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1. Statement of the result

Let M be a differentiable, i.e. Coo, manifold. We denote the Lie-algebra
of Coo vectorfields on M by x(M). A map D : x(M) - ~(M) is called a
derivation if D is R-linear and if D([X, Y)] = [D(X), Y]+ [X, D(Y)] for
all X, Y e x(M). It is clear that every X e x(M) defines a derivation
DX : DX(Y) = [X, Y]. In this note we want to show that every derivation
can be obtained in this way.

THEOREM. For each derivation D : ~(M) ~ x(M) there is a vectorfield
Z E x(M), such that for each X E ~(M), D(X) = [Z, X].

This theorem has a certain relation with recent work of M. Gel’fand,
D. B. Fuks, and others [1 ] on the cohomology of Lie-algebras of smooth
vectorfields, because it implies that H’(x(M); xM)) = 0; Hl(x(M);
x(M)) being the first cohomology group of x(M) with coefficient in
x(M) with the adjoined representation (this was pointed out to me by
M. Hazewinkel). There is however one difference in their approach: in
defining their cohomology they only use cochains which are continuous
mappings (with respect to the Co topology). It is however not difficult
to show that the nullety of H1(x(M); x(M)) follows from our theorem in
either case.

The theorem will follow from the following lemmas:

LEMMA 1. Let D : ~(M) ~ x(M) be a derivation and let X E x(M) be
zero on some open subset U c M. Then D(X)l U ~ 0.

LEMMA 2. Let X E x(R") be a vectorfield on Rn withj3(X)(0) = 0, i.e. the
3-jet of each of the component functions of X is zero in the origin. Then
there are vectorfields Y,, - - -, Yq Zi, Zq and there is a neighbourhood
U of the origin in Rn such that:

* During the preparation of this paper, the author was a visiting member of the
Mathematical Institute of the University of Strasbourg.
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LEMMA 3. Let D : ~(M) ~ x(M) be a derivation and let X E X(M) and
p e M be such that j3(X)(p) = 0. Then D(X)(p) = 0. In other words,
DX(p) is determined by j3(X)(p), also ifj3(X)(p) :/= 0.
Lemma 3 will be derived from the lemmas 1 and 2. Finally we shall use

lemma 3 to derive:

LEMMA 4. Let U e R" be an open connected and simply connected set
and let Du : ~(U) ~ x(U) be a derivation. Then there is a unique vector-
field Z E x(U) such that Du(X) = [Z, X] for all X e x(U).

Finally, we shall see that the theorem follows from lemma 1 and

lemma 4.

2. The Proofs

PROOF OF LEMMA 1. Suppose X) U = 0 and D(X)(q) :0 0 for some
point q E U. We take a vectorfield Y E x(M) such that sup(Y) c U and
[D(X), Y](q) ~ 0. By definition we have D[X, Y] = [DX, Y]+ [X, DY] ;
evaluating this in q we get 0 = [DX, Y](q) e 0, which contracts our
assumption. Hence the lemma is proved.
PROOF OF LEMMA 2. It is clearly enough to show the lemma for the case

with j3(X)(0) = 0. Such vectorfields can be written as a finite sum of
vectorfields of the following two types:
type 1:

with 03A3mi ~ 4 and a a C°° function;
type II:

with g a C°° function. 
To prove the lemma we show that each vectorfield, which is either of

type I or of type II, can be written as the Lie-product of two vedtorfields
with zero 1-jet in the origin. For X of type I as above, we observe that



153

Using the fact that 03A3mi ~ 4, we see that we can choose h1, ···, hn,
k1, ..., kn so that 03A3hi ~ 2 and 03A3ki ~ 2; hence for type one we have the
required Lie-product.
Suppose that that

is of type II. We want to show that there is a function H, defined on a

neighbourhood of the origin in Rn such that

in a neighbourhood of the origin. The existence of such H follows from

SUB-LEMMA (2.1) Let Z, X be vectorfields on R’, which depend on real
variables Ill’ ..., 03BCr, and which can be written in the form

where f, g are COO functions on Rr+1 (at least on a neighbourhood of the
origin), 1 ~ 2k and f(0, )0, ..., 0) i= 0.
Then there is a vectorfield Y, also depending on 03BC1, ···, Ilr, of the form

such that

for all (x, 03BC1, ···, Ilr) in a small neighbourhood of the origin in Rr+1.

PROOF of (2,1).

is equivalent with

The terms with x2k-1 cancel and 1 &#x3E; 2k, so we can devide by x2k and
obtain:
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Restricting ourselfs to a small neighbourhood of the origin in the (x, p)
space, we may devide by f and obtain:

This is an ordinary differential equation depending on the parameters
Il = (03BC1, ···, Il,). Hence, by the existence and smoothness of solutions
of differential equations depending on parameters, it follows that there
is a function H which has the required properties.

PROOF OF LEMMA 3. For X and p as in the statement of the lemma

(i.e. j3(X)(p) = 0) we can find, using local coordinates and lemma 2, a
neighbourhood U of p in M and vectorfields on M Y1"" Yq and
Z1, ’ ’ ’ , Zq such that

and

Let D : ~(M) ~ x(M) be any derivation. It follows from Lemma 1 that

By the definition of derivation, this last expression equals

which is zero because the 1-jets of Yi and Zi are zero in p. This proves
lemma 3.

PROOF OF LEMMA 4. For Du and U c R" as in the statement of Lemma
4 and x1, ···, xn coordinates on R", we define the functions Dij : U ~ R,
i, j = 1, ···, n by

We know that

for all i, j so
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Hence, for all i, j, h, we have

as U is 1-connected, there are functions Dh : Y - R, h = 1, ..., n such
that

Now we define Z e x (U)

From the above construction it follows that we have for each

Now we define the derivation

clearly

for all i.

Next we define the functions

First we show that all these functions are constant: as

we have

Hence, for all i, j, k, h,

so the functions Djkh must be constant (because U is connected). We de-
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note these constans by Cjkl,. Next we want to show that

To prove this we observe that

Applying Dl to this, we obtain

If we take in * k ~ l = j = i (this assumes that the dimension n ~ 1

because for n = 1 we cannot take k ~ 1 ; if n = 1 however a) and b)
above are trivially true) we obtain:

from which it follows that Cklh = 0 if 1 ~ h which proves a) above.
Next we take in * k ~ j and 1 = i and obtain (using the above result) :

From the above calculations it follows that for all i, j

We now define Z e x(U) by

and observe that for all i, j,

it is not hard to see that Z is uniquely determined by these properties.
In order to complete the proof of this Imma we have to show that the
derivation DÛ, defined by D2U(X) = Du(() - [Z, X] is identically zero:
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SUB-LEMMA (4.1). Let Du and U c Rn be as in Lemma 4. If, for all i, j,

then Du(X) ~ 0 for all X E x(U).
PROOF of (4.1) We define the functions Dijkl : U ~ R by

To prove that these functions are all constant one can proceed just as in
the case with Dijk above, but now we use the fact that

we omit the computation. We denote the corresponding constants again
by Cijkl’ Next we observe that

applying Du to this we obtain:

hence all the constants cijk, are zero. In the same way one can show that

for all i, j, k, l. Finally, we apply lemma 3 to obtain the proof: Let
X e x(U) and p E U, we want to show Du(X)(p) = 0. There is a vector-
field X E x(U) such that the coefficient functions of X are polynomials of
degree ~ 3 and such that j3(X)(p) = j3()(p). By our previous compu-
tations we have Du(X) ~ 0 and by lemma 3 we have D(X)(p) =
D(X )(p); hence Du(X)(p) = 0, this proves (4.1).
PROOF oF THE THEOREM. For a given derivation D : ~(M) ~ x(M)

and an open U c M, we get an induced derivation Du : ~(U) ~ x(U).
This Du is constructed as follows:
For X e x(U) an p e U one defines Du(X)(p) to be D(X)(p), where

X e x(M) is some vectorfield which equals X on some open neighbour-
hood of p. Clearly Du(X)(p) is well defined (by Lemma 1) and Du is a
derivation on x(U).
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Now we take an atlas f Ui , qJi(Ui) -+ Rn} of M such that each Ui is
connected and simply connected. Using the coordinates XjqJi on each Ui
we can apply Lemma 4 to each Du, and obtain on each Ui a vectorfield
Zi E X(Ui) such that Du,(X) = [Zi, X] for each X ~ y(U,).
As DUi and DUj both restricted to Ui n Uj are equal, Zi and Zj both

restricted to Ui n Uj also have to be equal. Hence there is a vectorfleld
Z E ~(M) such that for each i, Zi = ZI Ui. It follows easily that, for each
XE x(M), D(X) = [Z, X].

3. Remark

One can also take, instad of x(M), the set of vectorfields which respect
a certain given structure. To be more explicit, let w be a differential form
on M defining a symplectic structure or a volume structure, and let
~03C9(M) be the Lie-algebra of those vectorfields X for which LX03C9 z 0
(Lx means : Lie derivative with respect to X). Now one can ask again
whether every derivation D : ~03C9(M) ~ ~03C9(M) is induced by a vectorfield
Z E xw(M). This is in general not the case. Take for example M = è"
and w = dxl 039B ··· A dx,, the usual volume form and

Then Z e yW(Rn) but for each X ~ X.(R"), [Z, X ] ~ ~03C9(Rn); so ‘[Z, - ]’
is a derivation on ~03C9(Rn). This derivation cannot be induced by any
Z’ E Xro( Rn).
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