COMPOSITIO MATHEMATICA

FLORIS TAKENS Derivations of vector fields

Compositio Mathematica, tome 26, nº 2 (1973), p. 151-158 <http://www.numdam.org/item?id=CM_1973__26_2_151_0>

© Foundation Compositio Mathematica, 1973, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DERIVATIONS OF VECTOR FIELDS

by

Floris Takens*

1. Statement of the result

Let *M* be a differentiable, i.e. C^{∞} , manifold. We denote the Lie-algebra of C^{∞} vectorfields on *M* by $\chi(M)$. A map $D : \chi(M) \to \chi(M)$ is called a *derivation* if *D* is **R**-linear and if D([X, Y)] = [D(X), Y] + [X, D(Y)] for all *X*, $Y \in \chi(M)$. It is clear that every $X \in \chi(M)$ defines a derivation DX : DX(Y) = [X, Y]. In this note we want to show that every derivation can be obtained in this way.

THEOREM. For each derivation $D : \chi(M) \to \chi(M)$ there is a vectorfield $Z \in \chi(M)$, such that for each $X \in \chi(M)$, D(X) = [Z, X].

This theorem has a certain relation with recent work of M. Gel'fand, D. B. Fuks, and others [1] on the cohomology of Lie-algebras of smooth vectorfields, because it implies that $H^1(\chi(M); \chi M)) = 0$; $H^1(\chi(M);$ $\chi(M))$ being the first cohomology group of $\chi(M)$ with coefficient in $\chi(M)$ with the adjoined representation (this was pointed out to me by M. Hazewinkel). There is however one difference in their approach: in defining their cohomology they only use cochains which are continuous mappings (with respect to the C^{∞} topology). It is however not difficult to show that the nullety of $H^1(\chi(M); \chi(M))$ follows from our theorem in either case.

The theorem will follow from the following lemmas:

LEMMA 1. Let $D: \chi(M) \to \chi(M)$ be a derivation and let $X \in \chi(M)$ be zero on some open subset $U \subset M$. Then $D(X)|U \equiv 0$.

LEMMA 2. Let $X \in \chi(\mathbb{R}^n)$ be a vector field on \mathbb{R}^n with $j^3(X)(0) = 0$, i.e. the 3-jet of each of the component functions of X is zero in the origin. Then there are vector fields $Y_1, \dots, Y_q Z_1, \dots, Z_q$ and there is a neighbourhood U of the origin in \mathbb{R}^n such that:

$$X|U = \sum_{i} [Y_{i}, Z_{i}]|U \text{ and}$$

$$j^{1}(Y_{i})(0) = 0, \ j^{1}(Z_{i})(0) = 0 \text{ for all } i = 1, \dots, q.$$

* During the preparation of this paper, the author was a visiting member of the Mathematical Institute of the University of Strasbourg.

LEMMA 3. Let $D: \chi(M) \to \chi(M)$ be a derivation and let $X \in \chi(M)$ and $p \in M$ be such that $j^3(X)(p) = 0$. Then D(X)(p) = 0. In other words, DX(p) is determined by $j^3(X)(p)$, also if $j^3(X)(p) \neq 0$.

Lemma 3 will be derived from the lemmas 1 and 2. Finally we shall use lemma 3 to derive:

LEMMA 4. Let $U \subset \mathbb{R}^n$ be an open connected and simply connected set and let $D_U : \chi(U) \to \chi(U)$ be a derivation. Then there is a unique vectorfield $Z \in \chi(U)$ such that $D_U(X) = [Z, X]$ for all $X \in \chi(U)$.

Finally, we shall see that the theorem follows from lemma 1 and lemma 4.

2. The Proofs

PROOF OF LEMMA 1. Suppose $X|U \equiv 0$ and $D(X)(q) \neq 0$ for some point $q \in U$. We take a vectorfield $Y \in \chi(M)$ such that $\sup(Y) \subset U$ and $[D(X), Y](q) \neq 0$. By definition we have D[X, Y] = [DX, Y] + [X, DY]; evaluating this in q we get $0 = [DX, Y](q) \neq 0$, which contracts our assumption. Hence the lemma is proved.

PROOF OF LEMMA 2. It is clearly enough to show the lemma for the case

$$X = X(x_1, \cdots, x_n) \frac{\partial}{\partial x_1},$$

with $j^{3}(X)(0) = 0$. Such vectorfields can be written as a finite sum of vectorfields of the following two types: type I:

$$\widetilde{X} = x_1^{m_1} \cdot \cdots \cdot x_n^{m_n} \cdot \alpha(x_2, \cdots, x_n) \frac{\partial}{\partial x_1},$$

with $\sum m_i \ge 4$ and α a C^{∞} function; type II:

$$\widetilde{X} = x_1^4 \cdot g(x_1, \cdots, x_n) \frac{\partial}{\partial x_1}$$

with $g \neq C^{\infty}$ function.

To prove the lemma we show that each vectorfield, which is either of type I or of type II, can be written as the Lie-product of two vedtorfields with zero 1-jet in the origin. For \tilde{X} of type I as above, we observe that

$$\widetilde{X} = \left[\frac{1}{k_1 - h_1} \cdot x_1^{h_2} \cdot \dots \cdot x_n^{h_n} \frac{\partial}{\partial x_1}, x_1^{k_2} \cdot \dots \cdot x_n^{k_n}, \alpha(x_2, \dots, x_n) \frac{\partial}{\partial x_1}\right],$$

$$h_1 + k_1 = m_1 + 1 \text{ and } h_1 \neq k_1$$

$$h_2 + k_2 = m_2$$

$$\vdots$$

$$h_n + k_n = m_n.$$

Using the fact that $\sum m_i \ge 4$, we see that we can choose h_1, \dots, h_n , k_1, \dots, k_n so that $\sum h_i \ge 2$ and $\sum k_i \ge 2$; hence for type one we have the required Lie-product.

Suppose that that

$$\widetilde{X} = x_1^4 \cdot g(x_1, \cdots, x_n) \frac{\partial}{\partial x_1}$$

is of type II. We want to show that there is a function H, defined on a neighbourhood of the origin in \mathbb{R}^n such that

$$\widetilde{X} = \left[x_1^2 H(x_1, \ldots, x_n) \frac{\partial}{\partial x_1}, x_1^2 \frac{\partial}{\partial x_1} \right]$$

in a neighbourhood of the origin. The existence of such H follows from

SUB-LEMMA (2.1) Let Z, X be vectorfields on \mathbb{R}^1 , which depend on real variables μ_1, \dots, μ_r , and which can be written in the form

$$Z = x^{k} \cdot f(x, \mu_{1}, \cdots, \mu_{r}) \frac{\partial}{\partial x}, \quad X = x^{l} \cdot g(x, \mu_{1}, \cdots, \mu_{r}) \frac{\partial}{\partial x}$$

where f, g are C^{∞} functions on \mathbb{R}^{r+1} (at least on a neighbourhood of the origin), $l \geq 2k$ and $f(0, 0, \dots, 0) \neq 0$.

Then there is a vectorfield Y, also depending on μ_1, \dots, μ_r , of the form

$$Y = x^{k} \cdot H(x, \mu_{1}, \cdots, \mu_{r}) \frac{\partial}{\partial x},$$

such that

$$[Y, Z] = X$$

for all (x, μ_1, \dots, μ_r) in a small neighbourhood of the origin in \mathbf{R}^{r+1} .

PROOF of (2,1).

$$[Y, Z] = X \text{ or } \left[x^k \cdot H(x, \mu) \frac{\partial}{\partial x}, \ x^k \cdot f(x, \mu) \frac{\partial}{\partial x} \right] = x^l \cdot g(x, \mu) \frac{\partial}{\partial x}$$

is equivalent with

$$x^{k} \cdot H(x, \mu) \cdot \left[k \cdot x^{k-1} \cdot f(x, x) + x^{k} \frac{\partial f}{\partial x} (x \ \mu) \right]$$
$$-x^{k} \cdot f(x, \mu) \left[k \cdot x^{k-1} \cdot H(x, \mu) + x^{k} \frac{\partial H}{\partial x} (x, \mu) \right] = x^{l} \cdot g(x, \mu).$$

The terms with x^{2k-1} cancel and $l \ge 2k$, so we can devide by x^{2k} and obtain:

$$H(x,\mu)\cdot\frac{\partial f}{\partial x}(x,\mu)-f(x,\mu)\frac{\partial H}{\partial x}(x,\mu)=x^{l-2k}\cdot g(x,\mu)$$

[3]

Restricting ourselfs to a small neighbourhood of the origin in the (x, μ) space, we may devide by f and obtain:

$$\frac{\partial H}{\partial x}(x,\mu) = \frac{\frac{\partial f}{\partial x}(x,\mu)}{f(x,\mu)} \cdot H(x,\mu) - x^{l-2k} \cdot \frac{g(x,\mu)}{f(x,\mu)}$$

This is an ordinary differential equation depending on the parameters $\mu = (\mu_1, \dots, \mu_r)$. Hence, by the existence and smoothness of solutions of differential equations depending on parameters, it follows that there is a function H which has the required properties.

PROOF OF LEMMA 3. For X and p as in the statement of the lemma (i.e. $j^3(X)(p) = 0$) we can find, using local coordinates and lemma 2, a neighbourhood U of p in M and vectorfields on $M Y_1, \dots Y_q$ and Z_1, \dots, Z_q such that

$$X|U = \sum_{i} [Y_{i}, Z_{i}]|U$$

and

$$j^{1}(Y_{i})(p) = 0, \quad j^{1}(Z_{i})(p) = 0 \text{ for all } i = 1, \dots, q.$$

Let $D: \chi(M) \to \chi(M)$ be any derivation. It follows from Lemma 1 that

$$D(X)(p) = D(\sum_{i} [Y_i, Z_i])(p).$$

By the definition of derivation, this last expression equals

$$\sum_{i} [D(Y_i), Z_i](p) + \sum_{i} [Y_i, D(Z_i)](p)$$

which is zero because the 1-jets of Y_i and Z_i are zero in p. This proves lemma 3.

PROOF OF LEMMA 4. For D_U and $U \subset \mathbb{R}^n$ as in the statement of Lemma 4 and x_1, \dots, x_n coordinates on \mathbb{R}^n , we define the functions $D_{ij}: U \to \mathbb{R}$, $i, j = 1, \dots, n$ by

$$D_U\left(\frac{\partial}{\partial x_i}\right) = \sum D_{ij}\frac{\partial}{\partial x_j}.$$

We know that

$$\left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right] \equiv 0,$$

for all *i*, *j* so

$$0 \equiv D_{U} \left[\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}} \right] = \left[D_{U} \left(\frac{\partial}{\partial x_{i}} \right), \frac{\partial}{\partial x_{j}} \right] + \left[\frac{\partial}{\partial x_{i}}, D_{U} \left(\frac{\partial}{\partial x_{j}} \right) \right]$$
$$= -\sum_{h} \frac{\partial D_{ih}}{\partial x_{j}} \frac{\partial}{\partial x_{h}} + \sum_{h} \frac{\partial D_{jh}}{\partial x_{i}} \frac{\partial}{\partial x_{h}}.$$

•

Hence, for all i, j, h, we have

$$\frac{\partial D_{ih}}{\partial x_i} = \frac{\partial D_{jh}}{\partial x_i};$$

as U is 1-connected, there are functions $\overline{D}_h: Y \to \mathbf{R}, h = 1, \dots, n$ such that

$$\frac{\partial \bar{D}_h}{\partial x_i} = -D_{ih}.$$

Now we define $\overline{Z} \in \chi(U)$

$$\overline{Z} = \sum \overline{D}_h \frac{\partial}{\partial x_i}.$$

From the above construction it follows that we have for each

$$i = 1, \cdots, n : D_U\left(\frac{\partial}{\partial x_i}\right) = \left[\overline{Z}, \frac{\partial}{\partial x_i}\right].$$

Now we define the derivation

$$D_U^1: \chi(U) \to \chi(U)$$
 by $D_U^1(X) = D_U(X) - [\overline{Z}, X];$

clearly

$$D_U^1\left(\frac{\partial}{\partial x_i}\right) \equiv 0$$

for all *i*.

Next we define the functions $D_{ijk}: U \rightarrow \mathbf{R}, i, j, k = 1, \dots, n$ by

$$D_U^1\left(x_i\frac{\partial}{\partial x_j}\right) = \sum D_{ijk}\frac{\partial}{\partial x_k}.$$

First we show that all these functions are constant: as

$$\left[\frac{\partial}{\partial x_i}, x_j \frac{\partial}{\partial x_k}\right] = \delta_{ij} \frac{\partial}{\partial x_k}$$

we have

$$0 \equiv D_U^1 \left[\frac{\partial}{\partial x_i}, x_j \frac{\partial}{\partial x_k} \right] = \left[D_U^1 \left(\frac{\partial}{\partial x_i} \right), x_j \frac{\partial}{\partial x_k} \right] \\ + \left[\frac{\partial}{\partial x_i}, D_U^1 \left(x_j \frac{\vartheta}{\partial x_k} \right) \right] = \sum \frac{\partial D_{jkh}}{\partial x_i} \frac{\partial}{\partial x_k}.$$

Hence, for all i, j, k, h,

$$\frac{\partial D_{jkh}}{\partial x_i} \equiv 0,$$

so the functions D_{jkh} must be constant (because U is connected). We de-

Floris Takens

note these constans by c_{ikh} . Next we want to show that

a)
$$c_{ijk} = 0$$
 whenever $j \neq k$ and
b) $c_{ijj} = c_{ikk}$ for all i, j, k .

To prove this we observe that

$$\left[x_i\frac{\partial}{\partial x_j}, x_k\frac{\partial}{\partial x_l}\right] = \delta_{jk}x_i\frac{\partial}{\partial x_l} - \delta_{li}x_k\frac{\partial}{\partial x_j}.$$

Applying D_U^1 to this, we obtain

$$\delta_{jk}\sum_{h}c_{ilh}\frac{\partial}{\partial x_{h}}-\delta_{li}\sum_{h}c_{kjh}\frac{\partial}{\partial x_{h}}=c_{ijk}\frac{\partial}{\partial x_{l}}-c_{kli}\frac{\partial}{\partial x_{j}}\cdots^{*}$$

If we take in $k \neq l = j = i$ (this assumes that the dimension $n \neq 1$ because for n = 1 we cannot take $k \neq l$; if n = 1 however a) and b) above are trivially true) we obtain:

$$-\sum_{h} c_{klh} \frac{\partial}{\partial x_{h}} = c_{llk} \frac{\partial}{\partial x_{l}} - c_{kll} \frac{\partial}{\partial x_{l}}$$

from which it follows that $c_{klh} = 0$ if $l \neq h$ which proves a) above.

Next we take in $k \neq j$ and l = i and obtain (using the above result):

$$-c_{kjj}\frac{\partial}{\partial x_j} = -c_{kll}\frac{\partial}{\partial x_j} \text{ and hence:}$$
$$c_{kjj} = c_{kll} \text{ if } k \neq j, \text{ which implies } b\text{).}$$

From the above calculations it follows that for all i, j,

$$D_U^1\left(x_i\frac{\partial}{\partial x_j}\right) = \left[\sum_h c_{hhh}\frac{\partial}{\partial x_h}, x_i\frac{\partial}{\partial x_j}\right].$$

We now define $Z \in \chi(U)$ by

$$Z = \overline{Z} + \sum_{h} c_{hhh} \frac{\partial}{\partial x_{h}}$$

and observe that for all i, j,

$$D_U\left(\frac{\partial}{\partial x_i}\right) = \left[Z, \frac{\partial}{\partial x_i}\right] \text{ and } D_U\left(x_i \frac{\partial}{\partial x_j}\right) = \left[Z, x_i \frac{\partial}{\partial x_j}\right];$$

it is not hard to see that Z is uniquely determined by these properties. In order to complete the proof of this lmma we have to show that the derivation D_U^2 , defined by $D_U^2(X) = D_U(X) - [Z, X]$ is identically zero:

156

SUB-LEMMA (4.1). Let D_U and $U \subset \mathbb{R}^n$ be as in Lemma 4. If, for all i, j,

$$D_U\left(\frac{\partial}{\partial x_i}\right) \equiv 0 \text{ and } D_U\left(x_i\frac{\partial}{\partial x_j}\right) \equiv 0$$

then $D_U(X) \equiv 0$ for all $X \in \chi(U)$.

PROOF of (4.1) We define the functions $D_{ijkl}: U \to \mathbf{R}$ by

$$D_U\left(x_i x_j \frac{\partial}{\partial x_k}\right) = \sum D_{ijkl} \frac{\partial}{\partial x_l}.$$

To prove that these functions are all constant one can proceed just as in the case with D_{iik} above, but now we use the fact that

$$D_{U}\left(\left[\frac{\partial}{\partial x_{i}}, x_{j}x_{k}\frac{\partial}{\partial x_{l}}\right]\right) \equiv 0;$$

we omit the computation. We denote the corresponding constants again by c_{ijkl} . Next we observe that

$$\left[\sum_{h} x_{h} \frac{\partial}{\partial x_{h}}, x_{i} x_{j} \frac{\partial}{\partial x_{k}}\right] = x_{i} x_{j} \frac{\partial}{\partial x_{k}};$$

applying D_U to this we obtain:

$$\left[\sum_{h} x_{h} \frac{\partial}{\partial x_{h}}, \sum_{l} c_{ijkl} \frac{\partial}{\partial x_{l}}\right] = \sum_{l} c_{ijkl} \frac{\partial}{\partial x_{l}}, \text{ or} - \sum_{l} c_{ijkl} \frac{\partial}{\partial x_{l}} = \sum_{l} c_{ijkl} \frac{\partial}{\partial x_{l}};$$

hence all the constants c_{ijkl} are zero. In the same way one can show that

$$D_U\left(x_i \, x_j \, x_k \frac{\partial}{\partial x_l}\right) \equiv 0$$

for all i, j, k, l. Finally, we apply lemma 3 to obtain the proof: Let $X \in \chi(U)$ and $p \in U$, we want to show $D_U(X)(p) = 0$. There is a vectorfield $\hat{X} \in \chi(U)$ such that the coefficient functions of \hat{X} are polynomials of degree ≤ 3 and such that $j^3(X)(p) = j^3(\hat{X})(p)$. By our previous computations we have $D_U(X) \equiv 0$ and by lemma 3 we have D(X)(p) = $D(\hat{X})(p)$; hence $D_U(X)(p) = 0$, this proves (4.1).

PROOF OF THE THEOREM. For a given derivation $D: \chi(M) \to \chi(M)$ and an open $U \subset M$, we get an induced derivation $D_U: \chi(U) \to \chi(U)$. This D_U is constructed as follows:

For $X \in \chi(U)$ an $p \in U$ one defines $D_U(X)(p)$ to be D(X)(p), where $\tilde{X} \in \chi(M)$ is some vectorfield which equals X on some open neighbourhood of p. Clearly $D_U(X)(p)$ is well defined (by Lemma 1) and D_U is a derivation on $\chi(U)$.

[7]

Floris Takens

Now we take an atlas $\{U_i, \varphi_i(U_i) \to \mathbb{R}^n\}$ of M such that each U_i is connected and simply connected. Using the coordinates $x_j\varphi_i$ on each U_i we can apply Lemma 4 to each D_{U_i} and obtain on each U_i a vectorfield $Z_i \in \chi(U_i)$ such that $D_{U_i}(X) = [Z_i, X]$ for each $X \in \chi(U_i)$.

As D_{U_i} and D_{U_j} both restricted to $U_i \cap U_j$ are equal, Z_i and Z_j both restricted to $U_i \cap U_j$ also have to be equal. Hence there is a vectorfield $Z \in \chi(M)$ such that for each $i, Z_i = Z|U_i$. It follows easily that, for each $X \in \chi(M)$, D(X) = [Z, X].

3. Remark

One can also take, instad of $\chi(M)$, the set of vectorfields which respect a certain given structure. To be more explicit, let ω be a differential form on M defining a symplectic structure or a volume structure, and let $\chi_{\omega}(M)$ be the Lie-algebra of those vectorfields X for which $L_X \omega \equiv 0$ $(L_X \text{ means} : \text{Lie derivative with respect to } X)$. Now one can ask again whether every derivation $D : \chi_{\omega}(M) \to \chi_{\omega}(M)$ is induced by a vectorfield $Z \in \chi_{\omega}(M)$. This is in general not the case. Take for example $M = e^n$ and $\omega = dx_1 \wedge \cdots \wedge dx_n$ the usual volume form and

$$Z = \sum_{i=1}^{\infty} x_i \frac{\partial}{\partial x_i}.$$

Then $Z \notin \chi_{\omega}(\mathbb{R}^n)$ but for each $X \in \chi_{\omega}(\mathbb{R}^n)$, $[Z, X] \in \chi_{\omega}(\mathbb{R}^n)$; so '[Z, -]' is a derivation on $\chi_{\omega}(\mathbb{R}^n)$. This derivation cannot be induced by any $Z' \in \chi_{\omega}(\mathbb{R}^n)$.

REFERENCES

M. GEL'FAND and D. B. FUKS

 Cohomologies of Lie algebra of tangential vectorfields of a smooth manifold, Funksional'nyi Analiz i Ego Pritozheniya 3 (1969) pp. 32-52. (translation: Functional Analysis and its applications 3 (1969), pp. 194-210.

(Oblatum 3-VIII-1972)

Mathematisch Instituut Postbus 800 GRONINGEN (The Netherlands).