Compositio Mathematica

DAVID MUMFORD

An analytic construction of degenerating curves over complete local rings

Compositio Mathematica, tome 24, $\mathrm{n}^{\circ} 2$ (1972), p. 129-174
http://www.numdam.org/item?id=CM_1972__24_2_129_0
© Foundation Compositio Mathematica, 1972, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

AN ANALYTIC CONSTRUCTION OF DEGENERATING CURVES OVER COMPLETE LOCAL RINGS

by
David Mumford

This is the first half of a 2 part paper, the first of which deals with the construction of curves and the second with abelian varieties. The idea of investigating the p-adic analogs of classical uniformizations of curves and abelian varieties is due to John Tate. In a very beautiful and influential piece of unpublished work, he showed that if K is a complete nonArchimedean valued field, and E is an elliptic curve over K whose j-invariant is not an integer, then E can be analytically uniformized. This uniformization is not a holomorphic map:

$$
\pi: \boldsymbol{A}_{K}^{1} \rightarrow E
$$

generalizing the universal covering space

$$
\pi: C \rightarrow E(=\text { closed points of an elliptic curve over } \boldsymbol{C})
$$

but instead is a holomorphic map:

$$
\pi_{2}: \boldsymbol{A}_{K}^{1}-\{0\} \rightarrow E
$$

generalizing an infinite cyclic covering π_{2} over \boldsymbol{C} :

$$
\pi_{1}(z)=e^{2 \pi i\left(z / \omega_{1}\right)}
$$

ω_{1} one of the 2 periods of E. Here you can take holomorphic map to mean holomorphic in the sense of the non-Archimedean function theory of Grauert and Remmert [G-R]. But the uniformization π_{2} is more simply expressed by embedding E in \boldsymbol{P}_{K}^{2} and defining the three homogeneous coordinates of $\pi(z)$ by three everywhere convergent Laurent series.

The purpose of my work is 2-fold: The first is to generalize Tate's results both to curves of higher genus and to abelian varieties. This gives a very useful tool for investigating the structures at infinity of the moduli spaces. It gives for instance an abstract analog of the Fourier series development of modular forms. Our work here overlaps to some extent with the work of Morikawa [Mo] and McCabe [Mc] generalizing Tate's uniformization to higher-dimensional abelian varieties. The second pur-
pose is to understand the algebraic meaning of these uniformizations. For instance, in Tate's example, π defines not only a holomorphic map but also a formal morphism from the Néron model of $\boldsymbol{G}_{\boldsymbol{m}}$ to the Néron model of E over the ring of integers $A \subset K$. And from an algebraic point of view, it is very unnatural to uniformize only curves over the quotient fields K of complete one-dimensional rings A : one wants to allow A to be a higher-dimensional local ring as well, (this is essential in the applications to moduli for instance). But when $\operatorname{dim} A>1$, there is no longer any satisfactory theory of holomorphic functions and spaces over K.

In this introduction, I would first like to explain (in the case K is a discretely-valued complete local field) what to expect for curves of higher genus. We can do this by carrying a bit further the interesting analogies between the real, complex and p-adic structures of $P G L(2)$ as developed recently by Bruhat, Tits and Serre:
(A) real case: $\operatorname{PSL}(2, \boldsymbol{R})$ acts isometrically and transitively on the upper $\frac{1}{2}$-plane and the boundary can be identified with $\boldsymbol{R} \boldsymbol{P}^{1}$ (the real line, plus ∞):

(B) complex case: $\operatorname{PGL}(2, C)$ acts isometrically and transitively on the upper $\frac{1}{2}$-space ${ }^{1} H^{\prime}$ and the boundary can be identified with $\boldsymbol{C P}{ }^{1}$:

$$
\begin{aligned}
& \text { coordinates } z \in C, x \in R, x \geqq 0 \\
& \text { metric } d s^{2}=\frac{1}{x^{2}}\left(|d z|^{2}+d x^{2}\right)
\end{aligned}
$$

${ }^{1}$ The action of $S L(2, C)$ on H^{\prime} is given by:

$$
\begin{aligned}
& \left(z \in C, x \in R^{+}\right) .
\end{aligned}(z, x) \mapsto\left(\overline{(c z+d)}(a z+b)+a \bar{c} x^{2}, \frac{x}{|c z+d|^{2}+|c|^{2} x^{2}}, \frac{x}{|c z+d|^{2}+|c|^{2} x^{2}}\right)
$$

(C) p-adic case: $\operatorname{PGL}(2, K)$ acts isometrically and transitively on the tree Δ of Bruhat-Tits, (whose vertices correspond to the subgroups $g P G L(2, A) g^{-1}$, and whose edges have length 1 and correspond to the subgroups $g B g^{-1}, B=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in A, c \in m, a d \notin m\right\}$ modulo $\left.A^{*}\right)$ and the set of whose ends can be identified with $K \boldsymbol{P}^{1}$ (for details, cf. $\S 1$, below and Serre [S]):

[the case card $(k)=3]$.
In Δ, for any vertex v the set of edges meeting v is naturally isomorphic to $k \boldsymbol{P}^{1}$, the isomorphism being canonical up to an element of $\operatorname{PGL}(2, k)$ (where $k=A / m$).

In the first case, if $\Gamma \subset \operatorname{PSL}(2, \boldsymbol{R})$ is a discrete subgroup with no elements of finite order such that $\operatorname{PSL}(2, \boldsymbol{R}) / \Gamma$ is compact, we obtain Koebe's uniformization

$$
H \rightarrow H / \Gamma=X
$$

of an arbitrary compact Riemann surface X of genus $g \geqq 2$.
In the second, if $\Gamma \subset P G L(2, C)$ is a discrete subgroup which acts discontinuously at at least one point of $\boldsymbol{C P}^{1}$ (a Kleinian group) and which moreover is free with n generators and has no unipotent elements in it, then according to a Theorem of Maskit [Ma], Γ is a so-called Schottky group, i.e. if $\Omega=$ set of points of $\boldsymbol{C P}{ }^{1}$ where Γ acts discontinuously, then Ω is connected and up to homeomorphism we get a uniformization:

$$
\left.\begin{array}{c}
\left(H^{\prime} \cup \Omega\right) \rightarrow\left(H^{\prime} \cup \Omega\right) / \Gamma \cong \text { solid torus with } n \text { handles } \\
\cup \\
\Omega
\end{array} \quad \xrightarrow[\text { homeo }]{\rightarrow} \quad \Omega / \Gamma \quad \underset{\substack{\text { homeo }}}{\cong} \text { booundary, a surface of genus } n\right\}
$$

In particular Ω / Γ is a compact Riemann surface of genus n and for a suitable standard basis $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$ of $\pi_{1}(\Omega / \Gamma), \pi$ is the partial
covering corresponding to the subgroup

$$
\begin{aligned}
& N \subset \pi_{1}(\Omega / \Gamma) \\
& N=\text { least normal subgroup containing } a_{1}, \cdots, a_{n}
\end{aligned}
$$

The uniformization π is what is called in the classical literature the Schottky uniformization. It is the one which has a p-adic analog.

In the third case, let $\Gamma \subset P G L(2, K)$ be any discrete subgroup consisting entirely of hyperbolic elements ${ }^{2}$. Then Ihara [I] proved that Γ is free: let Γ have n generators. Again, let $\Omega=$ set of closed points of $\boldsymbol{P}_{\boldsymbol{K}}^{1}$ where Γ acts discontinuously (equivalently, Ω is the set of points which are not limits of fixed points of elements of Γ).

Then I claim that there is a curve C of genus n and a holomorphic isomorphism:

$$
\pi: \Omega / \Gamma \approx C
$$

Moreover Δ / Γ has a very nice interpretation as a graph of the specialization of C over the ring A. In fact
a) there will be a smallest subgraph $(\Delta / \Gamma)_{0} \subset \Delta / \Gamma$ such that

$$
\pi_{1}\left((\Delta / \Gamma)_{0}\right) \leftrightharpoons \pi_{1}(\Delta / \Gamma) \text { and }(\Delta / \Gamma)_{0}
$$

will be finite:

b) C will have a canonical specialization \bar{C} over A, where \bar{C} is a singular curve of arithmetic genus n made up from copies of \boldsymbol{P}_{K}^{1} with a finite number of distinct pairs of k-rational points identified to form ordinary double points. Such a curve \bar{C} will be called a k-split degenerate curve of genus n.
c) $C(K)$, the set of K-rational points of C, will be naturally isomorphic to the set of ends of $\Delta / \Gamma ; \bar{C}(k)$, the set of k-rational points of \bar{C}, will be naturally isomorphic to the set of edges of Δ / Γ that meet vertices of

[^0]$(\Delta / \Gamma)_{0}$ (so that the components of \bar{C} correspond to the edges of Δ / Γ meeting a fixed vertex of $(\Delta / \Gamma)_{0}$ and the double points of \bar{C} correspond to the edges of $\left.(\Delta / \Gamma)_{0}\right)$; and finally the specialization map
$$
C(K) \rightarrow \bar{C}(k)
$$
is equal, under the above identifications, to the map:
$$
(\text { Ends of } \Delta / \Gamma) \rightarrow\binom{\text { edges of } \Delta / \Gamma}{\text { meeting }(\Delta / \Gamma)_{0}}
$$
which takes an end to the last edge in the shortest path from that end to $(\Delta / \Gamma)_{0}$.

Examples. We have illustrated a case where the genus is $2, \bar{C}$ has 2 components, each with one double point and meeting each other once:

Because all the curves C which we construct have property (b), we refer to them as degenerating curves. Our main theorem implies that every such degenerating curve C has a unique analytic uniformization $\pi: \Omega / \Gamma \cong C$.

Next I would like to give an idea of how I intend to construct algebraic objects which imply the existence of the analytic uniformization π, which express the way the analytic map specializes over A, and which will generalize to the case $\operatorname{dim} A>1$. Given a discretely-valued complete local field K, one has:
a) the category of holomorphic spaces X over K, in the sense e.g. of Grauert and Remmert [G-R],
b) the category of formal schemes \mathscr{X} over A, locally of topological finite type over A, with $m \mathcal{O}_{\mathscr{X}}$ as a defining sheaf of ideals.

There is a functor:

$$
\mathscr{X} \rightarrow \mathscr{X}_{a n}
$$

from the category of formal schemes to the category of holomorphic spaces given as follows:
i) as a point set $\mathscr{X}_{a n} \cong$ set of reduced irreducible formal subschemes $Z \subset \mathscr{X}$ such that Z is finite over A, but $Z \nsubseteq$ the closed fibre \mathscr{X}_{0};
ii) if $\emptyset: \mathscr{X}_{a n} \rightarrow \operatorname{Max}(\mathscr{X})=($ closed points of $\mathscr{X})$ is the specialization map $Z \mapsto Z \cap \mathscr{X}_{0}$, then for all $U \subset \mathscr{X}$ affine open, $\emptyset^{-1}(\operatorname{Max} U)=V$ is an affinoid subdomain of $\mathscr{X}_{a n}$ with affinoid ring $\Gamma\left(U, \mathcal{O}_{X}\right)$.

According to results of Raynaud, the category of holomorphic spaces looks like a kind of localization of the category of formal schemes with respect to blowings-up of subschemes concentrated in the closed fibre. In fact, he has proven that the category of holomorphic spaces admitting a finite covering by affinoids is equivalent to this localization of the category of formal schemes of finite type. What happens in our concrete situation is that the holomorphic spaces Ω and C both have canonical liftings into the category of formal schemes and the analytic map $\pi: \Omega \rightarrow C$ is induced by a formal morphism. For the uniformization of abelian varieties, discussed in the 2 nd paper of this series, the lifting turns out not to be canonical; however, a whole class of such liftings can be singled out, which is non-empty and for which π lifts too. Thus the whole situation is lifted into the category of formal schemes where it can be generalized to higher-dimensional base rings A. Let me illustrate this lifting in Tate's original case of an elliptic curve. First of all, what formal scheme over A gives rise to the holomorphic space $\boldsymbol{A}_{\boldsymbol{K}}^{1}-\{0\}=\boldsymbol{G}_{\boldsymbol{m}, \boldsymbol{K}}$? If we take the formal completion of the algebraic group $\boldsymbol{G}_{\boldsymbol{m}}$ over $\operatorname{Spec}(A)$, the holomorphic space that we get is only the unit circle:

$$
\begin{aligned}
& T \subset \boldsymbol{G}_{m, K} \\
& T=\{z| | z \mid=1\} .
\end{aligned}
$$

If we take formal completion of Raynaud's 'Néron model' of $\boldsymbol{G}_{\boldsymbol{m}}$ over $\operatorname{Spec}(A)$ (cf. [R]), we get the subgroup:

$$
\bigcup_{n=-\infty}^{+\infty} \pi^{n} T \subset G_{m, K}
$$

$(\pi)=$ max. ideal of A.
To get the full $\boldsymbol{G}_{m, K}$ start with $\boldsymbol{P}^{1} \times \operatorname{Spec}(A)$. Blow up (0), (∞) in the closed fibre \boldsymbol{P}_{K}^{1}; then blow up again the points where the 0 -section and ∞-section meet the closed fibre; repeat infinitely often. (See figure on next page.)

The result is a scheme P_{∞}, only locally of finite type over $\operatorname{Spec}(A)$. If we omit the double points of the closed fibre, we get Raynaud's 'Néron model'. However, if we take the whole affair, the holomorphic space associated to its formal completion is $\boldsymbol{G}_{\boldsymbol{m}, \boldsymbol{K}}$. On the other hand, the Néron model of E over $\operatorname{Spec}(A)$ will have a canonical 'compactifica-

tion': it can be embedded in a unique normal scheme \mathscr{E} proper over Spec (A) by adding a finite set of points. It will look like this (possibly, after replacing K by a suitable quadratic extension):

\mathscr{E} will in fact be regular. Finally, the analytic uniformization which we denoted π_{2} will come from a formal étale morphism from P_{∞} to \mathscr{E}
which simply wraps the infinite chain in the closed fibre of P_{∞} around and around the polygon which is the closed fibre of \mathscr{E}.

We can now state fully our main result:
For every Schottky group $\Gamma \subset P G L(2, K)$, there is a canonical formal scheme \mathscr{P} over A on which Γ acts freely and whose associated holomorphic space is the open set $\Omega \subset \boldsymbol{P}_{K}^{1}$. There is a one-one correspondence between a) conjugacy classes of Schottky groups Γ, and b) isomorphism classes of curves C over K which are the generic fibres of normal schemes \mathscr{C} over A whose closed fibre \bar{C} is a k-split degenerate curve, set up by requiring that \mathscr{P} / Γ is formally isomorphic to \mathscr{C}.

Some notation

$$
\begin{aligned}
\boldsymbol{P}_{K}^{1}= & \text { projective line over } K \\
K \boldsymbol{P}^{1}= & K \text {-rational points of } \boldsymbol{P}_{K}^{1}=K+K-(0,0) / K^{*} \\
\langle u, v\rangle= & \text { module generated by } u, v \\
R(X)= & \text { field of rational functions on an integral scheme } X . \\
\hat{X}= & \text { formal completion of a scheme } X \text { over a complete local ring } \\
& A, \text { along its closed fibre. }
\end{aligned}
$$

1. Trees

Let A be a complete integrally closed noetherian local ring, with quotient field K, maximal ideal m and residue field $k=A / m$. Let $S=\operatorname{Spec}(A), S_{\eta}=\operatorname{Spec}(K)$ and $S_{0}=\operatorname{Spec}(k):$

$$
S_{\eta} \hookrightarrow S \hookleftarrow S_{0}
$$

We are interested in certain finitely generated subgroups of $P G L(2, K)$ that we will call Schottky groups. First of all define a morphism:

$$
t: P G L(2) \rightarrow A^{1}
$$

by

$$
t\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{(a+d)^{2}}{a d-b c}
$$

Here and below we will describe elements of $P G L(2)$ by 2×2 matrices, considered modulo multiplication by a scalar, without further comment.

Lemma (1.1). Let $\gamma \in P G L(2, K)$. Then $t^{-1}(\gamma) \in m$ if and only if γ can be represented:

$$
A \cdot\left(\begin{array}{ll}
\mu & 0 \\
0 & 1
\end{array}\right) \cdot A^{-1}, \quad \mu \in m
$$

Proof. On the one hand:

$$
t^{-1}\left(A \cdot\left(\begin{array}{ll}
\mu & 0 \\
0 & 1
\end{array}\right) \cdot A^{-1}\right)=\frac{\mu}{(\mu+1)^{2}} \in m
$$

Conversely, suppose $t^{-1}(\gamma)=v \in m$, and let the matrix C represent γ. Then $\operatorname{det} C=v \cdot(\operatorname{Tr} C)^{2}$ and the characteristic polynomial of C is

$$
X^{2}-(\operatorname{Tr} C) \cdot X+v \cdot(\operatorname{Tr} C)^{2}=0
$$

By Hensel's lemma, this has 2 distinct roots in K of the form

$$
\begin{aligned}
X_{1} & =u \cdot \operatorname{Tr} C \\
X_{2} & =v \cdot u^{-1} \cdot \operatorname{Tr} C \\
\text { where } u & =\text { a unit in } A .
\end{aligned}
$$

Then γ is also represented by the matrix $C^{\prime}=C / u \cdot \operatorname{Tr} C$ with eigenvalues 1 and $v / u^{2} \in m$. Therefore C^{\prime} has the required form.
Q.E.D.

Definition (1.2). The elements $\gamma \in P G L(2, K)$ such that $t^{-1}(\gamma) \in m$ will be called hyperbolic.

From the lemma it follows immediately that if γ is hyperbolic, then γ as an automorphism of \boldsymbol{P}_{K}^{1} has 2 distinct fixed points P and Q, both rational over K, and such that the differential $\left.d \gamma\right|_{P}=$ mult. by μ in T_{P} (the tangent space to \boldsymbol{P}_{K}^{1} at P), $\mu \in m$, while $\left.d \gamma\right|_{Q}=$ mult. by $\mu^{-1} ; P$ is called the attractive fixed point of γ and Q the repulsive fixed point.

Definition (1.3). A Schottky group $\Gamma \subset P G L(2, K)$ is a finitely generated subgroup such that every $\gamma \in \Gamma, \gamma \neq e$, is hyperbolic.

These are probably the most natural class of groups to look at. However, there is a particular type which is easier to prove theorems about and which include all Schottky groups in the case $\operatorname{dim} A=1$:

Definition (1.4). A flat Schottky group $\Gamma \subset P G L(2, K)$ has the extra property that if $\Sigma \subset K \boldsymbol{P}^{1}$ is the set of fixed points of the elements $\gamma \in \Gamma$, then for any $P_{1}, P_{2}, P_{3}, P_{4} \in \Sigma, R\left(P_{1}, P_{2} ; P_{3}, P_{4}\right)$ or its inverse is in A, i.e. the cross-ratio R defines a morphism from S to P^{1}.

The construction of flat Schottky groups is not so easy and we postpone this until §4. For the time being, we simply assume that one is given.

The structure of $P G L(2, K)$ and of Γ is best displayed, following the method of Bruhat and Tits [B-T] by introducing:
$\Delta^{(0)} \cong\{$ set of sub A-modules $M \subset K+K, M$ free of rank 2, modulo the identification $M \sim \lambda \cdot M, \lambda \in K^{*}$, (the image $\{M\}$ in $\Delta^{(0)}$ of a module M will be called the class of $M)\}$
$\cong\left\{\right.$ set of schemes P / S with generic fibre \boldsymbol{P}_{K}^{1}, such that $P \cong \boldsymbol{P}_{S}^{1}$, modulo isomorphism $\}$.

These sets will be identified by the map

$$
M \mapsto P=\operatorname{Proj}(\text { Symmetric } A \text {-algebra on } \operatorname{Hom}(M, A))
$$

This is easily seen to be a bijection under which the set of A-valued points of P equals the set of elements $x \in M-m M$, modulo A^{*}. Intuitively, P is the scheme of one-dimensional subspaces of the rank 2 vector bundle M.

Definition (1.5). If $\{M\} \in \Delta^{(0)}$, we denote the corresponding scheme P / S by $P(M)$.

Note that $P G L(2, K)$ acts on $\Delta^{(0)}$:

$$
\begin{aligned}
& \forall X \in G L(2, K), \forall M \subset K+K, \\
& \text { let } X(M)=\{X \cdot x \mid x \in M\} .
\end{aligned}
$$

Then the class $\{X(M)\}$ depends only on the image $\{X\}$ of X in $\operatorname{PGL}(2, K)$ and on the class $\{M\}$.

The stabilizer of the module $A+A$ is:
$\operatorname{PGL}(2, A)=$ elements of $\operatorname{PGL}(2, K)$ represented by matrices
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d \in A, a d-b c \in A^{*}$,
and the stabilizers of the other modules M are conjugates of $x \cdot \operatorname{PGL}(2, A) \cdot x^{-1}$ in $\operatorname{PGL}(2, K)$.

Moreover $P G L(2, K)$ acts transitively on $\Delta^{(0)}$, so $\Delta^{(0)}$ can be naturally identified with the coset space $\operatorname{PGL}(2, K) / P G L(2, A)$.

Less obvious is the fact that any 3 distinct points $x_{1}, x_{2}, x_{3} \in K \boldsymbol{P}^{1}$ determined canonically an element of $\Delta^{(0)}$: let $w_{1}, w_{2}, w_{3} \in K+K$ be homogeneous coordinates for x_{1}, x_{2}, x_{3}. Then there is a linear equation: $a_{1} w_{1}+a_{2} w_{2}+a_{3} w_{3}=0$, unique up to scalar. Let $M=\sum_{i=1}^{3} A \cdot a_{i} w_{i}$. The class of multiples $\{M\}$ of M is determined by the x_{i} alone. We will write this class as $\left\{M\left(x_{1}, x_{2}, x_{3}\right)\right\}$.

Unlike the case where $\operatorname{dim} A=1$, the full set $\Delta^{(0)}$ is rather unmanageable. We need to introduce the concept:

Definition (1.6). $\left\{M_{1}\right\},\left\{M_{2}\right\} \in \Delta^{(0)}$ are compatible if there exists a basis u, v of M_{1}, and elements $\lambda \in K^{*}, \alpha \in A$ such that $\lambda u, \lambda \alpha v$ is a basis of $M_{2},\left(M_{i}\right.$ representatives of $\left.\left\{M_{i}\right\}\right)$.

It is easy to check that this definition is symmetric and that the principal ideal (α) is uniquely determined by $\left\{M_{1}\right\}$ and $\left\{M_{2}\right\}$. Since (α) measures the 'distance' of $\left\{M_{1}\right\}$ from $\left\{M_{2}\right\}$, we write:

$$
(\alpha)=\rho\left(\left\{M_{1}\right\},\left\{M_{2}\right\}\right)
$$

Moreover, when $\operatorname{dim} A=1$, every pair $\left\{M_{1}\right\},\left\{M_{2}\right\}$ is compatible. If $M_{i}{ }^{\prime}$ are representatives of the classes $\left\{M_{i}\right\}$ such that

$$
M_{1}^{\prime} \supset M_{2}^{\prime} \supset \alpha \cdot M_{1}^{\prime}
$$

we call $M_{1}^{\prime}, M_{2}^{\prime}$ representatives in standard position.
Now then, let
$\Delta_{\Gamma}^{(0)}=$ set of classes $\left\{M\left(x_{1}, x_{2}, x_{3}\right)\right\}$, where $x_{1}, x_{2}, x_{3} \in \Sigma$,
$\Sigma=$ set of fixed points of elements of Γ.
The flatness of the Schottky group Γ is obviously equivalent to the property:
$*\left\{\begin{array}{l}\forall x_{1}, x_{2}, x_{3}, x_{4} \in \Sigma, \text { these points have homogeneous coordinates } \\ w_{1}, w_{2}, w_{3}, w_{4} \in K+K \text { such that } \\ w_{3}=w_{1}+w_{2} \\ w_{4}=a_{1} w_{1}+a_{2} w_{2}, \quad a_{i} \in A\end{array}\right.$ and either a_{1} or a_{2} is not in m.

This now gives us:
Proposition (1.7). Any 2 classes $\left\{M_{1}\right\},\left\{M_{2}\right\} \in \Delta_{\Gamma}^{(0)}$ are compatible.
Proof. First note the
Lemma (1.8). If $x_{1}, x_{2}, x_{3}, x_{4} \in \boldsymbol{P}_{K}^{1}$ have property (*), then for some $i, j \in\{1,2,3\}$, with $i \neq j,\left\{M\left(x_{1}, x_{2}, x_{3}\right)\right\}=\left\{M\left(x_{i}, x_{j}, x_{4}\right)\right\}$.

Proof. Let w_{i} be coordinates for x_{i} as in (*). Then if a_{1} and $a_{2} \notin m$, one checks that $M\left(x_{1}, x_{2}, x_{3}\right)=M\left(x_{1}, x_{2}, x_{4}\right)$; if $a_{1} \notin m, a_{2} \in m$, then $M\left(x_{1}, x_{2}, x_{3}\right)=M\left(x_{2}, x_{3}, x_{4}\right)$; and if $a_{1} \in m, a_{2} \notin m$, then

$$
M\left(x_{1}, x_{2}, x_{3}\right)=M\left(x_{1}, x_{3}, x_{4}\right)
$$

Now let $\left\{M_{1}\right\}=M\left(x_{1}, x_{2}, x_{3}\right), \quad\left\{M_{2}\right\}=M\left(y_{1}, y_{2}, y_{3}\right)$. Choose coordinates w_{i} for x_{i} and u_{i} for y_{i} such that
a) $M_{1}=A \cdot w_{1}+A \cdot w_{2}, w_{3}=w_{1}+w_{2}$,
b) $u_{i}=a_{i} w_{1}+b_{i} w_{2}$, where $a_{i}, b_{i} \in A$ but if $a_{i} \in m$, then $b_{i} \notin m$.

Next, if the ratios $a_{i}: b_{i} \bmod m$ in $k \boldsymbol{P}^{1}$ are all distinct, one checks immediately that the u_{i} are related by $\lambda_{1} u_{1}+\lambda_{2} u_{2}+\lambda_{3} u_{3}=0$ where $\lambda_{i} \in A, \lambda_{i} \notin m$. This implies that

$$
M_{2}=\left(\text { module generated by the } u_{i}\right)=M_{1},
$$

hence M_{1} and M_{2} are obviously compatible. Ncw if the ratios $a_{i}: b_{i}$ $\bmod m$ are not all distinct, then at least one of the triples $(0: 1),(1: 0)$, $(1: 1)$ is different from all three ratios $a_{i}: b_{i} \bmod m$. Permuting the three w_{i} 's, we may as well assume that $(1: 0)$ does not cocur, i.e. $b_{i} \notin m$ for
all i. Multiplying u_{i} by a unit, we can normalize it so that now:
$\left.\mathrm{b}^{\prime}\right) \quad u_{i}=a_{i} w_{1}+w_{2}$.
Now by the lemma, $\left\{M_{2}\right\}=\left\{M\left(y_{i}, y_{j}, x_{1}\right)\right\}$ for some i and j. The linear equation relating u_{i}, u_{j} and w_{1} is:

$$
u_{i}-a_{i} w_{1}=u_{j}-a_{j} w_{1}
$$

Therefore $M\left(y_{i}, y_{j}, x_{1}\right)$ is the module generated by u_{i}, u_{j} and $\left(a_{i}-a_{j}\right) w_{1}$. Thus u_{i} and w_{1} are a basis of M_{1} and u_{i} and $\left(a_{i}-a_{j}\right) w_{1}$ are a basis of M_{2}. Hence $\left\{M_{1}\right\}$ and $\left\{M_{2}\right\}$ are compatible.
Q.E.D.

I claim that for any 3 compatible classes of modules, there is a multiplicative triangle 'inequality' relating their 'distances' from each other:

Proposition (1.9). Let $\left\{M_{1}\right\},\left\{M_{2}\right\},\left\{M_{3}\right\} \in \Delta^{(0)}$ be distinct but compatible. Let $\left(\alpha_{i j}\right)=\rho\left(\left\{M_{i}\right\},\left\{M_{j}\right\}\right)$ and let

$$
\begin{aligned}
& M_{1} \supset M_{2} \supset \alpha_{12} M_{1} \\
& M_{1} \supset M_{3} \supset \alpha_{13} M_{1}
\end{aligned}
$$

be representatives in standard position. Then if $N=M_{2}+M_{3}$, there exist $u, v \in M_{1}$ and $\lambda_{1}, \lambda_{2}, \lambda_{3} \in A$ such that:

$$
\begin{aligned}
M_{1} & =\langle u, v\rangle \\
N & =\left\langle u, \lambda_{1} v\right\rangle \\
M_{2} & =\left\langle u, \lambda_{1} \lambda_{2} v\right\rangle \\
M_{3} & =\left\langle u+\lambda_{1} v, \lambda_{1} \lambda_{3} v\right\rangle \\
\left(\alpha_{i j}\right) & =\left(\lambda_{i} \lambda_{j}\right) .
\end{aligned}
$$

In particular, for all permutations i, j, k of $1,2,3, \alpha_{i j} \mid \alpha_{i k} \alpha_{j k}$.

Clumsy Proof. First choose $u \in M_{2}$ such that $u \notin m \cdot M_{1}$. Secondly choose $\bar{v} \in M_{1} / m M_{1}$ such that \bar{v} is not in either of the 1-dimensional subspaces $M_{2} / M_{2} \cap m M_{1}$ or $M_{3} / M_{3} \cap m M_{1}$ of $M_{1} / m M_{1}$. Lift \bar{v} to
$v \in M_{1}$. Then first of all \bar{u} and \bar{v} generate $M_{1} / m M_{1}$, hence u and v generate M_{1}. Secondly u and $\alpha_{12} v$ lie in M_{2} and since M_{1} and M_{2} are in standard pcsition, it is easy to see that they must generate M_{2}. Thirdly, for some $\lambda_{1} \in A, u+\lambda_{1} v \in M_{3}$. Then since M_{1} and M_{3} are in standard position, $u+\lambda_{1} v$ and $\alpha_{13} v$ must generate M_{3}. Now use the fact that M_{2} and M_{3} are compatible: for some $\xi \in K^{*}, M_{2} \supset \xi \cdot M_{3}$ and this pair is in standard position. Then

$$
\begin{aligned}
& \xi \cdot\left(u+\lambda_{1} v\right) \in M_{2} \\
& \xi \cdot \alpha_{13} v \in M_{2}
\end{aligned}
$$

and one of these is not in $m \cdot M_{2}$. This implies that $\xi \in A, \xi \lambda_{1}=\zeta \cdot \alpha_{12}$, $\xi \alpha_{13}=\eta \cdot \alpha_{12}$, (where ζ and $\eta \in A$), and furthermore that either ξ, ζ or η is a unit. Firstly, suppose ξ is a unit but ζ is not. Note that we may replace u by $u^{\prime}=u+\alpha_{12} v$ then u^{\prime} and $\alpha_{12} v$ still generate M_{2} and $u^{\prime}+\lambda_{1}^{\prime} v$ and $\alpha_{13} v$ generate M_{3} where $\lambda_{1}^{\prime}=\lambda_{1}-\alpha_{12}$. But then $\xi \lambda_{1}^{\prime}=\zeta^{\prime} \alpha_{12}$, where $\zeta^{\prime}=\zeta-1$ is a unit. Therefore by suitable choice of u, we can assume that ζ is a unit. Secondly, suppose η is a unit but ζ is not. In this case, note that $u+\lambda_{1}^{\prime} v$ and $\alpha_{13} v$ still generate M_{3} where $\lambda_{1}^{\prime}=\lambda_{1}+\alpha_{13}$. And then $\xi \lambda_{1}^{\prime}=\xi \lambda_{1}+\xi \alpha_{13}=(\zeta+\eta) \alpha_{12}=\zeta^{\prime} \alpha_{12}$ where ζ^{\prime} is a unit. Thus we can always assume that ζ is a unit. Then if $\lambda_{2}=\xi \cdot \zeta^{-1}$ and $\lambda_{3}=\eta \cdot \zeta^{-1}$ it follows that $\alpha_{12}=\lambda_{1} \lambda_{2}$ and $\alpha_{13}=\lambda_{1} \lambda_{3}$ hence M_{2} and M_{3} are generated as required. It follows immediately that $M_{2}+M_{3}$ is generated by u and $\lambda_{1} v$. To evaluate α_{23}, note that the 2 modules $M_{2} \supset \lambda_{2} M_{3}$ are in standard position (since $\lambda_{2} u+\lambda_{1} \lambda_{2} v$ is in $\lambda_{2} M_{3}$ but not in $m M_{2}$) and that $\lambda_{2} M_{3}$ is generated by $\lambda_{2} u+\lambda_{1} \lambda_{2} v$ and by $\lambda_{2} \lambda_{3} u$ hence $\left(\lambda_{2} \lambda_{3}\right)=\rho\left(\left\{M_{2}\right\},\left\{M_{3}\right\}\right)$.
Q.E.D.

Corollary (1.10). If $M_{1} \supset M_{2} \supset \alpha_{12} M_{1}, M_{1} \supset M_{3} \supset \alpha_{13} M_{1}$ are representatives of 3 compatible classes in standard position, then
a) $M_{2} \supset M_{3} \Leftrightarrow \rho\left(\left\{M_{1}\right\},\left\{M_{3}\right\}\right)=\rho\left(\left\{M_{1}\right\},\left\{M_{2}\right\}\right) \cdot \rho\left(\left\{M_{2}\right\},\left\{M_{3}\right\}\right)$,
b) $M_{1}=M_{2}+M_{3} \Leftrightarrow \rho\left(\left\{M_{2}\right\},\left\{M_{3}\right\}\right)$

$$
=\rho\left(\left\{M_{2}\right\},\left\{M_{1}\right\}\right) \cdot \rho\left(\left\{M_{1}\right\},\left\{M_{3}\right\}\right) .
$$

Proof. In the notation of the proposition, both parts of (a) are equivalent to λ_{2} being a unit; both parts of (b) are equivalent to λ_{1} being a unit.

This Proposition motivates:
Definition (1.11). A subset $\Delta_{*}^{(0)} \subset \Delta^{(0)}$ is linked if a) every pair of elements $\left\{M_{1}\right\},\left\{M_{2}\right\} \in \Delta_{*}^{(0)}$ is compatible, b) for every triple $\left\{M_{1}\right\}$, $\left\{M_{2}\right\},\left\{M_{3}\right\} \in \Delta_{*}^{(0)}$, if we pick representatives $M_{1} \supset M_{2}, M_{1} \supset M_{3}$ in standard position, then $M_{2}+M_{3}$ (which is a free A-module by the proposition) defines a class $\left\{M_{2}+M_{3}\right\}$ in $\Delta_{*}^{(0)}$.

We must check that $\Delta_{I}^{(0)}$ has both these fine properties:
Theorem (1.12). $\Delta_{I}^{(0)}$ is linked.
Proof. Suppose $\left\{M_{i}\right\}=\left\{M\left(x_{i}, y_{i}, z_{i}\right)\right\}, i=1,2,3$, where all these points come from Σ. We saw above that all these classes are compatible. Choose representatives $M_{1} \supset M_{2}, M_{1} \supset M_{3}$ in standard position, and choose homogeneous coordinates $u_{i}, v_{i}, w_{i} \in M_{i}$ for x_{i}, y_{i} and z_{i} such that the linear relation $\alpha_{i} u_{i}+\beta_{i} v_{i}+\gamma_{i} w_{i}=0$ has the property $\alpha_{i}, \beta_{i}, \gamma_{i} \in A^{*}$. Since $M_{2} \notin m M_{1}$, one of u_{2}, v_{2}, or w_{2} is in the set $M_{1}-m M_{1}$. Renaming, we can assume $u_{2} \notin m M_{1}$. Similarly, we can assume $u_{3} \notin m M_{1}$. Next, the images $\bar{u}_{1}, \bar{v}_{1}, \bar{w}_{1}$ of u_{1}, v_{1}, w_{1} in $M_{1} / m M_{1}$ are all distinct, so one of them is different from both \bar{u}_{2} and \bar{u}_{3}. Renaming, we can assume $\bar{u}_{1} \neq \bar{u}_{2}$ or \bar{u}_{3}. Let us construct a module in the class $\left\{M\left(x_{1}, x_{2}, x_{3}\right)\right\} \in \Delta_{I}^{(0)}$. We must find the linear equation relating u_{1}, u_{2}, u_{3} : since $\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3} \in M_{1} / m M_{1}$ are related by an equation $\bar{\alpha} \bar{u}_{1}+\bar{\beta} \bar{u}_{2}+\bar{u}_{3}=0$, where $\bar{\alpha}, \bar{\beta} \in A / m$, and $\bar{\beta} \neq 0$, it follows that u_{1}, u_{2}, u_{3} are related by an equation $\alpha u_{1}+\beta u_{2}+u_{3}=0$, where $\alpha, \beta \in A, \beta \notin m$. Therefore

$$
\left\langle u_{2}, u_{3}\right\rangle \in\left\{M\left(x_{1}, x_{2}, x_{3}\right)\right\} .
$$

On the other hand, if we choose generators $u, v \in M_{1}$ as in the previous Proposition, it follows that

$$
\begin{array}{ll}
u_{2}=\sigma_{2} u+\tau_{2}\left(\lambda_{1} \lambda_{2} v\right), & \sigma_{2}, \tau_{2} \in A, \sigma \notin m \\
u_{3}=\sigma_{3}\left(u+\lambda_{1} v\right)+\tau_{3}\left(\lambda_{1} \lambda_{3} v\right), & \sigma_{3}, \tau_{3} \in A, \sigma_{3} \notin m .
\end{array}
$$

If $\lambda_{2}, \lambda_{3} \in m$, then since $M_{2}+M_{3}=\left\langle u, \lambda_{1} v\right\rangle$, it follows that u_{2} and u_{3} have distinct images $\bar{u}_{2}, \bar{u}_{3} \in M_{2}+M_{3} / m \cdot\left(M_{2}+M_{3}\right)$. Therefore $M_{2}+M_{3}=\left\langle u_{2}, u_{3}\right\rangle$ whose class is in $\Delta_{\Gamma}^{(0)}$. If either λ_{2} or λ_{3} is in A^{*}, then $M_{2} \supset M_{3}$ or $M_{3} \supset M_{2}$ and $M_{2}+M_{3}$ equals either M_{2} or M_{3}, whose class is in $\Delta_{\Gamma}^{(0)}$.
Q.E.D.

Linked subsets $\Delta_{*}^{(0)} \subset \Delta^{(0)}$ are very nice objects. They can be fitted together in a natural way into a tree.

Tree theorem (1.13). If $\Delta_{*}^{(0)}$ is a linked subset of $\Delta^{(0)}$, then $\Delta_{*}^{(0)}$ is the set of a vertices of a connected tree Δ_{*} in which a principal ideal $\left(\alpha_{\sigma}\right)$ is associated to each edge σ and such that for every pair of classes $\{P\},\{Q\} \in \Delta_{*}^{(0)}$, if they are linked in the tree as follows:

then
(*)

$$
\rho(\{P\},\{Q\})=\prod_{i=1}^{n-1}\left(\alpha_{\sigma_{i}}\right) .
$$

Proof. First, let us call $\{P\},\{Q\} \in \Delta_{*}^{(0)}$ adjacent if there is no $\{R\} \in \Delta_{*}^{(0)}$ such that:

$$
\begin{aligned}
\rho(\{P\},\{Q\}) & =\rho(\{P\},\{R\}) \cdot \rho(\{R\},\{Q\}) \\
\{R\} & \neq\{P\} \text { or }\{Q\}
\end{aligned}
$$

Join 2 adjacent classes by an edge σ and set $\left(\alpha_{\sigma}\right)=\rho(\{P\},\{Q\})$. This gives us a graph in any case. Starting now with any $\{P\},\{Q\}$, consider all sequences

$$
\{P\}=\left\{M_{1}\right\},\left\{M_{2}\right\}, \cdots,\left\{M_{n}\right\}=\{Q\} \text { in } \Delta_{*}^{(0)}
$$

such that

$$
\rho(\{P\},\{Q\})=\prod_{i=1}^{n-1} \rho\left(\left\{M_{i}\right\},\left\{M_{i+1}\right\}\right)
$$

By the noetherian assumption on A, there is a maximal sequence of this type. Then each pair $\left\{M_{i}\right\},\left\{M_{i+1}\right\}$ must be adjacent and this proves that $\{P\}$ and $\{Q\}$ are joined in our graph by a sequence of edges. Therefore the graph is connected.

To prove that our graph is a tree and to prove (*), it suffices, by an obvious induction, to prove:

Lemma (1.14). Let $\left\{M_{1}\right\},\left\{M_{2}\right\}, \cdots,\left\{M_{n}\right\} \in \Delta_{*}^{(0)}$ such that $\left\{M_{i}\right\}$, and $\left\{M_{i+1}\right\}$ are adjacent $(1 \leqq i \leqq n-1)$. Assume

$$
\rho\left(\left\{M_{1}\right\},\left\{M_{n-1}\right\}\right)=\prod_{i=1}^{n-2} \rho\left(\left\{M_{i}\right\},\left\{M_{i+1}\right\}\right)
$$

Then either

$$
\rho\left(\left\{M_{1}\right\},\left\{M_{n}\right\}\right)=\prod_{i=1}^{n-1} \rho\left(\left\{M_{i}\right\},\left\{M_{i+1}\right\}\right)
$$

or

$$
\left\{M_{n}\right\}=\left\{M_{n-2}\right\}
$$

Proof of lemma. Let $M_{n-1} \supset M_{n}, M_{n-1} \supset M_{n-2}, M_{n-1} \supset M_{1}$ be representatives in standard position. By the Corollary (1.10) $M_{n-1} \supset$ $M_{n-2} \supset M_{1}$. Consider $M_{n-2}+M_{n}$. Since $\Delta_{*}^{(0)}$ is linked, $\left\{M_{n-2}+M_{n}\right\} \in T$. Since $\left\{M_{n-1}\right\}$ is adjacent to $\left\{M_{n-2}\right\}$ and $M_{n-2} \subset M_{n-2}+M_{n} \subset M_{n-1}$, $M_{n-2}+M_{n}$ equals M_{n-1} or M_{n-2}; similarly since $\left\{M_{n-1}\right\}$ is adjacent to $\left\{M_{n}\right\}, M_{n-2}+M_{n}$ equals M_{n} or M_{n-1}. Thus either $M_{n-2}+M_{n}=M_{n-1}$ or, if not, then $M_{n}=M_{n-2}+M_{2}=M_{n-2}$. In the first case, $M_{n} / M_{n} \cap$ $m M_{n-1}$ and $M_{n-2} / M_{n-2} \cap m M_{n-1}$ are distinct one-dimensional subspaces of $M_{n-1} / m M_{n-1}$. But (0) $\ddagger M_{1} / M_{1} \cap m M_{n-1} \subset M_{n-2} / M_{n-2} \cap$
$m M_{n-1}$, so $M_{1} / M_{1} \cap m M_{n-1}$ must be the same subspace as M_{n-2} / M_{n-2} $\cap m \cdot M_{n-1}$. Therefore M_{1} and M_{n} together generate $M_{n-1} / m M_{n-1}$, hence they generate M_{n-1}. By Cor. (1.10) applied to the triple M_{1}, M_{n-1}, M_{n} this means that

$$
\begin{align*}
\rho\left(\left\{M_{1}\right\},\left\{M_{n}\right\}\right) & =\rho\left(\left\{M_{1}\right\},\left\{M_{n-1}\right\}\right) \cdot \rho\left(\left\{M_{n-1}\right\},\left\{M_{n}\right\}\right) \\
& =\prod_{i=1}^{n-1} \rho\left(\left\{M_{i}\right\},\left\{M_{i+1}\right\}\right)
\end{align*}
$$

Corollary (1.15). In a canonical way, $\Delta_{\Gamma}^{(0)}$ is the set of vertices of a tree Δ_{Γ} on which Γ acts.

Corollary (1.16) (Ihara). Γ is a free group.
Proof. I claim that Γ acts freely on Δ_{Γ}. In fact, if $\gamma \in \Gamma, \gamma \neq e$, has a fixed point P, then P is either a vertex or the midpoint of an edge. In the latter case, γ^{2} fixes the 2 endpoints of this edge. But the stabilizers in $\operatorname{PGL}(2, K)$ of the elements of $\Delta^{(0)}$ are the various subgroups

$$
x P G L(2, A) x^{-1} \subset P G L(2, K)
$$

Since every $\gamma \in \Gamma$ is hyperbolic, neither γ nor γ^{2} can belong to any such subgroup. Thus Γ acts freely on a tree, hence Γ itself must be free. Q.E.D.

Corollary (1.17) (Bruhat-Tits). If $\operatorname{dim} A=1$, the whole of $\Delta^{(0)}$ is, in a canonical way, the set of vertices of a tree Δ on which ihe whole group $P G L(2, K)$ acts.

It can be shown further when $\operatorname{dim} A=1$ that for all $\gamma \in \operatorname{PGL}(2, K)$, either γ is hyperbolic and has no fixed point on Δ; or γ is not hyperbolic and γ has a fixed point on Δ in which case then γ^{2} is in some subgroup $g \cdot P G L(2, A) \cdot g^{-1}$.

For any linked subset $\Delta_{*}^{(0)} \subset \Delta^{(0)}$, let Δ_{*} be the associated tree. We can add a boundary to Δ_{*} that has an interesting interpretation: let

$$
\partial \Delta_{*}=\text { the set of ends of } \Delta_{*}
$$

[Where an end is an equivalence class of subtrees of Δ_{*} isomorphic to:

two such being 'equivalent' if they differ only in a finite set of vertices]. Let $\bar{\Delta}_{*}=\Delta_{*} \cup \partial \Delta_{*}$: this is a topological space if an open set is a subset $U \cup V$, where $U \subset \Delta_{*}$ is open and $V \subset \partial \Delta_{*}$ is the set of ends represented by subtrees in U.

Proposition (1.18). a) There is a natural injection

$$
i: \partial \Delta_{*} \subset \rightarrow K \boldsymbol{P}^{1}
$$

b) If $\Delta_{*}=\Delta_{\Gamma}, \Sigma \subset i\left(\partial \Delta_{\Gamma}\right)$.
c) If $\operatorname{dim} A=1, \Delta_{*}=\Delta$, then i is a bijection of $\partial \Delta$ and $K \boldsymbol{P}^{1}$.

Proof. Let $\left\{M_{1}\right\},\left\{M_{2}\right\}, \cdots$ be an infinite sequence of adjacent vertices of Δ_{*} which defines an end $e \in \partial \Delta_{*}$. Represent these by modules in standard position:

$$
M_{1} \supset M_{2} \supset M_{3} \supset \cdots .
$$

Then it is easy to check that $\bigcap_{n=1}^{\infty} M_{n}$ is a free A-module of rank 1 in $K+K$. If $u \in \cap M_{n}$ is a generator, u defines the point $i(e) \in K \boldsymbol{P}^{1}$. Note that $u \notin m M_{1}$ and if $v \in M_{1}$ is such that $\bar{u} \neq \bar{v}$ in $M_{1} / m M_{1}$, then

$$
M_{1}=\langle u, v\rangle, M_{2}=\left\langle u, \alpha_{2} v\right\rangle, M_{3}=\left\langle u, \alpha_{3} v\right\rangle, \cdots,
$$

where $\left(\alpha_{n}\right)=\rho\left(\left\{M_{1}\right\},\left\{M_{n}\right\}\right)$. Next, let e^{\prime} be a 2 nd end and assume $e \neq e^{\prime}$. From general properties of trees, it follows that there is a unique subtree of Δ_{*} isomorphic to:
(we call such a subtree a line) defining e at one end, e^{\prime} at the other. Pick a base point $\{P\}$ on this, and let its vertices in the 2 directions be $\left\{M_{1}\right\},\left\{M_{2}\right\}, \cdots$ and. $\left\{N_{1}\right\},\left\{N_{2}\right\}, \cdots$. Represent these by modules in standard positions:

$$
\begin{aligned}
& P \supset M_{1} \supset M_{2} \supset \cdots \\
& P \supset N_{1} \supset N_{2} \supset \cdots
\end{aligned}
$$

By Cor. (1.10), since $\rho\left(\left\{M_{k}\right\},\left\{N_{k}\right\}\right)=\rho\left(\left\{M_{k}\right\},\{P\}\right) \cdot \rho\left(\{P\},\left\{N_{k}\right\}\right)$, it follows that $P=M_{k}+N_{k}$. Thus if u is a generator of $\cap M_{n}$ and. v is a generator of $\cap N_{n}$, then $P=\langle u, v\rangle$. In particular $K \cdot u$ and $K \cdot v$ are distinct subspaces of $K+K$. But $K \cdot u$ represents $i(e), K \cdot v$ represents $i\left(e^{\prime}\right)$. Therefore $i(e) \neq i\left(e^{\prime}\right)$. To prove (b), note that when $\Delta_{*}=\Delta_{\Gamma}$, Γ acts on Δ_{Γ}, on $\partial \Delta_{\Gamma}$ and on $K \boldsymbol{P}^{1}$ and i is Γ-linear. On the other hand, any fixed point free automorphism γ of a tree leaves invariant a unique line (its axis) and it acts on its axis by a translation. Thus γ fixes 2 distinct ends of the tree. In our case, every $\gamma \in \Gamma, \gamma \neq e$, has therefore 2 fixed points in $\partial \Delta_{\Gamma}$ hence in $i\left(\partial \Delta_{\Gamma}\right)$, and hence $i\left(\partial \Delta_{\Gamma}\right)$ contains the 2 fixed points of γ in $K \boldsymbol{P}^{1}$. To prove (c), let $x \in K \boldsymbol{P}^{1}$ and let $u \in K+K$ be homogeneous coordinates for x. Let $v \in K+K$ be any vector that is not a multiple of u and let $M_{n}=\left\langle u, \pi^{n} v\right\rangle$, where $(\pi)=m$, the maximal ideal in A. Then $\left\{M_{n}\right\}_{n \geqq 0}$ is a half-line in the full tree Δ whose end is mapped by i to x.
Q.E.D.

Definition (1.19). $i\left(\partial \Delta_{\Gamma}\right) \subset K \boldsymbol{P}^{1}$ will be denoted $\bar{\Sigma}$ and called the limit point set of Γ.

In fact, when $\operatorname{dim} A=1$, it is easy to check that $\bar{\Sigma}$ is precisely the closure of Σ in the natural topology on $K \boldsymbol{P}^{1}$.

We can link together via the map i several of the ideas we have been working with:

Proposition (1.20). Let $\Delta_{*}^{(0)}$ be any linked subset of $\Delta^{(0)}$, and let Δ_{*} be the corresponding tree. For any $x, y, z \in \partial \Delta_{*}$, the class $\{M(i x, i y, i z)\}$ is in $\Delta_{*}^{(0)}$ and equals to unique vertex of Δ_{*} such that the paths from v to the 3 ends x, y, z all start off on different edges.

Proof. In fact, let the module M represent v, and let $M \supset M_{x}$, $M \supset M_{y}, M \supset M_{z}$ be representatives in standard positions of M and the module classes next on the path from v to x, y and z respectively. Then $i x, i y, i z$ are represented by homogeneous coordinates $u, v, w \in K+K$ such that

$$
\begin{gathered}
u \in M_{x}-m M, \\
v \in M_{y}-m M, \\
w \in M_{z}-m M .
\end{gathered}
$$

Since $\{M\}$ is between $\left\{M_{x}\right\}$ and $\left\{M_{y}\right\}$ in Δ_{*}, it follows from (1.10) that $M_{x}+M_{y}=M$ hence $\bar{u}, \bar{v} \in M / m M$ are distinct. Similarly \bar{w} is distinct from \bar{u} and \bar{v}. Therefore, if $\alpha u+\beta v+\gamma w=0$ is the linear relation on u, v, w, it follows that $\alpha, \beta, \gamma \in A-m$. Therefore

$$
\{M(x, y, z)\}=\{A \cdot u+A \cdot v+A \cdot w\}=\{M\}=v
$$

Corollary (1.21). Every vertex of Δ_{Γ} meets at least 3 distinct edges.
Proposition (1.22). Let $\Delta_{*}^{(0)}$ be any linked subset of $\Delta^{(0)}$ and let Δ_{*} be the corresponding tree. Then for any $x_{1}, x_{2}, x_{3}, x_{4} \in \partial \Delta_{*}, R\left(i x_{1}, i x_{2}\right.$, $\left.i x_{3}, i x_{4}\right) \in A$ or $R\left(i x_{1}, i x_{2}, i x_{3}, i x_{4}\right)^{-1} \in A$.

Proof. Let v be the vertex of Δ_{*} joined to x_{1}, x_{2}, x_{3} by paths starting on different edges. Represent v by M and $i x_{1}, i x_{2}, i x_{3}$ by coordinates $u_{1}, u_{2}, u_{3} \in M-m M$ as in the proof of the previous Proposition.

Moreover we can represent x_{4} by coordinates $u_{4} \in M-m M$ too. Then

$$
\begin{array}{ll}
u_{3}=\alpha u_{1}+\beta u_{2}, & \alpha, \beta \in A-m \\
u_{4}=\gamma u_{1}+\delta u_{2}, & \gamma, \delta \in A \text { and } \gamma \text { or } \delta \notin m
\end{array}
$$

In this case,

$$
R\left(i x_{1}, i x_{2}, i x_{3}, i x_{4}\right)=\frac{\delta \alpha}{\beta \gamma} \begin{cases}\in A & \text { if } \gamma \notin m \\ \in A^{-1} & \text { if } \delta \notin m\end{cases}
$$

We can use Proposition (1.20) to prove the important:
Theorem (1.23). For all flat Schottky groups $\Gamma, \Delta_{\Gamma} / \Gamma$ is a finite graph.

Proof. Let $\gamma_{1}, \cdots, \gamma_{n}$ be free generators of Γ and let v be any vertex of Δ_{Γ}. Let σ_{i} be the path in Δ_{Γ} from v to $\gamma_{i}(v)$ and let $S=\sigma_{1} \cup \cdots \cup \sigma_{n}$. S is a finite tree and I claim that S maps onto Δ_{Γ} / Γ. This is equivalent to saying that

$$
\tilde{S}=\bigcup_{\gamma \in \Gamma} \gamma(S)=\bigcup_{\gamma \in \Gamma} \bigcup_{i=1}^{n}\left(\text { path from } \gamma(v) \text { to } \gamma \gamma_{i}(v)\right)
$$

is equal to Δ_{Γ}. Note first that \tilde{S} is connected. In fact, if $\gamma \in \Gamma$, write γ as a word:

$$
\gamma=\gamma_{i_{1}}^{\varepsilon_{1}} \gamma_{i_{2}}^{\varepsilon_{2}} \cdots \gamma_{i_{N}}^{\epsilon_{N}}, \quad \varepsilon_{i}= \pm 1,1 \leqq i_{l} \leqq n, \text { all } l .
$$

Then a typical point of \tilde{S} is on the path from $\gamma(v)$ to $\gamma \gamma_{i}(v)$. It is joined to v by the sequence of paths:
where $\sigma_{i}^{1}=\sigma_{i}$ and $\sigma_{i}^{-1}=\gamma_{i}^{-1}\left(\sigma_{i}\right)=$ (path from v to $\gamma_{i}^{-1}(v)$). Note secondly that for every $x \in \Sigma$, the end $i^{-1} x$ of Δ_{Γ} is actually an end of the subtree \tilde{S}. In fact, if x is a fixed point of $\gamma \in \Gamma$, it suffices to join the points

$$
\cdots, \gamma^{-2} v, \gamma^{-1} v, v, \gamma v, \gamma^{2} v, \cdots
$$

by paths in \tilde{S}. The result is a line in \widetilde{S}, invariant under γ, plus an infinite set of spurs one leading to each of the points $\gamma^{n} v$. The 2 ends of this line are the 2 ends of Δ_{Γ} fixed by γ and one of these is $i^{-1} x$. Thus $i^{-1} x$ is, in fact, an end of \tilde{S}. Finally, suppose w is a vertex of $\Delta_{\Gamma}-\tilde{S}$. Then $w=\{M(x, y, z)\}$ for some $x, y, z \in \Sigma$. Since $w \notin \tilde{S}, w$ is connected to \tilde{S} by a unique path τ :

Thus all the paths from w to all ends of \tilde{S} start with the same edge. Since $i^{-1} x, i^{-1} y, i^{-1} z$ are all ends of \tilde{S}, this contradicts Prop. (1.20). Hence $\Delta_{\Gamma}=\tilde{S}$.
Q.E.D.

Corollary (1.24). Δ_{Γ} is a locally finite tree.
Definition (1.25). Let $\{M\},\{N\} \in \Delta^{(0)}$ be compatible, and let $z \in K \boldsymbol{P}^{1}$. Then $\{M\}$ separates $\{N\}$ from z if there are representatives $N \supset M$ in standard positions and homogeneous coordinates $z^{*} \in K+K$ of z such that:

$$
z^{*} \in M, z^{*} \notin m \cdot N
$$

The following is almost immediate:
Proposition (1.26). Let $\Delta_{*}^{(0)} \subset \Delta^{(0)}$ be a linked subset and let e be an end of $\partial \Delta_{*}$. Let $\{M\},\{N\} \in \Delta_{*}^{(0)}$. Then $\{M\}$ separates $\{N\}$ from $i(e)$ if and only if the line in Δ_{*} from $\{N\}$ to the end e passes through $\{M\}$.

Definition (1.27). Let $\Delta_{*}^{(0)} \subset \Delta^{(0)}$ be any linked subset and let $z \in K \boldsymbol{P}^{1}$. The base of z of $\Delta_{*}^{(0)}$ is the set of all $\{M\} \in \Delta_{*}^{(0)}$ which are not separated from z by any $\{N\} \in \Delta_{*}^{(0)}$.

Proposition (1.28). The base of z on $\Delta_{*}^{(0)}$ is empty if and only if $z \in i\left(\partial \Delta_{*}\right)$.
Proof. If $z \in i\left(\partial \Delta_{*}\right)$, the base of z is empty by (1.26). Conversely, suppose the base is empty. Choose homogeneous coordinates $z^{*} \in K+K$ for z. Then for all $\{M\} \in \Delta_{*}^{(0)}$, there is a representative $M \in\{M\}$ such that $z^{*} \notin m \cdot M$ and an $\{N\} \in \Delta_{*}^{(0)}$ such that

$$
\begin{equation*}
M \nsupseteq N \ni z^{*} . \tag{*}
\end{equation*}
$$

Start with any $\left\{M_{1}\right\} \in \Delta_{*}^{(0)}$. Call the N satisfying (*) M_{2}. With M as M_{2}, call the N satisfying (*) M_{3}. Continuing in this way, we get an infinite sequence:

$$
M_{1} \not \ddagger M_{2} \not \ddagger M_{3} \neq \cdots \ni z^{*} .
$$

Then the sequence $\left\{M_{i}\right\}$ defines an end of Δ_{*} which is mapped by i to z. Q.E.D.

Proposition (1.29). If $\operatorname{dim} A=1$, then for any locally finite tree Δ_{*} and for any $z \in K \boldsymbol{P}^{1}$, the base of z on Δ_{*} consists of zero, one or two points.

Proof. Consider Δ_{*} inside the big tree Δ. It is easy to see that if the edges of Δ_{*} are suitably subdivided, Δ_{*} becomes a subtree Δ_{*}^{\prime} of Δ; i.e. for all adjacent $M_{1} \supset M_{2}$ in Δ_{*} let

$$
\begin{aligned}
M_{1} & =\langle u, v\rangle \\
M_{2} & =\left\langle u, \pi^{r} v\right\rangle \\
(\pi) & =\text { max. ideal of } A .
\end{aligned}
$$

Then adding the intermediate classes

$$
\left\{\left\langle u, \pi^{i} v\right\rangle\right\}, \quad 1 \leqq i \leqq r-1 .
$$

has the effect of subdividing the edge in Δ_{*} between $\left\{M_{1}\right\}$ and $\left\{M_{2}\right\}$ so that it becomes a path in Δ. Now every $z \in K \boldsymbol{P}^{1}$ is an end of Δ, and every end of Δ which is not an end of Δ_{*} can be joined to the subtree Δ_{*}^{\prime} by a unique shortest path. If $z \in K \boldsymbol{P}^{1}-i\left(\partial \Delta_{*}\right)$, let $v(z)$ be the vertex of Δ_{*}^{\prime} where this path meets Δ_{*}^{\prime}. Then it follows from (1.26) that the base of z on Δ_{*} is $\{v(z)\}$ if $v(z)$ is a vertex of Δ_{*}; or it equals the 2 endpoints of the edge of Δ_{*} containing $v(z)$ if $v(z)$ is not a vertex of Δ_{*}. Q.E.D.

In case $\operatorname{dim} A>1$, the points $z \in K \boldsymbol{P}^{1}-i\left(\partial \Delta_{*}\right)$ can have wildly diverse kinds of bases on Δ_{*}. Take the case $\Delta_{*}=\Delta_{\Gamma}$. Then heuristically, Γ does not act equally discontinuously at all the points of $K \boldsymbol{P}^{1}-\bar{\Sigma}$. An important definition is this:

Definition (1.30). If Γ is a flat Schottky group, then $\Omega_{\Gamma}=\left\{z \in K \boldsymbol{P}^{1} \mid\right.$ the base of z on Δ_{Γ} is finite and non-empty $\} ; \Omega_{\Gamma}$ is called the set of strict discontinuity, or the set of points where Γ acts strictly discontinuously. (Note that if $\operatorname{dim} A=1, \Omega_{\Gamma}$ is simply $K \boldsymbol{P}^{1}-\bar{\Sigma}$, the usual set of discontinuity.)

2. From trees to schemes

We turn now from the construction of trees to the construction of actual or formal schemes over S^{3}. Consider the set of all reduced and

[^1]irreducible schemes Z over S whose generic fibre is $\boldsymbol{P}_{\boldsymbol{K}}^{1}$. These form a partially ordered set if $Z_{1}>Z_{2}$ means that there is an S-morphism from Z_{1} to Z_{2} which restricts to the identity on the generic fibre. In this partially ordered set, any 2 elements have a least upper bound, called their join. We want to study

1. the joins of finite sets of schemes $\boldsymbol{P}(M),\{M\} \in \Delta^{(0)}$,
2. certain special infinite joins that exist as formal schemes over S but not as actual schemes.

Proposition (2.1). Let $\left\{M_{1}\right\},\left\{M_{2}\right\} \in \Delta^{(0)}$. Let P_{12} be the join of $\boldsymbol{P}\left(M_{1}\right)$ and $\boldsymbol{P}\left(M_{2}\right)$. Then
(a) if $\left\{M_{1}\right\},\left\{M_{2}\right\}$ are not compatible, the closed fibre of P_{12} is isomorphic to $\boldsymbol{P}\left(M_{1}\right)_{0} \times \boldsymbol{P}\left(M_{2}\right)_{0}$; in particular, the fibres of P_{12} over S do not all have the same dimension hence P_{12} is not flat over S.
(b) if $\left\{M_{1}\right\},\left\{M_{2}\right\}$ are compatible and $(\alpha)=\rho\left(\left\{M_{1}\right\},\left\{M_{2}\right\}\right)$, then P_{12} is a normal scheme, flat over S, and its fibre over $s \in S$ is:

$$
\left.\begin{array}{ll}
\left(\mathrm{b}_{1}\right) \boldsymbol{P}\left(M_{i}\right)_{s} \text { if } \alpha(s) \neq 0 & (i=1 \text { or } 2), \\
\left(\mathrm{b}_{2}\right) & \begin{array}{ll}
\boldsymbol{P}\left(M_{1}\right)_{s} \cup \boldsymbol{P}\left(M_{2}\right)_{s} \\
\text { meeting transversely in one } \\
k(s) \text {-rational point }
\end{array}
\end{array}\right) \text { if } \alpha(s)=0 .
$$

Proof. Let u_{1}, v_{1} be a basis of M_{1}, and let $u_{2}=a u_{1}+b v_{1}, v_{2}=$ $c u_{1}+d v_{1}$ be a basis of M_{2}. Define map s :

$$
\left.\begin{array}{r}
X_{i}, Y_{i}: M_{i} \rightarrow A \\
X_{i}\left(u_{i}\right)=Y_{i}\left(v_{i}\right)=1 \\
X_{i}\left(v_{i}\right)=Y_{i}\left(u_{i}\right)=0
\end{array}\right\} \quad i=1,2
$$

Then $\boldsymbol{P}\left(M_{i}\right)=\operatorname{Proj} A\left[X_{i}, Y_{i}\right]$. But

$$
\begin{aligned}
& X_{1}=a X_{2}+c Y_{2} \\
& Y_{1}=b X_{2}+d Y_{2}
\end{aligned}
$$

and these equations define the generic isomorphism of $\boldsymbol{P}\left(M_{1}\right)$ and $\boldsymbol{P}\left(M_{2}\right)$. Now P_{12} is just the closure in $\boldsymbol{P}\left(M_{1}\right) \times{ }_{S} \boldsymbol{P}\left(M_{2}\right)$ of the graph of this generic isomorphism, i.e. P_{12} is the closure in

$$
\operatorname{Proj} A\left[X_{1} X_{2}, X_{1} Y_{2}, Y_{1} X_{2}, Y_{1} Y_{2}\right]
$$

of the curve in the generic fibre defined by

$$
\begin{equation*}
a X_{2} Y_{1}-b X_{1} X_{2}+c Y_{1} Y_{2}-d Y_{2} X_{1}=0 \tag{*}
\end{equation*}
$$

According to the lemma of Ramanujam-Samuel (EGA IV.21) this closure either contains the whole closed fibre of $\boldsymbol{P}\left(M_{1}\right) \times{ }_{S} \boldsymbol{P}\left(M_{2}\right)$ or
else is a relative Cartier divisor over S. If the latter is true, then the closure must be defined as a subscheme of $\boldsymbol{P}\left(M_{1}\right) \times{ }_{S} \boldsymbol{P}\left(M_{2}\right)$ by a suitable multiple of equation ($*$) with all coefficients in A, and not all coefficients in m. In particular P_{12} is then flat over S and its fibres are curves in $\boldsymbol{P}\left(M_{1}\right)_{s} \times \boldsymbol{P}\left(M_{2}\right)_{s}$ defined by equations of type (*). But over any field L, an equation of type (*) which is not identically zero defines a curve in $\boldsymbol{P}_{L}^{1} \times \boldsymbol{P}_{L}^{1}$ which is (i) a graph of an isomorphism of the 2 factors if $a d-b c \neq 0$ or (ii) equal to $\boldsymbol{P}_{L}^{1} \times(\alpha) \cup(\beta) \times \boldsymbol{P}_{L}^{1}$ for some $\alpha, \beta \in L \boldsymbol{P}^{1}$ if $a d-b c=0$.

To tie these possibilities up with compatibility of the $\left\{M_{i}\right\}$, note that on the one hand if $\lambda a, \lambda b, \lambda c, \lambda d \in A$ and not all are in m, then $M_{1} \supset \lambda M_{2}$ and $m M_{1} \ngtr \lambda \cdot M_{2}$: thus $\left\{M_{1}\right\}$ and $\left\{M_{2}\right\}$ are compatible and $M_{1}, \lambda M_{2}$ are representatives in standard position. It is easy to check that

$$
(\lambda a \cdot \lambda d-\lambda \beta \cdot \lambda c)=\rho\left(\left\{M_{1}\right\},\left\{M_{2}\right\}\right)
$$

On the other hand, if $\left\{M_{1}\right\}$ and $\left\{M_{2}\right\}$ are compatible, choose $M_{1} \supset M_{2}$ to be representatives in standard position. Then $a, b, c, d \in A$, and not all are in m.

Finally, the normality of P_{12} in the 2 nd clase is a formal consequence of the rest: since S is normal and P_{12} is flat and generically smooth over S, it is certainly non-singular in codimension one. And if $f \in m$, then the ideal $f \cdot A \subset A$ has no embedded components, and since none of the fibres of P_{12} / S have embedded components, $f \cdot \mathcal{O}_{P_{12}}$ has no embedded components either. Thus P_{12} is normal.
Q.E.D.

Proposition (2.2). Let $\left\{M_{1}\right\},\left\{M_{2}\right\} \in \Delta^{(0)}$ be compatible and let $z \in K \boldsymbol{P}^{1}$. Then $\left\{M_{1}\right\}$ separates $\left\{M_{2}\right\}$ from z if and only if

$$
\mathrm{cl}_{P_{12}}(z) \cap \boldsymbol{P}\left(M_{2}\right)_{0}=\emptyset,
$$

where $\operatorname{cl}_{P_{12}}(z)$ is the closure of $\{z\}$ in P_{12} and $\boldsymbol{P}\left(M_{2}\right)_{0}$ is the component of the closed fibre of P_{12} isomorphic to the closed fibre of $\boldsymbol{P}\left(M_{2}\right)$.

Proof. Since the closed fibre of P_{12} minus $\boldsymbol{P}\left(M_{2}\right)_{0}$ is isomorphic to $\boldsymbol{P}\left(M_{1}\right)_{0}$ minus a point, $\mathrm{cl}_{\boldsymbol{P}_{12}}(z) \cap \boldsymbol{P}\left(M_{2}\right)_{0}=\emptyset$ implies that $\mathrm{cl}_{\boldsymbol{P}_{12}}(z)$ meets the closed fibre in P_{12} in a finite set of points where P_{12} is smooth over S. Therefore by the lemma of Ramanujam-Samuel, $\mathrm{cl}_{P_{12}}(z)$ will be a relative Cartier divisor in this case; hence $\mathrm{cl}_{P_{12}}(z)$ will be the image of a section of P_{12} over S. Thus $\operatorname{cl}_{P_{12}}(z) \cap \boldsymbol{P}\left(M_{2}\right)_{0}=\emptyset$ is equivalent to z extending to a section of P_{12} not meating the component $\boldsymbol{P}\left(M_{2}\right)_{0}$ of the closed fibre. But if

$$
\begin{aligned}
& M_{2}=\langle u, v\rangle, \\
& M_{1}=\langle u, \alpha v\rangle
\end{aligned}
$$

are representatives in standard position, then for z to define a section of $\boldsymbol{P}\left(M_{1}\right)$ means that z has homogeneous coordinates:

$$
z^{*}=\beta u+\gamma(\alpha v), \quad \beta, \gamma \in A, \quad \beta \text { or } \gamma \notin m
$$

In this case $\mathrm{cl}_{P_{12}}(z)$ meets $\boldsymbol{P}\left(M_{1}\right)_{0}$ in a point other than the one where $\boldsymbol{P}\left(M_{2}\right)_{0}$ meets $\boldsymbol{P}\left(M_{1}\right)_{0}$ if and only if $\beta \notin m$. Thus $\left\{M_{1}\right\}$ separates $\left\{M_{2}\right\}$ and z if and only if z defines a section of $\boldsymbol{P}\left(M_{1}\right)$ passing through a closed point other than the point where $\boldsymbol{P}\left(M_{2}\right)_{0}$ meets it in P_{12}; which is the same as saying that z defines a section of P_{12} not mesting $\boldsymbol{P}\left(M_{2}\right)_{0}$. Q.E.D.

Proposition (2.3): Let $\left\{M_{1}\right\}, \cdots,\left\{M_{k}\right\} \in \Delta^{(0)}$ be pairwise compatible. Let Z be the join of $\boldsymbol{P}\left(M_{1}\right), \cdots, \boldsymbol{P}\left(M_{k}\right)$. Then Z is a normal scheme, proper and flat over S and its closed fibre Z_{0} satisfies:
i) it is reduced, connected and 1-dimensional,
ii) its components are naturally isomorphic to the schemes $\boldsymbol{P}\left(M_{1}\right)_{0}$, $\cdots \boldsymbol{P}\left(M_{k}\right)_{0}$ respectively,
iii) 2 components meet in at most one point and no set of components meets to form a loop,
(iv) every singular point z is locally isomorphic over k to the union W_{l} of the coordinate axes in A^{l}.

Proof. By definition, Z is the closure in $\boldsymbol{P}\left(M_{1}\right) \times{ }_{s} \cdots \times{ }_{s} \boldsymbol{P}\left(M_{k}\right)$ of the graph of the generic isomorphism of all the factors. Therefore Z_{0} is connected by Zariski's connectedness theorem (EGA, III. 4.3.1). For every i and $j(1 \leqq i, j \leqq k)$, let $p_{i j}$ be the projection onto $\boldsymbol{P}\left(M_{i}\right) \times{ }_{S} \boldsymbol{P}\left(M_{j}\right)$. Since $p_{i j}$ is proper, it follows from the proof of the previous proposition that:

$$
\begin{align*}
p_{i j}\left(Z_{0}\right)=\boldsymbol{P}\left(M_{i}\right) \times(a)+(b) \times \boldsymbol{P}\left(M_{j}\right) \tag{*}\\
\text { some } a, b \in k \boldsymbol{P}^{1}
\end{align*}
$$

Therefore each component of Z_{0} is 'parallel to one of the coordinate axes', i.e. has the form:

$$
\left(a_{1}\right) \times\left(a_{2}\right) \times \cdots \times \boldsymbol{P}\left(M_{i}\right)_{0} \times \cdots \times\left(a_{k}\right)
$$

for some i, and is naturally isomorphic to $\boldsymbol{P}\left(M_{i}\right)_{0}$ for this i. Moreover it follows immediately from $(*)$ that for each i, exactly one of the components of Z_{0} is parallel to the $i^{\text {th }}$ coordinate axis. This proves (ii). For any union Z_{0} of coordinate axes, $\left(Z_{0}\right)_{\text {red }}$ is locally isomorphic to the scheme W_{l} in (iv). Moreover, if Z_{0} had a loop, then for some i there would have to be 2 or more components parallel to the $i^{\text {th }}$ axis. The only point which is not very clear is that Z_{0} is reduced at its singular points. But note that the ideal of W_{l} in A^{l} is generated by the monomials ($X_{i} X_{j}$) which are the defining equations of $p_{i j}\left(W_{l}\right)$; therefore the scheme-theoretic inter-
section $\bigcap_{i, j} p_{i j}^{-1}\left[\boldsymbol{P}\left(M_{i}\right)_{0} \times(a)+(b) \times \boldsymbol{P}\left(M_{\mathrm{n}}\right)_{0}\right]$ is already reduced, so a fortiori Z_{0} is reduced. Finally, Z is flat over S by EGA 4.15.2, and normal by the same argument used in Prop. (2.1).
Q.E.D.

Finally, we have:
Proposition (2.4): Let $\Delta_{*}^{(0)} \subset \Delta^{(0)}$ be a finite linked subset. Let $\boldsymbol{P}\left(\Delta_{*}\right)$ be the join of all the schemes $\boldsymbol{P}\left(M_{i}\right),\left\{M_{i}\right\} \in \Delta_{*}^{(0)}$. Then in addition to the above properties, we have also:
i) Z_{0} has only double points,
ii) in the one-one correspondence between the components of the closed fibre Z_{0} and the elements of $\Delta_{*}^{(0)} 2$ components meet if and only if the corresponding elements of $\Delta_{*}^{(0)}$ are adjacent in the tree Δ_{*}.
In other words, if we make a tree out of Z_{0} by taking a vertex for each component and an edge for each point of intersection, we obtain geometrically the tree Δ_{*}.

Proof. In fact, if Z_{0} has a point of multiplicity $\geqq 3$, this would mean that $\geqq 3$ components of Z_{0} all met each other. Since we know Δ_{*} is a tree, this would contradict (ii). Thus it suffices to prove (ii). Suppose $\left\{M_{1}\right\},\left\{M_{2}\right\} \in \Delta_{*}^{(0)}$ are not adjacent. This means there is an $\left\{M_{3}\right\} \in \Delta_{*}^{(0)}$ different from $\left\{M_{1}\right\}$ and $\left\{M_{2}\right\}$ such that

$$
\rho\left(\left\{M_{1}\right\},\left\{M_{2}\right\}\right)=\rho\left(\left\{M_{1}\right\},\left\{M_{3}\right\}\right) \cdot \rho\left(\left\{M_{3}\right\},\left\{M_{2}\right\}\right)
$$

Therefore we can find representatives of these classes in standard position:

$$
\begin{aligned}
& M_{1}=\langle u, v\rangle \\
& M_{3}=\langle u, \alpha v\rangle,(\alpha)=\rho\left(\left(M_{1}\right\},\left(M_{3}\right\}\right) \subset m \\
& M_{2}=\langle u, \alpha \cdot \beta v\rangle,(\beta)=\rho\left(\left(M_{3}\right\},\left(M_{2}\right\}\right) \subset m
\end{aligned}
$$

Let X, Y be defined by

$$
\begin{aligned}
& X(u)=Y(v)=1 \\
& X(v)=Y(u)=0
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \boldsymbol{P}\left(M_{1}\right)=\operatorname{Proj} A[X, Y] \\
& \boldsymbol{P}\left(M_{3}\right)=\operatorname{Proj} A[X, Y / \alpha] \\
& \boldsymbol{P}\left(M_{2}\right)=\operatorname{Proj} A[X, Y / \alpha \beta] .
\end{aligned}
$$

Now form the join Z_{123} of $\boldsymbol{P}\left(M_{1}\right), \boldsymbol{P}\left(M_{2}\right), \boldsymbol{P}\left(M_{3}\right)$:

$$
\begin{aligned}
Z_{123} & =\operatorname{Proj} A\left[X^{3}, X^{2} Y / \alpha \beta, X Y^{2} / \alpha^{2} \beta, Y^{3} / \alpha^{2} \beta\right] \\
& \cong \operatorname{Proj} A\left[u_{1}, u_{2}, u_{3}, u_{4}\right] /\left(\beta u_{2}^{2}-u_{1} u_{3}, \alpha u_{3}^{2}-u_{2} u_{4}, \alpha \beta u_{2} u_{3}-u_{1} u_{4}\right)
\end{aligned}
$$

From this it follows easily that the closed fibre of Z_{123} has 3 components,
connected like this:

where E_{i} maps onto $\boldsymbol{P}\left(M_{i}\right)_{0}$. But now there is a natural map of Z onto Z_{123}, and the component of Z_{0} corresponding to $\left\{M_{i}\right\}$ must map onto $E_{i} \subset\left(Z_{123}\right)_{0}$. Since $E_{1} \cap E_{2}=\emptyset$, it follows that in Z_{0} the components corresponding to $\left\{M_{1}\right\}$ and $\left\{M_{2}\right\}$ do not meet! This proves that the only components of Z_{0} that can meet are those corresponding to adjacent vertices of Δ_{*}. But Δ_{*} is a tree so it is disconnected by leaving out any edge. Thus if any pair of components of Z_{0} corresponding to adjacent vertices of Δ_{0} did not actually meet, Z_{0} would be disconnected. Thus (ii) is completely proven.
Q.E.D.

Proposition (2.5): Let $\Delta_{*}^{(0)} \subset \Delta^{(0)}$ be a finite linked subset, and let $\boldsymbol{P}\left(\Delta_{*}\right)$ be the join of the $\boldsymbol{P}\left(M_{i}\right),\left\{M_{i}\right\} \in \Delta_{*}^{(0)}$. Let $z \in K \boldsymbol{P}^{1}$, and let $\mathrm{cl}(z)$ denote the closure of $\{z\}$ in $\boldsymbol{P}\left(\Delta_{*}\right)$. Then for all $\left\{M_{i}\right\} \in \Delta_{*}^{(0)}$

$$
\operatorname{cl}(z) \cap \boldsymbol{P}\left(M_{i}\right)_{0} \neq \emptyset
$$

if and only if $\left\{M_{i}\right\}$ is in the base of z on $\Delta_{*}^{(0)}$.
Proof. The statement is equivalent to: $\left[\operatorname{cl}(z) \cap \boldsymbol{P}\left(M_{i}\right)_{0}=\emptyset\right] \Leftrightarrow$ $\left[\exists\left\{M_{j}\right\} \in \Delta_{*}^{(0)}\right.$ separating $\left\{M_{i}\right\}$ and $\left.z\right]$. The implication \Leftarrow is an immediate consequence of (2.2). Conversely, suppose $\operatorname{cl}(z) \cap \boldsymbol{P}\left(M_{i}\right)_{0}=\emptyset$. Let x_{1}, \cdots, x_{l} be the double points on $\boldsymbol{P}\left(M_{i}\right)_{0}$, let $\boldsymbol{P}\left(N_{1}\right)_{0}, \cdots, \boldsymbol{P}\left(N_{l}\right)_{0}$ be the other components of $\boldsymbol{P}\left(\Delta_{*}\right)_{0}$ through x_{1}, \cdots, x_{l} respectively, and let $W_{t} \subset \boldsymbol{P}\left(\Delta_{*}\right)_{0}$ be the union of the components of $\boldsymbol{P}\left(\Delta_{*}\right)_{0}$ which are connected to $\boldsymbol{P}\left(N_{t}\right)_{0}$ without passing through $\boldsymbol{P}\left(M_{i}\right)_{0}$:

By Zariski's connectedness theorem, $\mathrm{cl}(z)_{0}$ is connected, hence there is some $j(1 \leqq j \leqq 1)$ such that

$$
\mathrm{cl}(z)_{0} \subset W_{j}-\boldsymbol{P}\left(M_{i}\right)_{0} .
$$

Now project everything into the join $P_{i j}$ of $\boldsymbol{P}\left(M_{i}\right)$ and $\boldsymbol{P}\left(N_{j}\right)$. Since the projection is proper, and all components of $\boldsymbol{P}\left(\Delta_{*}\right)_{0}$ except $\boldsymbol{P}\left(M_{i}\right)_{0}$, $P\left(N_{j}\right)_{0}$ are mapped to one point, it follows that $p_{i j}\left(\mathrm{cl}(z)_{o}\right)=$ one point, and it is still disjoint from $\boldsymbol{P}\left(M_{i}\right)_{0}$. Therefore by (2.2), $\left\{N_{j}\right\}$ separates z from $\left\{M_{i}\right\}$.

In the case $\operatorname{dim} A=1$, an important class of trees Δ_{*} are the subtrees of the full Δ, i.e. linked sets $\Delta_{*}^{(0)}$ such that if $\left\{M_{1}\right\},\left\{M_{2}\right\} \in \Delta_{*}^{(0)}$ are adjacent, then equivalently $\rho\left(\left\{M_{1}\right\},\left\{M_{2}\right\}\right)=\max$. ideal of A, or $\left\{M_{1}\right\}$, $\left\{M_{2}\right\}$ are adjacent in Δ. These have the following easy characterization:

Proposition (2.6). If $\operatorname{dim} A=1$, and $\Delta_{*}^{(0)} \subset \Delta^{(0)}$ is a finite linked set then $\boldsymbol{P}\left(\Delta_{*}\right)$ is regular if and only if Δ_{*} is a subtree of Δ.
We omit the proof, which is easy. When $\operatorname{dim} A=1, \operatorname{cl}(z)$ is necessarily isomorphic to S, i.e. it is the image of a section of $\boldsymbol{P}\left(\Delta_{*}\right)$ over S. Therefore $\mathrm{cl}(z) \cap \boldsymbol{P}\left(\Delta_{*}\right)_{0}$ is a single k-rational point of $\boldsymbol{P}\left(\Delta_{*}\right)_{0}$. If, moreover, $\boldsymbol{P}\left(\Delta_{*}\right)$ is regular, it must be a non-singular point of $\boldsymbol{P}\left(\Delta_{*}\right)_{0}$ and we have the following nice interpretation of the map $z \mapsto \mathrm{cl}(z) \cap \boldsymbol{P}\left(\Delta_{*}\right)_{0}$.

Proposition (2.7): Let $\operatorname{dim} A=1$ and let $\Delta_{*} \subset \Delta$ be a finite subtree Consider the maps:

The horizontal arrows are surjective and there is a unique isomorphism of the set of non-singular k-rational points of $\boldsymbol{P}\left(\Delta_{*}\right)_{0}$ and the set of edges of $\Delta-\Delta_{*}$ meeting Δ_{*} making the diagram commute.
(Proof left to reader).
The next step is to generalize Prop. (2.4) to infinite but locally finite trees Δ_{*}. We cannot do this in the category of schemes, but only in the category of formal schemes. Here is the construction:
given $\Delta_{*}^{(0)} \subset \Delta^{(0)}$ a linked subset with Δ_{*} locally finite
I) for all finite subtrees $S \subset \Delta_{*}$ let $\boldsymbol{P}(S)$ be the finite join as above,
II) when $S_{1} \subset S_{2}$, there is a natural morphism

$$
p: \boldsymbol{P}\left(S_{2}\right) \rightarrow \boldsymbol{P}\left(S_{1}\right)
$$

giving us an inverse system,
III) let $\mathscr{P}(S)=$ formal completion of $\boldsymbol{P}(S)$ along its closed fibre $\boldsymbol{P}(S)_{0}$. We get again an inverse system:

$$
p: \mathscr{P}\left(S_{2}\right) \rightarrow \mathscr{P}\left(S_{1}\right)
$$

IV) For all S, let $\mathscr{P}(S)^{\prime}$ be the maximal open subset $U \subset \mathscr{P}(S)$ such that for all finite subtrees $S \subset T \subset \Delta_{*}$, the morphism res ${ }_{U} p$ is an isomorphism:

$$
\begin{gathered}
p^{-1}(U) \underset{\text { res } p}{\longrightarrow} U \\
\cap \\
\mathscr{P}(T) \underset{p}{\longrightarrow} \mathscr{P}(S) .
\end{gathered}
$$

V) Then the inverse system of $\mathscr{P}(S)$'s become a direct system of $\mathscr{P}(S)^{\prime}$'s in which all morphisms:

$$
\mathscr{P}\left(S_{2}\right)^{\prime} \rightarrow \mathscr{P}\left(S_{1}\right)^{\prime}
$$

are open immersions. Let

$$
\mathscr{P}\left(\Delta_{*}\right)=\varliminf_{S} \mathscr{P}(S)^{\prime} .
$$

Proposition (2.8): $\mathscr{P}\left(\Delta_{*}\right)$ is a normal formal scheme flat over S, such that $m \cdot \mathcal{O}_{\mathscr{P}(\Delta)}$ is a defining sheaf of ideals. The closed fibre has the properties:
i) it is reduced, connected, 1-dimensional and locally of finite type over k,
ii) it has at most ordinary double points and these are k-rational,
iii) its components are all isomorphic to \boldsymbol{P}_{k}^{1} and are in one-one correspondence with the elements of $\Delta_{*}^{(0)}$,
iv) 2 components meet if and only if the corresponding vertices of $\Delta_{*}^{(0)}$ are adjacent and then in exactly one point.

Proof. This follows immcdiately from the previcus Propositions once we have proven the following lemma.

Lemma (2.9). Let $S \subset \Delta_{*}$ be a finite subtree. If a vertex v of S is such that all edges of Δ_{*} which meet v lie in S, then the component E_{v} of $\boldsymbol{P}(S)_{0}$ corresponding to v lies entirely in the open set $\mathscr{P}(S)^{\prime}$.

Proof of Lemma. Let $S \subset T \subset \Delta_{*}$, where T is another finite subtree containing all edges of Δ_{*} meeting edges meeting v, i.e.

Let $U \subset \boldsymbol{P}(S)_{0}$ be the open set consisting of E_{v}, plus those points x of the components E_{w} which meet E_{v} such that $p^{-1}(x)$ does not meet any other component of $\boldsymbol{P}(T)_{0}$:

Then even if $T^{\prime} \supset T$ is a bigger finite subtree, it follows from Prop. (2.3) that in the diagram:

$$
\begin{aligned}
p^{-1}(U) \xrightarrow{\operatorname{res}_{U} p_{0}} & U \\
\cap & \cap \\
\boldsymbol{P}\left(T^{\prime}\right)_{0} \xrightarrow[p_{0}]{ } & \boldsymbol{P}(S)_{0}
\end{aligned}
$$

$\operatorname{res}_{U} p_{0}$ is an isomorphism. Since $p: \boldsymbol{P}\left(T^{\prime}\right) \rightarrow \boldsymbol{P}(S)$ is proper and surjective and $\boldsymbol{P}(S)$ is reduced, there is an open set $V \subset \boldsymbol{P}(S)$ such that $V \supset U$ and $p^{-1}(V) \rightarrow V$ is an isomorphism. Therefore the inverse image of U in the formal scheme $\mathscr{P}\left(T^{\prime}\right)$ is mapped isomorphically to the open subscheme U of $\mathscr{P}(S)$. Therefore $U \subset \mathscr{P}(S)^{\prime}$.
Q.E.D.

Speaking heuristically, $\mathscr{P}\left(\Delta_{*}\right)$ is the infinite formal join of the schemes $\boldsymbol{P}(M)$, for all $\{M\} \in \Delta_{*}^{(0)}$.

For every $z \in K \boldsymbol{P}^{1}$, we can talk about the closure of $z, \operatorname{cl}(z)^{\wedge}$, in $\mathscr{P}\left(\Delta_{*}\right)$. In fact, we can form $\operatorname{cl}_{S}(z)$ in $\boldsymbol{P}(S)$, take its formal completion $\mathrm{cl}_{S}(z)^{\wedge}$ in $\mathscr{P}(S)$, and restrict it to $\mathscr{P}(S)^{\prime}$. Then if $S_{1} \subset S_{2}, \mathrm{cl}_{S_{1}}(z)^{\wedge}$ is just the restriction of $\mathrm{cl}_{S_{2}}(z)^{\wedge}$ to $\mathscr{P}\left(S_{1}\right)$, hence there is a unique formal subscheme:

$$
\operatorname{cl}(z)^{\wedge} \subset \mathscr{P}\left(\Delta_{*}\right)
$$

such that

$$
\operatorname{cl}(z)^{\wedge} \cap \mathscr{P}(S)^{\prime}=\operatorname{cl}_{S}(z)^{\wedge} \cap \mathscr{P}(S)^{\prime}
$$

all finite subtrees S.
Proposition (2.10). $\operatorname{cl}(z)^{\wedge}$ is proper over S if and only if the base of S on Δ_{*} is finite. If $\operatorname{cl}(z)^{\wedge}$ is non-empty as well then it is the formal completion of the proper scheme $\operatorname{cl}_{S}(z)$ for all sufficiently large finite subtrees $S \subset \Delta_{*}$.

This is an immediate consequence of (2.5).
Corollary (2.11). If Γ is a flat Schottky group and $z \in K \boldsymbol{P}^{1}$, then Γ acts strictly discontinuously at z if and only if $\operatorname{cl}(z)^{\wedge} \subset \mathscr{P}\left(\Delta_{\Gamma}\right)$ is nonempty and proper over S.

In case $\operatorname{dim} A=1$, we have the infinite generalization of (2.7):
Proposition (2.12). Let $\operatorname{dim} A=1$ and let Δ_{*} be a locally finite subtree of Δ. Consider the maps

$$
\begin{array}{rl}
z & \mapsto \operatorname{cl}(z) \cap\left(\Delta_{*}\right)_{0} \\
m & m \\
K \boldsymbol{P}^{1}-i\left(\partial \Delta_{*}\right) & \rightarrow\left[\text { non-singular } k \text {-rational points of }\left(\Delta_{*}\right)_{0}\right] \\
2 \| & \\
\partial \Delta-\partial \Delta_{*} & \rightarrow\left[\text { edges of } \Delta-\Delta_{*} \text { meeting } \Delta_{*}\right] \\
\psi & \psi \\
e & \mapsto \text { last edge in path from e to } \Delta_{*}
\end{array}
$$

The horizontal maps are surjective and there is a unique isomorphism of the set of non-singular k-rational points of $\mathscr{P}\left(\Delta_{*}\right)_{0}$ and the set of edges of $\Delta-\Delta_{*}$ meeting Δ_{*} making the diagram commute.
(Proof left to reader).

3. The construction of the quotient

We now restrict ourselves to the case $\Delta_{*}=\Delta_{\Gamma}$. Then the group Γ acts on $\mathscr{P}\left(\Delta_{\Gamma}\right)$. The final step in our construction is to form a quotient $\mathscr{P}\left(\Delta_{\Gamma}\right) / \Gamma$ and to algebrize it.

Theorem (3.1). There exists a unique pair (\mathscr{X}, π) consisting of a formal scheme \mathscr{X} proper over S and a surjective étale S-morphism

$$
\pi: \mathscr{P}\left(\Delta_{\Gamma}\right) \rightarrow \mathscr{X}
$$

such that
a) $\forall \gamma \in \Gamma$, if [$\gamma]$ represents the induced automorphism of $\mathscr{P}\left(\Delta_{\Gamma}\right)$, then $\pi \circ[\gamma]=\pi$,
b) $\forall x, y \in \mathscr{P}\left(\Delta_{\Gamma}\right), \pi(x)=\pi(y) \Leftrightarrow x=[\gamma] y$, some $\gamma \in \Gamma$.

Moreover \mathscr{X} is normal, is flat and projective over S, and is algebraizable. \mathscr{X} will be written $\mathscr{P}\left(\Delta_{\Gamma}\right) / \Gamma$.

Proof. As a topological space, \mathscr{X} must equal the quotient of the underlying topological space to $\mathscr{P}\left(\Delta_{\Gamma}\right)$ by Γ, and its structure sheaf must be the subsheaf of $\pi_{*}\left(\mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)}\right)$ of Γ-invariants. Therefore \mathscr{X} is unique. To construct \mathscr{X}, we proceed in two stages:
(i) prove the results for a suitable $\Gamma_{0} \subset \Gamma$ of finite index,
(ii) prove them for Γ.

The point is that since Γ acts freely on the tree Δ_{Γ}, no $\gamma \in \Gamma(\gamma \neq e)$ takes any component of $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ into itself. Even better, there is a normal subgroup $\Gamma_{0} \subset \Gamma$ of finite index such that no $\gamma \in \Gamma_{0}(\gamma \neq e)$ takes a vertex of Δ_{Γ} into itself or to an adjacent vertex. Therefore no $\gamma \in \Gamma_{0}(\gamma \neq e)$ takes a component of $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ into itself or into a second component meeting the fiirst one. From this it follows that Γ_{0} acts on $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ discontinuously in the Zariski topology: i.e. every $x \in \mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ has an open neighbourhood U such that $U \cap \gamma U=\emptyset$, all $\gamma \in \Gamma_{0}(\gamma \neq e)$. But in this case a quotient $\mathscr{P}\left(\Delta_{\Gamma}\right) / \Gamma_{0}$ can be constructed simply by re-glueing! To be precise cover $\mathscr{P}\left(\Delta_{\Gamma}\right)$ by affine open subschemes $\operatorname{Spf}\left(A_{i}\right)$ whose underlying open subsets have the above property. Then for every i, j, there is at most one element $\gamma_{i j} \in \Gamma_{0}$ such that

$$
\gamma_{i j}\left(\operatorname{Spf}\left(A_{i}\right)\right) \cap \operatorname{Spf}\left(A_{j}\right) \neq \emptyset
$$

Glue $\operatorname{Spf}\left(A_{i}\right)$ to $\operatorname{Spf}\left(A_{j}\right)$ on this overlap via the map $\left[\gamma_{i j}\right]$. This gives a formal scheme \mathscr{Y} and a morphism

$$
\pi_{0}: \mathscr{P}\left(\Delta_{\Gamma}\right) \rightarrow \mathscr{Y}
$$

which is surjective and locally an isomorphism such that
(a) $\pi \circ[\gamma]=\pi$, all $\gamma \in \Gamma_{0}$, and
(b) $\pi(x)=\pi(y)$ implies $x=[\gamma] y$, some $\gamma \in \Gamma_{0}$.

Note that since Δ_{Γ} / Γ is a finite graph, so is $\Delta_{\Gamma} / \Gamma_{0}$. Therefore \mathscr{Y}_{0} has only a finite number of components and is proper over k. Therefore \mathscr{Y} is proper over S. Obviously \mathscr{Y} is normal and flat over S too since it is locally isomorphic to $\mathscr{P}\left(\Delta_{\Gamma}\right)$.

Now for each component E of \mathscr{Y}_{0}, choose a point $x \in E$ which is not in any other component of \mathscr{Y}_{0}. Let $\bar{d}_{E} \in \mathcal{O}_{x, \mathscr{y}_{0}}=\mathcal{O}_{x, \mathscr{y}} / m \cdot \mathcal{O}_{x, \mathscr{y}}$ be a generator of the maximal ideal and let $d_{E} \in \mathcal{O}_{x, y}$ lift \bar{d}_{E}. Let $d_{E}=0$ define the relative Cartier divisor $D_{E} \subset \mathscr{Y}$, and let $D=\Sigma D_{E}$. Then D is relatively ample on \mathscr{Y} over S, hence \mathscr{Y} is projective. Now we can apply Grothendieck's algebraizability theorem (EGA III.5) to conclude that
\mathscr{Y} is the formal completion of a unique scheme Y, projective over S, along its closed fibre Y_{0}.

Finally, Y is a projective scheme, hence any finite subset of Y is contained in an affine. Therefore its Γ / Γ_{0}-orbits are contained in affines and there exists a quotient $Y /\left(\Gamma / \Gamma_{0}\right)(\mathrm{cf}$. [M1], § 7). Let \mathscr{X} be the formal completion of $Y /\left(\Gamma / \Gamma_{0}\right)$ along its closed fibre. This \mathscr{X} has all the required properties.
Q.E.D.

Definition (3.2). P_{Γ} is the scheme, projective over S, whose formal completion is $\mathscr{P}\left(\Delta_{\Gamma}\right) / \Gamma$.

We recall the concept of a stable curve over S in the sense of Deligne and Mumford: this is a scheme C, proper and flat over S, whose geometric fibres are reduced connected and 1-dimensional; have at most ordinary double points; and such that their non-singular rational components, if any, meet the remaining components in at least 3 points. Moreover a stable curve C over a field k will be call degenerate if Pic_{C}^{0} is a torus, or equivalently if the normalizations of all the components of $C \times{ }_{k} \bar{k}$ (\bar{k} an algebraic closure of k) are rational curves. C is called k-split degenerate if the normalizations of all the components of C are isomorphic to \boldsymbol{P}_{k}^{1}, and if all the double points are k-rational with $2 k$-rational branches. This means that C is gotten by identifying in pairs a finite set of distinct k-rational points of a finite union of copies of \boldsymbol{P}_{k}^{1}.

Theorem (3.3). If n is the number of generators of Γ, then P_{Γ} is a stable curve over S of genus n, whose generic fibre is smooth over K and whose special fibre is k-split degenerate. Moreover its special fibre $\left(P_{\Gamma}\right)_{0}$ has the property:
there is a 1-1 correspondence between components of $\left(P_{\Gamma}\right)_{0}$ and vertices of Δ_{Γ} / Γ, and between double points of $\left(P_{\Gamma}\right)_{0}$ and edges of Δ_{Γ} / Γ, such that a component contains a double point if and only if the corresponding vertex is an endpoint of the corresponding edge.

Proof. Since $\left(P_{\Gamma}\right)_{0}$ is the quotient of $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ by Γ, the asserted properties of a stable curve are clear except for the requirement that every non-singular rational component meets the other components in $\geqq 3$ points. But by Prop. (1.20), every vertex of Δ_{Γ} / Γ is met by at least 3 edges so this is $O K$. Now a deformation of a stable curve is stable, so P_{r} is stable. Finally, the formal completion of P_{Γ} is normal, so P_{Γ} is normal. Therefore, its generic fibre is regular. Since it is also a stable curve, it is smooth over K too.
Q.E.D.

Let $P_{\Gamma}(K)$ denote the set of K-rational points of P_{Γ}. We can now construct a map

$$
\pi: \Omega_{\Gamma} \rightarrow P_{\Gamma}(K)
$$

from the set of strict discontinuity to the set of rational points of the smooth curve $\left(P_{\Gamma}\right)_{\eta}$. In fact if $z \in \Omega_{\Gamma}$, we have seen that we can form

$$
\operatorname{cl}(z)^{\wedge} \subset \mathscr{P}\left(\Delta_{\Gamma}\right)
$$

and that $\operatorname{cl}(z)^{\wedge}$ is the formal completion of scheme $\operatorname{cl}(z)$ proper over S, and birational to it. This gives us a formal morphism.

$$
\hat{p}_{z}: \operatorname{cl}(z)^{\wedge} \rightarrow \mathscr{P}\left(\Delta_{\Gamma}\right) / \Gamma
$$

which by Grothendieck's theorem (EGA III.5) comes from a morphism:

$$
p_{z}: \operatorname{cl}(z) \rightarrow P_{\Gamma}
$$

Let $\pi(z)$ be the image of the generic point under this map.
Proposition (3.4). If $z_{1}, z_{2} \in \Omega_{\Gamma}$, then

$$
\left[\pi\left(z_{1}\right)=\pi\left(z_{2}\right)\right] \Leftrightarrow\left[\exists \gamma \in \Gamma, \text { such that } \gamma\left(z_{1}\right)=z_{2}\right]
$$

Proof. ' \Leftarrow ' is obvious. Conversely, say $\pi\left(z_{1}\right)=\pi\left(z_{2}\right)$. Let Z be the join of $\operatorname{cl}\left(z_{1}\right), \operatorname{cl}\left(z_{2}\right): Z$ is proper over S and birational to it. In particular, Z_{0} is connected. By assumption the 2 morphisms:

are equal. Therefore the 2 formal morphisms:

both lift the same formal morphism to $\mathscr{P}\left(\Delta_{\Gamma}\right) / \Gamma$. Since Z_{0} is connected and $\mathscr{P}\left(\Delta_{\Gamma}\right)$ is étale over $\mathscr{P}\left(\Delta_{\Gamma}\right) / \Gamma$, these 2 differ by the action of some $\gamma \in \Gamma$. Therefore for a large finite subtree $S \subset \Delta_{\Gamma}$, we get a commutative diagram:

Evaluating these on the generic point, it follows that $\gamma\left(z_{1}\right)=z_{2}$. Q.E.D.
Theorem (3.5). If A is a regular local ring, then π is surjective.

Proof. Note that if $\Gamma_{1} \subset \Gamma$ is a subgroup of finite index, then
i) the set of fixed points Σ_{1} of Γ_{1} and Σ of Γ are the same (since $\forall \gamma \in \Gamma$, γ^{n} is in Γ_{1} for some n) hence
ii) $\Delta_{\Gamma_{1}}=\Delta_{\Gamma}$ and
iii) $\mathscr{P}\left(\Delta_{\Gamma_{1}}\right)=\mathscr{P}\left(\Delta_{\Gamma}\right)$, hence
iv) $P_{\Gamma_{1}}$ is a finite étale covering of P_{Γ}.

The first step in our proof is that the map

$$
P_{\Gamma_{1}}(K) \rightarrow P_{\Gamma}(K)
$$

is surjective. To see this, take some $z \in P_{\Gamma}(K)$ and let $\operatorname{cl}(z)$ be the closure of z in P_{Γ}, and let $\operatorname{cl}(z)^{\prime}$ be the normalization of $\operatorname{cl}(z)$. Taking the fibre product:

we get an induced finite étale covering W of $\operatorname{cl}(z)^{\prime}$. Since $\operatorname{cl}(z)^{\prime}$ is normal, so is W and hence the components W_{i} of W are disjoint and are each finite and étale over $\operatorname{cl}(z)^{\prime}$. Let K_{i} be the function field of W_{i} and let A_{i} be the normalization of A in K_{i}. Since the projection

$$
\operatorname{cl}(z)^{\prime} \rightarrow \operatorname{Spec} A
$$

is birational, $\mathrm{cl}(z)^{\prime}$ and $\operatorname{Spec} \mathrm{A}$ are isomorphic outside a closed set Z of codimension two in $\operatorname{Spec}(A)$. Therefore over $\operatorname{Spec}(A)-Z, W_{i}$ is isomorphic to $\operatorname{Spec}\left(A_{i}\right)$. In particular, $\operatorname{Spec}\left(A_{i}\right)$ is unramified over $\operatorname{Spec}(A)$ in codimension one. But by the theorem of the purity of the branch locus, which applies since A is regular, this proves that A_{i} is unramified everywhere over A; hence by Hensel's lemma, A_{i} is isomorphic to A. Therefore $K_{i}=K$ and $W_{i} \cong \operatorname{cl}(z)^{\prime}$. This moves that not only is

$$
P_{\Gamma_{1}}(K) \rightarrow P_{\Gamma}(K)
$$

surjective, but also that there is a lifting f_{1} :

for every $\Gamma_{1} \subset \Gamma$ if finite index.
The second step is that by passing to the formal completion of $\mathrm{cl}(z)^{\prime}$ along the closed fibre, there exists a lifting \hat{g} :

In fact let k be the maximum number of edges meeting any vertex of Δ_{Γ} and let n be the number of components of the closed fibre of $\operatorname{cl}(z)^{\prime}$. Then if Γ_{1} is sufficiently small, every $\gamma \in \Gamma_{1}(\gamma \neq e)$ maps every vertex v of Δ_{Γ} to a vertex $\gamma(v)$ joined to v by a line with more than $(k+1) n$ edges. Let $U \subset\left(P_{\Gamma_{1}}\right)_{0}$ be the open subset consisting of all points of all the components that meet $f_{1}\left(\mathrm{cl}(z)_{0}^{\prime}\right)$ except those that lie also on components disjoint from $f_{1}\left(\mathrm{cl}(z)_{0}^{\prime}\right)$. Then U has at most $(k+1) n$ components. Let \hat{U} be the corresponding open sub-formal scheme of $\mathscr{P}\left(\Delta_{\Gamma_{1}}\right) / \Gamma_{1}=P_{\Gamma_{1}}^{\wedge}$. Let \hat{V} be the inverse image of \hat{U} in $\mathscr{P}\left(\Delta_{\Gamma}\right)$. By our assumption on the way Γ_{1} operates in Δ_{Γ}, no 2 components E and $\gamma(E)$ of $\hat{V}\left(\gamma \in \Gamma_{1}, \gamma \neq e\right)$ can be joined by a line of components of \hat{V} : hence \hat{V} is the disjoint union of copies of \hat{U}. Choosing one of these, we can lift \hat{f}_{1} uniquely to a morphism \hat{g} of $\widehat{\operatorname{cl}(z)^{\prime}}$ into this component.
Thirdly, $\hat{g}\left(\operatorname{cl}(z)_{0}^{\prime}\right)$ is proper over k, hence it lies in one of the approximating pieces:

$$
\begin{aligned}
\mathscr{P}(S)^{\prime} & \subset \mathscr{P}\left(\Delta_{\Gamma}\right) \\
S & \subset \Delta_{\Gamma} \text { finite subtree. } .
\end{aligned}
$$

Thus \hat{g} can be alg ϵ braized to a true morphism:

$$
g: \operatorname{cl}(z)^{\prime} \rightarrow \boldsymbol{P}(S)
$$

The image of the generic point here is a point of $K \boldsymbol{P}^{1}$ which clearly lies in Ω_{Γ} and is mapped by π to z. Q.E.D.

Before ending this section, I would like to discuss briefly the special features of the $\operatorname{dim} A=1$ case and indicate how the somewhat more precise and elegant formulation given in the Introduction can be worked out. When $\operatorname{dim} A=1$, one has the big tree Δ and it usually is more convenient to replace the tree Δ_{Γ} by the tree Δ_{Γ}^{\prime} where vertices are:
a) the vertices of Δ_{Γ}
b) the vertices of Δ intermediate between 2 vertices of Δ_{Γ}.

Then Δ_{Γ}^{\prime} is a subtree of Δ hence $\mathscr{P}\left(\Delta_{\Gamma}^{\prime}\right)$ is regular by (2.6): in fact, $\mathscr{P}\left(\Delta_{\Gamma}^{\prime}\right)$ is just the minimal resolution of the normal surface $\mathscr{P}\left(\Delta_{\Gamma}\right)$. Let $\mathscr{P}\left(\Delta_{\Gamma}^{\prime}\right) / \Gamma$ be the formal completion of P_{Γ}^{\prime}. Then P_{Γ}^{\prime} is regular and is the minimal
resolution of the normal surface P_{Γ}. Generically, $P_{\Gamma}^{\prime}=P_{\Gamma}$, but the closed fibre is now only a semi-stable curve - i.e. a reduced connected 1 -dimensional scheme with at most ordinary double points and such that every non-singular rational component meets the other components in at least 2 points. P_{Γ}^{\prime} is the so-called minimal model of the curve $\left(P_{\Gamma}\right)_{\eta}$ over A (cf. $[D-M]$, p. 87, $[L]$ and $[\check{S}])$. Moreover, the closed fibre $\left(P_{\Gamma}^{\prime}\right)_{0}$ has only rational components one for each vertex of the graph $\Delta_{r}^{\prime} / \Gamma$; and one double point for each edge of the graph $\Delta_{\Gamma}^{\prime} / \Gamma$. $\Delta_{\Gamma}^{\prime} / \Gamma$ is the graph referred to as $(\Delta / \Gamma)_{0}$ in the Introduction.

Example.

$$
\left[\begin{array}{l}
\alpha_{i} \longleftrightarrow E_{i} \\
\sigma_{\mathrm{i}} \longleftrightarrow P_{\mathrm{i}}
\end{array}\right]
$$

$$
,\left(P_{\Gamma}\right)_{0}:
$$

All this is an immediate generalization of (3.3) and is proven in exactly the same way. Finally applying Prop. (2.12) to Δ_{Γ}^{\prime}, we get a commutative diagram on the upper-left.
(See figure on next page.)
Then the commutative diagram on the lower-right is deduced by taking the quotient of each set by Γ.

4. Existence and uniqueness

Summarising the discussion up to this point, we have started with a flat Schottky group $\Gamma \subset P G L(2, K)$, and have then constructed:
a) a tree Δ_{Γ},
b) a formal scheme $\mathscr{P}\left(\Delta_{\Gamma}\right)$,
c) a stable curve P_{Γ} / S such that $\hat{P}_{\Gamma} \cong \mathscr{P}\left(\Delta_{\Gamma}\right) / \Gamma$ with generic fibre nonsingular and with closed fibre k-split degenerate.

Let $\left(P_{\Gamma}\right)_{\bar{\eta}}$ be the generic geometric fibre of P_{Γ} over an algebraic closure \bar{K} of K. The next question to study is whether the non-singular curve $\left(P_{\Gamma}\right)_{\bar{\eta}}$ determines Γ uniquely. We shall invert our construction step by step. The first is this:

Proposition (4.1): If C_{1}, C_{2} are 2 stable curves over S with k-split degenerate fibres, then the scheme Isom $_{s}\left(C_{1}, C_{2}\right)$ exists and is isomorphic to a disjoint union $\coprod_{i=1}^{N} S_{i}$ of closed subschemes of S.

Proof. According to Theorem (1.11) of $[D-M], \underline{\operatorname{Isom}}_{S}\left(C_{1}, C_{2}\right)$ exists and is finite and unramified over S. Since $S=\operatorname{Spec}(A), A$ complete, by Hensel's lemma Isom is a disjoint union of schemes S_{i} with only a single point over the closed point of S. But because $C_{1,0}$ and $C_{2,0}$ are k-split degenerate every isomorphism of $C_{1,0}$ and $C_{2,0}$ is uniquely determined by specifying which components of $C_{1,0}$ go to which components of $C_{2,0}$ and which double points go to which double points; once this combinatorial data is specified, there is at most one such isomorphism of $C_{1,0}$ and $C_{2,0}$ and if it exists at all, it is rational over k. Therefore the closed points $s_{i} \in S_{i}$ are k-rational. Since S_{i} is finite and unramified over S, $S_{i} \rightarrow S$ must in fact be a closed immersion.
Q.E.D.

Corollary (4.2): Every isomorphism of the generic geometric fibres $\left(P_{\Gamma_{1}}\right)_{\bar{\eta}},\left(P_{\Gamma_{2}}\right)_{\bar{\eta}}$ extends uniquely to an isomorphism of $P_{\Gamma_{1}}$ and $P_{\Gamma_{2}}$.

Proof. The hypothesis means that one of the components S_{i} of Isom $_{S}\left(P_{\Gamma_{1}}, P_{\Gamma_{2}}\right)$ has a point over the generic point of S, hence S_{i} is isomorphic to S and defines an S-isomorphism of $P_{\Gamma_{1}}, P_{\Gamma_{2}}$.

Proposition (4.3). The morphism $\mathscr{P}\left(\Delta_{\Gamma}\right) \rightarrow \hat{P}_{\Gamma}$ makes $\mathscr{P}\left(\Delta_{\Gamma}\right)$ into the universal covering space of \hat{P}_{Γ}.

Proof. In fact, the category of formal étale coverings of \hat{P}_{Γ} is isomorphic to the category of étale coverings of $\left(P_{\Gamma}\right)_{0}$. Since the closed fibre $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ is connected and is a tree-like union of copies of \boldsymbol{P}_{k}^{1}, it is simply connected and must be the universal covering space of $\left(P_{\Gamma}\right)_{0}$. Q.E.D.

Definition (4.4). An exterior isomorphism of 2 groups G_{1}, G_{2} is the set of isomorphisms $\alpha \varphi \alpha^{-1}$ conjugate to an ordinary isomorphism φ.

When we talk of $\pi_{1}(X)$, for a connected scheme X, in order to have a well-defined group depending functorially on X we have to fix a geometric base point $x: \operatorname{Spec}(\Omega) \rightarrow X(\Omega$ an algebraically closed field), and then π_{1} should be written $\pi_{1}(X, x)$. But up to exterior isomorphism, π_{1} is independent of x, hence so long as we only talk of exterior isomorphisms, we can write $\pi_{1}(X)$.

Corollary (4.5). Γ, as an abstract group, is canonically exteriorisomorphic to $\pi_{1}\left(\hat{P}_{\Gamma}\right)\left(\right.$ or $\left.\pi_{1}\left(\left(P_{\Gamma}\right)_{0}\right)\right)$.

Corollary (4.6). Starting with an isomorphism

$$
\bar{\varphi}:\left(P_{\Gamma_{1}}\right)_{\bar{\eta}} \simeq\left(P_{\Gamma_{2}}\right)_{\bar{\eta}},
$$

$\bar{\varphi}$ first extends uniquely to an isomorphism

$$
\varphi: P_{\Gamma_{1}} \rightarrow P_{\Gamma_{2}}
$$

hence to an isomorphism

$$
\hat{\varphi}: \hat{P}_{\Gamma_{1}} \rightarrow P_{\Gamma_{2}}
$$

hence to a pair consisting of an isomorphism

$$
\alpha: \Gamma_{1} \rightarrow \Gamma_{2}
$$

and an α-equivariant isomorphism

$$
\hat{\varphi}: \mathscr{P}\left(\Delta_{\Gamma_{1}}\right) \rightarrow \mathscr{P}\left(\Delta_{\Gamma_{2}}\right) .
$$

Then $(\alpha, \tilde{\varphi})$ is unique up to a change $\left(\alpha^{\prime}, \tilde{\varphi}^{\prime}\right)=\left(\gamma \alpha \gamma^{-1}, \gamma \circ \tilde{\varphi}\right)\left(\gamma \in \Gamma_{2}\right)$.
The last step is to show how the function field $R\left(\boldsymbol{P}_{K}^{1}\right)$ can be identified inside the field of meromorphic functions on $\mathscr{P}\left(\Delta_{\Gamma}\right)$, so that Γ as a subgroup of $\mathrm{PGL}(2, \mathrm{~K})\left(=\operatorname{Aut}_{K} R\left(\boldsymbol{P}_{K}^{1}\right)\right)$ can be recovered from Γ as a group of automorphisms of $\mathscr{P}\left(\Delta_{\Gamma}\right)$.

Proposition (4.7): Let $\mathscr{D} \subset \mathscr{P}\left(\Delta_{\Gamma}\right)$ be a positive relative Cartier divisor such that \mathscr{D}_{0} meets only one component of the closed fibre $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$. Then $R\left(\boldsymbol{P}_{K}^{1}\right)$, as a field of meromorphic functions on $\mathscr{P}\left(\Delta_{\Gamma}\right)$ is the quotient field of the A-algebra:

$$
\bigcup_{n=1}^{\infty} \Gamma\left(\mathscr{P}\left(\Delta_{\Gamma}\right), \mathcal{O}_{\mathscr{P}\left(\Delta_{r}\right)}(n \mathscr{D})\right) .
$$

Proof. Let \mathscr{D}_{0} meet the component of $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ corresponding to the vertex $\{M\} \in \Delta_{\Gamma}^{(0)}$. Consider the projection:

$$
p: \mathscr{P}\left(\Delta_{\Gamma}\right) \rightarrow \boldsymbol{P}(M)^{\wedge}
$$

Then \mathscr{D} is the inverse image of a relative Cartier divisor in $\boldsymbol{P}(M)^{\wedge}$. By Grothendieck's existence Theorem (EGA III.5), this divisor is the formal completion of a relative Cartier divisor $D \subset \boldsymbol{P}(M)$. We have homomorphisms:
$\Gamma\left(\boldsymbol{P}(M), \mathcal{O}_{\boldsymbol{P}(M)}(n D)\right) \underset{\rightarrow}{\approx} \Gamma\left(\boldsymbol{P}(M)^{\wedge}, \mathcal{O}_{\boldsymbol{P}(M)^{\wedge}}(n \hat{D})\right) \underset{p^{*}}{\hookrightarrow} \Gamma\left(\mathscr{P}\left(\Delta_{\Gamma}\right), \mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)}(n \mathscr{D})\right)$, the first being an isomorphism by EGA III.4.1. Since $R\left(\boldsymbol{P}_{K}^{1}\right)$ is the quotient field of

$$
\bigcup_{n=1}^{\infty} \Gamma\left(\boldsymbol{P}(M), \mathcal{O}_{\boldsymbol{P}(M)}(n D)\right)
$$

the proposition will follow if we show that the second of these maps is an isomorphism too. This follows from:

Lemma (4.8). Let $\Delta_{*} \subset \Delta_{\Gamma}$ be any finite subtree. Let $p: \mathscr{P}\left(\Delta_{\Gamma}\right) \rightarrow$ $\boldsymbol{P}\left(\Delta_{*}\right)^{\wedge}$ be the projection. Then

$$
p_{*}\left(\mathcal{O}_{\mathscr{P}\left(\Lambda_{\Gamma}\right)}\right)=\mathcal{O}_{\boldsymbol{P}\left(\Delta_{*}\right)^{\wedge}} .
$$

Proof. It suffices to prove that for affine open affine $U \subset \boldsymbol{P}\left(\Delta_{*}\right)_{0}$ and every ideal $I \subset A$ of finite codimension, that

$$
\Gamma\left(U, \mathcal{O}_{\boldsymbol{P}\left(\Delta_{*}\right)} / I \cdot \mathcal{O}_{\mathbf{P}\left(\Delta_{*}\right)}\right) \rightarrow \Gamma\left(p^{-1}(U), \mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)} / I \cdot \mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)}\right)
$$

is an isomorphism. We check this by induction on $\operatorname{dim}_{k}(A / I)$. If $I=m$, note that the open subscheme $p^{-1}(U)$ of the closed fibre $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ is obtained from U by adding infinite trees of \boldsymbol{P}_{k}^{1} 's at a finite set of points of U. Since global sections of $\mathcal{O}_{\boldsymbol{P}_{k^{1}}}$ are constants in k, a section on $p^{-1}(U)$ of $\mathcal{O}_{\mathscr{P}\left(\Delta_{r}\right) \mathrm{o}}$ is just a section on U of $\mathcal{O}_{\boldsymbol{P}\left(\Delta_{*}\right) 0}$ extended as a constant to each of these trees. The result is true when $I=m$. In general, if $I_{0}=I+A \cdot \eta$, where $m \cdot \eta \subset I$, then by flatness of $\mathscr{P}\left(\Delta_{\Gamma}\right)$ and $\boldsymbol{P}(M)$ over S, we get a diagram:

$$
\begin{aligned}
& 0 \rightarrow p_{*} \mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)} / m \cdot \mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)} \xrightarrow{\eta} p_{*} \mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)} / I \cdot \mathcal{O}_{\mathscr{F}\left(\Delta_{\Gamma}\right)} \rightarrow p_{*} \mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)} / I_{0} \mathcal{O}_{\mathscr{P}\left(\Delta_{\Gamma}\right)} .
\end{aligned}
$$

Then α and γ are isomorphisms by induction, hence so is β.

Note that plenty of such \mathscr{D} 's exist: just take a closed point x of the closed fibre $\mathscr{P}\left(\Delta_{\Gamma}\right)_{0}$ where $\mathscr{P}\left(\Delta_{\Gamma}\right)$ is smooth over S : let $f \in \mathcal{O}_{x, \mathscr{P}\left(\Delta_{\Gamma}\right)}$ be an element such that

$$
m_{x, \mathscr{P}\left(\Delta_{\Gamma}\right)}=m \cdot \mathcal{O}_{x, \mathscr{P}\left(\Delta_{\Gamma}\right)}+f \cdot \mathcal{O}_{x, \mathscr{P}\left(\Delta_{\Gamma}\right)}
$$

Then $f=0$ defines such a \mathscr{D}. Therefore we have:
Corollary (4.9). In the situation of Corollary (4.6), the map induced by $\tilde{\varphi}$ on the meromorphic functions restricts to an isomorphism:

$$
\varphi^{*}: R\left(\boldsymbol{P}_{K}^{1}\right) \rightarrow R\left(\boldsymbol{P}_{K}^{1}\right)
$$

If φ^{*} is given by an element $g \in \operatorname{PGL}(2, K)$. then $\alpha: \Gamma_{1} \rightarrow \Gamma_{2}$ is given by

$$
\alpha(\gamma)=g \gamma g^{-1}
$$

Proof. The first part follows immediately from (4.8) since such \mathscr{D} 's exist and $\tilde{\varphi}$ takes such a \mathscr{D} to another such \mathscr{D}. Since $\tilde{\varphi}$ is α-equivariant, so is φ^{*}, i.e. acting on $R\left(\boldsymbol{P}_{K}^{1}\right)$, we find

$$
\varphi^{*} \circ \gamma=\alpha(\gamma) \circ \varphi^{*}, \text { all } \gamma \in \Gamma_{1}
$$

Hence if φ^{*} is given by the action of $g \in P G L(2, K)$ on $R\left(\boldsymbol{P}_{K}^{1}\right), g \gamma=\alpha(\gamma) g$, all $\gamma \in \Gamma_{1}$.
Q.E.D.

Corollary (4.10).

$$
\begin{aligned}
\operatorname{Isom}_{\bar{K}}\left(\left(P_{\Gamma}\right)_{\bar{\eta}},\left(P_{\Gamma_{2}}\right)_{\bar{\eta}}\right) & =\operatorname{Isom}_{S}\left(P_{\Gamma_{1}}, P_{\Gamma_{2}}\right) \\
& =\left\{g \in P G L(2, K) \mid g \Gamma_{1} g^{-1}=\Gamma_{2}\right\} / \text { modulo } g \sim g^{\prime}
\end{aligned}
$$

where $g \sim g^{\prime}$ if $\exists \gamma_{2} \in \Gamma_{2}$ such that $g^{\prime}=\gamma_{2} g$, or equivalently $\exists \gamma_{1} \in \Gamma_{1}$ such that $g^{\prime}=g \gamma_{1}$.

Proof. It suffices to note that everything can be reversed: given $g \in P G L(2, K)$ such that $g \Gamma_{1} g^{-1}=\Gamma_{2}$, then g defines a $\tilde{\varphi}$ and an α, hence a $\hat{\varphi}$, hence a φ.
Q.E.D.

Corollary (4.11). $\left(P_{\Gamma_{1}}\right)_{\bar{\eta}}$ is isomorphic to $\left(P_{\Gamma_{2}}\right)_{\bar{\eta}}$ if and only if Γ_{1} is conjugate to Γ_{2} in $\operatorname{PGL}(2, K)$. All isomorphisms are, moreover, rational over K.

Corollary (4.12). Aut $\left(\left(P_{\Gamma}\right)_{\bar{\eta}}\right)$ is isomorphic to $N(\Gamma) / \Gamma$, where $N(\Gamma)$ is the normalizer of Γ in $\operatorname{PGL}(2, K)$. All automorphisms are, moreover, rational K.

We turn finally to the question of the existence of these uniformizations. We wish to start only with a stable curve C / S with non-singular generic fibre and k-split degenerate closed fibre and reverse the construction step-by-step.

Step I : Let \mathscr{C} be the formal completion of C along its closed fibre. Note that C must be normal, hence so is \mathscr{C}.

Step II: Let $p_{0}: P_{0} \rightarrow C_{0}$ be the universal covering scheme of C_{0} and let Γ be the group of cover transformations. It is clear that P_{0} is an infinite union of copies of \boldsymbol{P}_{k}^{1}, each one joined to a finite number of others (at least 3 others) at k-rational double points, but the whole being connected as a tree. More precisely, if we make a graph Δ (resp. G) to illustrate P_{0} (resp. C_{0}) in the usual way (one vertex for each component, one edge for each double point), then Δ is a tree, Γ acts freely on Δ and $\Delta / \Gamma \cong G$.

Step III: Since the category of étale coverings of \mathscr{C} and of C_{0} are equivalent, there is a unique formal scheme \mathscr{P} with closed fibre P_{0}, and formal étale morphism

$$
p: \mathscr{P} \rightarrow \mathscr{C}
$$

extending p_{0}. Moreover, Γ acts on \mathscr{P} so that $\mathscr{C} \cong \mathscr{P} / \Gamma$.
Step IV: For each component M of \mathscr{P}_{0}, let $\mathscr{D} \subset \mathscr{P}$ be a positive relative Cartier divisor such that \mathscr{D}_{0} meets only the component M of \mathscr{P}_{0}. Let:

$$
\boldsymbol{P}(M)=\operatorname{Proj} \sum_{n=0}^{\infty} \Gamma\left(\mathscr{P}, \mathcal{O}_{\mathscr{P}}(n \mathscr{D})\right) .
$$

Proposition (4.13). $\boldsymbol{P}(M) \cong \boldsymbol{P}^{1} \times S$, and there is a canonical formal morphism:

$$
p_{M}: \mathscr{P} \rightarrow \boldsymbol{P}(M)^{\wedge}
$$

which on the closed fibre \mathscr{P}_{0} maps every component $M^{\prime} \neq M$ to a point and maps M isomorphically onto $\mathbf{P}(M)_{0}$.

Proof. First we need:
Lemma (4.14). $H^{1}\left(\mathscr{P}_{0}, \mathcal{O}_{\mathscr{P}_{0}}(n \mathscr{D})\right)=(0)$, all $n \geqq 0$.
Proof. Let \mathscr{P}_{0}^{\prime} be the disjoint union of the components of \mathscr{P}_{0}, and let $q: \mathscr{P}_{0}^{\prime} \rightarrow \mathscr{P}_{0}$ be the obvious morphism. We have an exact sequence:

$$
0 \rightarrow \mathcal{O}_{\mathscr{P}_{0}} \rightarrow q_{*}\left(\mathcal{O}_{\mathscr{P}^{\prime},}\right) \rightarrow \underset{\substack{\text { double } \\ \text { points } x}}{\oplus} k(x) \rightarrow 0
$$

It is obvious that

$$
H^{1}\left(q_{*}\left(\mathcal{O}_{\mathscr{P}^{\prime} 0}\right) \cong H^{1}\left(\mathcal{O}_{\mathscr{P}_{0}^{\prime}}\right) \cong \prod_{\substack{\text { components } \\ M}}\left[H^{1}\left(\mathcal{O}_{M}\right)\right]=(0),\right.
$$

and that

$$
\left(\prod_{\substack{\text { components } \\ M}}\left[H^{0}\left(\mathcal{O}_{M}\right)\right]\right)=H^{0}\left(\mathcal{O}_{\mathscr{S}_{0}^{\prime}}\right) \rightarrow \prod_{\substack{\text { double } \\ \text { points } x}} k(x)
$$

is surjective (since \mathscr{P}_{0} is connected together like a tree!). Therefore $H^{1}\left(\mathcal{O}_{\mathscr{P}_{0}}\right)=(0)$. Moreover, if $n>0$, use

$$
0 \rightarrow \mathcal{O}_{\mathscr{P}_{0}} \rightarrow \mathcal{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right) \rightarrow \mathscr{F} \rightarrow 0
$$

where $\operatorname{dim}(\operatorname{Supp} \mathscr{F})=0$. From this it follows that $H^{1}\left(\mathcal{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right)\right)=(0)$ too.

Lemma (4.15). For all $n \geqq 0, \Gamma\left(\mathscr{P}, \mathcal{O}_{\mathscr{P}}(n \mathscr{D})\right)$ is a finitely generated free A-module such that

$$
\Gamma\left(\mathscr{P}, \mathcal{O}_{\mathscr{P}}(n \mathscr{D})\right) \underset{A}{\otimes} k \cong \Gamma\left(\mathscr{P}_{0}, \mathcal{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right)\right) \cong \Gamma\left(M, \mathcal{O}_{M}\left(n \mathscr{D}_{0}\right)\right) .
$$

Proof. It suffices to prove that for all $I \subset A$ of finite codimension, $\Gamma\left(\mathscr{P}, \mathcal{O}_{\mathscr{P}}(n) / I \cdot \mathcal{O}_{\mathscr{P}}(n \mathscr{D})\right)$ is a finitely generated free A / I-module such that

If $I=m$, note that every section of $\mathcal{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right)$ is just a section of $\mathcal{O}_{M}\left(n \mathscr{D}_{0}\right)$ extended as a constant to all other components of \mathscr{P}_{0}, hence

$$
\text { res: } \Gamma\left(\mathscr{P}_{0}, \mathcal{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right)\right) \approx \Gamma\left(M, \mathscr{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right)\right)
$$

is an isomorphism. In general, use induction of $\operatorname{dim} A / I$. If $I_{0}=I+A \cdot \eta$, where $m \cdot r_{1} \subset I$, we get a diagram (because of flatness of \mathscr{P} over S):

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(\mathcal{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right)\right) \xrightarrow{\eta} H^{0}\left(\mathcal{O}_{\mathscr{P}}(n \mathscr{D}) / I \cdot \mathcal{O}_{\mathscr{P}}(n \mathscr{D})\right) \\
& \rightarrow H^{0}\left(\mathcal{O}_{\mathscr{P}}(n \mathscr{D}) / I_{0} \cdot \mathcal{O}_{\mathscr{P}}(n \mathscr{D})\right) \rightarrow H^{1}\left(\mathcal{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right)\right)=(0) .
\end{aligned}
$$

Using this, the assertion for I_{0} implies immediately the assertion for I. Q.E.D.

It follows from (4.15) that $\sum_{n=0}^{\infty} \Gamma\left(\mathscr{P}, \mathcal{O}_{\mathscr{P}}(n \mathscr{D})\right)$ is a free finitely generated graded A-algebra, hence its Proj is a flat and proper scheme over S; moreover, its closed fibre is just

$$
\operatorname{Proj}\left\{\sum_{n=0}^{\infty} \Gamma\left(M, \mathcal{O}_{M}\left(n \mathscr{D}_{0}\right)\right)\right\}
$$

which is M itself. Since $M \cong \boldsymbol{P}_{k}^{1}$ and all deformations of \boldsymbol{P}^{1} are trivial, this proves that $\boldsymbol{P}(M) \cong \boldsymbol{P}^{1} \times S$. Finally, $\mathcal{O}_{\mathscr{P}_{0}}\left(\mathscr{D}_{0}\right)$ is generated by its global sections, hence by (4.15), $\mathcal{O}_{\mathscr{P}}(\mathscr{D})$ is generated by its sections. Therefore there is a formal morphism from \mathscr{P} to $\boldsymbol{P}(M)^{\wedge}$. Since \mathscr{D}_{0} is very ample on M and since all sections of $\mathcal{O}_{\mathscr{P}_{0}}\left(n \mathscr{D}_{0}\right)$ (any $n \geqq 0$) are constant on all other components of \mathscr{P}_{0}, the last assertions of the Proposition are obvious.
Q.E.D.

Proposition (4.16). For any 2 components M_{1}, M_{2} of \mathscr{P}_{0}, consider the morphism $p_{M_{1}, M_{2}}: \mathscr{P} \rightarrow\left(\boldsymbol{P}\left(M_{1}\right) \times_{s} \boldsymbol{P}\left(M_{2}\right)\right)^{\wedge}$. There is a unique
relative Carter divisor $Z \subset \boldsymbol{P}\left(M_{1}\right) \times{ }_{S} \boldsymbol{P}\left(M_{2}\right)$ defined by an equation:

$$
a x_{1} x_{2}+b x_{1} y_{2}+c y_{1} x_{2}+d y_{1} y_{2}=0, a, b, c, d \in A
$$

(where x_{i}, y_{i} are homogeneous coordinates on $\boldsymbol{P}\left(M_{i}\right)$) such that $p_{M_{1}, M_{2}}$ factors through Z. Moreover $a d-b c \neq 0$ but $a d-b c \in m$.

Proof. Via the isomorphism $\boldsymbol{P}\left(M_{i}\right) \cong \boldsymbol{P}^{1} \times S$, let the sheaf $\mathcal{O}(1) \otimes \mathcal{O}_{S}$ go over to the sheaf L_{i} on $\boldsymbol{P}\left(M_{i}\right)$. Then $\Gamma\left(\boldsymbol{P}\left(M_{i}\right), L_{i}\right) \cong A \cdot x_{i} \oplus A \cdot y_{i}$. Let $K=p_{1}^{*} L_{1} \otimes p_{2}^{*} L_{2}$ on $\boldsymbol{P}\left(M_{1}\right) \times_{s} \boldsymbol{P}\left(M_{2}\right)$. Then:

$$
\Gamma\left(\boldsymbol{P}\left(M_{1}\right) \times{ }_{s} \boldsymbol{P}\left(M_{2}\right), K\right) \cong A x_{1} x_{2} \oplus A y_{1} x_{2} \oplus A x_{1} y_{2} \oplus A y_{1} y_{2}
$$

Let $\hat{L}_{i}=p_{M_{i}}^{*}\left(L_{i}\right), \hat{K}=p_{M_{1}, M_{2}}^{*}(K)$ be the induced sheaves on \mathscr{P}, and let $L_{i, 0}, K_{0}$ be the induced sheaves on \mathscr{P}_{0}. The first step is to check that:
a) $H^{0}\left(\mathscr{P}_{0}, K_{0}\right) \cong H^{0}\left(\boldsymbol{P}\left(M_{1}\right)_{0} \times \boldsymbol{P}\left(M_{2}\right)_{0}, K_{0}\right) /$ modulo 1 -dimensional subspace of form $\lambda\left(\alpha x_{1}+\beta y_{1}\right) \cdot\left(\gamma x_{2}+\delta y_{2}\right)$,
b) $H^{1}\left(\mathscr{P}_{0}, K_{0}\right)=(0)$.

In fact, $L_{i, 0}$ is a trivial invertible sheaf on all components of \mathscr{P}_{0} except M_{i}; it follows easily that if we pick arbitrary sections in the 2-dimensional spaces:

$$
H^{0}\left(M_{1}, K_{0} \otimes \mathcal{O}_{M_{1}}\right), \quad H^{0}\left(M_{2}, K \otimes \mathcal{O}_{M_{2}}\right)
$$

they extend to at most one section of \mathscr{P}_{0}, and that there is one condition for them to do so, namely that they induce the same constant section in the link between M_{1} and M_{2} :

Thus $\operatorname{dim} H^{0}\left(\mathscr{P}_{0}, K_{0}\right)=3$. Now $H^{1}\left(\mathscr{P}_{0}, K_{0}\right)=(0)$ follows as in lemma (4.14). Finally, from what we know about the images $p_{M_{1}}\left(\mathscr{P}_{0}\right)$, it follows that $p_{M_{1}, M_{2}}\left(\mathscr{P}_{0}\right)$ must be a union $\boldsymbol{P}\left(M_{1}\right)_{0} \times(a) \cup(b) \times \boldsymbol{P}\left(M_{2}\right)_{0}$, hence the kernel of

$$
H^{0}\left(\boldsymbol{P}\left(M_{1}\right)_{0} \times \boldsymbol{P}\left(M_{2}\right)_{0}, K_{0}\right) \xrightarrow{p_{M_{1}, M_{2}}} H^{0}\left(\mathscr{P}_{0}, K_{0}\right)
$$

is 1 -dimensional and generated by an element $\left(\alpha x_{1}+\beta y_{1}\right)\left(\gamma x_{2}+\delta y_{2}\right)$.
The second step is that $H^{0}(\mathscr{P}, K)$ is a free A-module of rank 3 such that

$$
H^{0}(\mathscr{P}, \widehat{K}) \underset{A}{\otimes} k \cong H^{0}\left(\mathscr{P}_{0}, K_{0}\right)
$$

This follows from (a) and (b) just as in lemma (4.15). Therefore

$$
H^{0}\left(\boldsymbol{P}\left(M_{1}\right) \times{ }_{S} \boldsymbol{P}\left(M_{2}\right), K\right) \rightarrow H^{0}(\mathscr{P}, \hat{K})
$$

is a homomorphism of a free rank 4 module to a free rank 3 module; after $\otimes_{A} k$, it becomes surjective, so it is already surjective. Therefore $H^{0}\left(\boldsymbol{P}\left(M_{1}\right) \times_{s} \boldsymbol{P}\left(M_{2}\right), K\right) \cong H^{0}(\mathscr{P}, \hat{K}) \oplus A \cdot f$, where $f=a x_{1} x_{2}+\cdots$ $+d y_{1} y_{2}$ and $f \equiv\left(\alpha x_{1}+\beta y_{1}\right)\left(\gamma x_{2}+\delta y_{2}\right) \bmod m$. Thus $f=0$ defines a relative Cartier divisor Z through which $p_{M_{1}, M_{2}}$ factors. Finally, if $a d-b c=0$, then f splits into a product over A as well as over k; then Z is reducible: say $Z=Z_{1} \cup Z_{2}$. If $\mathscr{P}_{i}=p_{M_{1}, M_{2}}^{-1}\left(Z_{i}\right)$, then $\mathscr{P}=\mathscr{P}_{1} \cup \mathscr{P}_{2}$. But \mathscr{P} is normal and connected so this is absurd. Q.E.D.

Corollary (4.17). Let $R(\boldsymbol{P}(M))$ be the field of rational functions oin $\boldsymbol{P}(M)$ and let $p_{M}^{*} R(\boldsymbol{P}(M))$ be the induced field of meromorphic functions on \mathscr{P}. Then

$$
p_{M_{1}}^{*} R\left(\boldsymbol{P}\left(M_{1}\right)\right)=p_{M_{2}}^{*} R\left(\boldsymbol{P}\left(M_{2}\right)\right)
$$

for any 2 components M_{1}, M_{2} of \mathscr{P}_{0}.
Proof. In fact, $p_{M_{i}}$ factors:

$$
\mathscr{P} \xrightarrow{p_{M_{1}, M_{2}}} Z \xrightarrow{q_{i}} \boldsymbol{P}\left(M_{i}\right)
$$

and since ad $-\mathrm{bc} \neq 0, Z$ is irreducible and $q_{i}^{*} R\left(P\left(M_{i}\right)\right)=R(Z)$. Thus $p_{M_{1}}^{*} R\left(\boldsymbol{P}\left(M_{1}\right)\right)=p_{M_{1}, M_{2}}^{*} R(Z)=p_{M_{2}}^{*} R\left(\boldsymbol{P}\left(M_{2}\right)\right)$.
Q.E.D.

Step V. Choose once and for all an isomorphism:
(*) $\quad p_{M}^{*} R(\boldsymbol{P}(M)) \cong R\left(\boldsymbol{P}_{K}^{1}\right)$, the field of rational functions on \boldsymbol{P}_{K}^{1}.
The isomorphism of $p_{M}^{*} R(\boldsymbol{P}(M))$ with $R\left(\boldsymbol{P}_{K}^{1}\right)$ induces an isomorphism of the generic fibre $\boldsymbol{P}(M)_{\eta}$ with \boldsymbol{P}_{K}^{1}. Thus $\boldsymbol{P}(M)$ becomes a \boldsymbol{P}^{1}-bundle over S with generic fibre \boldsymbol{P}_{K}^{1}, i.e. $\boldsymbol{P}(M)$ define an element $\{M\} \in \Delta^{(0)}$. Thus we have associated an element of $\Delta^{(0)}$ to each component of \mathscr{P}_{0}. Let $\Delta_{*}^{(0)}$ be the set of elements of $\Delta^{(0)}$ that we get. By Prop. (4.16), the join Z of $2 \boldsymbol{P}(M)$'s is flat over S with reducible closed fibre: therefore if $M_{1} \neq M_{2}$ are 2 components of \mathscr{P}_{0}, the corresponding elements of $\Delta^{(0)}$ are distinct and compatible by (2.1). Since \mathscr{P}_{0} has only double points, it follows from (2.3) that $\Delta_{*}^{(0)}$ is a linked subset. I claim that

$$
\mathscr{P} \cong \mathscr{P}\left(\Delta_{*}\right) .
$$

In fact, it is easy to see that there is a formal morphism $\pi: \mathscr{P} \rightarrow \mathscr{P}\left(\Delta_{*}\right)$ which is an isomorphism on the closed fibre. Then apply the easy:

Lemma (4.18). Let $f: \mathscr{X} \rightarrow \mathscr{Y}$ be a formal morphism of formal schemes over S, whose topologies are defined by the ideals $m \cdot \mathcal{O}_{\mathscr{X}}, m \cdot \mathcal{O}_{\mathscr{Y}}$ respectively. If $f_{0}: \mathscr{X}_{0} \rightarrow \mathscr{Y}_{0}$ is an isomorphism and \mathscr{X} is flat over S, then f is an isomorphism.

Step VI. By Cor. (4.17), Γ leaves invariant the field of meromorphic functions $p_{M}^{*} R(\boldsymbol{P}(M))$ on \mathscr{P}, hence by our basic identification of this field with $R(\boldsymbol{P})_{K}^{1}, \Gamma$ acts faithfully on $R\left(\boldsymbol{P}_{K}^{1}\right)$. This induces an embedding

$$
\Gamma \hookrightarrow P G L(2, K) .
$$

Identifying Γ with its image here, then Γ maps $\Delta_{*}^{(0)}$ into itself and this induces an action of Γ on $\mathscr{P}\left(\Delta_{*}\right)$, and hence induces an action of Γ on \mathscr{P} equal to the one we started with. It remains only to prove:

Proposition (4.19). Γ is a flat Schottky group and $\Delta_{*}=\Delta_{\Gamma}$.
Proof. Let $\gamma \in \Gamma, \gamma \neq e$. Since γ acts freely on the tree Δ_{*}, it leaves fixed 2 ends $x, y \in \partial \Delta_{*}$. Therefore γ leaves fixed $i x, i y \in K \boldsymbol{P}^{1}$. Let $\{M\}$ be a vertex on the line in Δ_{*} joining the end x to the end y. Then $i x$ and $i y$ are represented by homogeneous coordinates $u, v \in K+K$ such that $M=A \cdot u+A \cdot v$. Reordering x and y if necessary, we can assume that $\gamma\{M\}$ separates $\{M\}$ from x. Then $\gamma\{M\}$ is represented by a module N such that

$$
\begin{gathered}
M \notin N \ni u, \\
u \notin m M .
\end{gathered}
$$

But if we lift γ to an element $\tilde{\gamma} \in G L(2, K)$, then

$$
\begin{aligned}
\tilde{\gamma}(M) & =\lambda \cdot N, \text { some } \lambda \in K^{*} \\
\tilde{\gamma}(u) & =\sigma \cdot u \\
\tilde{\gamma}(v) & =\tau \cdot v .
\end{aligned}
$$

Then $N=\langle\sigma / \lambda u, \tau / \lambda v\rangle$, so $\sigma / \lambda \in A^{*}, \tau / \lambda \in m$. Then

$$
t^{-1}(\gamma)=\frac{\sigma \tau}{(\sigma+\tau)^{2}}=\frac{\sigma / \lambda \cdot \tau / \lambda}{(\sigma / \lambda+\tau / \lambda)^{2}}=\text { unit } \cdot \frac{\tau}{\lambda} \in m
$$

Therefore γ is hyperbolic.
Next, the fixed points of the elements of Γ are contained in the set $i\left(\partial \Delta_{*}\right)$, hence by Prop. (1.22), any 4 of them have a cross-ratio in A or A^{-1}. Thus Γ is a flat Schottky group. Moreover, $\Delta_{\Gamma}^{(0)} \subset \Delta_{*}^{(0)}$ since by Prop. (1.20) $\{M(x, y, z)\} \in \Delta_{*}^{(0)}$ for any 3 fixed points x, y, z of Γ. Conversely, say v is a vertex of Δ_{*}. Since C_{0} was a stable curve, \mathscr{P}_{0} has the property that every component has at least 3 double points on it. Therefore every vertex of Δ_{*} is an endpoint of at least 3 edges. Take 3 edges
meeting v. In Δ_{*} / Γ, choose 3 loops starting and ending at the image of v that start off on these edges. Let these loops define $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \Gamma \cong$ $\pi_{1}\left(\Delta_{*} / \Gamma\right)$. Then the paths from v to $\gamma_{i} v$ start on these 3 edges. Let $\gamma_{i}^{n} v$ tend to an end $x_{i} \in \partial \Delta_{*}$. Then $i\left(x_{i}\right)$ is a fixed point of γ_{i}, hence

$$
v=\left\{M\left(i x_{1}, i x_{2}, i x_{3}\right)\right\} \in \Delta_{\Gamma}^{(0)} . \quad \text { Q.E.D. }
$$

This completes the proof of:
Theorem (4.20): Every stable curve over S with non-singular generic fibre and k-split degenerate closed fibre is isomorphic to P_{Γ} for a unique flat Schottky group $\Gamma \subset \operatorname{PGL}(2, K)$.

BIBLIOGRAPHY

F. Bruhat and J. Tits

[B-T] Groupes algébriques semi-simple sur un corps local, To appear in Publ. I.H.E.S.
P. Deligne and D. Mumford
[D-M] The irreducibility of the space of curves of given genus. Publ. I.H.E.S. 36 (1969) 75-109.
A. Grothendieck and J. Dieudonné
[EGA] Eléments de la geométrie algébrique, Publ. I.H.E.S., 4, 8, 11, etc.
H. Grauert and R. Remmert
[G-R] Forthcoming book on the foundations of global p-adic function theory.
Y. Ihara
[I] On discrete subgroups of the 2×2 projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966) 219-235.

S. Lichtenbaum

[L] Curves over discrete valuation rings, Amer. J. Math. 90 (1968) 380-000.
D. Mumford
[M1] Abelian varieties, Oxford Univ. Press, 1970.
B. Maskit
[Ma] A characterization of Schottky groups, J. d'Analyse 19 (1967) 227-230.
J. McCabe
[Mc] Harvard Univ. thesis on P-adic theta functions, (1968) unpublished.
H. Morikawa
[Mo] Theta functions and abelian varieties over valuation rings, Nagoya Math. J. 20 (1962).
M. Raynaud
[R] Modèles de Néron, C.R. Acad. Sci., Paris 262 (1966) 413-414.
J.-P. Serre
[S] Groupes Discrets, Mimeo. notes from course at College de France, 1968-69. I. Šafarevitch
[Š] Lectures on minimal models, Tata Institute Lecture Notes, Bombay, 1966.

[^0]: ${ }^{2}$ If K is locally compact, this is equivalent to asking simply that Γ has no elements of finite order, since suitable powers of a non-hyperbolic element not of finite order must converge to the identity.

[^1]: ${ }^{3}$ It is interesting that the trees which Bruhat and Tits associated to $\operatorname{PGL}(2, K)$ are, in fact, a highly developed special case of the graphs that have been used for a long time in the theory of algebraic surfaces to plot the configurations of intersecting curves. To be precise, if $\operatorname{dim} A=1$, we consider the inverse system of surfaces obtained by blowing up closed points on the 2-dimensional scheme $P^{1} \times S$. The graph which plots the components of their closed fibres over S and their intersection relations is canonically isomorphic to Δ.

