Compositio Mathematica

Floris Takens

Derivations of vector fields

Compositio Mathematica, tome 26, no 2 (1973), p. 151-158
http://www.numdam.org/item?id=CM_1973_26_2_151_0
© Foundation Compositio Mathematica, 1973, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

DERIVATIONS OF VECTOR FIELDS

by

Floris Takens*

1. Statement of the result

Let M be a differentiable, i.e. C^{∞}, manifold. We denote the Lie-algebra of C^{∞} vectorfields on M by $\chi(M)$. A map $D: \chi(M) \rightarrow \chi(M)$ is called a derivation if D is R-linear and if $D([X, Y)]=[D(X), Y]+[X, D(Y)]$ for all $X, Y \in \chi(M)$. It is clear that every $X \in \chi(M)$ defines a derivation $D X: D X(Y)=[X, Y]$. In this note we want to show that every derivation can be obtained in this way.

Theorem. For each derivation $D: \chi(M) \rightarrow \chi(M)$ there is a vectorfield $Z \in \chi(M)$, such that for each $X \in \chi(M), D(X)=[Z, X]$.

This theorem has a certain relation with recent work of M. Gel'fand, D. B. Fuks, and others [1] on the cohomology of Lie-algebras of smooth vectorfields, because it implies that $\left.H^{1}(\chi(M) ; \chi M)\right)=0 ; H^{1}(\chi(M)$; $\chi(M)$) being the first cohomology group of $\chi(M)$ with coefficient in $\chi(M)$ with the adjoined representation (this was pointed out to me by M. Hazewinkel). There is however one difference in their approach: in defining their cohomology they only use cochains which are continuous mappings (with respect to the C^{∞} topology). It is however not difficult to show that the nullety of $H^{1}(\chi(M) ; \chi(M))$ follows from our theorem in either case.

The theorem will follow from the following lemmas:
Lemma 1. Let $D: \chi(M) \rightarrow \chi(M)$ be a derivation and let $X \in \chi(M)$ be zero on some open subset $U \subset M$. Then $D(X) \mid U \equiv 0$.

Lemma 2. Let $X \in \chi\left(\boldsymbol{R}^{n}\right)$ be a vectorfield on \boldsymbol{R}^{n} with $j^{3}(X)(0)=0$, i.e. the 3-jet of each of the component functions of X is zero in the origin. Then there are vectorfields $Y_{1}, \cdots, Y_{q} Z_{1}, \cdots, Z_{q}$ and there is a neighbourhood U of the origin in \boldsymbol{R}^{n} such that:

$$
\begin{aligned}
X \mid U & =\sum_{i}\left[Y_{i}, Z_{i}\right] \mid U \quad \text { and } \\
j^{1}\left(Y_{i}\right)(0) & =0, j^{1}\left(Z_{i}\right)(0)=0 \text { for all } i=1, \cdots, q .
\end{aligned}
$$

[^0]Lemma 3. Let $D: \chi(M) \rightarrow \chi(M)$ be a derivation and let $X \in \chi(M)$ and $p \in M$ be such that $j^{3}(X)(p)=0$. Then $D(X)(p)=0$. In other words, $D X(p)$ is determined by $j^{3}(X)(p)$, also if $j^{3}(X)(p) \neq 0$.

Lemma 3 will be derived from the lemmas 1 and 2. Finally we shall use lemma 3 to derive:

Lemma 4. Let $U \subset \boldsymbol{R}^{n}$ be an open connected and simply connected set and let $D_{U}: \chi(U) \rightarrow \chi(U)$ be a derivation. Then there is a unique vectorfield $Z \in \chi(U)$ such that $D_{U}(X)=[Z, X]$ for all $X \in \chi(U)$.

Finally, we shall see that the theorem follows from lemma 1 and lemma 4.

2. The Proofs

Proof of Lemma 1. Suppose $X \mid U \equiv 0$ and $D(X)(q) \neq 0$ for some point $q \in U$. We take a vectorfield $Y \in \chi(M)$ such that $\sup (Y) \subset U$ and $[D(X), Y](q) \neq 0$. By definition we have $D[X, Y]=[D X, Y]+[X, D Y] ;$ evaluating this in q we get $0=[D X, Y](q) \neq 0$, which contracts our assumption. Hence the lemma is proved.

Proof of Lemma 2. It is clearly enough to show the lemma for the case

$$
X=X\left(x_{1}, \cdots, x_{n}\right) \frac{\partial}{\partial x_{1}}
$$

with $j^{3}(X)(0)=0$. Such vectorfields can be written as a finite sum of vectorfields of the following two types:
type I:

$$
\tilde{X}=x_{1}^{m_{1}} \cdot \cdots x_{n}^{m_{n}} \cdot \alpha\left(x_{2}, \cdots, x_{n}\right) \frac{\partial}{\partial x_{1}}
$$

with $\sum m_{i} \geqq 4$ and α a C^{∞} function; type II:

$$
\tilde{X}=x_{1}^{4} \cdot g\left(x_{1}, \cdots, x_{n}\right) \frac{\partial}{\partial x_{1}}
$$

with g a C^{∞} function.
To prove the lemma we show that each vectorfield, which is either of type I or of type II, can be written as the Lie-product of two vedtorfields with zero 1-jet in the origin. For \tilde{X} of type I as above, we observe that

$$
\begin{gathered}
\tilde{X}=\left[\frac{1}{k_{1}-h_{1}} \cdot x_{1}^{h_{2}} \cdots \cdots x_{n}^{h_{n}} \frac{\partial}{\partial x_{1}}, x_{1}^{k_{2}} \cdots \cdots x_{n}^{k_{n}}, \alpha\left(x_{2}, \cdots, x_{n}\right) \frac{\partial}{\partial x_{1}}\right] \\
h_{1}+k_{1}=m_{1}+1 \text { and } h_{1} \neq k_{1} \\
h_{2}+k_{2}=m_{2} \\
\vdots \\
h_{n}+k_{n}=m_{n}
\end{gathered}
$$

Using the fact that $\sum m_{i} \geqq 4$, we see that we can choose h_{1}, \cdots, h_{n}, k_{1}, \cdots, k_{n} so that $\sum h_{i} \geqq 2$ and $\sum k_{i} \geqq 2$; hence for type one we have the required Lie-product.

Suppose that that

$$
\tilde{X}=x_{1}^{4} \cdot g\left(x_{1}, \cdots, x_{n}\right) \frac{\partial}{\partial x_{1}}
$$

is of type II. We want to show that there is a function H, defined on a neighbourhood of the origin in \boldsymbol{R}^{n} such that

$$
\tilde{X}=\left[x_{1}^{2} H\left(x_{1}, \ldots, x_{n}\right) \frac{\partial}{\partial x_{1}}, x_{1}^{2} \frac{\partial}{\partial x_{1}}\right]
$$

in a neighbourhood of the origin. The existence of such H follows from
Sub-Lemma (2.1) Let Z, X be vectorfields on \boldsymbol{R}^{1}, which depend on real variables μ_{1}, \cdots, μ_{r}, and which can be written in the form

$$
Z=x^{k} \cdot f\left(x, \mu_{1}, \cdots, \mu_{r}\right) \frac{\partial}{\partial x}, X=x^{l} \cdot g\left(x, \mu_{1}, \cdots, \mu_{r}\right) \frac{\partial}{\partial x}
$$

where f, g are C^{∞} functions on \boldsymbol{R}^{r+1} (at least on a neighbourhood of the origin), $l \geqq 2 k$ and $f(0) 0,, \cdots, 0) \neq 0$.

Then there is a vectorfield Y, also depending on μ_{1}, \cdots, μ_{r}, of the form

$$
Y=x^{k} \cdot H\left(x, \mu_{1}, \cdots, \mu_{r}\right) \frac{\partial}{\partial x}
$$

such that

$$
[Y, Z]=X
$$

for all $\left(x, \mu_{1}, \cdots, \mu_{r}\right)$ in a small neighbourhood of the origin in R^{r+1}.
Proof of $(2,1)$.

$$
[Y, Z]=X \text { or }\left[x^{k} \cdot H(x, \mu) \frac{\partial}{\partial x}, x^{k} \cdot f(x, \mu) \frac{\partial}{\partial x}\right]=x^{l} \cdot g(x, \mu) \frac{\partial}{\partial x}
$$

is equivalent with

$$
\begin{aligned}
& x^{k} \cdot H(x, \mu) \cdot {\left[k \cdot x^{k-1} \cdot f(x, x)+x^{k} \frac{\partial f}{\partial x}(x u)\right] } \\
&-x^{k} \cdot f(x, \mu)\left[k \cdot x^{k-1} \cdot H(x, \mu)+x^{k} \frac{\partial H}{\partial x}(x, \mu)\right]=x^{l} \cdot g(x, \mu) .
\end{aligned}
$$

The terms with $x^{2 k-1}$ cancel and $l \geqq 2 k$, so we can devide by $x^{2 k}$ and obtain:

$$
H(x, \mu) \cdot \frac{\partial f}{\partial x}(x, \mu)-f(x, \mu) \frac{\partial H}{\partial x}(x, \mu)=x^{l-2 k} \cdot g(x, \mu)
$$

Restricting ourselfs to a small neighbourhood of the origin in the (x, μ) space, we may devide by f and obtain:

$$
\frac{\partial H}{\partial x}(x, \mu)=\frac{\frac{\partial f}{\partial x}(x, \mu)}{f(x, \mu)} \cdot H(x, \mu)-x^{l-2 k} \cdot \frac{g(x, \mu)}{f(x, \mu)}
$$

This is an ordinary differential equation depending on the parameters $\mu=\left(\mu_{1}, \cdots, \mu_{r}\right)$. Hence, by the existence and smoothness of solutions of differential equations depending on parameters, it follows that there is a function H which has the required properties.

Proof of Lemma 3. For X and p as in the statement of the lemma (i.e. $j^{3}(X)(p)=0$) we can find, using local coordinates and lemma 2, a neighbourhood U of p in M and vectorfields on $M Y_{1}, \cdots Y_{q}$ and Z_{1}, \cdots, Z_{q} such that

$$
X\left|U=\sum_{i}\left[Y_{i}, Z_{i}\right]\right| U
$$

and

$$
j^{1}\left(Y_{i}\right)(p)=0, \quad j^{1}\left(Z_{i}\right)(p)=0 \text { for all } i=1, \cdots, q
$$

Let $D: \chi(M) \rightarrow \chi(M)$ be any derivation. It follows from Lemma 1 that

$$
D(X)(p)=D\left(\sum_{i}\left[Y_{i}, Z_{i}\right]\right)(p)
$$

By the definition of derivation, this last expression equals

$$
\sum_{i}\left[D\left(Y_{i}\right), Z_{i}\right](p)+\sum_{i}\left[Y_{i}, D\left(Z_{i}\right)\right](p)
$$

which is zero because the 1-jets of Y_{i} and Z_{i} are zero in p. This proves lemma 3.

Proof of Lemma 4. For D_{U} and $U \subset \boldsymbol{R}^{n}$ as in the statement of Lemma 4 and x_{1}, \cdots, x_{n} coordinates on R^{n}, we define the functions $D_{i j}: U \rightarrow \boldsymbol{R}$, $i, j=1, \cdots, n$ by

$$
D_{U}\left(\frac{\partial}{\partial x_{i}}\right)=\sum D_{i j} \frac{\partial}{\partial x_{j}}
$$

We know that

$$
\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right] \equiv 0
$$

for all i, j so

$$
\begin{aligned}
0 \equiv D_{U}\left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right]=\left[D_{U}\left(\frac{\partial}{\partial x_{i}}\right), \frac{\partial}{\partial x_{j}}\right] & +\left[\frac{\partial}{\partial x_{i}}, D_{U}\left(\frac{\partial}{\partial x_{j}}\right)\right] \\
& =-\sum_{h} \frac{\partial D_{i h}}{\partial x_{j}} \frac{\partial}{\partial x_{h}}+\sum_{h} \frac{\partial D_{j h}}{\partial x_{i}} \frac{\partial}{\partial x_{h}} .
\end{aligned}
$$

Hence, for all i, j, h, we have

$$
\frac{\partial D_{i h}}{\partial x_{j}}=\frac{\partial D_{j h}}{\partial x_{i}}
$$

as U is 1 -connected, there are functions $\bar{D}_{h}: Y \rightarrow \boldsymbol{R}, h=1, \cdots, n$ such that

$$
\frac{\partial \bar{D}_{h}}{\partial x_{i}}=-D_{i h}
$$

Now we define $\bar{Z} \in \chi(U)$

$$
\bar{Z}=\sum \bar{D}_{h} \frac{\partial}{\partial x_{i}}
$$

From the above construction it follows that we have for each

$$
i=1, \cdots, n: D_{U}\left(\frac{\partial}{\partial x_{i}}\right)=\left[\bar{Z}, \frac{\partial}{\partial x_{i}}\right]
$$

Now we define the derivation

$$
D_{U}^{1}: \chi(U) \rightarrow \chi(U) \text { by } D_{U}^{1}(X)=D_{U}(X)-[\bar{Z}, X]
$$

clearly

$$
D_{U}^{1}\left(\frac{\partial}{\partial x_{i}}\right) \equiv 0
$$

for all i.
Next we define the functions $D_{i j k}: U \rightarrow R, i, j, k=1, \cdots, n$ by

$$
D_{U}^{1}\left(x_{i} \frac{\partial}{\partial x_{j}}\right)=\sum D_{i j k} \frac{\partial}{\partial x_{k}}
$$

First we show that all these functions are constant: as

$$
\left[\frac{\partial}{\partial x_{i}}, x_{j} \frac{\partial}{\partial x_{k}}\right]=\delta_{i j} \frac{\partial}{\partial x_{k}}
$$

we have

$$
\begin{aligned}
& 0 \equiv D_{U}^{1}\left[\frac{\partial}{\partial x_{i}}, x_{j} \frac{\partial}{\partial x_{k}}\right]=\left[D_{U}^{1}\left(\frac{\partial}{\partial x_{i}}\right), x_{j} \frac{\partial}{\partial x_{k}}\right] \\
&+\left[\frac{\partial}{\partial x_{i}}, D_{U}^{1}\left(x_{j} \frac{\vartheta}{\partial x_{k}}\right)\right]=\sum \frac{\partial D_{j k h}}{\partial x_{i}} \frac{\partial}{\partial x_{h}} .
\end{aligned}
$$

Hence, for all i, j, k, h,

$$
\frac{\partial D_{j k h}}{\partial x_{i}} \equiv 0
$$

so the functions $D_{j k h}$ must be constant (because U is connected). We de-
note these constans by $c_{j k h}$. Next we want to show that
a) $c_{i j k}=0$ whenever $j \neq k$ and
b) $c_{i j j}=c_{i k k}$ for all i, j, k.

To prove this we observe that

$$
\left[x_{i} \frac{\partial}{\partial x_{j}}, x_{k} \frac{\partial}{\partial x_{l}}\right]=\delta_{j k} x_{i} \frac{\partial}{\partial x_{l}}-\delta_{l i} x_{k} \frac{\partial}{\partial x_{j}}
$$

Applying D_{U}^{1} to this, we obtain

$$
\delta_{j k} \sum_{h} c_{i l h} \frac{\partial}{\partial x_{h}}-\delta_{l i} \sum_{h} c_{k j h} \frac{\partial}{\partial x_{h}}=c_{i j k} \frac{\partial}{\partial x_{l}}-c_{k l i} \frac{\partial}{\partial x_{j}} \ldots *
$$

If we take in * $k \neq l=j=i$ (this assumes that the dimension $n \neq 1$ because for $n=1$ we cannot take $k \neq l$; if $n=1$ however a) and b) above are trivially true) we obtain:

$$
-\sum_{h} c_{k l h} \frac{\partial}{\partial x_{h}}=c_{l l k} \frac{\partial}{\partial x_{l}}-c_{k l l} \frac{\partial}{\partial x_{l}}
$$

from which it follows that $c_{k l h}=0$ if $l \neq h$ which proves a) above.
Next we take in $* k \neq j$ and $l=i$ and obtain (using the above result):

$$
\begin{gathered}
-c_{k j j} \frac{\partial}{\partial x_{j}}=-c_{k l l} \frac{\partial}{\partial x_{j}} \text { and hence: } \\
\left.c_{k j j}=c_{k l l} \text { if } k \neq j, \text { which implies } b\right) .
\end{gathered}
$$

From the above calculations it follows that for all i, j,

$$
D_{U}^{1}\left(x_{i} \frac{\partial}{\partial x_{j}}\right)=\left[\sum_{h} c_{h h h} \frac{\partial}{\partial x_{h}}, x_{i} \frac{\partial}{\partial x_{j}}\right]
$$

We now define $Z \in \chi(U)$ by

$$
Z=\bar{Z}+\sum_{h} c_{h h h} \frac{\partial}{\partial x_{h}}
$$

and observe that for all i, j,

$$
D_{U}\left(\frac{\partial}{\partial x_{i}}\right)=\left[Z, \frac{\partial}{\partial x_{i}}\right] \text { and } D_{U}\left(x_{i} \frac{\partial}{\partial x_{j}}\right)=\left[Z, x_{i} \frac{\partial}{\partial x_{j}}\right]
$$

it is not hard to see that Z is uniquely determined by these properties. In order to complete the proof of this lmma we have to show that the derivation D_{U}^{2}, defined by $D_{U}^{2}(X)=D_{U}(X)-[Z, X]$ is identically zero:

Sub-Lemma (4.1). Let D_{U} and $U \subset R^{n}$ be as in Lemma 4. If, for all i, j,

$$
D_{U}\left(\frac{\partial}{\partial x_{i}}\right) \equiv 0 \text { and } D_{U}\left(x_{i} \frac{\partial}{\partial x_{j}}\right) \equiv 0
$$

then $D_{U}(X) \equiv 0$ for all $X \in \chi(U)$.
Proof of (4.1) We define the functions $D_{i j k l}: U \rightarrow \boldsymbol{R}$ by

$$
D_{U}\left(x_{i} x_{j} \frac{\partial}{\partial x_{k}}\right)=\sum D_{i j k l} \frac{\partial}{\partial x_{l}}
$$

To prove that these functions are all constant one can proceed just as in the case with $D_{i j k}$ above, but now we use the fact that

$$
D_{U}\left(\left[\frac{\partial}{\partial x_{i}}, x_{j} x_{k} \frac{\partial}{\partial x_{l}}\right]\right) \equiv 0
$$

we omit the computation. We denote the corresponding constants again by $c_{i j k l}$. Next we observe that

$$
\left[\sum_{h} x_{h} \frac{\partial}{\partial x_{h}}, x_{i} x_{j} \frac{\partial}{\partial x_{k}}\right]=x_{i} x_{j} \frac{\partial}{\partial x_{k}}
$$

applying D_{U} to this we obtain:

$$
\left[\sum_{h} x_{h} \frac{\partial}{\partial x_{h}}, \sum_{l} c_{i j k l} \frac{\partial}{\partial x_{l}}\right]=\sum c_{i j k l} \frac{\partial}{\partial x_{l}}, \text { or }-\sum_{l} c_{i j k l} \frac{\partial}{\partial x_{l}}=\sum c_{i j k l} \frac{\partial}{\partial x_{l}}
$$

hence all the constants $c_{i j k l}$ are zero. In the same way one can show that

$$
D_{U}\left(x_{i} x_{j} x_{k} \frac{\partial}{\partial x_{l}}\right) \equiv 0
$$

for all i, j, k, l. Finally, we apply lemma 3 to obtain the proof: Let $X \in \chi(U)$ and $p \in U$, we want to show $D_{U}(X)(p)=0$. There is a vectorfield $\hat{X} \in \chi(U)$ such that the coefficient functions of \hat{X} are polynomials of degree $\leqq 3$ and such that $j^{3}(X)(p)=j^{3}(\hat{X})(p)$. By our previous computations we have $D_{U}(X) \equiv 0$ and by lemma 3 we have $D(X)(p)=$ $D(\widehat{X})(p)$; hence $D_{U}(X)(p)=0$, this proves (4.1).

Proof of the Theorem. For a given derivation $D: \chi(M) \rightarrow \chi(M)$ and an open $U \subset M$, we get an induced derivation $D_{U}: \chi(U) \rightarrow \chi(U)$. This D_{U} is constructed as follows:

For $X \in \chi(U)$ an $p \in U$ one defines $D_{U}(X)(p)$ to be $D(X)(p)$, where $\tilde{X} \in \chi(M)$ is some vectorfield which equals X on some open neighbourhood of p. Clearly $D_{U}(X)(p)$ is well defined (by Lemma 1) and D_{U} is a derivation on $\chi(U)$.

Now we take an atlas $\left\{U_{i}, \varphi_{i}\left(U_{i}\right) \rightarrow \boldsymbol{R}^{n}\right\}$ of M such that each U_{i} is connected and simply connected. Using the coordinates $x_{j} \varphi_{i}$ on each U_{i} we can apply Lemma 4 to each $D_{U_{i}}$ and obtain on each U_{i} a vectorfield $Z_{i} \in \chi\left(U_{i}\right)$ such that $D_{U_{i}}(X)=\left[Z_{i}, X\right]$ for each $X \in \chi\left(U_{i}\right)$.

As $D_{U_{i}}$ and $D_{U_{j}}$ both restricted to $U_{i} \cap U_{j}$ are equal, Z_{i} and Z_{j} both restricted to $U_{i} \cap U_{j}$ also have to be equal. Hence there is a vectorfleld $Z \in \chi(M)$ such that for each $i, Z_{i}=Z \mid U_{i}$. It follows easily that, for each $X \in \chi(M), D(X)=[Z, X]$.

3. Remark

One can also take, instad of $\chi(M)$, the set of vectorfields which respect a certain given structure. To be more explicit, let ω be a differential form on M defining a symplectic structure or a volume structure, and let $\chi_{\omega}(M)$ be the Lie-algebra of those vectorfields X for which $L_{X} \omega \equiv 0$ (L_{X} means : Lie derivative with respect to X). Now one can ask again whether every derivation $D: \chi_{\omega}(M) \rightarrow \chi_{\omega}(M)$ is induced by a vectorfield $Z \in \chi_{\omega}(M)$. This is in general not the case. Take for example $M=\mathrm{e}^{n}$ and $\omega=d x_{1} \wedge \cdots \wedge d x_{n}$ the usual volume form and

$$
Z=\sum_{i=1}^{\infty} x_{i} \frac{\partial}{\partial x_{i}}
$$

Then $Z \notin \chi_{\omega}\left(\boldsymbol{R}^{n}\right)$ but for each $X \in \chi_{\omega}\left(\boldsymbol{R}^{n}\right),[Z, X] \in \chi_{\omega}\left(\boldsymbol{R}^{n}\right)$; so ' $[Z,-]$ ' is a derivation on $\chi_{\omega}\left(\boldsymbol{R}^{n}\right)$. This derivation cannot be induced by any $Z^{\prime} \in \chi_{\omega}\left(\boldsymbol{R}^{n}\right)$.

REFERENCES

M. Gel'fand and D. B. Fuks
[1] Cohomologies of Lie algebra of tangential vectorfields of a smooth manifold, Funksional'nyi Analiz i Ego Pritozheniya 3 (1969) pp. 32-52. (translation: Functional Analysis and its applications 3 (1969), pp. 194-210.
(Oblatum 3-VIII-1972)
Mathematisch Instituut Postbus 800 GRONINGEN (The Netherlands).

[^0]: * During the preparation of this paper, the author was a visiting member of the Mathematical Institute of the University of Strasbourg.

