PROOF. If z E i(~0394*), the base of z is empty by (1.26). Conversely,

suppose the base is empty. Choose homogeneous coordinates z* E K+ K
for z. Then for all {M} ~ 0394(0)*, there is a representative Me {M} such
that z* e m - M and an {N} ~ 0394(0)* such that

Start with any (Mll E 0394(0)*. Call the N satisfying (*) M2. With M as
M2, call the N satisfying (*) M3. Continuing in this way, we get an
infinite sequence:
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Then the sequence {Mi} defines an end of 0394* which is mapped by i to z.
Q.E.D.

PROPOSITION (1.29). If dim A = 1, then for any locally finite tree J*
and for any z E KP1, the base of z on J* consists of zero, one or two points.

PROOF. Consider 0394* inside the big tree J. It is easy to see that if thp
edges of 0394* are suitably subdivided, 4* becomes a subtree 0394’* of d ; i.e.
for all adjacent Mi =3 M2 in 0394* let

Then adding the intermediate classes

has the effect of subdividing the edge in 0394* between (Mi) and {M2} so
that it becomes a path in d . Now every z E Kpl is an end ofJ, and every
end of J which is not an end of d* can be joined to the subtree 0394’* by a
unique shortest path. If z E KP1-i(~0394*), let v(z) be the vertex of 0394’*
where this path meets 0394’*. Then it follows from (1.26) that the base of
z on 0394* is {v(z)} if v(z) is a vertex of 0394*; or it equals the 2 endpoints of
the edge of 0394* containing v(z) if v(z) is not a vertex of 0394*. Q.E.D.

In case dim A &#x3E; 1, the points z E KP1-i(~0394*) can have wild ly diverse
kinds of bases on 0394*. Take the case 0394* = dr . Then heuristically, r does
not act equally discontinuously at all the points of KP1 - E. An important
definition is this:

DEFINITION (1.30). If r is a flat Schottky group, then Dr = {z E Kpl 1
the base of z on 4r is finite and non-empty}; gr is called the set of strict
discontinuity, or the set of points where r acts strictly discontinuously.
(Note that if dim A = 1, Qr is simply KP1-03A3, the usual set of dis-
continuity. )

2. From trees to schemes

We turn now from the construction of trees to the construction of

actual or formal schemes over S3. Consider the set of all reduced and

3 It is interesting that the trees which Bruhat and Tits associated to PGL(2, K) are,
in fact, a highly developed special case of the graphs that have been used for a long
time in the theory of algebraic surfaces to plot the configurations of intersecting curves.
To be precise, if dim A = 1, we consider the inverse system of surfaces obtained by
blowing up closed points on the 2-dimensional scheme P1 x S. The graph which plots
the components of their closed fibres over S and their intersection relations is canoni-
cally isomorphic to A.
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irreducible schemes Z over S whose generic fibre is pi. These form a
partially ordered set if Zl &#x3E; Z2 means that there is an S-morphism from
Zl to Z2 which restricts to the identity on the generic fibre. In this
partially ordered set, any 2 elements have a least upper bound, called
their join. We want to study

1. the joins of finite sets of schemes P(M), {M} E 0394(0),
2. certain special infinite joins that exist as formal schemes over ,S’ but

not as actual schemes.

PROPOSITION (2.1). Let {M1}, {M2} E 0394(0). Let P12 be the join of P(Ml)
and P(M2). Then

(a) if {M1}, {M2} are not compatible, the closed fibre of P12 is isomor-
phic to P(M1)0 x P(M2)o; in particular, the fibres of P12 over S do not
all have the same dimension hence P12 is not flat over ,Sr.

(b) if tM,I, {M2} are compatible and (oc) = 03C1({M1}, {M2}), then P12
is a normal scheme, flat over S, and its fibre over s E S is:

PROOF. Let ul , VI be a basis of M1, and let zc2 - au1+bv1 , v2 =
Cu, + dvl be a basis of M2. Define map s:

Then P(Mi) = Proj A[Xi, Yi]. But

and these equations define the generic isomorphism of P(Ml ) and
P(M2). Now P12 is just the closure in P(Ml) x sP(M2) of the graph of
this generic isomorphism, i.e. P12 is the closure in

of the curve in the generic fibre defined by

According to the lemma of Ramanujam-Samuel (EGA IV.21) this

closure either contains the whole closed fibre of P(Ml) x SP(M2) or
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else is a relative Cartier divisor over S. If the latter is true, then the

closure must be defined as a subscheme ofP(Mi) x SP(M2) by a suitable
multiple of equation (*) with all coefficients in A, and not all coefficients
in m. In particular P12 is then flat over S and its fibres are curves in

P(M1)s x P(M2)S defined by equations of type (*). But over any field L,
an equation of type (*) which is not identically zero defines a curve in
Pl x Pl which is (i) a graph of an isomorphism of the 2 factors if

ad-bc =1= 0 or (ii) equal to P1L  (03B1) ~ (03B2)  P1L for some ex, f3 E Lp1 if

ad-bc = 0.

To tie these possibilities up with compatibility of the {Mi}, note that
on the one hand if Âa, Ab, Âc, Ad E A and not all are in m, then M1 ~ AM2
and mM1 ~ 03BB · M2: thus {M1} and {M2} are compatible and Ml, 03BBM2
are representatives in standard position. It is easy to check that

On the other hand, if {M1} and {M2} are compatible, choose M1 ~ M2
to be representatives in standard position. Then a, b, c, d E A, and not
all are in m.

Finally, the normality of P12 in the 2nd clase is a formal consequence
of the rest: since s is normal and P12 is flat and generically smooth over S,
it is certainly non-singular in codimension one. And if f ~ m, then the
ideal f· A c A has no embedded components, and since none of the
fibres of P12/S have embedded components, f · OP12 has no embedded
components either. Thus P12 is normal. Q.E.D.

PROPOSITION (2.2). Let {M1}, {M2} E 0394(0) be compatible and let z E KP1.
Then {M1} separates {M2} from z if and only if

where clP12(z) is the closure of {z} in Pi2 and P(M2)o is the component
of the closed fibre of P12 isomorphic to the closedfibre of P(M2).

PROOF. Since the closed fibre of P12 minus P(M2)o is isomorphic to
P(M1)o minus a point, clP12(z) n P(M2)0 = Ø implies that clp12(z) meets
the closed fibre in P12 in a finite set of points where P12 is smooth over S.
Therefore by the lemma of Ramanujam-Samuel, clPi2(z) will be a

relative Cartier divisor in this case; hence c1P12(z) will be the image of a
section of P12 over S. Thus c1P12(z) n P(M2)o - 0 is equivalent to z
extending to a section of P12 not meeting the component P(M2)o of
the closed fibre. But if
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are representatives in standard position, then for z to define a section of
P(M1) means that z has homogeneous coordinates:

In this case clp12(z) meets P(Ml)o in a point other than the one where
P(M2)o meets P(Ml)o if and only if 03B2 ~ m. Thus {M1} separates {M2}
and z if and only if z defines a section of P(Ml) passing through a closed
point other than the point where P(M2)0 meets it in P12; which is the
same as saying that z defines a section of P12 not meeting P(M2)0. Q.E.D.

PROPOSITION (2.3): Let {M1}, ..., {Mk} ~ 0394(0) be pairwise compatible.
Let Z be the join of P(M1),···, P(Mk). Then Z is a normal scheme, proper
andflat over S and its closed fibre 20 satisfies:

i ) it is reduced, connected and 1-dimensional,
ii) its components are naturally isomorphic to the schemes P(Ml )o ,

... P(Mk)0 respectively,
iii) 2 components meet in at most one point and no set of components

meets to form a loop,
(iv) every singular point z is locally isomorphic over k to the union W,

of the coordinate axes in Al.

PROOF. By definition, Z is the closure in P(M,) x s... x sP(Mk) of
the graph of the generic isomorphism of all the factors. Therefore Zo is
connected by Zariski’s connectedness theorem (EGA, III. 4.3.1). For
every i and j(1 ~ i, j ~ k), let pij be the projection onto P(Mi) SP(Mj).
Since Pij is proper, it follows from the proof of the previous proposition
that:

Therefore each component of Zo is ’parallel to one of the coordinate axes’,
i.e. has the form:

for some i, and is naturally isomorphic to P(Mi)o for this i. Moreover

it follows immediately from (*) that for each i, exactly one of the compo-
nents of Zo is parallel to the ith coordinate axis. This proves (ii). For any
union Zo of coordinate axes, (Zo)rea is locally isomorphic to the scheme
W, in (iv). Moreover, if Zo had a loop, then for some i there would have
to be 2 or more components parallel to the ith axis. The only point which
is not very clear is that Zo is reduced at its singular points. But note that
the ideal of Wl in Al is generated by the monomials (Xi Xj) which are
the defining equations of pij(Wl); therefore the scheme-theoretic inter-
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section ~i,jp-1ij[P(Mi)0  (a) + (b)  P(Mn)0] is already reduced, so a
fortiori Zo is reduced. Finally, Z is flat over S by EGA 4.15.2, and
normal by the same argument used in Prop. (2. ). Q.E.D.

Finally, we have :

PROPOSITION (2.4) : Let 0394(0)* c 0394(0) be a finite linked subset. Let P(0394*)
be the join of all the schemes P(Mi), {Mi} ~ 0394(0)*. Then in addition to the
above properties, we have also:

i) Zo has only double points,
ii) in the one-one correspondence between the components of the closed

fibre Zo and the elements of 0394(0)* 2 components meet if and only if the cor-
responding elements of 0394(0)* are adjacent in the tree 0394*.
In other words, if we make a tree out of Zo by taking a vertex for each
component and an edge for each point of intersection, we obtain geo-
metrically the tree J * .

PROOF. In fact, if Zo has a point of multiplicity ~ 3, this would mean
that ~ 3 components of Zo all met each other. Since we know J* is a
tree, this would contradict (ii). Thus it suffices to prove (ii). Suppose
{M1}, {M2} ~ 0394(0)* are not adjacent. This means there is an {M3} E 0394(0)*
different from {M1} and {M2} such that

Therefore we can find representatives of these classes in standard position:

Let X, Y be defined by

Then:

Now form the join Z123 of P(Ml), P(M2), P(M3):

From this it follows easily that the closed fibre of Z123 has 3 components,
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connected like this:

where maps onto P(Mi)o. But now there is a natural map of Z onto
Z123, and the component of Zo corresponding to {Mi} must map onto
Ei C (Zi23)o- Since El ~ E2 = 0, it follows that in Zo the components
corresponding to {M1} and {M2} do not meet! This proves that the
only components of Zo that can meet are those corresponding to adjacent
vertices of 4 * . But 0394* is a tree so it is disconnected by leaving out any
edge. Thus if any pair of components of Zo corresponding to adjacent
vertices ofJo did not actually meet, Zo would be disconnected. Thus (ii)
is completely proven. Q.E.D.

PROPOSITION (2.5): Let 0394(0)* c A(’) be a finite linked subset, and let
P(0394*) be the join of theP(Mi), {Mi} ~ 0394(0)*. Let z E KP1, and let cl(z) denote
the closure of {z} in P(0394*). Then for all {Mi} ~ 0394(0)*

if and only if {Mi} is in the base of z on 0394(0)*.
PROOF. The statement is equivalent to: [cl(z) n P(Mi)0 = 0]

[~{Mj} ~ 0394(0)* separating {Mi} and z]. The implication ~ is an imme-
diate consequence of (2.2). Conversely, suppose cl(z) n P(Mr)o - 0.
Let x1, ···, xi be the double points on P(Mi)o, let P(N1)0, ···, P(NI)O
be the other components of P(0394*)0 through x1, ···, x, respectively, and
let Wt c P(0394*)0 be the union of the components of P(0394*)0 which are
connected to P(Nt)o without passing through P(Mi)o:
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By Zariski’s connectedness theorem, cl(z)o is connected, hence there is
some j (1 ~ j ~ 1 ) such that

Now project everything into the join Pij of P(Mi) and P(Nj). Since the
projection is proper, and all components of P(d*)° except P(Mi)0,
P(Nj)0 are mapped to one point, it follows thatpij(cl (z)0) = one point,
and it is still disjoint from P(Mi)0. Therefore by (2.2), {Nj} separates z
from {Mi}.

In the case dim A = 1, an important class of trees 0394* are the subtrees
of the full J, i.e. linked sets 0394(0)* such that if {M1}, {M2} E 0394(0)* are ad-
jacent, then equivalently 03C1({M1}, {M2}) = max. ideal of A, or {M1},
{M2} are adjacent in J. These have the following easy characterization:

PROPOSITION (2.6). If dim A = 1, and 0394(0)* c A(o) is a finite linked set
then P(0394*) is regular if and only if 0394* is a subtree of 0394.
We omit the proof, which is easy. When dim A = 1, cl(z) is neces-

sarily isomorphic to S, i.e. it is the image of a section of P(0394*) over S.
Therefore cl(z) n P(d *)° is a single k-rational point of P(4 *)o . If, more-
over, P(4*) is regular, it must be a non-singular point of P(4*)o and
we have the following nice interpretation of the map z H cl (z) n P(0394*)0.

PROPOSITION (2.7): Let dim A = 1 and let A, c d be a finite subtree
Consider the maps:

KP1 ~ [non-singular k-rational points of P(4*)o ]

ends of 0394 ~ [edges of 4 - 4* that meet 0394*]

e F-+ last edge in path from e to 0394*

The horizontal arrows are surjective and there is a unique isomorphism
of the set of non-singular k-rational points of P(0394*)0 and the set of edges
of 0394 - 0394* meeting 0394* making the diagram commute.

(Proof left to reader).
The next step is to generalize Prop. (2.4) to infinite but locally finite

trees 0394*. We cannot do this in the category of schemes, but only in the
category of formal schemes. Here is the construction:

given 0394(0)* e 0394(0) a linked subset with 0394* locally finite
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1) for all finite subtrees S c 0394* let P(S) be the finite join as above,
II) when Si c S2 , there is a natural morphism

giving us an inverse system,

III) let &#x26;(8) = formal completion of P(S) along its closed fibre P(S)o .
We get again an inverse system:

IV) For al] S, let Y(S)’ be the maximal open subset CI c Y(S) such
that for all finite subtrees S c T c 0394*, the morphism resU p is an iso-
morphism :

V) Then the inverse system of P(S)’s become a direct system of
P(S)’’s in which all morphisms:

are open immersions. Let

PROPOSITION (2.8): P(0394*) is a normal formal scheme flat over S, such
that m. OP(0394) is a defining sheaf of ideals. The closed fibre has the
properties:

i) it is reduced, connected, 1-dimensional and locally of finite type
over k,

ii) it has at most ordinary double points and these are k-rational,
iii) its components are all isomorphic to Pk and are in one-one corre-

spondence with the elements of 0394(0)*,
iv) 2 components meet if and only if the corresponding vertices of 0394(0)*

are adjacent and then in exactly one point.

PROOF. This follows immediately from the previcus Propositions once
we have proven the following lemma.

LEMMA (2.9). Let S c 0394* be a finite subtree. If a vertex v of S is such
that all edges of A * which meet v lie in S, then the component Ev of P(S)o
corresponding to v lies entirely in the open set P(S’)’.
PROOF OF LEMMA. Let SeT c 0394*, where T is another finite subtree

containing all edges of 0394* meeting edges meeting v, i.e.
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Let U c P(,S)o be the open set consisting of Ev, plus those points x of the
components E’w which meet Ev such that p-1(x) does not meet any
other component of P(T)0:

Then even if T’ ~ T is a bigger finite subtree, it follows from Prop. (2.3)
that in the diagram:

resupo is an isomorphism. Since p : P(T’) - P(S) is proper and sur-
jective and P(S) is reduced, there is an open set V c P(S) such that V ~ U
and p-1(V) ~V is an isomorphism. Therefore the inverse image of U
in the formal scheme f!JJ(T’) is mapped isomorphically to the open sub-
scheme U of P(S). Therefore U c P(S)’. Q.E.D.

Speaking heuristically, P(0394*) is the infcnite formal join of the schemes
P(M), for all {M} e 0394(0)*.

For every zEKp1, we can talk about the closure of z, cl(z)^, in P(0394*).
In fact, we can form cls(z) in P(S), take its formal completion clS(z)^
in &#x26;1(S), and restrict it to P(S)’. Then if S1 ~ S2, clS1(z)^ is just the
restriction of clS2(z)^ to Y(S,), hence there is a unique formal sub-
scheme :
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such that

all finite subtrees S.

PROPOSITION (2.10). cl(z)A is proper over S if and only if the base of S
on 0394* is finite. If cl(z)^ is non-empty as well then it is the formal completion
of the proper scheme cls(z) for all sufficiently large finite subtrees S c 0394*.

This is an immediate consequence of (2.5).
COROLLARY (2.11). If r is a flat Schottky group and z E Kpl, then

r acts strictly discontinuously at z if and only if cl(z)^ c P(03940393) is non-
empty and proper over S.

In case dim A = 1, we have the infinite generalization of (2.7):
PROPOSITION (2.12). Let dim A = 1 and let 0394* be a locally finite subtree

of 0394. Consider the maps

KP1-i(~0394*) ~ [non-singular k-rational points of (0394*)0]

The horizontal maps are surjective and there is a unique isomorphism of
the set of non-singular k-rational points of P(0394*)0 and the set of edges
of 0394 - 0394* meeting 0394* making the diagram commute.

(Proof left to reader).

3. The construction of the quotient

We now restrict ourselves to the case 0394* = dr . Then the group 0393 acts
on P(03940393). The final step in our construction is to form a quotient
P(03940393)/0393 and to algebrize it.

THEOREM (3.1). There exists a unique pair (X, n) consisting of a formal
scheme X proper over S and a surjective étale S-morphism

such that 

a) ~03B3~0393, if [03B3] represents the induced automorphism of P(03940393), then
03C0 O [y] = 03C0,



159

b) Vx, y E P(03940393), 7r(x) = n(Y) ~ x = [y]y, some y E r.
Moreover  is normal, is flat and projective over S, and is algebraizable.
 will be written P(03940393)/0393.

PROOF. As a topological space, Éi must equal the quotient of the un-
derlying topological space to P(03940393) by r, and its structure sheaf must be
the subsheaf of 03C0*(OP(03940393)) of r-invariants. Therefore X is unique. To
construct EX, we proceed in two stages:

(i) prove the results for a suitable To c T of finite index,
(ii) prove them for r.

The point is that since r acts freely on the tree dr, no y E r (y =1= e)
takes any component of P(03940393)0 into itself. Even better, there is a normal
subgroup Fo c= r of finite index such that no y ~ 03930(03B3 ~ e) takes a vertex
of 4r into itself or to an adjacent vertex. Therefore no y E FO(y :0 e)
takes a ccmponent of P(03940393)0 into itself or into a second component
meeting the fiirst one. From this it follows that ro acts on P(03940393)0 discon-
tinuously in the Zariski topology: i.e. every x E P(03940393)0 has an open
neighbourhood U such that U n yU = 0, all y E 03930(03B3 ~ e). But in this
case a quotient P(03940393)/03930 can be constructed simply by re-glueing!
To be precise cover P(03940393) by affine open subschemes Spf (Ai) whose
underlying open subsets have the above property. Then for every i, j,
there is at most one element 03B3ij E 03930 such that

Glue Spf(Ai) to Spf(Aj) on this overlap via the map [03B3ij]. This gives a
formal scheme OY and a morphism

which is surjective and locally an isomorphism such that

Note that since 4r/r is a finite graph, so is 03940393/03930. Therefore y0 has only
a finite number of components and is proper over k. Therefore e is

proper over S. Obviously y is normal and fiat over S too since it is lo-
cally isomorphic to 9(,Ar)-
Now for each component of OJ/ 0’ choose a point x E E which is not

in any other component of OYO. Let dE E Ox,y0 = Ox,y/m · Ox,y be a gen-
erator of the maximal ideal and let dE E Ox,y lift dE. Let dE = 0 define
the relative Cartier divisor DE c OY, and let D = 03A3DE. Then D is rela-
tively ample on y over S, hence &#x26; is projective. Now we can apply
Grothendieck’s algebraizability theorem (EGA 111.5) to conclude that
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y is the formal completion of a unique scheme Y, projective over S,
along its closed fibre Yo.

Finally, Y is a projective scheme, hence any finite subset of Yis contained
in an afhne. Therefore its 0393/03930-orbits are contained in affines and there
exists a quotient 7/(r/ro)(cf. [M1], § 7). Let XT be the formal completion
of Y/(0393/03930) along its closed fibre. This XT has all the required properties.

Q.E.D.

DEFINITION (3.2). Pr is the scheme, projective over S, whose formal
completion is &#x26;J( Ar )1 r.
We recall the concept of a stable curve over S in the sense of Deligne and

Mumford: this is a scheme C, proper and flat over S, whose geometric
fibres are reduced connected and 1-dimensional; have at most ordinary
double points; and such that their non-singular rational components, if
any, meet the remaining components in at least 3 points. Moreover a stable
curve C over a field k will be call degenerate if Picg is a torus, or equiv-
alently if the normalizations of all the components of C kk (k an al-
gebraic closure of k) are rational curves. C is called k-split degenerate if
the normalizations of all the components of C are isomorphic to P1k, and
if all the double points are k-rational with 2 k-rational branches. This
means that C is gotten by identifying in pairs a finite set of distinct k-ra-
tional points of a finite union of copies of P1k.
THEOREM (3.3). If n is the number of generators of 0393, then Pr is a stable

curve over S of genus n, whose generic fibre is smooth over K and whose
special fibre is k-split degenerate. Moreover its special fibre (Pr)o has the
property:

there is a 1-1 correspondence between components of (Pr)o and ver-

.. 
tices of 03940393/0393, and between double points of (Pr) o and edges of 03940393/0393,

(*) such that a component contains a double point if and only if the cor-
responding vertex is an endpoint of the corresponding edge.

PROOF. Since (Pr)o is the quotient of P(03940393)0 by r, the asserted prop-
erties of a stable curve are clear except for the requirement that every
non-singular rational component meets the other components in ~ 3
points. But by Prop. (1.20), every vertex of 4 r/F is met by at least 3 edges
so this is OK. Now a deformation of a stable curve is stable, so PI. is
stable. Finally, the formal completion of Pr is normal, so Pr is normal.
Therefore, its generic fibre is regular. Since it is also a stable curve, it is
smooth over K too. Q.E.D.

Let Pr(K) denote the set of K-rational points of Pr. We can now con-
struct a map
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from the set of strict discontinuity to the set of rational points of the
smooth curve (P0393)~. In fact if z E S2r, we have seen that we can form

and that cl(z)" is the formai completion of scheme cl(z) proper over S,
and birational to it. This gives us a formal morphism.

which by Grothendieck’s theorem (EGA III.5) comes from a morphism:

Let n(z) be the image of the generic point under this map.

PROPOSITION (3.4). If z1, z2 E QF, then

PROOF. ’~’ is obvious. Conversely, say n(zi ) = 03C0(z2). Let Z be the join
of cl(zl), cl(z2) : Z is proper over S and birational to it. In particular,
Zo is connected. By assumption the 2 morphisms:

are equal. Therefore the 2 formal morphisms:

both lift the same formal morphism to P(03940393)/0393. Since Zo is connected
and P(03940393) is étale over P(03940393)/0393, these 2 differ by the action of some
y e r. Therefore for a large finite subtree S c 4r , we get a commutative
diagram:

Evaluating these on the generic point, it follows that y(ZI) = z2. Q.E.D.

THEOREM (3.5). If A is a regular local ring, then 03C0 is surjective.
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PROOF. Note that if 03931 ~ r is a subgroup of finite index, then

i) the set of fixed points 03A31 of 03931 and 1 of 0393 are the same (since Vy ~ 0393,
y" is in 03931 for some n) hence

ii) Ar, = dr and
iii) P(039403931) = *(4r), hence
iv) Pri is a finite étale covering of Pr.

The first step in our proof is that the map

is surjective. To see this, take some z e Pr(K) and let cl(z) be the closure
of z in Pr, and let cl(z)’ be the normalization of cl(z). Taking the fibre
product:

we get an induced finite étale covering W of cl(z)’. Since cl(z)’ is normal,
so is W and hence the components Wi of W are disjoint and are each
finite and étale over cl(z)’. Let Ki be the function field of Wi and let Ai be
the normalization of A in Ki. Since the projection

is birational, cl(z)’ and Spec A are isomorphic outside a closed set Z of
codimension two in Spec(A). Therefore over Spec(A) - Z, Wi is iso-

morphic to Spec(A;). In particular, Spec(Ai) is unramified over Spec(A)
in codimension one. But by the theorem of the purity of the branch locus,
which applies since A is regular, this proves that Ai is unramified every-
where over A ; hence by Hensel’s lemma, Ai is isomorphic to A. Therefore
Ki = K and Wi ~ cl(z)’. This moves that not only is

surjective, but also that there is a lifting f 1:

for every 03931 c r if finite index.
The second step is that by passing to the formal completion of cl(z)’

along the closed fibre, there exists a lifting g :
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In fact let k be the maximum number of edges meeting any vertex of
dr and let n be the number of components of the closed fibre of cl(z)’.
Then if 03931 is sufficiently small, every y E F, (03B3 ~ e) maps every vertex
v of Jr to a vertex y(v) joined to v by a line with more than (k+1)n
edges. Let rI c (P03931)0 be the open subset consisting of all points of all the
components that meet f1(cl(z)’0) except those that lie also on components
disjoint from f1(cl(z)’0). Then U has at most (k + 1)n components. Let
Û be the corresponding open sub-formal scheme of P(039403931)/03931 = P^03931.
Let e be the inverse image of Û in Y(,Ar). By our assumption on the
way Fi operates inar, no 2 components E and y(E) of 9(y ~ 03931, 03B3 ~ e)
can be joined by a line of components of : hence 9is the disjoint union
of copies of Û. Choosing one of these, we can lift 11 uniquely to a morphism
g of cl(z)’ into this component.
Thirdly, e(cl(z)’) is proper over k, hence it lies in one of the approxi-
mating pieces:

Thus g can be algebraized to a true morphism:

The image of the generic point here is a point of Kpl which clearly lies
in S2r and is mapped by 03C0 to z. Q.E.D.

Before ending this section, I would like to discuss briefly the special fea-
tures of the dim A = 1 case and indicate how the somewhat more precise
and elegant formulation given in the Introduction can be worked out.
When dim A = 1, one has the big tree J and it usually is more con-
venient to replace the tree d r by the tree 0394’0393 where vertices are:

a) the vertices of 4r
b) the vertices ofJ intermediate between 2 vertices of dr .

Then 0394’0393 is a subtree ofJ hence P(0394’0393) is regular by (2.6): in fact, P(0394’0393)
is just the minimal resolution of the normal surface P(03940393). Let P(0394’0393)/0393
be the formal completion of P’0393. Then PT is regular and is the minimal
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resolution of the normal surface Pr. Generically, PT - Pr, but the closed
fibre is now only a semi-stable curve - i.e. a reduced connected 1-dimen-
sional scheme with at most ordinary double points and such that every
non-singular rational component meets the other components in at

least 2 points. P’0393 is the so-called minimal model of the curve (Pr), over
A (cf. [D - M], p. 87, [L ] and [S]). Moreover, the closed fibre (PT)o has
only rational components one for each vertex of the graph 0394’0393/0393; and
one double point for each edge of the graph 0394’0393/0393. A’JF is the graph
referred to as (0394/0393)0 in the Introduction.

EXAMPLE.

All this is an immediate generalization of (3.3) and is proven in exactly
the same way. Finally applying Prop. (2.12) to 0394’0393, we get a commutative
diagram on the upper-left.

Then the commutative diagram on the lower-right is deduced by taking
the quotient of each set by F.
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4. Existence and uniqueness

Summarising the discussion up to this point, we have started with a
flat Schottky group F c PGL(2, K), and have then constructed:

a) a tree 4r ,
b) a formal scheme P(03940393),
c) a stable curve P0393/S such that 0393 ~ P(03940393)/0393 with generic fibre non-

singular and with closed fibre k-split degenerate.
Let (Pr)n be the generic geometric fibre of Pr over an algebraic closure
K of K. The next question to study is whether the non-singular curve
(P0393)~ determines T uniquely. We shall invert our construction step by
step. The first is this:

PROPOSITION (4.1): If Ci, C2 are 2 stable curves over S with k-split
degenerate fibres, then the scheme Isoms(Cl , C2) exists and is isomorphic
to a disjoint union Ni=1 Si of closed subschemes of s.

PROOF. According to Theorem (1.11) of [D-M], s(cl, C2)
exists and is finite and unramified over S. Since S = Spec (A), A com-
plete, by Hensel’s lemma Isom is a disjoint union of schemes Si with only
a single point over the closed point of S. But because Ci, o and C2, o are
k-split degenerate every isomorphism of Ci, o and C2, o is uniquely deter-
mined by specifying which components of Ci, o go to which components
of C2, o and which double points go to which double points; once this
combinatorial data is specified, there is at most one such isomorphism
of Ci, o and C2, o and if it exists at all, it is rational over k. Therefore the
closed points si c- Si are k-rational. Since Si is finite and unramified over S,
Si ~ S must in fact be a closed immersion. Q.E.D.

COROLLARY (4.2): Every isomorphism of the generic geometric fibres
(P03931)~, (P03932)~ extends uniquely to an isomorphism of Pr. and Pr2.
PROOF. The hypothesis means that one of the components Si of

Isoms(Prt’ Pr2) has a point over the generic point of S, hence Si is iso-
morphic to S’ and defines an S-isomorphism of Prt’ Pr2 .



166

PROPOSITION (4.3). The morphism P(03940393) ~ Pr makes P(03940393) into

the universal covering space of Pro

PROOF. In fact, the category of formal étale coverings of Pr is isomor-
phic to the category of étale coverings of (Pr)o. Since the closed fibre
Y(,A,)o is connected and is a tree-like union of copies of P1k, it is simply
connected and must be the universal covering space of (Pr)o . Q.E.D.

DEFINITION (4.4). An exterior isomorphism of 2 groups G1, G2 is the
set of isomorphisms 03B1~03B1-1 conjugate to an ordinary isomorphism (P.
When we talk of 03C01(X), for a connected scheme X, in order to have a

well-defined group depending functorially on X we have to fix a geometric
base point x : Spec (03A9) ~ X (Q an algebraically closed field), and then
1Cl should be written 03C01(X, x). But up to exterior isomorphism, 1Cl is

independent of x, hence so long as we only talk of exterior isomorphisms,
we can write 1Cl(X).
COROLLARY (4.5). r, as an abstract group, is canonically exterior-

isomorphic to 1Cl(Pr)(or 1Cl«Pr)O».
COROLLARY (4.6). Starting with an isomorphism

15 first extends uniquely to an isomorphism

hence to an isomorphism

hence to a pair consisting of an isomorphism

and an a-equivariant isomorphism

Then (a, (o) is unique up to a change (a’, ’) = (03B303B103B3-1, yoip)(yer2).
The last step is to show how the function field R(P’) can be identified

inside the field of meromorphic functions on P(03940393), so that r as a sub-
group of PGL(2, K) (= AutK R(P1K)) can be recovered from F as a group
of automorphisms of P(03940393).
PROPOSITION (4.7): Let D c P(03940393) be a positive relative Cartier

divisor such that D0 meets only one component of the closed fibre P(03940393)0.
Then R(P’), as a field of meromorphic functions on P(03940393) is the quotient
field of the A-algebra:
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PROOF. Let ç¿ 0 meet the component of P(4r)o corresponding to the
vertex {M} ~ 0394(0)0393. Consider the projection:

Then -9 is the inverse image of a relative Cartier divisor in P(M)^. By
Grothendieck’s existence Theorem (EGA 111.5), this divisor is the formal
completion of a relative Cartier divisor D c P(M). We have homomor-
phisms :

0393(P(M), (9,(M)(nD» + r(p(M)A , OP(M)^(n)) 7 0393(P(03940393), OP(03940393)(nD)),
the first being an isomorphism by EGA III.4.1. Since R(P’) is the quo-
tient field of

the proposition will follow if we show that the second of these maps is an
isomorphism too. This follows from:

LEMMA (4.8). Let 0394* c A, be any finite subtree. Let p : P(03940393) ~
P(0394*) ^ be the projection. Then

PROOF. It suffices to prove that for affine open afline U c P(0394*)0 and
every ideal I c A of finite codimension, that

is an isomorphism. We check this by induction on dimk(A/I). If I = m,
note that the open subscheme p-1(U) of the closed fibre P(4r)o is

obtained from U by adding infinite trees of P1k’s at a finite set of points of
U. Since global sections of OPk1 are constants in k, a section on p-1(U) of
(9y(,A.r),) is just a section on U of OP(0394*)0 extended as a constant to each
of these trees. The result is true when I = m. In general, if Io = I+A · fi,
where m·~ c I, then by flatness of P(03940393) and P(M) over S, we get a
diagram:

Then a and y are isomorphisms by induction, hence so is 03B2.
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Note that plenty of such C’s exist: just take a closed point x of the
closed fibre Y(AF)O where 9(,Ar) is smooth over S: let fe Ox, P(03940393) be an
element such that

Then f = 0 defines such a 2). Therefore we have:

COROLLARY (4.9). In the situation of Corollary (4.6), the map induced
by Co on the meromorphic functions restricts to an isomorphism:

If qJ* is given by an element g E PGL(2, K). then oc : 03931 ~ r 2 is given by

PROOF. The first part follows immediately from (4.8) since such D’s
exist and (o takes such a 9 to another such D. Since §5 is a-equivariant,
so is ~*, i.e. acting on R(P’), we find

Hence if ~* is given by the action of 9 e PGL (2, K) on R(P1K), gy = 03B1(03B3)g,
all 03B3 ~ 03931. Q.E.D.

where g - g’ if 3Y2 Er 2 such that g’ = 03932g, or equivalently 3y, E 03931
such that g’ = g03B31.

PROOF. It suffices to note that everything can be reversed: given
g E PGL (2, K) such that g03931 g-1 = r 2, then g defines a (o and an a,
hence a (p, hence a ~. Q.E.D.

COROLLARY (4.11). (Pri)n is isomorphic to (Pr2)n if and only if ri is

conjugate to 03932 in PGL(2, K). All isomorphisms are, moreover, rational
over K.

COROLLARY (4.12). Aut ((P0393)~) is isomorphic to N(r)lr, where N(F)
is the normalizer of r in PGL (2, K). All automorphisms are, moreover,
rational K.

We turn finally to the question of the existence of these uniformiza-
tions. We wish to start only with a stable curve C/S with non-singular
generic fibre and k-split degenerate closed fibre and reverse the construc-
tion step-by-step.
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Step I : Let W be the formal completion of C along its closed fibre.
Note that C must be normal, hence so is W.

Step II: Let p o : Po - Co be the universal covering scheme of Co and
let T be the group of cover transformations. It is clear that Po is an infinite
union of copies of pi, each one joined to a finite number of others (at
least 3 others) at k-rational double points, but the whole being con-
nected as a tree. More precisely, if we make a graph J (resp. G) to il-
lustrate Po (resp. Co) in the usual way (one vertex for each component,
one edge for each double point), then L1 is a tree, T acts freely on J and
4 /T éé G.

Step III: Since the category of étale coverings of W and of Co are
equivalent, there is a unique formal scheme Y with closed fibre Po, and
formal étale morphism

extending p o . Moreover, T acts on Y so that W - Yll.
Step IV: For each component M of ÇjJ 0’ let -9 ~ P be a positive

relative Cartier divisor such that f!) 0 meets only the component M of P0.
Let:

PROPOSITION (4.13). P(M) - Pl x S, and there is a canonical formal
morphism:

which on the closed fibre g; 0 maps every component M’ ~ M to a point
and maps M isomorphically onto P(M)o.

PROOF. First we need:

PROOF. Let P’0 be the disjoint union of the components of pjJ 0’ and
let q : P’0 ~ g; 0 be the obvious morphism. We have an exact séquence :

It is obvious that

and that
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is surjective (since g; 0 is connected together like a tree!). Therefore
H1(OP0) - (0). Moreover, if n &#x3E; 0, use

where dim (Supp F) = 0. From this it follows that H’«9&#x26;.(n-90» = (0)
too.

LEMMA (4.15). For all n ~ 0, F(,9, OP(nD)) is a finitely generated
free A-module such that

PROOF. It suffices to prove that for all I c A of finite codimension,
0393(P, OP(n)/I· QP(nD)) is a finitely generated free Ail-module such that

If I = m, note that every section of OP0(nD0) is just a section of OM(nD0)
extended as a constant to all other components of P0, hence

is an isomorphism. In general, use induction of dim AIL If lo = I+A· il,

where m - r, c I, we get a diagram (because of flatness of Y over S):

Using this, the assertion for Io implies immediately the assertion for I.
Q.E.D.

It follows from (4.15) that 03A3~n=00393(P, OP(nD)) is a free finitely gener-
ated graded A-algebra, hence its Proj is a flat and proper scheme over
S; moreover, its closed fibre is just

which is M itself. Since M ~ Pk and all deformations of P1 are trivial,
this proves that P(M) ~ Pl x S. Finally, (9 fJJo( £Zf 0) is generated by its
global sections, hence by (4.15), OP(D) is generated by its sections. There-
fore there is a formal morphism from 9 to P(M)". Since go is very
ample on M and since all sections of (9fJJo(n£Zfo) (any n ~ 0) are constant
on all other components of 90, the last assertions of the Proposition
are obvious. Q.E.D.

PROPOSITION (4.16). For any 2 components Ml, M2 of &#x26;0, consider
the morphism PMt,M2 : P ~ (P(M1)  SP(M2))^. There is a unique



171

relative Carter divisor Z c P(Ml) x S P(M2) defined by an equation:

(where xi, yi are homogeneous coordinates on P(Mi)) such that PM1,M2
factors through Z. Moreover ad - bc ~ 0 but ad - bc e m.

PROOF. Via the isomorphism P(Mi) ~ P1 x S, let the sheaf O(1) 0 (9s
go over to the sheaf Li on P(MJ. Then 0393(P(Mi), Li) ~ A· Xi ~ A·Yi.
Let K = p*1L1 ~ p*2L2 on P(Ml) x sP(M2). Then:

r(p(M1)xsP(M2), K) ~ Ax1x2 0 Ay1x2 0 Ax1y2 0 Ay1y2.
Let Li = p*Mi(Li), K = PÁtt, M2(K) be the induced sheaves on &#x26;, and let
Li, 0, Ko be the induced sheaves on &#x26;0. The first step is to check that:

a) H0(P0, K0) ~ H°(P(Ml)o x P(M2)o, Ko)/modulo 1-dimensional
subspace of form 03BB(03B1x1 + 03B2y1) · (03B3x2 + 03B4y2),

b) H1(P0,K0) = (0).
In fact, Li, o is a trivial invertible sheaf on ail components of &#x26;0 except
Mi; it follows easily that if we pick arbitrary sections in the 2-dimensional
spaces:

they extend to at most one section of g; 0’ and that there is one condition
for them to do so, namely that they induce the same constant section in
the link between M1 and M2:

Thus dim HO(&#x26;o, Ko) = 3. Now H1(P0, K0) = (0) follows as in lemma
(4.14). Finally, from what we know about the images pM1(P0), it follows
that PM1, M2(&#x26; 0) must be a union P(M1)0  (a) u (b)  P(M2)0, hence
the kernel of

is 1-dimensional and generated by an element (03B1x1 + 03B2y1)(03B3x2 + 03B4y2).
The second step is that H0(P, K) is a free A-module of rank 3 such

that
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This follows from (a) and (b) just as in lemma (4.15). Therefore

is a homomorphism of a free rank 4 module to a free rank 3 module;
after ~Ak, it becomes surjective, so it is already surjective. Therefore
H0(P(M1)  sP(M2), K) ~ H0(P, ) Et) A.f, where f = axl x2 + ... 
+dYIY2 and f ~ (axl + 03B2y1)(03B3x2 + 03B4y2) mod m. Thus f = 0 defines a
relative Cartier divisor Z through which PMbM2 factors. Finally, if

ad - bc = 0, then f splits into a product over A as well as over k; then Z
is reducible: say Z = Zl U Z2. If Pi = p-1M1,M2(Zi), then Y = P1 ~ P2.
But Y is normal and connected so this is absurd. Q.E.D.

COROLLARY (4.17). Let R(P(M)) be the field of rational functions on
P(M) and let p*MR(P(M)) be the induced field of meromorphic functions
on Y. Then

for any 2 components Ml, M2 of Yo.

PROOF. In fact, PMi factors:

and since ad - bc ~ 0, Z is irreducible and q*iR(P(Mi)) = R(Z). Thus
P*M1R(P(M1)) = p*M1,M2R(Z) = p*M2R(P(M2) Q.E.D.

Step v. Choose once and for all an isomorphism:

(*) p*MR(P(M)) ~ R(Pl), the field of rational functions on Pl

The isomorphism of p* R(P(M» with R(Pl) induces an isomorphism
of the generic fibre P(M)~ with P k . Thus P(M) becomes a P1-bundle over
S with generic fibre PK, i.e. P(M) define an element {M} e 0394(0). Thus
we have associated an element of 0394(0) to each component of Yo. Let
0394(0)* be the set of elements of 0394(0) that we get. By Prop. (4.16), the join
Z of 2 P(M)’s is flat over S with reducible closed fibre: therefore if

Mi :0 M2 are 2 components of ÇJJ 0’ the corresponding elements of 0394(0)
are distinct and compatible by (2.1). Since f!jJ 0 has only double points,
it follows from (2.3) that 0394(0)* is a linked subset. 1 claim that

In fact, it is easy to see that there is a formal morphism 1C : P ~ P(0394*)
which is an isomorphism on the closed fibre. Then apply the easy:
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LEMMA (4.18). Let f :  ~ OJI be a formal morphism of formal schemes
over S, whose topologies are defined by the ideals m - (2 f£, m - (9,y respec-
tively. If fo : 0 ~ OJI 0 is an isomorphism and  is flat over S, then f is
an isomorphism.

Step VI. By Cor. (4.17), r leaves invariant the field of meromorphic
functions p*MR(P(M)) on Y, hence by our basic identification of this
field with R(P)’, r acts faithfully on R(pl). This induces an embedding

Identifying T with its image here, then r maps 0394(0)* into itself and this
induces an action of F on P(0394*), and hence induces an action of T on
JI equal to the one we started with. It remains only to prove:

PROPOSITION (4.19). h is a flat Schottky group and J* = dr.
PROOF. Let y ~ 0393, 03B3 ~ e. Since y acts freely on the tree 0394*, it leaves

fixed 2 ends x, y E 64 * . Therefore y leaves fixed ix, iy ~ KP1. Let {M} be
a vertex on the line in 0394* joining the end x to the end y. Then ix and iy
are represented by homogeneous coordinates u, v ~ K+ K such that

M = A · u + A · v. Reordering x and y if necessary, we can assume

that 03B3{M} separates {M} from x. Then 03B3{M} is represented by a module
N such that

But if we lift y to an element ÿ E GL(2, K), then

Then N = 03C3/03BBu, 03C4/03BBv&#x3E;, so (JIÂ E A*, 03C4/03BB E m. Then

Therefore y is hyperbolic. 
Next, the fixed points of the elements of T are contained in the set

i(~0394*), hence by Prop. (1.22), any 4 of them have a cross-ratio in A or
A-1. Thus r is a flat Schottky group. Moreover, 0394(0)0393 c 0394(0)* since by
Prop. (1.20) {M(x, y, z)} e 0394(0)* for any 3 fixed points x, y, z of r. Conver-
sely, say v is a vertex of d * . Since Co was a stable curve, P0 has the
property that every component has at least 3 double points on it. There-
fore every vertex of 0394* is an endpoint of at least 3 edges. Take 3 edges
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meeting v. In 4 */r, choose 3 loops starting and ending at the image of v
that start off on these edges. Let these loops define 03B31, Y2, 03B33 ~ 0393 ~
1Cl(J*lr). Then the paths from v to YiV start on these 3 edges. Let 03B3ni v
tend to an end xi E DA*. Then i(xi) is a fixed point of yi, hence

This completes the proof of:

THEOREM (4.20): Every stable curve over S with non-singular generic
.fibre and k-split degenerate closed’fibre is isomorphic to Pr for a unique
flat Schottky group r c PGL (2, K).
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