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0. Introduction

Let F c G and H be linear spaces and F : F - H, G : G - H be linear

mappings. We shall be concerned with the eigenvalue problem

(0.1) Fy = 03BBGy, Y E F.

This eigenvalue problem was considered by Schâfke and Schneider [6]
under conditions, such that they could apply a theorem of Wielandt. The
abstract results were then applied to eigenvalue probl ems for systems of
differential equations on a compact interval, cf. [6], [7], [8].

In [4] Niessen gave a theory for singular differential systems of the form

(0.1), thereby generalizing the results of Schneider [9], [10] for certain
real systems. Both authors wished to connect a self-adjoint operator in a
Hilbert space with their problems, in order to apply the spectral theory
for such operators.

Several considerations in the papers of Niessen and Schneider are not
restricted to systems of differential equations. Indeed, we shall show that
under certain conditions one may associate a self-adjoint operator with
(0.1). Our main assumption is that there exists a linear operator B Â :
G ~ F(03BB E {i, -il) such that y = B03BBz is a solution of

(0.2) (F - ÀG)y = Gz, y E F, z E G, 03BB E {i, - i},
and such that (Bîy, z) = (y, B03BBz) for all y, z E G. This assumption then
leads to results analogous to those found by Kodaira [3], Kimura and
Takahasi [2 ], Schneider [9 ] a. o. Since G in (0.1 ) need not be injective and
since in general G will only have a semi-inner product, it is not possible to
define a maximal and a minimal operator associated with our eigenvalue
problem. However (0.2) and results in Coddington’s paper [1] enable us
to replace these notions by maximal and minimal subspaces (closed
linear manifolds) in a certain Hilbert space. Having done this we may ap-
ply Coddington’s extension theory of symmetric subspaces in order to
determine all self-adjoint subspace extensions (if there are any) of the
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minimal subspace associated with (0.1), which is symmetric. With such
a self-adjoint subspace extension one finds a self-adjoint operator in a
smaller Hilbert space. Under an additional condition the domain of this

operator is mapped bijectively onto a manifold in G.
We would like to point out that in contrast to Schâfke and Schneider

[6, cf. (2.3)] we do not restrict ourselves to so called S-hermitian eigen-
value problems, that is problems in which F and G in (o.1 ) are chosen in
such a way that one immediately obtains a self-adjoint subspace (without
having to extend the minimal subspace: minimal and maximal subspace
are equal). It was this restriction that enabled Schâfke and Schneider in
[6], [7], [8] and Niessen in [4, cf. [4.15)] to consider systems of differ-
ential equations with boundary values depending linearly on the eigen-
value parameter.
Many discussions are similar to those of Kodaira [3] and Niessen [4].

However, it seems desirable to have a theory available for eigenvalue prob-
lems of the general form (0.1), so that it can be applied to differential
equations and to systems of differential equations alike. Also one may
apply the theory to pairs of symmetric operators F and G in a Hilbert
space (cf. Coddington [ 1 ], Pleijel [5]) for which the inhomogeneous equa-
tion (0.2) can be solved under our assumptions.

In section 1 we collect certain elementary facts, which will be needed in
the sequel. Section 2 gives the main assumption and some immediate
consequences. With this we define in section 3 minimal and maximal

subspaces associated with (0.1) and we show that they are adjoint. Self-
adjoint subspace extensions of the minimal subspace are investigated in
section 4. In section 5 we consider self-adjoint subspaces associated with
(0.1), determined by boundary value operators.

1. Some algebraic properties

Let G be a linear space with semi-inner product (,). We assume G
to be complete. H is a linear space with inner product [,]. H is not neces-
sarily complete. G is a linear mapping from G into H.
Let Go be a linear manifold in G. We assume S is a linear mapping from
Go into H, such that for all u E G, v E Go

Hence for all u, v E Go it follows that

Let F’ be a linear manifold in Go, on which the linear mapping F from F’
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into H is defined. The linear manifold F c F’ is defined by

For all A E C we define the linear manifold E03BB c F by

On F’ we define the sesqui-linear form ,&#x3E; by

then

PROOF. Since Fyi = G(zi + 03BBiyi)(i = 1, 2) it follows that

(1.2) COROLLARY.

We define the linear manifold N c G by

(1.3) THEOREM. Let GN = {0}. If E03BB0 n N = {0} for some Ao E C, then

PROOF. Let YEN ~ E03BB, then Gy = 0 and

This implies y E E03BB0. Hence y = 0.

(1.4) ASSUMPTION. For all 03BB e C: N n Ea = {0}. 1) The linear manifold
Fo is defined by

In general Fo will be properly included in F. Let F be a linear manifold in
F such that y, z) = 0 for all y, z E F, i.e. (F)o = F. In this case we
define ËÂ : = Eg n F.

1 In the following sections it suffices to assume this only holds for A c- {i, -i}.
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(1.5) THEOREM. If y E 03BB(y ~ 0) then A E R. If yi E 03BBi(i = 1, 2) and
03BB1 ~ Â2 then (Yi’ Y2) = 0.

PROOF. Let y E Ë)., then Fy = ÂGy, thus

and the left side of this equality is real. Aàso by (1.4) [Gy, Sy] &#x3E; 0 and

hence À e R. The remaining part of (1.5) follows from (1.1) with z, = z2
= 0.

(1.6) COROLLARY. Let Fo = F. If y E E03BB(y ~ 0) then 03BB E R. If
Yi E E03BBi(i = 1, 2) and 03BB1 ~ 03BB2 then (y1, Y2) = 0.

(1.7) COROLLARY. If y E F, z E G and for some A E C

then

for all w ~ 03BB.
PROOF. For w ~ 03BB we have [Fy, Sw]-03BB[Gy, Sw] = [Gz, Sw]. Also

[Fy, Sw] = [Sy, Fw] = À[Gy, Sw]. Hence [Gz, Sw] = 0 for all w E 03BB.

2. Main assumption

(2.1 ) ASSUMPTION. For 03BB E {i, - i} we assume the existence of a linear
mapping B03BB : G ~ F such that

(2.2) REMARK. B03BB N c N.

(2.3) REMARK. If BÀ, : G -+ F only satisfies (2.1) (a) then by (1.1)

Hence (2.1) (b) is equivalent to:

Note that if Fo = F then (B;.Y, B03BBz~ = 0 for all y, z E G, A E {i, -i} and
therefore (2.1 ) (b) is satisfied.

PROOF. If B03BBy = 0 then Gy = 0 by (2.1)(a). Now assume Gy = 0, then
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B03BBy ~ E03BB by (2.1) (a) and by (2.1) (b)

for all z E G. Hence B,,y E N ~ E03BB and B03BBy = 0 by (1.4).

PROOF. If y e F then there exists z e G, Fy = Gz. Define g : = z-03BBy
then (F-ÀG)y = Gz-03BBGy = Gg. Therefore

Conversely, if g ~ G and y03BB E E;., then B03BBg+y03BB E F. Assume y E B03BBG nE;.,
then y = BÂg, g E G and

Therefore y = B;.g = 0 by (2.4).

PROOF. From (1.1) we deduce

According to theorem (2.5):

Hence by (1.2) (a), (2.3) and (2.7) we find

So y E Fo if and only if ya = 0, y’ 1. E03BB, i.e. Fo = B;.(Ei).
(2.8) ASSUMPTION. Either Ei or E_ i is complete in G. 1)

(2.9) THEOREM. F = F0+E03BB+E03BB, À ~ {i, -i}.
PROOF. It is clear that Fo + Ea + Ex c F. Conversely let y E F. Then

y = B-ig+y-i, g E G, Y-i E E_ i on account of (2.5). Now by (2.8)

Then

1 In the sequel we shall suppose Et is complete.
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thus B-iyi+y-i+1 2iyi ~ E-i. Also according to theorem (2.6) B-igl
~ F0. Hence y ~ F0 + E03BB + E03BB.

In order to show that the sum is direct we let ya e E;., À. e {i, -i} and
y03BB+y03BB~F0. Then the definition of Fo and corollary (1.2) imply

By (1.4) we obtain y03BB = 0, 03BB e {i, -i}.

3. Linear manifolds

Let 0 be the canonical mapping from G onto H : = G/N. On H we
define an inner product (,) by

Then H is a Hilbert space, in which we define the linear manifolds D and

Do by D = lfJ(F) and Do = lfJ(Fo). In the space H 2= H x H we define the
linear manifolds L and Lo by

It is clear that L o c L and that Do and D are the domains of L o and L
respectively.

(3.1) THEOREM. L is a subspace (closed linear manifold) in H2.

PROOF. Let {yn, zn} be a Cauchy sequence in L and let {y, z} be its
limit in H2. Let {yn, zj be such that Fyn = Gz. and ~(yn) = yn, ~(zn)
= zn . Now (2.1) and (F-iG)Yn = G(zn-iYn) imply that

Let {y, z} be such that ~(y) = y and ~(z) = z. Then yn ~ y and z" -. z
in G as n -. oo. By (2.1) (b) Bi is weakly continuous and hence

Since Ei is complete, ~(Ei) is closed in L and hence there exists y, e ~(Ei)
such that 0(yC) ~ y; in H and

Consequently there exists yi E Ei and m E N such that

We now put y’ = y + m and z’ = z + im. Then
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Consequently y’ e F and (F-iG)y’ = G(z’-iy’) or Fy’ = Gz’. This,
together with 0(y’) = y and ~(z’) = z imply {y, z} e L.
The adjoint of L in H2 is defined (see [1]) by

Then L* is a subspace of H2.

PROOF. Let {u, v} e Lo. There exist u e Fo, v e G such that Fu = Gv,
~(u) = u and ~(v) = v. Let {y, z} e L. Then there exist y e F, z e G such
that Fy = Gz, 0(y) = y and ~(z) = z. From corollary (1.2) and the
definition of Fo we find

for all {y, zl E L. Hence {u, v} E L* and L o c L*.
Conversely let {f, g} ~ L*. We must show that there exist f’ E Fo ,

g’ E G such that Ff’ = Gg’, ~(f’) = f and ~(g’) = g. For each y E F
and each z E G with Fy = Gz and for all f ~ ~-1(f), g ~ ~-1(g) we have

Let MeC be arbitrary and put y = B03BBu, z = u+03BBB03BBu, then y E F,
z E G, Fy = Gz and

Hence

for some n E N. Put f’ = f+n, g’ = g + 03BBn. Then f’, g’ satisfy the con-
ditions ~(f’) = f, ~(g’) = g, f’ ~ F, Ff’ = Gg’ and thus {f, g 1 c- L.
From Fy = Gz and F’f’ - Gg’ it follows that

Since y E F was arbitrary f’ E Fo, and hence {f, g 1 E L o or L* c L o .

(3.3) COROLLARY. Lo is a symmetric subspace.

PROOF. From theorems (3.1 ) and (3.2) it follows that
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4. Self-adjoint subspace extensions

We investigate the self-adjoint subspace extensions of Lo in H2 (if there
are any). Define M by M : = LO L o , then M = Mi ~ M_ i, where

For 03BB = ± i we define the mapping 0,, : Ea ~ Ma in the following way.
If y ~ E03BB then 0,,y : = {~(y), 03BB~(y)}. It is easily seen that the mapping ~03BB
is bijective, cf. (1.4).
An application of Coddington’s theorem [1, theorem 15 and corollary]

gives the following results.

(4.1) THEOREM. Lo has self-adjoint subspace extensions if and only if

(4.2) THEOREM. If dim Ei = dim E_ i, then all self-adjoint subspace ex-
tensions L of L o ill H2 have the form

where the isometry V from Mi onto M- i is given by

Here U is an isometrifroln Ei onto E- i.

Let D be the domain in H o fthe self-adjoint subspace extension L,
Lo c L c L. Then

and

Introducing F by

we observe ~() =  and

On account of the definition of Fo and (1.2)(a) and (b) one may verify:

According to Coddington [1 ] the space L can be written as

i.e. as a direct sum of a single-valued part Ls and a multi-valued part Loo.
Then L, generates a densely defined self-adjoint operator Â in (0)~ with
domain D.
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We define the linear manifold  by

it follows that

We define the linear manifold F 1 by

Then with jEj : = E03BB n F we have

for let y E 03BB, then Fy = 03BBGy, y E F. Now (4.4) shows y E Fi.

PROOF. Since 1 c F it is clear that 1+(N ~ F) c F. Conversely,
let y ~ . Then Fy = Gz, z E G. Now ~(G) = H = ~()+~()~.
Hence for ~(z) e H we find

Put wi = w + n; since N c ~ we find wi E ~. Therefore

or

which means y-u~1 and

Therefore F c 1 + (N n F).

PROOF. To prove (a) we let y E Fi n (N n F) = N n Fi. Then
Fy = Gz, z E ~. But this shows z ~ G-1F(N ~ F) = K Hence z E FI
n ~ = N, thus Gz = 0 and Fy = 0. Then y E F; for 03BB = 0. Together
with y E N and (1.3) we obtain y = 0. Since  = ~() = ~(1) the
proof of (b) is complete if we show 0 is injective. Let y e 1 with ~(y) = 0,
then y E N n F 1. According to (a) it follows that y = 0.
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(4.8) THEOREM. Let GN = {0}. Then y e 2;,(y =F 0) if and only if
Ã~(y) = 03BB~(y) (~(y) ~ 0).

PROOF. Let y e Ël (y gÉ 0), then y e 1 according to (4.5) and

Fy = 03BBGy. Then ~(y) ~ ~(1) =  and Ã~(y) = 03BB~(y). If we had

o(y) = 0, then y c- N n 1 but then it follows from (4.7) (a) that y = 0.
Hence fjJ(y) =1= 0. Conversely, let Ây = 03BBy, (y ~ 0) y e D. Corollary
(4.7)(b) shows that y = ~(y) for a unique y e 1(y ~ 0). Then Fy = Gz,
z e ~, which implies Ã~(y) = 0 (z). Hence Âo (y) = 0 (z) or ~(z-03BBy)
= 0; this implies z - 03BBy ~ N and Gz = 03BBGy. Thus Fy = 03BBGy, y e 1 and
y E 03BB(y ~ 0).

(4.9) REMARK. In case Fo = Fwe obtain Lo = L and hence L is a self-
adjoint subspace in H2. Then L = L, E9 Loo generates a densely defined
self-adjoint operator A in L(0)~ with domain D c L(0)~. We define

then L(0) = O(V) and L(0)~ = ~(Y)~ = o(V-L). Also F c V~.
We define the linear manifold Fi : = F-1GV~, then E03BB c Fi. We

have the following result.

(4.10) THEOREM.

PROOF. If Fo = F then E03BB = {0} for Â E {i, -i} according to (2.9). But
then theorem (2.5) shows F = BÀ G or Ba, : G - F is surjective. This proves
(a). In order to prove (b) we let y e Fi. Then Fy = Gz, z e V~ and

or

Now z E V~ and y E Fi c V~, thus z - 03BBy E V~.

(4.11) REMARK. If G is injective, we can define an operator M on F. Let
y E F then Fy = Gz where z E G is unique. Define M on F by My = z, i. e.
M = G-1F. The operator B03BB is a right inverse for M-03BB:

Let Mo be the restriction of M of Fo. Then for all z E G, y E Fo,



243

The condition GN = {0} implies that (,) is an inner product for G. If
(,) is an inner product, i.e., if G is a Hilbert space, then (4.12) shows that
B03BB is a left inverse of M0-03BB, 03BB E {i, -i}.

(4.13) REMARK. If dim Ei ~ dim E- ; then Lo does not have self-ad-
joint subspace extensions in H2. We can obtain either symmetric sub-
space extensions in H2 [1, theorem 4] or self-adjoint subspace extensions
in a space larger than H2 by applying [1, III section 2].

5. Boundary operators

Let (,)b be a semi-inner product on G such that G is complete with the
semi-inner product (,)1 = (,)+(,)b. Let Hb be a linear space with inner
product 1, lb. Let Gb be a linear mapping from G into Hb and let Fb,
Sb : F ~ Hb be linear mappings such that

and

By H x Hb we denote the linear space with inner product

where

By F, S we denote the linear mappings from F into H Hb defined by

1 It should be pointed out that we do not discuss the existense of such operators.
For the case that dim El = dim E-1  oo, we refer to Niessen [4] for a complete
treatment. We hope to treat the general case in a further paper.
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and by G we denote the linear mapping from G into H x Hb defined by

The inner product (,)1 has the property (u, v)1 = [Gu, Sv]1, u E G, v E F.

(5.4) THEOREM. F-AG : F - Hx Hb is injective, À E {i, -il.
PROOF. Let y E F be such that (F-AG)y = 0. Then

and hence

(5.5) COROLLARY. Fb-03BBGb restricted to El is injective, A E {i, -i}.
We now introduce F = F-1GG. Theorem (5.3) shows that if

then Fo = F.

(5.6) ASSUMPTION. Fb-ÀGb restricted to EA is bijective, ). E {i, -i}.
Let Bi be the mapping from G into F defined by

where y;. E Ea is uniquely determined by

and

We define N = {y~G|(y,y)1 = 0}. Let 0 be the canonical mapping from
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G onto G/N. We equip G/N with the obvious inner product. In G/N x G/N
we define the linear manifold L by

From the theory of the previous sections, it follows that L is a self-ad-
joint subspace. The domain D of L is given by D = 03A6(F). The subspace
Ls = L8LCX) generates a densely defined self-adjoint operator A in

L(0)~ with domain D c L (0)1. (cf. Coddington [1]). Let the linear
manifold V be defined by V = G -1 F(N n F). Then L(0) = 03A6(V) and
L(0)~ = (03A6V)~ = 03A6(V~). Also F c Y1. Let F1 be defined by F1 = F-1
G V1.. If GN = {0}, then the mapping 0 : F1 ~ D is bijective.

Let Ub be the mapping from Ei into E-i defined by Uby = z whenever
(Fb - iGb)y = (Fb + iGb)z, y E Ei, z E E-i. By (5.6) Ub is well-defined, sur-
jective and the domain of Ub equals Ei.

By (1.2) (a) and (b), (5.1), (5.2) and the above equalities we have

Let K03BB : Ei + E-i - Hb x Hb be defined by
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(5.9) THEOREM. KÂ is injective, A E {i, -il.
PROOF. Let y, z E Ei+E-i be decomposed into y = yi+y-i, and z =

zi+z-i, where y03BB, z03BB ~ E03BB, A E {i, -i}. These decompositions are unique
according to (2.9). Then by (5.1), (5.2) and (1.2) (a) and (b)

Suppose (Fb-ÂGb)y = 0 and Sby = 0. Then

(5.11) REMARK. If dim Ei = dim E-i = r  oo, then we may choose

Hb = C’; then assumption (5.6) follows from corollary (5.5) and assump-
tion (5.10) follows from theorem (5.9).

PROOF. Let y E Fo. Then

for all z ~ F, 03BB E {i, -i}. Let h E Hb be arbitrary and let z E Ei+E-i be
such that

Then

and hence

Also

By (5.6) Fb-ÁGb is surjective, hence SbY = 0.

(5.13) REMARK. Suppose Gb - 0. Then (,)b vanishes, N = N and
03A6 = 0. It follows from (5.12) that Fo c F c F. Consequently L is a
self-adjoint subspace with Lo c L c L.
By (4.2) there must exist an isometry U from Ei onto E-i such that

where = ~-iU~-1i. It turns out that U = Ub .
For, if y E F has the form y = y0 + yi - Uyi for some yo E Fo, yi E Ei,

then Fby = 0 if and only if U = Ub.
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(5.14) REMARK. Assume that L is a self-adjoint subspace extension of
Lo, determined by the isometry U from Ei onto E-i. Define Hb = Ei,
and [,]b = (,). Let

(Observe: (F"by, z) = ~y, t(1- U)z), and (SbY’ z) = (y, 1/2i(I+U)z~ for
all y, z e F). Then (5.1) with (,)b = 0, (5.2) (5.6) and (5.10) are satisfied.
Hence L = L, i.e. y e F if and only if y e F and Fby = 0.
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