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This is the first half of a 2 part paper, the first of which deals with the
construction of curves and the second with abelian varieties. The idea

of investigating the p-adic analogs of classical uniformizations of curves
and abelian varieties is due to John Tate. In a very beautiful and influ-

ential piece of unpublished work, he showed that if K is a complete non-
Archimedean valued field, and E is an elliptic curve over whose
j-invariant is not an integer, then E can be analytically uniformized. This
uniformization is not a holomorphic map:

generalizing the universal covering space
n : C ~ E ( = closed points of an elliptic curve over C),

but instead is a holomorphic map:

generalizing an infinite cyclic covering 03C02 over C:

cvl one of the 2 periods of E. Here you can take holomorphic map to mean
holomorphic in the sense of the non-Archimedean function theory of
Grauert and Remmert [G-R]. But the uniformization 03C02 is more simply
expressed by embedding E in p2 and defining the three homogeneous
coordinates of n(z) by three everywhere convergent Laurent series.
The purpose of my work is 2-fold: The first is to generalize Tate’s

results both to curves of higher genus and to abelian varieties. This gives
a very useful tool for investigating the structures at infinity of the moduli
spaces. It gives for instance an abstract analog of the Fourier series
development of modular forms. Our work here overlaps to some extent
with the work of Morikawa [Mo] and McCabe [Mc] generalizing Tate’s
uniformization to higher-dimensional abelian varieties. The second pur-
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pose is to understand the algebraic meaning of these uniformizations.
For instance, in Tate’s example, 03C0 defines not only a holomorphic map
but also a formal morphism from the Néron model of G. to the Néron
model of E over the ring of integers A c K. And from an algebraic point
of view, it is very unnatural to uniformize only curves over the quotient
fields K of complete one-dimensional rings A : one wants to allow A to
be a higher-dimensional local ring as well, (this is essential in the applica-
tions to moduli for instance). But when dim A &#x3E; 1, there is no longer
any satisfactory theory of holomorphic functions and spaces over K.

In this introduction, 1 would first like to explain (in the case K is a
discretely-valued complete local field) what to expect for curves of higher
genus. We can do this by carrying a bit further the interesting analogies
between the real, complex and p-adic structures of PGL(2) as developed
recently by Bruhat, Tits and Serre:

(A) real case: PSL(2, R) acts isometrically and transitively on the upper
f plane and the boundary can be identified with RP’ (the real line,
plus ~):

(B) complex case: PGL(2, C) acts isometrically and transitively on the
upper 2-space 1 H’ and the boundary can be identified with CP1:

1 The action of SL(2, C) on H’ is given by:
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(C) p-adic case: PGL(2, K) acts isometrically and transitively on the
tree 0394 of Bruhat-Tits, (whose vertices correspond to the subgroups
gPGL(2, A)g-1, and whose edges have length 1 and correspond to the

subgroups gBg-1, B = 1 (a bd)|a,b,c,d~A,c~m, ad~m} modulo A*)
and the set of whose ends can be identified with Kpl (for details, cf. § 1,
below and Serre [S ]) :

In A, for any vertex v the set of edges meeting v is naturally isomorphic
to kPl, the isomorphism being canonical up to an element of PGL(2, k)
(where k = A/m).

In the first case, if r c PSL(2, R) is a discrete subgroup with no
elements of finite order such that PSL(2, R) jh is compact, we obtain
Koebe’s uniformization

of an arbitrary compact Riemann surface X of genus 2.
In the second, if r c PGL(2, C) is a discrete subgroup which acts

discontinuously at at least one point of CP’ (a Kleinian group) and
which moreover is free with n generators and has no unipotent elements
in it, then according to a Theorem of Maskit [Ma], r is a so-called
Schottky group, i.e. if 0 = set of points of CP1 where r acts discontinu-
ously, then Q is connected and up to homeomorphism we get a

uniformization:

In particular 03A9/0393 is a compact Riemann surface of genus n and for a
suitable standard basis al’ ..., an, b1, ..., bn of 03C01(03A9/0393), 03C0 is the partial
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covering corresponding to the subgroup

N = least normal subgroup containing a1, ···, an .

The uniformization n is what is called in the classical literature the

Schottky uniformization. It is the one which has a p-adic analog.
In the third case, let r c PGL(2, K) be any discrete subgroup consist-

ing entirely of hyperbolic elements 2. Then Ihara [I] proved that r is
free: let r have n generators. Again, let 03A9 = set of closed points of PK
where r acts discontinuously (equivalently, Q is the set of points which
are not limits of fixed points of elements of F).
Then 1 claim that there is a curve C of genus n and a holomorphic

isomorphism:

Moreover 0394/0393 has a very nice interpretation as a graph of the specializa-
tion of C over the ring A. In fact

a) there will be a smallest subgraph (0394/0393)0 c 4 /r such that

will be finite:

b) C will have a canonical specialization C over A, where C is a singular
curve of arithmetic genus n made up from copies of pi with a finite
number of distinct pairs of k-rational points identified to form ordinary
double points. Such a curve C will be called a k-split degenerate curve of
genus n.

c) C(K), the set of K-rational points of C, will be naturally isomorphic
to the set of ends of 4 /r; C(k), the set of k-rational points of C, will be
naturally isomorphic to the set of edges of 4 /r that meet vertices of

2 If K is locally compact, this is equivalent to asking simply that .h has no elements
of finite order, since suitable powers of a non-hyperbolic element not of finite order
must converge to the identity.
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(0394/0393)0 (so that the components of C correspond to the edges of 0394/0393
meeting a fixed vertex of (4 /r)o and the double points of C correspond
to the edges of (4 /r)o ) ; and finally the specialization map

is equal, under the above identifications, to the map:

which takes an end to the last edge in the shortest path from that end
to (0394/0393)0.

EXAMPLES. We have illustrated a case where the genus is 2, C has 2

components, each with one double point and meeting each other once:

Because all the curves C which we construct have property (b), we refer
to them as degenerating curves. Our main theorem implies that every such
degenerating curve C has a unique analytic uniformization n : 03A9/0393  C.
Next 1 would like to give an idea of how I intend to construct algebraic

objects which imply the existence of the analytic uniformization n, which
express the way the analytic map specializes over A, and which will
generalize to the case dim A &#x3E; 1. Given a discretely-valued complete
local field K, one has:

a) the category of holomorphic spaces X over K, in the sense e.g. of
Grauert and Remmert [G-R],

b) the category of formal schemes X over A, locally of topological
finite type over A, with m(!) fI’ as a defining sheaf of ideals.

There is a functor:

from the category of formal schemes to the category of holomorphic
spaces given as follows:
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i) as a point set xan ~ set of reduced irreducible formal subschemes
Z c !!l’ such that Z is finite over A, but Z 4= the closed fibre !!l’ 0;

ii) if 0 : xan ~ Max ( ) = (closed points of x) is the specialization
map Z H Z n 0, then for all U c X affine open, Ø-1(Max U) = V
is an affinoid subdomain of !!l’an with affinoid ring 0393(U, (9x).

According to results of Raynaud, the category of holomorphic spaces
looks like a kind of localization of the category of formal schemes with

respect to blowings-up of subschemes concentrated in the closed fibre.
In fact, he has proven that the category of holomorphic spaces admitting
a finite covering by afhnoids is equivalent to this localization of the catego-
ry of formal schemes of finite type. What happens in our concrete situation
is that the holomorphic spaces Q and C both have canonical liftings into
the category of formal schemes and the analytic map n : Q - C is induced
by a formal morphism. For the uniformization of abelian varieties, dis-
cussed in the 2nd paper of this series, the lifting turns out not to be canoni-
cal ; however, a whole class of such liftings can be singled out, which is

non-empty and for which n lifts too. Thus the whole situation is lifted
into the category of formal schemes where it can be generalized to
higher-dimensional base rings A. Let me illustrate this lifting in Tate’s
original case of an elliptic curve. First of all, what formal scheme over
A gives rise to the holomorphic space A£ - (0) = Gm, K? If we take the
formal completion of the algebraic group G. over Spec (A), the holo-
morphic space that we get is only the unit circle:

If we take formal completion of Raynaud’s ’Néron model’ of Gm over
Spec (A) (cf. [R]), we get the subgroup:

To get the full Gm, K start with Pl x Spec (A). Blow up (0), (~) in the
closed fibre Pl; then blow up again the points where the 0-section and
oo-section meet the closed fibre; repeat infinitely often. (See figure on
next page.)
The result is a scheme P~, only locally of finite type over Spec (A).

If we omit the double points of the closed fibre, we get Raynaud’s
’Néron model’. However, if we take the whole affair, the holomorphic
space associated to its formal completion is Gm, K . On the other hand,
the Néron model of E over Spec (A) will have a canonical ’compactifica-
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tion’ : it can be embedded in a unique normal scheme é proper over
Spec (A) by adding a finite set of points. It will look like this (possibly,
after replacing K by a suitable quadratic extension):

tf will in fact be regular. Finally, the analytic uniformization which we
denoted n2 will come from a formal étale morphism from P~ to e
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which simply wraps the infinite chain in the closed fibre of P 00 around
and around the polygon which is the closed fibre of .
We can now state fully our main result:
For every Schottky group r c PGL(2, K), there is a canonical formal

scheme 9 over A on which r acts freely and whose associated holo-
morphic space is the open set 03A9 c pi. There is a one-one correspondence
between a) conjugacy classes of Schottky groups r, and b) isomorphism
classes of curves C over K which are the generic fibres of normal schemes
W over A whose closed fibre C is a k-split degenerate curve, set up by
requiring that YIF is formally isomorphic to W.

Some notation

Pl = projective line over K
KP1 = K-rational points of PK’ = K+ K- (0, 0)/K*

u, v&#x3E; = module generated by u, v
R(X) = field of rational functions on an integral scheme X.
 = formal completion of a scheme X over a complete local ring

A, along its closed fibre.

1. Trees

Let A be a complete integrally closed noetherian local ring, with
quotient field K, maximal ideal m and residue field k = Alm. Let

S’ = Spec (A), 9,1 = Spec (K) and So = Spec (k):

We are interested in certain finitely generated subgroups of PGL(2, K)
that we will call Schottky groups. First of all define a morphism:

by

Here and below we will describe elements of PGL(2) by 2 x 2 matrices,
considered modulo multiplication by a scalar, without further comment.

be represented:

PROOF. On the one hand:
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Conversely, suppose t-1(03B3) = v E m, and let the matrix C represent y.

Then det C = v - (Tr C)2 and the characteristic polynomial of C is

By Hensel’s lemma, this has 2 distinct roots in K of the form

Then y is also represented by the matrix C’ - Clu - Tr C with eigenvalues
1 and vlu’ E m. Therefore C’ has the required form.

DEFINITION (1.2). The elements y E PGL(2, K) such that t-1(03B3)~m
will be called hyperbolic.
From the lemma it follows immediately that if y is hyperbolic, then y

as an automorphism of P, has 2 distinct fixed points P and Q, both
rational over K, and such that the differential dylp = mult. by p in Tp
(the tangent space to Pl at P), ,u E m, while d03B3|Q = mult. by ju-’; P is
called the attractive fixed point of y and Q the repulsive fzxed point.

DEFINITION (1.3). A Schottky group r c PGL(2, K) is a finitely
generated subgroup such that every y E r, 03B3 ~ e, is hyperbolic.

These are probably the most natural class of groups to look at.

However, there is a particular type which is easier to prove theorems
about and which include all Schottky groups in the case dim A = 1:

DEFINITION (1.4). A flat Schottky group r c PGL(2, K) has the extra
property that if 1 c KP’ is the set of fixed points of the elements y E r,
then for any P1, P2, P3, P4 E E, R(Pl , P2 ; P3 , P4) or its inverse is in A,
i.e. the cross-ratio R defines a morphism from to P1.
The construction of flat Schottky groups is not so easy and we postpone

this until § 4. For the time being, we simply assume that one is given.
The structure of PGL(2, K) and of r is best displayed, following the

method of Bruhat and Tits [B-T] by introducing:

0394(0) ~ {set of sub A-modules M c K+ K, M free of rank 2, modulo the
identification M - À . M, 03BB E K*, (the image {M} in 0394(0) of a
module M will be called the class of M)}

~ {set of schemes P/,S with generic fibre pi, such that P éé P1S,
modulo isomorphisml.
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These sets will be identified by the map

This is easily seen to be a bijection under which the set of A-valued points
of P equals the set of elements x ~ M-mM, modulo A*. Intuitively, P is
the scheme of one-dimensional subspaces of the rank 2 vector bundle M.

DEFINITION (1.5). If {M} e 0394(0), we denote the corresponding scheme
PIS by P(M).
Note that PGL(2, K) acts on 0394(0):

Then the class {X(M)} depends only on the image {X} of X in
PGL(2, K) and on the class {M}.

The stabilizer of the module A+A is:

PGL(2, A) = elements of PGL(2, K) represented by matrices

and the stabilizers of the other modules M are conjugates of

x . PGL(2, A) · x-l in PGL(2, K).
Moreover PGL(2, K) acts transitively on 0394(0), so 0394(0) can be naturally

identified with the coset space PGL(2, K)/PGL(2, A).
Less obvious is the fact that any 3 distinct points xi , x2 , X3 E KP’

determined canonically an element of 0394(0): let w1, w2, w3 ~K+K be
homogeneous coordinates for xi , x2 , X3. Then there is a linear equation:
a1w1+ a2w2+a3w3 = 0, unique up to scalar. Let M = 03A33i=1 A · aiwi.
The class of multiples {M} of M is determined by the xi alone. We will
write this class as {M(x1, x2 , x3)}.

Unlike the case where dim A = 1, the full set 0394(0) is rather unmanage-
able. We need to introduce the concept:

DEFINITION (1.6). {M1},{M2} ~ 0394(0) are compatible if there exists a
basis u, v of Ml, and elements 03BB E K*, oc E A such that 03BBu, 03BB03B1v is a basis

of M2, (Mi representatives of {Mi}).
It is easy to check that this definition is symmetric and that the principal

ideal (oc) is uniquely determined by (Mi ) and {M2}. Since (03B1) measures
the ’distance’ of {M1} from {M2}, we write:

Moreover, when dim A = 1, every pair {Ml}, {M2} is compatible. If
Mi’ are representatives of the classes {Mi} such that
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we call Mi , M2’ representatives in standard position.
Now then, let

0394(0)0393 = set of classes {M(x1, X2, x3)}, where Xl, X2, X3 E Il
1 = set of fixed points of elements of r.

The flatness of the Schottky group r is obviously equivalent to th(

property:

This now gives us :

PROPOSITION (1.7). Any 2 classes {M1}, {M2} ~ 0394(0)0393 are compatible.

PROOF. First note the

LEMMA (1.8). If Xl’ x2 , X3, X4 E pi have property (*), then for some
i, j ~ {1, 2, 3}, with i i= j, {M(x1, X2, X3)1 = {M(xi, Xi, x4)}.

PROOF. Let Wi be coordinates for xi as in (*). Then if al and a2 ft m,
one checks that M(x1, x2 , X3) = M(Xl’ x2 , X4); if al ft m, a2 E m, then
M(x1, x2 , x3) = M(x2, x3, X4); and if al E m, a2 ft m, then

Now let {M1} = M(Xl,X2,X3)’ {M2} = M(Yl, Y2, Y3). Choose

coordinates wi for xi and ui for yi such that

Next, if the ratios ai : bi mod m in kP’ are all distinct, one checks

immediately that the u ; are related by 03BB1u1 + 03BB2u2 + 03BB3u3 = 0 where
Ài E A, 03BBi ~ m. This implies that

M2 = (module generated by the ui) = Ml ,
hence Ml and M2 are obviously compatible. New if the ratios ai : hi
mod m are not all distinct, then at least one of the triples (0 : 1), (1 : 0),
(1 : 1) is different from all three ratios ai : bi mod m. Permuting the three
wi’s, we may as well assume that (1 : 0) does not cocur, i.e. bi 0 m for
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all i. Multiplying ui by a unit, we can normalize it so that now:

Now by the lemma, {M2} = {M(yi, yj, x1)} for some i and j. The linear
equation relating ui, uj and w, is:

Therefore M( yi, yj, xl ) is the module generated by ui , uj and (ai - aj)w1.
Thus ui and wi are a basis of Ml and ui and (ai - aj)w1 are a basis of M2 .
Hence {M1} and {M2} are compatible.

Q.E.D.

1 claim that for any 3 compatible classes of modules, there is a multi-

plicative triangle ’inequality’ relating their ’distances’ from each other:

PROPOSITION (1.9). Let {M1}, {M2}, {M3} E J(O) be distinct but compat-
ible. Let (ocij) = 03C1({Mi}, {Mj}) and let

be representatives in standard position. Then if N = M2 + M3, there exist
u,vEMl and îl, À2, À3 c- A such that:

In particular, for all permutations i, j, k of 1, 2, 3, 03B1ij|03B1ik03B1jk.

CLUMSY PROOF. First choose u E M2 such that u 1= m . Ml . Secondly
choose i3 E M11mMl such that i3 is not in either of the 1-dimensional

subspaces M2/M2 n mM, or M3/M3 n mM1 of M1/mMl. Lift i3 to
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v E Ml. Then first of all il and v generate MllmMl, hence u and v
generate Ml. Secondly u and 03B112v lie in M2 and since Ml and M2 are
in standard pcsition, it is easy to see that they must generate M2. Thirdly,
for some À1 E A, u + 03BB1v E M3. Then since Ml and M3 are in standard

position, u+03BB1v and al 3 v must generate M3. Now use the fact that
lVl2 and M3 are compatible: for some 03BE E K*, M2 ~ 03BE· M3 and this pair
is in standard position. Then

and one of thèse is not in m . M2. This implies that 03BE e A, 03BE03BB1 = 03B6 · 03B112,

03BE03B113 = ~ · 03B112, (where 03B6 and ~ e A), and furthermore that either 03BE, 03B6 or
~ is a unit. Firstly, suppose 03BE is a unit but 03B6 is not. Note that we may
replace u by u’ = u + 03B112v then u’ and 03B112v still generate M2 and u’ + 03BB’1v
and 03B113v generate M3 where 03BB’1 = 03BB1-03B112. But then 03BE03BB’1 - (’Ct12’ where
03B6’ = 03B6 - 1 is a unit. Therefore by suitable choice of u, we can assume that
03B6 is a unit. Secondly, suppose ~ is a unit but 03B6 is not. In this case, note
that u + 03BB’1v and 03B113v still generate M3 where 03BB’1 = 03BB1 + 03B113. And then
03BE03BB’1 = 03BE03BB1 + 03BE03B113 = (03B6 + ~)03B112 = (’Ct12 where 03B6’ is a unit. Thus we can

always assume that 03B6 is a unit. Then if À2 = Ç . (-1 and À3 = ~ · 03B6-1 it
follows that Ct12 = 03BB1 03BB2 and 03B113 = 03BB103BB3 hence M2 and M3 are generated
as required. It follows immediately that M2 + M3 is generated by u and
À1 v. To evaluate 03B123, note that the 2 modules M2 ~ À2M3 are in standard
position (since 03BB2u + 03BB103BB2v is in À2M3 but not in mM2 ) and that À2M3
is generated by 03BB2u + 03BB103BB2v and by 03BB203BB3u hence (03BB2 À3) = 03C1({M2}, {M3}).

Q.E.D.

COROLLARY (1.10). If M1 ~ M2 ~ 03B112 M1, Mi =3 M3 ~ Ct13M1 are
representatives of 3 compatible classes in standard position, then

PROOF. In the notation of the proposition, both parts of (a) are equiva-
lent to 03BB2 being a unit; both parts of (b) are equivalent to 03BB1 being a unit.

This Proposition motivates:

DEFINITION (1.11). A subset 0394(0)* c 0394(0) is linked if a) every pair of
elements {M1},{M2}~0394(0)* is compatible, b) for every triple {M1},
{M2}, {M3} ~ 0394(0)*, if we pick representatives M1 ~ M2, M1 ~ M3 in
standard position, then M2 + M3 (which is a free A-module by the
proposition) defines a class {M2 + M3} in 0394(0)*.
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We must check that 0394(0)0393 has both these fine properties:
THEOREM (1.12). 0394(0)0393 is linked.

PROOF. Suppose {Mi} = {M(xi, yi, zi)l, i = 1, 2, 3, where all these

points come from E. We saw above that all these classes are compatible.
Choose representatives M1 ~ M2, M1 ~ M3 in standard position, and
choose homogeneous coordinates ui, vi, Wi E Mi for xi,yi and zi such
that the linear relation 03B1iui+03B2ivi+03B3iwi = 0 has the property
(Xb 03B2i, ’Yi E A*. Since M2 ~ mM1, one of u2’ v2, or w2 is in the set

M1 - mM1. Renaming, we can assume U2 ft mM1. Similarly, we can
assume U3 ft mMl . Next, the images u1, v1, Wl of ul , vl , Wl in MlImm,
are all distinct, so one of them is different from both u2 and Ù 3. Renaming,
we can assume fi t =1= fi 2 or fi 3. Let us construct a module in the class

{M(x1, x2, X3)1 ~ 0394(0)0393. We must find the linear equation relating
u1, u2, u3: since fi 1 , fi 2’ fi 3 E M llmM 1 are related by an equation
dù 1 + 03B2u2 +iï3 = 0, where a, /3 E Alm, and 03B2 =1= 0, it follows that ul , u2 , U3
are related by an equation 03B1u1 + 03B2u2 + u3 = 0, where 03B1, 03B2 ~ A, 03B2 ~ m.
Therefore

On the other hand, if we choose generators u, v E Ml as in the previous
Proposition, it follows that

If À2,À3Em, then since M2 + M3 = u, 03BB1v&#x3E;, it follows that U2 and

U3 have distinct images u2 ,u3 ~ M2 + M3/m · (M2 + M3). Therefore

M2 + M3 u2, u3&#x3E; whose class is in A(O). If either À2 or À3 is in A*,
then M2 ~ M3 or M3 M2 and M2 + M3 equals either M2 or M3 ,
whose class is in 0394(0)0393. Q.E.D.
Linked subsets A «» c A(’) are very nice objects. They can be fitted

together in a natural way into a tree.

TREE THEOREM (1.13). If 0394(0)* is a linked subset of 0394(0), then 0394(0)* is the
set of a vertices of a connected tree 0394* in which a principal ideal (03B103C3) is
associated to each edge 03C3 and such that for every pair of classes
{P}, {Q} ~ 0394(0)*, if they are linked in the tree as follows :
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then

PROOF. First, let us call {P}, {Q} ~ 0394(0)* adjacent if there is no

{R} ~ 0394(0)* such that:

Join 2 adjacent classes by an edge u and set (03B103C3) = p({P}, {Q}). This
gives us a graph in any case. Starting now with any {P}, {Q}, consider
all sequences

such that

By the noetherian assumption on A, there is a maximal sequence of this
type. Then each pair {Mi}, {Mi+1} must be adjacent and this proves
that {P} and {Q} are joined in our graph by a sequence of edges. There-
fore the graph is connected.
To prove that our graph is a tree and to prove (*), it suffices, by an

obvious induction, to prove:

Then either

or

PROOF OF LEMMA. Let Mn-1 ~ Mn , Mn-1 ~ Mn - 2 , Mn-1 ~ M1 be
representatives in standard position. By the Corollary (1.10) Mn-1 ~
Mn-2 ~ Mi. Consider Mn-2 + Mn. Since 0394(0)* is linked, {Mn-2 + Mn} ~ T.
Since {Mn-1} is adjacent to {Mn-2} and Mn-2 ~ Mn-2+Mn ~ Mn-1,
Mn-2+Mn equals Mn-1 or Mn-2; similarly since {Mn-1} is adjacent to
{Mn}, Mn-2+Mn equals Mn or Mn-1. Thus either Mn-2+Mn = Mn-1
or, if not, then Mn = Mn-2+M2 = Mn-2. In the first case, Mn/Mn ~
mMn-1 and Mn-2/Mn-2 ~ mMn-1 are distinct one-dimensional sub-

spaces of Mn-1/mMn-1. But (0) ~ M11M1 ~ mMn-1 c Mn-2/Mn-2 ~


