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Introduction

Consider a non-singular variety X of dimension three and degree three
in projective four space, defined over a field k with characteristic not two.
The purpose of this paper is to study those 1-dimensional (algebraic)
cycles on X which are algebraically equivalent to zero.
Our main result (theorem 10.8 and corollary 10.10) is the following.

Consider the group of rational equivalence classes of 1-dimensional cycles
on X in the sense of Chow [2]. Consider in this group the subgroup of
those classes which are algebraically equivalent to zero. Then this subgroup
is isomorphic to the direct product of an abelian variety and a group con-
sisting of elements of order two. Moreover the abelian variety is a so-cal-
led Prym variety. The construction of this Prym variety and the mapping
of the cycle classes is not rational over the ground field; it is rational over
an extension field of this as soon as this is a field of definition of a sufhcient-

1 This research was partially done during the spring of 1971 at the University of
Warwick. The author thanks the Mathematics Institute of the University of Warwick
for the support and for the stimulating atmosphere.
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ly general line on X (see 2.1).2
The theory of Prym varieties has been developed by Mumford [5]. Such

a Prym variety is always obtained from a system of two curves, one of
which is an étale covering of the other. In our case we obtain these curves
as follows. Fix a sufficiently general line 1 on X and consider on the Fano
surface of lines on X the set consisting of those lines which meet 1. This
is a curve and this curve has a natural involution without fixed elements,
obtained by considering three coplanar lines 1, l’and 1". This curve to-
gether with its involution determines the above mentioned Prym variety.
As to the torsion group, entering in our main result, we do not have any

further information about it, except that its elements are of order two.
The main motivation for our investigation was Mumford’s recent

result that the intermediate Jacobian of the cubic threefold is a Prym
variety ([6], see also appendix C of [3]). Our proposition 10.6, which is a
key result in this paper, together with the arguments used in the proof of
10.8, give - in our opinion - a reasonable geometric insight in this fact.
In order to avoid misunderstanding we explicitly mention that in our
algebraic approach the intermediate Jacobian does not actually enter into
the discussion.

Some remarks on the various sections. For convenience of the reader

we have collected in section 1 those properties of the lines on X which we
need in this paper, stated in the form in which they are used. Next we
fix a sufficiently general (see 1.25) line 1 on X; we enlarge the ground-
field k such that 1 is defined over k. After this we construct a ’covering’
X’ of X, 2 to 1 over X (but with exceptions). Following a suggestion of
Clemens this covering is constructed in section 3 via the tangent bundle to
X along 1 (see also footnote 2 on page 14). To be precise, X’ is a blow up
of the projective bundle Y associated with the above tangent bundle.
We blow up along a curve and in section 2 we show that this curve,
and hence also X’, is non-singular. Section 4 studies the morphism X’ -
X. Again using the line 1 and a ’fibration’ of X by means of conics we
construct in section 5 another 2 to 1 covering (with exceptions) X of X.
This X is intuitively simpler than X’ but technically more complicated
because X has singularities. It turns out (section 6) that X’ is a desingu-
larization of X. The varieties X’ and X are rational varieties. On these
2 to 1 coverings X’, or X, of X we have in a natural way an involution over
X. This involution plays a crucial part in the paper (section 7-10), es-

2 After completion of the paper 1 learnt from Manin about a recent paper of
0160ermenev [12] which is closely related with this paper. Using the theory of motifs
(Grotendieck, Manin) Sermenev determined the motif of a cubic threefold. The motif
essentially determines the Chow ring tensored with Q, i.e., determines the Chow ring
up to torsion.
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pecially the behaviour of the exceptional locus of X’ - V with respect
to this involution is of importance. Finally section 11, entirely technical,
is the proof of proposition 10.5 which says that the mapping of the 1-
cycles of X to the Prym variety is ’algebraic’. As mentioned above, the
main results of the paper are 10.8 and 10.10.

We often use specializations of points or cycles in the sense of Weil

(see [10]); if there is no field mentioned for such a specialization then we
always mean specialization over the groundfield k. In the Chow ring
A(X), etc., we mean to take the cycles rational over a fixed sufficiently
large and algebraically closed overfield of k (a ’universal domain’).
The problem of investigating the Chow ring of the cubic threefold

was suggested by Mumford. 1 like to thank Mumford and Clemens for
valuable help and Grifhths for stimulating conversations on the topic.

1. Preliminary results

1.1. Let X be a non-singular cubic threefold in projective 4-space P4,
defined over a field k of characteristic not 2. Note that X is absolute-

ly irreducible because it is a non-singular 3-dimensional variety in P4.
Let

The following result is classical ([1], lemma 3; [3 ], thm. 7.8): F is a
non-singular, absolutely irreducible projective surface defined over k, the
so-called Fano surface.

Section lA. Linear 2-spaces going through a line on X

1.2. Let (x, y, z, u, v) be projective coordinates in p4 and let

be the equation for X. Let 1 be a line in p4 not meeting the linear space
{u = 0, v = 0}. Let (x’, y’, z’, 1, 0) be the point 1 n {v = 01, resp.
(x", y", z", 0, 1 ) the point 1 n {u = 0}. Then (x’, y’, z’, x", y", z") can be
used as local coordinates on the Grassmannian of lines in p4 (cf. [1 ],
p. 4). An arbitrary point P ~ l has coordinates:

The line 1 is on X if and only if identically in u and v
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From the coefficients of u3, u2v, uv2 and v’ we get 4 equations:

which are necessary and sufficient conditions for 1 in order to be on X.

does there exist a linear 2-dimensional space (shortly: 2-plane) Lô such
that

where P E 10 and where u, v (hidden in P) and t are projective coordinates
in L o. Substituting in F = 0 we get Q E X if

Since F(P) = 0, the intersection X n L o consists of l o , given by t = 0,
and a conic given by

Therefore. if and only if

Writing

etc., we get that there exists a 2-plane L o such that
and only if
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So far we have neglected the lines meeting the 2-plane {u = 0, v = 0}.
These lines are in a Zariski-closed subset of F; i.e., we have worked

Zariski-locally on F. Summarizing we have:

LEMMA (1.4). Put F0 = {l; l ~ F s.t. ~L2 with L · X = 2l+l’}. Then 570
is a Zariski closed set on F. Moreover locally on F the set 570 is given
by one equation (namely 1/1 = 0).

1.5. The following lemma, which was communicated to me by Mum-
ford, gives more precise information on 570 (cf. also [3], 7.6) :

PROOF. Let 10 E:F. Enlarging, if necessary, the groundfield we can
assume that l0 is given by

Using the notations of 1.2 we have that x’, y’, ···, z" are the (local)
coordinates on the Grassmannian G(2, 5); 10 is given on G(2.5) by

For X we have now an equation

with f, g and h quadratic. Put

REMARK 1.6. The rank of the matrix

is always at least 2, because

f(0, 0, 0, u, v ) = 0, g(0, 0, 0, u, v ) = 0, h (0, 0, 0, u, v) = 0

do not have a common zero. For, in a point P = (0, 0, 0, u, v), we have
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and X is non-singular. Clearly if the rank of (8) is at most one then we
can find uo, v o such that f (0, 0, 0, uo, v0) = g(0, 0, 0, u0, v0) =
h(O, 0, 0, uo, vo) = 0.

1.7. Returning to the proof of 1.5, let l0 ~ F be fixed as above and 1 a
variable line in P4. Substituting (1) in (6) and evaluating the coefficients
of u3, u2 V, UV2 and V3 we get the equations ~1 = 0, ..., ~4 = 0 of 1.2,
i.e. the equations of F:

The tangent space to ff at 10 is given by the linear terms in x’, ···, z"
of (9). In order to determine its dimension we have to consider the rank
of the corresponding 4 by 6 matrix. Now consider, for instance

This is the resultant of g(O, 0, 0, u, v) = 0 and h(O, 0, 0, u, v) = 0.
Therefore if f, g and h do not have 2 by 2 a common zero on l0 then the
rank of the matrix in (9) is 4. Otherwise we can assume that (u, v) =
(1, 0) is the common zero of f and g on l0, similarly (0, 1) for g and h.
Then 03BB = J1 = 03BC" = v" = 0 and it is easily checked (as in 1.6) that
03BD ~ 0, 03BB" ~ 0 and 03BC’ ~ 0. Then the 1 st, 2nd, 3rd and 5th column are

independent and the rank is again 4. Hence 57 is a non-singular surface.

1.8. Let To = (03BE, il, 03B6, 0, 0) and L o - span (l0, To). We get for the
equation (2) of 1.3:

Therefore by (3) of 1.3 we have lo E e7o if and only if we have identically
in u and v:
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i.e. lo E 570 if and only if the rank of (8) is 2.
Let now l0 ~ F0; then we can assume after a change of variables x, y

and z that f(0, 0, 0, u, v) = 0. Since now 03BB = À’ = À" = 0 we have that
the tangent space to F at 10 is given by

Moreover we have now that the determinant in (10) is different from
zero. Also the equation (6) simplifies to

with 1(u, v) linear, g and h quadratic.
Finally we want to make explicite the equation 03C8 = 0 of (4), defining

the set 57o in F. We use the notation of 1.3, except that we take a ’variable’
line l ~ F. Substituting the coordinates (1) of P ~ l in (13) we get that
l E 570 if and only if (3) is satisfied.

In our case we get:

By (3) we have to compute the coefficients of U2, uv and V2 . This is
rather involved, however we are only interested in 1/1 in a neighborhood of
l0. Therefore, using (12) it suffices to consider

This gives

Therefore
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It follows from (10) and the first line following equation (12) that not
both coefficients in 03C8 are zero unless 1 - 0, i.e. unless X contains the linear
space {y = 0, z = 01; but this is impossible (see lemma 1.17 below).
Since the tangent space to F0 at 10 is given by (cf. (12)):

y’ = y" = z’ = z" = 0 and i/i = 0,

we have that the dimension of this tangent space is one. Hence the di-
mension of F0 is at most (but by 1.4 also at least) one. This completes
the proof of 1. 5.

In fact we have proved:

COROLLARY (1.9). 570 is a non-singular curve (not necessarily connected).

if To satisfies (11), i.e. the linear equations determined by the matrix
in (7). By 1.6 the point To, and hence L o and l’0, is unique. From this we
have

LEMMA (1.11). Let F0’ = {m; m ~ F such that 3 L 2 with X. L =

m + 2m’, m’ ~ F}.
Then 570’ is Zariski closed on :F and of dimension at most one.

1.12. Let 1 be a line on X. Assume for simplicity that 1 is defined over k
(otherwise we have to work over an extension of k); we can arrange then
that 1 has equations

We can write then for the equation of X:

with:

li(x, y, z) homogeneous linear, i = 1, 2, 3,

Qi(x, y, z) homogeneous quadratic, i = 1, 2,

C(x, y, z) homogeneous cubic.

DEFINITION (1.13). (cf. [3], 6.6): 1 is of the first type (resp. second
type) if li(x, y, z), i = 1, 2, 3, are linearly independent (resp. linearly
dependent) over k.

LEMMA (1.14), 1 is of the second type ~ 1 E F0.’
PROOF. Comparing the equations (6), (7) and (15) we see that
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Therefore 1 is of the second type ~ determinant of (8) is zero ~

l ~ F0 by (11).
1.15. In case 1 is of type 1 we can make a change of variables, within

the x, y and z, in order to simplify equation (15) to

with Qi(x, y, z)(i = 1, 2) quadratic and C(x, y, z) cubic (all homoge-
neous).
The tangent space to X in P = (0, 0, 0, uo, v0) is given by

It is clear that there is no point common to all hyperplanes of type 17)
except the points of 1. Therefore:

LEMMA (1.16). If 1 is a line of the first type then there is no 2-plane tan-
gent to X in all points of 1.

Section 1B: The lines going through a fixed point.

LEMMA (1.17). X does not contain a linear 2-space.

PROOF. If L2 defined by x = 0, y = 0 is on X then every term in the

equation F = 0 of X contains x or (and) y. Therefore in P = (0, 0, z, u, v)
we have

Therefore if P is in the intersection of ôF/ôx = 0, DFIDY = 0 and L
then P is a singular point.

LEMMA (1.18). If 1 is a line of the first type on X and P ~ l then there are
only finitely many (and in fact at most 6) lines on X through P.

PROOF. Let P = (0, 0, 0, 0, 1). Without loss of generality we can assume

(18) F(x, y, z, u, v) = V2Z+vG2(x,y,z,u)+G3(x,y,z,u) = 0

with G2 (resp. G3) quadratic (resp. cubic) homogeneous. The lines
through P are given by
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Therefore there are at most 6 lines or infinitely many going through P

(in the latter case P is a so-called Eckardt point, see [3 ], no. 8); in the lat-
ter case G2(x, y, 0, u) and G3(x, y, 0, u) have a common factor. If this
factor is linear then X contains a 2-plane, if the factor is quadratic then
X n {z = 0} contains a quadratic cone and hence again a 2-plane. This
is impossible by 1.17. Therefore if P is a Eckardt point then G2 (x, y, 0, u)
== 0. Therefore X n {z = 0} is a cubic cone with P as vertex and ’base
curve’ {G3(x, y, 0, u) = 0, v = 01. But along every line of the cone, in
particular along 1, there is a 2-plane tangent to this cone. By 1.16 this
completes the proof of 1.18.

LEMMA (1.19). Let Y = {P; through P goes a line of the second typel.
Y is Zariski closed and of dimension at most 2. Let P e Y, then there are 6
different lines on X going through P. Also if 1 is a line of the first type then
1 counts with ’multiplicity one’ in each of its points.

PROOF. The assertion about Y follows from 1.9 and 1.14. Let P e Y
and 1 a line through P. We can assume that 1 is given by x = 0, y = 0, and
z = 0 and P = (0, 0, 0, 0, 1). Since 1 is of the first type we can assume that
the equation of X is given by (16); writing this as in (18) we have

The lines through P are given by (19). It suffices to see that the point
S = (0, 0, 0, 1, 0), which is the point in (19) corresponding with 1, is a
point of multiplicity 1 of G2 = 0, G3 = 0 in z = 0, v = 0. From (20)
we see that this point is non-singular on G2 = 0 and on G3 = 0; if the
intersection multiplicity is larger than 1 there exists vo * 0, oo such that

However from (20) follows immediately that DG21DX (S) = 0 and
DG31DX(S) = 1. Therefore there is not such a vo. This completes the proof
of 1.19.

Section 1C: The curve H(l).
1.20. From now on we assume that 1 is a line of the fzrst type on X (i.e.

1 e F0, see 1.4) and also that 1 e F’0 (sec. 1.11). Furthermore for sim-
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plicity we assume that 1 is defined over k (otherwise enlarge k). Let

(22) N = {L ; L a linear 2 dim. space through l}.
N is a projective 2-space. If 1 has equations x = 0, y = 0, z = 0 then

we can identify N with the 2-plane N’ defined by u = 0, v = 0 and we
introduce coordinates in N, using the coordinates in P4, as follows:

Let LT = span (1, T). We have

where KT is a conic. A point in LT has projective coordinates (cf. 1.3)
(03BEt, ilt, (t, u, v) and we can use (t, u, v) as (projective) coordinates
in LT . If the equation of X is given by (16) then the equation of KT is
given by

(24) u203BE+2uv~+v203B6, +2utQI(Ç, ~, ’)+2VtQ2(Ç, ~, ’)+t2C(ç, Il@ ,) = 0.

1.21. The conic KT degenerates if T is on the curve H in N, where H has
équation :

For T E H we have

Since l~F0, l~F’0 we have (1.4 and 1.11) that l ~ l’T, 1 =fi l"T and
1T’ e l"T. We apply now the results of [1], p. 6 below (our curve H cor-
responds with r there). This gives :

PROPOSITION (1.22). H is a non-singular (and hence), absolutely irre-
ducible curve defined over k. The degree is 5 and (hence) the genus 6.

1.23. Consider on the Fano surface ff the following curve

On H we have an involution a namely if LT is the 2-plane spanned by 1
and l’ then Z.r ’ X = l+l’+l" and put 03C3(l’) = 1". (cf. [1]; p. 5, in the
notation there 1 = Lu, 3Q(1) = C. and j = a). The quotient of 3Q under
03C3 is the curve H of (25) (cf. again [1 ], p. 5). Since H is absolutely irre-
ducible we have that either 3Q is absolutely irreducible or 3Q = 3Qi w
X’2 with Hi(i = 1, 2) absolutely irreducible and Q interchanges H1
and £ 2 .
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1.24. Finally consider on F the set U’ of lines 1 on X such that through
1 passes a non-singular hyperplane section 03A3. It is ’well-known’ that U’

is an open set on 57 (non-empty!). Put

where F0 (resp. F’0) are as above (see 1.4, resp. 1.11). If 1 E U then we
can apply the results of 1.20-1.23. Moreover since there is a non-singular
hyperplane section 1 through 1 we can apply the argument of [1],
p. 10 3 in order to rule out the possibility H = H1 ~ H2. Hence
H = H(l) is an absolutely irreducible curve. Moreover -Yi" is a covering
of degree 2 of H, namely above T E H we have by (26) the two points
1; and l"T of A. Since l’T ~ l"T we have that H is an étale covering of
H of degree 2. Summarizing we have :

PROPOSITION (1.25). There exists a non empty open set U on the Fano
surface F with the following properties. For 1 E U, let N be the projective
2-space of 2-planes through 1 and for T E N let LT denote the corresponding
2-plane. Then:

(i) LT - X 1 +KT with KT a conic.
(ii) Let H = {T; KT degeneratesl, then H is a non-singular, absolutely

irreducible curve in N of degree 5 and genus 6.
(iii) For T ~ H we have KT = l’T + l"T with l ~ 1;, l ~ l"T andl; 0 l"T.
(iv) If e = {l’; l’ n 1 :0 Ø} then e is an absolutely irreducible curve

in F.

Moreover H is an étale covering of H of degree 2 and hence non-
singular. The fibre over T ~ H consists of 1; and lT . The genus of
H is 11 (by the Hurwitz formula).

(v) 1 is of first type.
(vi) Through all points of 1 go at most 6 lines on X (by 1.18) and through

almost all points of 1 go exactly 6 lines (the possible exceptions are
the points of Y n 1; Y defined in 1.19).

3 There is a little slip in the argument in the middle of page 10 in [1], namely there
is not a line on Z meeting M’1, ..., M’ 5. However there are several ways of correcting
the argument; the following one was communicated to me by Bombieri. By [1 ] one
must have Cu = Cul 1 + Cu 2 (with the notations from [1]), where ju interchanges Cul and
Cu2. Now note that if u and t are two points on the Fano surface such that Ll; and Lt
do not go through an Eckardt point, then Cul. Ct2 is defined for u ~ t (cf. lemma 1.17
and 1.18). Since Cui (i = 1, 2) is a 2-dimensional family of curves on a surface one has
Cul. Cu2 ~ 2 and (Cui)2 ~ 1 for i = 1 or 2. This gives

5 = (Cu)2 = (Cu1)2 + 2Cu1. Cu2 + (Cu2)2 ~ 6.

Therefore we get a contradiction by assuming that Cu has 2 components.
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2. The tangent bundle restricted to a line 4

2.1. Notations. From now on 1 denotes a fixed line on X contained in

the open set U of proposition 1.25. We assume that 1 is defined over the
ground-field (otherwise we enlarge the groundfield), i.e. the Plücker-co-
ordinates of 1 are rational over k. We can assume now that 1 is given by
x = 0, y = 0, z = 0; the equation of X is (15), or even (16) if we want.

Let g- be the restriction of the tangent bundle of X to l and V = P(F)
the bundle of associated projective spaces of 1-dimensional linear sub-
spaces :

For SEI, 5-s (resp. Vs) denotes the fibre of g- (resp. Y) over S. By
definition Vs is the projective space of the 1-dimensional linear subspaces,
associated with Ys. Furthermore F*s denotes the tangent hyperplane to
X at S and put

2.2. A canonical identification. The lines through S in the tangent hyper-
plane F*s correspond canonically with the points of Vs. Namely such a
line determines a tangent vector to X at S up to a scalar multiple and hence
determines uniquely a point in Vs, and conversely.

2.3. Extra structure in Vs. Using 2.2 we have in Vs:
(a) a point Is corresponding with the line 1 in 9-*
(b) five points MS, i (i = 1, ... 5) corresponding with the other 5

lines ms, i through S on X (see 1.25 (vi)).
Moreover these 6 points are on a conic Ws in VS (possibly degene-

rated) corresponding with the tangent cone of xi at S (compare with
(18) and (19); the tangent cone is given by z = 0, G2 = 0). For a special
point S ~ l some of the points MS,i may coincide but in a generic point
there are 6 different points in YS (1.25 vi). Also by 1.19 Is itself never
coincides with one of the points Mus, ; .

Introduce in V the curves

4 Clemens suggested to me to study this tangent bundle. My original approach was
along a desingularization of À introduced in § 5. From 6.8 (ii) it is clear that the sug-
gestion of Clemens is very important.
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LEMMA (2.4). Both I and H are absolutely irreducible over k; l is a

rational curve and fI is birational with the curve e of (27).

PROOF. Let k(S) denote the field obtained by adjoining the non-homo-
geneous coordinates of S to k. The point Is is rational in k(S); I itself is
the locus (in the sense of Weil) of Is over k. Hence I is absolutely irre-
ducible, and in fact birational with 1 itself.
Next H : H is birational equivalent with the curve 3Q (= e (1» of

(27), namely

Since H is absolutely irreducible (1.25 (iv)) the same is true for H.

PROPOSITION (2.5). Í1 and I are non-singular curves in V and H n I = Ø.

PROOF. H n I = 0: this we have seen already in 2.3.
Next: the non-singularity of Í1 u I. This requires some computation

and occupies the rest of section 2. Several of the steps are also useful
further on.

2.6. Let MS, i ~ H; let ms, i be the corresponding line on X. For sim-
plicity write ms, i = l’. We have seen already in 2.3 that l’ = mS, i ~ 1;
let L be the 2-space spanned by 1 and l’. There are two different cases now
for the intersection X n L (cf. 1.25 (iii»:

Case 1: Case 2:

Figure 1

2.7. Suitable coordinates in case 1:

Take coordinates such that L is given by x = 0, z = 0 and

Our point S is now S = (0, 0, 0, 0, 1).
Also the equation F is (15). Substituting x = 0, z = 0 should give

yuv = 0. Therefore:
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Making a change of variables in x, y and z we can assume

Without disturbing the conditions above we still have freedom for a

transformation

Using this we can achieve that

Therefore we arrive at the equation (cf. 1.15):

with

LEMMA 2.8. X non-singular ~ not a = 0 and b = 0 at the same time.

PROOF. Take P = (0, 1, 0, 0, 0). Then P E X and 

2.9. Suitable coordinates in case 2.

Take coordinates such that L is given by y = 0, z = 0 and

Again S = (0, 0, 0, 0, 1). Substituting y = 0, z = 0 in the equation
(15) for F we should get xu(u+2x) = 0. This gives

Making a change of variables in x, y and z we can assume


