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Introduction

J. Dieudonné [2] showed that a subspace of a barreled space is barreled
if its codimension is finite. A simpler proof of this result was given by
M. de Wilde [12].

Recently, I. Amemiya and Y. Komura [1 ] proved that a subspace of
a barreled metrizable space is barreled if its codimension is countable.

Their proof is based on the following result: a barreled metrizable space
is not the union of an increasing sequence of closed absolutely convex
nowhere dense sets. By using a generalized version of the closed graph
theorem we show that in an ultrabornological space (i.e. a space which
is the inductive limit of a family of Fréchet spaces) every subspace of
countable codimension is barreled. Thus metrizability is not a necessary
condition. The question whether there exists a barreled space with a
non-barreled subspace of countable codimension seems to be open. We
show that this problem is related to the other open question of whether
or not Br-completeness is preserved by finite products.

1.

In the following ’space’ will always mean ’locally convex topological
vector space’ and ’subspace’ will mean ’linear subspace’.

DEFINITION. A net (= réseau, cf. [11]) on a space E is a family q of
subsets of E,

indexed by a finite but variable set of natural numbers, such that
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and more generally,

for every k &#x3E; 1, ni , ..., nk - 1 E N.
A is called a net of type  if it satisfies the following condition. For

every sequence of indices nk, k E N, there exists a sequence of numbers

Âk &#x3E; 0 such that for every choice of fk E En1,...,nK and Pk E [0, Âkl the

series 03A3~k= 1 Pkfk converges in E. It is known that many familiar spaces
in functional analysis possess nets of type  and that the permanence
properties for such spaces are rather rich (cf. [11 ]).
The following closed graph theorem is due to M. de Wilde [11 ].

THEOREM 1. If E is ultrabornological and if F possesses a net of type ,
every linear operator with a sequentially closed graph mapping all of E
into F is continuous.

I. Amemiya and Y. Komura [1 ] proved

THEOREM 2. If E is a barreled metrizable space and if L is a subspace of
countable codimension then L is also barreled.

Their proof depends on the following result of category type.

THEOREM 3. A barreled metrizable space is not the union of an increasing
sequence of absolutely convex closed nowhere dense subsets.
We now show that a result analogous to Theorem 2 also holds for a

class of spaces which are not necessarily metrizable. Our proof depends
on Theorem 1.

THEOREM 4. Let E be ultrabornological (hence barreled) and let L be a
subspace of countable codimension. Then L is barreled.

PROOF. Let T be a barrel in L, i.e. a closed absolutely convex absorbing
subset of L. Tl being the closure of T in E, let L1 be the subspace of E
generated by Tl. Then Tl is surely a barrel in L1. If we can show that
Tl is a 0-neighborhood in L1, then T = Tl n L is a 0-neighborhood in L,
and therefore L is barreled.
We may assume that dim E/L1 = oo, for every subspace of E of finite

codimension is barreled (Dieudonné [2]).
Let x1 , x2, ···, xn, ··· be any linearly independent sequence such

that E = sp {x1, ···, xn, ···} O L1. (sp {x1, ···, xn, ···} denotes the
linear hull of x1, ···, xn, ···). The gauge of Tl defines a seminorm p
on LI. Let L1, p be the quotient space L1/N, with N = {x E L1 p(x) = 0},
equipped with the norm ~~ = p(x) (x is the coset of x E L1 ). Ll, p
denotes the completion of L1, p .



229

On the subspace sp {x1, ···, xn, ...1 we also consider the locally
convex direct sum topology. This is the finest locally convex topology
rendering the embeddings sp {xi} - sp {x1, ···, xn, ···} continuous

(i=1, 2,···).
From now on we denote by

the linear hull of the sequence (xn) with the topology inherited from E
and with the locally convex direct sum topology, respectively.
We set

where F has the product topology. It now follows from the results of
M. de Wilde [11] that F possesses a net of type .
Our next objective is to show that the linear map I : E ~ F defined by

is closed, and therefore sequentially closed.
Let (x(03B1)) be a net in sp {x1, ···, xn, ···} and (y(03B1)) a net in L1.

Suppose that

and

We must show that x = x’ and  = z.
Since

has the product topology, (2) implies that

Since the topology of ~~n= 1 sp {xn} is finer than that of
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(3) implies that

(4) and (1) together yield that

By (2), ((03B1)) is a Cauchy net in L1, p . 
Hence, for every 8 &#x3E; 0 we have

Taking the limit a ~ oo and using the fact that Tl is closed in E, as well
as (5), we find that

This implies x = x’ and (03B1) ~  in LI, P .
On the other hand (2) yields that (03B1) - z. Therefore z =  and the

closedness of I is proved.
In virtue of Theorem 1 1 is continuous. Then also the restriction

I|L1 : Li - L1,p is continuous. Since Tl is the inverse image of the unit
ball of LI, p under I|L1, Tl is a 0-neighborhood in L1. This completes
the proof.

Implicit in the proof of Theorem 4 is the following

COROLLARY. The hypotheses being the same as in Theorem 4, if L is
closed, then any algebraic complement K of L in E is also a topological
complement and K has the finest locally convex topology.

PROOF. Observe that the choice of the algebraic complement

was arbitrary.
Take for T an arbitrary closed absolutely convex 0-neighborhood of L.

Since L is closed, T = Tl and L = L1. The continuity of I for an
arbitrary T means that the topology of E is finer than that of

Obviously it is also coarser. Hence E is isomorphic to

REMARK 1. We shall see later (cf. Theorem 6) that the above Corollary
holds for arbitrary barreled E.
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REMARK 2. It is known that a metrizable barreled space contains no

closed subspaces of countable codimension (cf. [4]). It is easily seen that
such subspaces may very well exist in ultrabornological spaces.

il.

We now try to apply another variant of the closed graph theorem to
the problem at hand. This version is due to V. Ptak [7] and A. and W.
Robertson [8]. For the proof and the definitions involved we refer to
H. H. Schaefer [9].

THEOREM 5. Any closed linear operator mapping all of a barreled space
E into a B,.-complete space F is continuous.
We note that in comparison with Theorem 1 the conditions on E

are weaker here, while on the other hand F is required to be Br-complete.
The applicability of Theorem 5 is rather limited, mainly because very
little is known about the permanence properties of Br- and B-complete-
ness. W. H. Summers [10] has recently exhibited two B-complete spaces
the product of which is not B-complete. However, it is not known as yet
whether or not Br-completeness is preserved by finite products. This
question is intimately related with the question of the existence of a
barreled space with a non-barreled subspace of countable codimension.

In the following, let cp denote the locally convex direct sum of countably
many copies of C.

STATEMENT. If it is true that the topological product of cp with any
Banach space is Br-complete, then any subspace L of countable codimen-
sion of a barreled space E is barreled.

PROOF. We proceed as in the proof of Theorem 4. Since

has the product topology and

is isomorphic to ç and L1,p is a Banach space, F is Br-complete by
assumption. Instead of Theorem 1 we now apply Theorem 5 to the
closed linear operator I : E - F. The conclusion is again that I is contin-
uous. The rest of the proof remains unchanged.

REMARK. Note that ç is B-complete, as it is the Mackey dual of the
Fréchet space co, the product of countably many copies of C (cf. G. Kôthe
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[5], H. H. Schaefer [9]). Therefore, if Br-completeness is preserved by
finite products, the weaker hypothesis in the above statement is certainly
fulfilled.

The next theorem shows that the closed subspaces of countable codi-
mension of a barreled space E are barreled and are exactly those sub-
spaces that have a topological complement in E which is isomorphic to ~.

THEOREM 6. Let E be barreled and let L be a closed subspace of countable
codimension. Then L is barreled. Moreover, any algebraic complement K
of L in E is a topological complement and K is isomorphic to 9. Conversely,
any subspace of E which has a topological complement isomorphic to ~ is
barreled (and closed).

PROOF. Suppose that L is a closed subspace of countable codimension.
Let 1x, ···, Xn, ··· be any linearly independent sequence such that
E = sp {x1, ···, xn, ···} L. We show that E is isomorphic to the
topological product

where

has the locally convex direct sum topology and L the relative topology
inherited from E.

It is sufhcient to prove that the projection P of E onto

with null space L is continuous, or equivalently, that the associated
1-1 map

is continuous. However, E/L is barreled and

is B-complete, since it is isomorphic to ~. Since the topology of

is the finest possible, -1 is continuous, whence P is closed. Theorem 5
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now yields that P is continuous. Hence E is isomorphic to

This in turn implies that L is isomorphic to

which is barreled.

Conversely, suppose that L is a subspace of E such that E is isomorphic
to the topological product 9 x L. Then clearly L is closed and also L is
barreled since it is isomorphic to the quotient E/~.

REMARK. Let E be barreled and L a subspace of E. A property equiv-
alent to L being barreled is that for every barrel TL in L there exists a
barrel TE in E, such that TE n L c TL.
The actual construction of TE, once TL is given, is easy in case L has

finite codimension (cf. de Wilde [12]). If the codimension of L is count-
able, this construction, even in the metrizable case, seems by no means
easy. It would, however, provide a constructive and possibly elementary
proof of I. Amemiya and Y. Komura’s result [1 ].

Finally, as an example of how the foregoing theorems might be of
some use, e.g. in approximation theory, we prove

THEOREM 7. Let K be any compact set in the complex plane. Let R(K)
be the linear space of functions which are analytic on a (variable) neighbor-
hood of K, two functions being identified if they coincide on a neighborhood
of K. Let B(K) denote the linear space of functions continuous on K and
analytic on the interior of K. Then dim B(K)IR(K) is uncountable.

PROOF. B(K) with the sup norm is clearly a Banach space. R(K) can
be topologized so as to become a locally convex space which is the strong
dual of a reflexive nuclear Fréchet space. This topology is finer than the
norm topology inherited from B(K) (cf. Kôthe [3], [5]).
Suppose that dim B(K)IR(K) is countable. Then by Theorem 2, R(K)

with the norm topology inherited from B(K) is barreled. R(K) with its
original topology is B-complete, as it is the Mackey dual of a Fréchet
space and also nuclear since it is the strong dual of a nuclear Fréchet

space. Since both topologies are comparable, the identity map is closed
and Theorem 5 implies that the topologies coincide. This cannot be,
however, since an infinite-dimensional normed space can never be

nuclear, by the Dvoretzky-Rogers theorem (cf. [6]).
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Added in proofs. After this work was completed, two papers have
appeared, by M. Valdivia (Ann. Inst. Fourier, Grenoble 21, 2 (1971),
3-13) and S. Saxon and M. Levin (Proc. Amer. Math. Soc. 29,1 (1971),
91-96) containing similar results, obtained by different methods.
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